1
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
2
|
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D'Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca 2+ homeostasis with adipose tissue lipolysis. Cell Metab 2021; 33:1820-1835.e9. [PMID: 34343501 PMCID: PMC8432968 DOI: 10.1016/j.cmet.2021.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/21/2023]
Abstract
Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.
Collapse
Affiliation(s)
- Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PT Manchester, UK
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mónica Imbernón
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain
| | - Pau Gama-Perez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clínic, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PT Manchester, UK
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Pablo M Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
3
|
Nikseresht Z, Ahangar N, Badrikoohi M, Babaei P. Synergistic enhancing-memory effect of D-serine and RU360, a mitochondrial calcium uniporter blocker in rat model of Alzheimer's disease. Behav Brain Res 2021; 409:113307. [PMID: 33872664 DOI: 10.1016/j.bbr.2021.113307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although Amyloid beta (Aβ) and N - methyl d- aspartate receptors (NMDARs are involved in Ca2+ neurotoxicity, the function of mitochondrial calcium uniporter in cognition deficit remain uncertain. Here, we examined the effect of mitochondrial calcium uniporter (MCU) blocker, together with NMDA receptor agonist d-cycloserine (DCS) on memory impairment in a rat model of AD. METHODS Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intracerebroventricular (ICV) injection of Aβ1-42 (5 μg /8 μl/rat). Then animals were divided into 5 groups of: Saline + Saline, Aβ + Saline, Aβ + RU360, Aβ + DCS, Aβ + RU360 + DCS. Two weeks after the treatments, Morris Water Maze (MWM) and step through passive avoidance learning (SPL) were undertaken for evaluating of spatial and associative memories, respectively. Hippocampal level of cyclic-AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were measured by western blot and ELISA. RESULTS Co - administration of RU360 and DCS significantly improved both acquisition and retrieval of spatial memory as evident by decreased escape latency and increased time spent in the target quadrant (TTS) in MWM, together with increase in step-through latency, but reduced time spent in the dark compartment in SPL. Furthermore, there was a significant rise in the hippocampal level of CREB and BDNF in comparison with Aβ + Saline. CONCLUSION The present study supports the idea that co- administration of RU360 and DCS ameliorate memory impairment induced by Aβ 1-42 probably via CREB / BDNF signaling.
Collapse
Affiliation(s)
- Zeynab Nikseresht
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment. Mitochondrion 2021; 57:192-204. [PMID: 33484870 DOI: 10.1016/j.mito.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.
Collapse
|
5
|
Jegal HG, Park HJ, Kim JW, Yang SG, Kim MJ, Koo DB. Ruthenium red improves blastocyst developmental competence by regulating mitochondrial Ca 2+ and mitochondrial functions in fertilized porcine oocytes in vitro. J Reprod Dev 2020; 66:377-386. [PMID: 32321875 PMCID: PMC7470902 DOI: 10.1262/jrd.2020-013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ruthenium red (RR) inhibits calcium (Ca2+) entry from the cytoplasm to the mitochondria, and is involved in maintenance of Ca2+ homeostasis in mammalian
cells. Ca2+ homeostasis is very important for further embryonic development of fertilized oocytes. However, the effect of RR on mitochondria-Ca2+
(mito-Ca2+) levels during in vitro fertilization (IVF) on subsequent blastocyst developmental capacity in porcine is unclear. The present study
explored the regulation of mito-Ca2+ levels using RR and/or histamine in fertilized oocytes and their influence on blastocyst developmental capacity in pigs. Red
fluorescence intensity by the mito-Ca2+ detection dye Rhod-2 was significantly increased (P < 0.05) in zygotes 6 h after IVF compared to mature oocytes. Based on
these results, we investigated the changes in mito-Ca2+ by RR (10 and 20 μM) in presumptive zygotes using Rhod-2 staining and mito-Ca2+ uptake 1 (MICU1)
protein levels as an indicator of mito-Ca2+ uptake using western blot analysis. As expected, RR-treated zygotes displayed decreased protein levels of MICU1 and Rhod-2
red fluorescence intensity compared to non-treated zygotes 6 h after IVF. Blastocyst development rate of 20 μM RR-treated zygotes was significantly increased 6 h after IVF (P <
0.05) due to improved mitochondrial functions. Conversely, the blastocyst development rate was significantly decreased in histamine (mito-Ca2+ inhibitor, 100 nM) treated
zygotes (P < 0.05). The collective results demonstrate that RR improves blastocyst development in porcine embryos by regulating mito-Ca2+ and MICU1 expression
following IVF.
