1
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
2
|
Zheng X, Zhou C, Hu Y, Xu S, Hu L, Li B, Zhao X, Li Q, Tang X, Huang K. Mass Spectrometry-Based Proteomics Analysis Unveils PTPRS Inhibits Proliferation and Inflammatory Response of Keratinocytes in Psoriasis. Inflammation 2024:10.1007/s10753-024-02044-z. [PMID: 38739342 DOI: 10.1007/s10753-024-02044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
In this study, we used data-independent acquisition-mass spectrometry (DIA-MS) to analyze the serum proteome in psoriasis vulgaris (PsO). The serum proteomes of seven healthy controls and eight patients with PsO were analyzed using DIA-MS. Weighted gene co-expression network analysis was used to identify differentially expressed proteins (DEPs) that were closely related to PsO. Hub proteins of PsO were also identified. The Proteomics Drug Atlas 2023 was used to predict candidate hub protein drugs. To confirm the expression of the candidate factor, protein tyrosine phosphatase receptor S (PTPRS), in psoriatic lesions and the psoriatic keratinocyte model, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting were performed. A total of 129 DEPs were found to be closely related to PsO. The hub proteins for PsO were PVRL1, FGFR1, PTPRS, CDH2, CDH1, MCAM, and THY1. Five candidate hub protein drugs were identified: encorafenib, leupeptin, fedratinib, UNC 0631, and SCH 530348. PTPRS was identified as a common pharmacological target for these five drugs. PTPRS knockdown in keratinocytes promoted the proliferation and expression of IL-1α, IL-1β, IL-23A, TNF-α, MMP9, CXCL8, and S100A9. PTPRS expression was decreased in PsO, and PTPRS negatively regulated PsO. PTPRS may be involved in PsO pathogenesis through the inhibition of keratinocyte proliferation and inflammatory responses and is a potential treatment target for PsO.
Collapse
Affiliation(s)
- Xuyu Zheng
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cui Zhou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yulian Hu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shihao Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Li Hu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Biyu Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaoqin Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Tang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kun Huang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Santi A, Kay EJ, Neilson LJ, McGarry L, Lilla S, Mullin M, Paul NR, Fercoq F, Koulouras G, Rodriguez Blanco G, Athineos D, Mason S, Hughes M, Thomson G, Kieffer Y, Nixon C, Blyth K, Mechta-Grigoriou F, Carlin LM, Zanivan S. Cancer-associated fibroblasts produce matrix-bound vesicles that influence endothelial cell function. Sci Signal 2024; 17:eade0580. [PMID: 38470957 DOI: 10.1126/scisignal.ade0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Intercellular communication between different cell types in solid tumors contributes to tumor growth and metastatic dissemination. The secretome of cancer-associated fibroblasts (CAFs) plays major roles in these processes. Using human mammary CAFs, we showed that CAFs with a myofibroblast phenotype released extracellular vesicles that transferred proteins to endothelial cells (ECs) that affected their interaction with immune cells. Mass spectrometry-based proteomics identified proteins transferred from CAFs to ECs, which included plasma membrane receptors. Using THY1 as an example of a transferred plasma membrane-bound protein, we showed that CAF-derived proteins increased the adhesion of a monocyte cell line to ECs. CAFs produced high amounts of matrix-bound EVs, which were the primary vehicles of protein transfer. Hence, our work paves the way for future studies that investigate how CAF-derived matrix-bound EVs influence tumor pathology by regulating the function of neighboring cancer, stromal, and immune cells.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Emily J Kay
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Lisa J Neilson
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Margaret Mullin
- College of Medical, Veterinary, and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikki R Paul
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | | | - Grigorios Koulouras
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Susan Mason
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Mark Hughes
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Gemma Thomson
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Yann Kieffer
- Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, 75005 Paris, France
- INSERM, U830, 75005 Paris, France
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Fatima Mechta-Grigoriou
- Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, 26, rue d'Ulm, 75005 Paris, France
- INSERM, U830, 75005 Paris, France
| | - Leo M Carlin
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Wiles AK, Mehta S, Millier M, Woolley AG, Li K, Parker K, Kazantseva M, Wilson M, Young K, Bowie S, Ray S, Slatter TL, Stamp LK, Hessian PA, Braithwaite AW. Activated CD90/Thy-1 fibroblasts co-express the Δ133p53β isoform and are associated with highly inflamed rheumatoid arthritis. Arthritis Res Ther 2023; 25:62. [PMID: 37060003 PMCID: PMC10105423 DOI: 10.1186/s13075-023-03040-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The p53 isoform Δ133p53β is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53β is driving aggressive disease in RA. METHODS Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53. We also used IHC to determine the location and type of cells with elevated levels of Δ133p53β. Plasma cytokines were also measured using a BioPlex cytokine panel and data analysed by the Milliplex Analyst software. RESULTS Elevated levels of pro-inflammatory plasma cytokines were associated with synovia from RA patients displaying extensive tissue inflammation, increased immune cell infiltration and the highest levels of Δ133TP53 and TP53β mRNA. Located in perivascular regions of synovial sub-lining and surrounding ectopic lymphoid structures (ELS) were a subset of cells with high levels of CD90, a marker of 'activated fibroblasts' together with elevated levels of Δ133p53β. CONCLUSIONS Induction of Δ133p53β in CD90+ synovial fibroblasts leads to an increase in cytokine and chemokine expression and the recruitment of proinflammatory cells into the synovial joint, creating a persistently inflamed environment. Our results show that dysregulated expression of Δ133p53β could represent one of the early triggers in the immunopathogenesis of RA and actively perpetuates chronic synovial inflammation. Therefore, Δ133p53β could be used as a biomarker to identify RA patients more likely to develop aggressive disease who might benefit from targeted therapy to cytokines such as IL-6.
Collapse
Affiliation(s)
- Anna K Wiles
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Sunali Mehta
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Melanie Millier
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Kim Parker
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Marina Kazantseva
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Michelle Wilson
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Katie Young
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sarah Bowie
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sankalita Ray
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paul A Hessian
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand.
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand.
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand.
| |
Collapse
|
5
|
Zhang B, Roesner LM, Traidl S, Koeken VACM, Xu CJ, Werfel T, Li Y. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 2023; 78:439-453. [PMID: 35986602 DOI: 10.1111/all.15486] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Werfel
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Pérez-Núñez R, Chamorro A, González MF, Contreras P, Artigas R, Corvalán AH, van Zundert B, Reyes C, Moya PR, Avalos AM, Schneider P, Quest AFG, Leyton L. Protein kinase B (AKT) upregulation and Thy-1-α vβ 3 integrin-induced phosphorylation of Connexin43 by activated AKT in astrogliosis. J Neuroinflammation 2023; 20:5. [PMID: 36609298 PMCID: PMC9817390 DOI: 10.1186/s12974-022-02677-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In response to brain injury or inflammation, astrocytes undergo hypertrophy, proliferate, and migrate to the damaged zone. These changes, collectively known as "astrogliosis", initially protect the brain; however, astrogliosis can also cause neuronal dysfunction. Additionally, these astrocytes undergo intracellular changes involving alterations in the expression and localization of many proteins, including αvβ3 integrin. Our previous reports indicate that Thy-1, a neuronal glycoprotein, binds to this integrin inducing Connexin43 (Cx43) hemichannel (HC) opening, ATP release, and astrocyte migration. Despite such insight, important links and molecular events leading to astrogliosis remain to be defined. METHODS Using bioinformatics approaches, we analyzed different Gene Expression Omnibus datasets to identify changes occurring in reactive astrocytes as compared