Collapse
Affiliation(s)
- Ho-Geun Jegal
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Jin-Woo Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Min-Ji Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
6
|
Parent M, Chitturi J, Santhakumar V, Hyder F, Sanganahalli BG, Kannurpatti SS. Kaempferol Treatment after Traumatic Brain Injury during Early Development Mitigates Brain Parenchymal Microstructure and Neural Functional Connectivity Deterioration at Adolescence. J Neurotrauma 2020; 37:966-974. [PMID: 31830867 PMCID: PMC7175625 DOI: 10.1089/neu.2019.6486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Targeting mitochondrial ion homeostasis using Kaempferol, a mitochondrial Ca2+ uniporter channel activator, improves energy metabolism and behavior soon after a traumatic brain injury (TBI) in developing rats. Because of broad TBI pathophysiology and brain mitochondrial heterogeneity, Kaempferol-mediated early-stage behavioral and brain metabolic benefits may accrue from diverse sources within the brain. We hypothesized that Kaempferol influences TBI outcome by differentially impacting the neural, vascular, and synaptic/axonal compartments. After TBI at early development (P31), functional magnetic resonance imaging and diffusion tensor imaging (DTI) were applied to determine imaging outcomes at adolescence (2 months post-injury). Vehicle and Kaempferol treatments were made at 1, 24, and 48 h post-TBI, and their effects were assessed at adolescence. A significant increase in neural connectivity was observed after Kaempferol treatment as assessed by the spatial extent and strength of the somatosensory cortical and hippocampal resting-state functional connectivity (RSFC) networks. However, no significant RSFC changes were observed in the thalamus. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient, representing synaptic/axonal and microstructural integrity, showed significant improvements after Kaempferol treatment, with highest changes in the frontal and parietal cortices and hippocampus. Kaempferol treatment also increased corpus callosal FA, indicating measurable improvement in the interhemispheric structural connectivity. TBI prognosis was significantly altered at adolescence by early Kaempferol treatment, with improved neural connectivity, neurovascular coupling, and parenchymal microstructure in select brain regions. However, Kaempferol failed to improve vasomotive function across the whole brain, as measured by cerebrovascular reactivity. The differential effects of Kaempferol treatment on various brain functional compartments support diverse cellular-level mitochondrial functional outcomes in vivo.
Collapse
Affiliation(s)
- Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jyothsna Chitturi
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Medical Science Building, Newark, New Jersey
- Department of Molecular, Cell and Systems Neuroscience, University of California at Riverside, Riverside, California
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Basavaraju G. Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Sridhar S. Kannurpatti
- Department of Radiology, Rutgers Biomedical and Health Sciences–New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
7
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
8
|
Kannurpatti SS. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab 2017; 37:381-395. [PMID: 27879386 PMCID: PMC5381466 DOI: 10.1177/0271678x16680637] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial function is critical to maintain high rates of oxidative metabolism supporting energy demands of both spontaneous and evoked neuronal activity in the brain. Mitochondria not only regulate energy metabolism, but also influence neuronal signaling. Regulation of "energy metabolism" and "neuronal signaling" (i.e. neurometabolic coupling), which are coupled rather than independent can be understood through mitochondria's integrative functions of calcium ion (Ca2+) uptake and cycling. While mitochondrial Ca2+ do not affect hemodynamics directly, neuronal activity changes are mechanistically linked to functional hyperemic responses (i.e. neurovascular coupling). Early in vitro studies lay the foundation of mitochondrial Ca2+ homeostasis and its functional roles within cells. However, recent in vivo approaches indicate mitochondrial Ca2+ homeostasis as maintained by the role of mitochondrial Ca2+ uniporter (mCU) influences system-level brain activity as measured by a variety of techniques. Based on earlier evidence of subcellular cytoplasmic Ca2+ microdomains and cellular bioenergetic states, a mechanistic model of Ca2+ mobilization is presented to understand systems-level neurovascular and neurometabolic coupling. This integrated view from molecular and cellular to the systems level, where mCU plays a major role in mitochondrial and cellular Ca2+ homeostasis, may explain the wide range of activation-induced coupling across neuronal activity, hemodynamic, and metabolic responses.
Collapse
|
9
|
Shen T, Wang N, Yu X, Shi J, Li Q, Zhang C, Fu L, Wang S, Xing Y, Zheng X, Yu L, Zhu D. The Critical Role of Dynamin-Related Protein 1 in Hypoxia-Induced Pulmonary Vascular Angiogenesis. J Cell Biochem 2016; 116:1993-2007. [PMID: 25752284 DOI: 10.1002/jcb.25154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/03/2015] [Indexed: 11/09/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by pulmonary vascular obstruction due in part to excessive pulmonary artery endothelial cells (PAECs) migration and proliferation. The mitochondrial fission protein dynamin-related protein-1 (DRP1) has important influence on pulmonary vascular remodeling. However, whether DRP1 participates in the development and progression of pulmonary vascular angiogenesis has not been reported previously. To test the hypothesis that DRP1 promotes the angiogenesis via promoting the proliferation, stimulating migration, and inhibiting the apoptosis of PAECs in mitochondrial Ca(2+)-dependent manner, we performed following studies. Using hemodynamic analysis and morphometric assay, we found that DRP1 mediated the elevation of right ventricular systemic pressure (RVSP), right heart hypertrophy, and increase of pulmonary microvessels induced by hypoxia. DRP1 inhibition reversed tube network formation in vitro stimulated by hypoxia. The mitochondrial Ca(2+) inhibited by hypoxia was recovered by DRP1 silencing. Moreover, pulmonary vascular angiogenesis promoted by DRP1 was reversed by the specific mitochondrial Ca(2+) uniporter inhibitor Ru360. In addition, DRP1 promoted the proliferation and migration of PAECs in mitochondrial Ca(2+)-dependent manner. Besides, DRP1 decreased mitochondrial membrane potential, reduced the DNA fragmentation, and inhibited the caspase-3 activation, which were all aggravated by Ru360. Therefore, these results indicate that the mitochondrial fission machinery promotes migration, facilitates proliferation, and prevents from apoptosis via mitochondrial Ca(2+)-dependent pathway in endothelial cells leading to pulmonary angiogenesis.
Collapse
Affiliation(s)
- Tingting Shen
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Na Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Xiufeng Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | | | | | - Chen Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Li Fu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Shuang Wang
- Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, China
| | - Yan Xing
- Department of Pharmacology, College of Basic Medicine, Harbin Medical University, Daqing, China
| | - Xiaodong Zheng
- Department of Pathophysiology, College of Basic Medicine, Harbin Medical University, Daqing, China
| | - Lei Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing), Daqing, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Murugan M, Santhakumar V, Kannurpatti SS. Facilitating Mitochondrial Calcium Uptake Improves Activation-Induced Cerebral Blood Flow and Behavior after mTBI. Front Syst Neurosci 2016; 10:19. [PMID: 27013987 PMCID: PMC4782040 DOI: 10.3389/fnsys.2016.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Mild to moderate traumatic brain injury (mTBI) leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca(2+) overload. However, in the surviving cellular population, mitochondrial Ca(2+) influx, and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca(2+) uptake in a rat model of mTBI. In developing rats (P25-P26) sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF) in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI) at adulthood (P67-P73). Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca(2+) uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca(2+) uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity following kaempferol treatment suggests that facilitation of mitochondrial Ca(2+) uptake in the early window after injury may sustain optimal neural activity and metabolism and contribute to improved function of the surviving cellular populations after mTBI.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Radiology, Rutgers New Jersey Medical School Newark, NJ, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School Newark, NJ, USA
| | | |
Collapse
|
11
|
Kannurpatti SS, Sanganahalli BG, Herman P, Hyder F. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks. NMR IN BIOMEDICINE 2015; 28:1579-1588. [PMID: 26439799 PMCID: PMC4621005 DOI: 10.1002/nbm.3421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI.
Collapse
Affiliation(s)
| | - Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520-808
- Magnetic Resonance Research Center (MRRC), Yale University School of Medicine, New Haven, CT 06520-808
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University School of Medicine, New Haven, CT 06520-808
| | - Peter Herman
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520-808
- Magnetic Resonance Research Center (MRRC), Yale University School of Medicine, New Haven, CT 06520-808
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University School of Medicine, New Haven, CT 06520-808
| | - Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520-808
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520-808
- Magnetic Resonance Research Center (MRRC), Yale University School of Medicine, New Haven, CT 06520-808
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University School of Medicine, New Haven, CT 06520-808
| |
Collapse
|
12
|
Byun J, Son SM, Cha MY, Shong M, Hwang YJ, Kim Y, Ryu H, Moon M, Kim KS, Mook-Jung I. CR6-interacting factor 1 is a key regulator in Aβ-induced mitochondrial disruption and pathogenesis of Alzheimer's disease. Cell Death Differ 2014; 22:959-73. [PMID: 25361083 PMCID: PMC4423180 DOI: 10.1038/cdd.2014.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction, often characterized by massive fission and other morphological abnormalities, is a well-known risk factor for Alzheimer's disease (AD). One causative mechanism underlying AD-associated mitochondrial dysfunction is thought to be amyloid-β (Aβ), yet the pathways between Aβ and mitochondrial dysfunction remain elusive. In this study, we report that CR6-interacting factor 1 (Crif1), a mitochondrial inner membrane protein, is a key player in Aβ-induced mitochondrial dysfunction. Specifically, we found that Crif1 levels were downregulated in the pathological regions of Tg6799 mice brains, wherein overexpressed Aβ undergoes self-aggregation. Downregulation of Crif1 was similarly observed in human AD brains as well as in SH-SY5Y cells treated with Aβ. In addition, knockdown of Crif1, using RNA interference, induced mitochondrial dysfunction with phenotypes similar to those observed in Aβ-treated cells. Conversely, Crif1 overexpression prevented Aβ-induced mitochondrial dysfunction and cell death. Finally, we show that Aβ-induced downregulation of Crif1 is mediated by enhanced reactive oxygen species (ROS) and ROS-dependent sumoylation of the transcription factor specificity protein 1 (Sp1). These results identify the ROS-Sp1-Crif1 pathway to be a new mechanism underlying Aβ-induced mitochondrial dysfunction and suggest that ROS-mediated downregulation of Crif1 is a crucial event in AD pathology. We propose that Crif1 may serve as a novel therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- J Byun
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - S M Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - M-Y Cha
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - M Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Y J Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea
| | - Y Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea
| | - H Ryu
- 1] Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Korea [2] Department of Neurology and Pathology, Boston University School of Medicine, Boston, MA, USA
| | - M Moon
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - K-S Kim
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - I Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia. Cell Tissue Res 2014; 357:395-405. [DOI: 10.1007/s00441-014-1807-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
|
14
|
Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V, Liebetanz D. Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol Res 2013; 35:1029-37. [PMID: 23899548 DOI: 10.1179/1743132813y.0000000248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) induces polarity-specific changes of cerebral blood flow (CBF). To determine whether these changes are focally limited or if they incorporate large cortical regions and thus have the potential for a therapeutic application, we investigated the effects of cathodal tDCS on CBF in an established tDCS rat model with particular attention to the spatial extension in CBF changes using laser Doppler blood perfusion imaging (LDI). METHODS Twenty-one Sprague Dawley rats received a single 15-minute session of cathodal tDCS at current intensities of 200, 400, 600, or 700 μA applied over electrode contact areas (ECA) of 3·5, 7·0, 10·5, or 14·0 mm(2). One animal died prior to the stimulation. Cerebral blood flow was measured prior and after tDCS with LDI in three defined regions of interest (ROI) over the stimulated left hemisphere (region anterior to ECA - ROI 1, ECA - ROI 2, region posterior to ECA - ROI 3). RESULTS A regional decrease in CBF was measured after cathodal tDCS, the extent of the decrease depending on the current density applied. The most effective and spatially limited reduction in CBF (up to 50%, lasting as long as 90 minutes) was found after the application of 600 μA over an ECA of 10·5 mm(2). This significant reduction in CBF even lasted up to 90 minutes in distant cortical areas (ROI 1 and 3) that were not directly related to the ECA (ROI 2). DISCUSSION Cathodal tDCS induces a regional, long-lasting, reversible decrease in CBF that is not limited to the region to which tDCS is applied.
Collapse
|
15
|
Mitochondrial calcium uptake capacity modulates neocortical excitability. J Cereb Blood Flow Metab 2013; 33:1115-26. [PMID: 23591650 PMCID: PMC3705442 DOI: 10.1038/jcbfm.2013.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/25/2022]
Abstract
Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.
Collapse
|
16
|
Sanganahalli BG, Herman P, Hyder F, Kannurpatti SS. Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI. PLoS One 2013; 8:e63317. [PMID: 23650561 PMCID: PMC3641133 DOI: 10.1371/journal.pone.0063317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial Ca2+ uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca2+ uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca2+ ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca2+ uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca2+ uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca2+ uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca2+ uniporter (mCU) activity. Neuronal electrical activity and cerebral blood flow (CBF) fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC), whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca2+ uptake capacities lead to diminished resting state modes of brain functional connectivity.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Peter Herman
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sridhar S. Kannurpatti
- Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Calcium signaling in cerebral vasoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:833-58. [PMID: 22453972 DOI: 10.1007/978-94-007-2888-2_37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tight coupling of regional neurometabolic activity with synaptic activity and regional cerebral blood perfusion constitutes a single functional unit, described generally as a neurovascular unit. This is central to any discussion of haemodynamic response linked to any neuronal activation. In normal as well as in pathologic conditions, neurons, astrocytes and endothelial cells of the vasculature interact to generate the complex activity-induced cerebral haemodynamic responses, with astrocytes not only partaking in the signaling but actually controlling it in many cases. Neurons and astrocytes have highly integrated signaling mechanisms, yet they form two separate networks. Bidirectional neuron-astrocyte interactions are crucial for the function and survival of the central nervous system. The primary purpose of such regulation is the homeostasis of the brain's microenvironment. In the maintenance of such homeostasis, astrocytic calcium response is a crucial variable in determining neurovascular control. Future work will be directed towards resolving the nature and extent of astrocytic calcium-mediated mechanisms for gene transcription, in modelling neurovascular control, and in determining calcium sensitive imaging assays that can capture disease variables.
Collapse
|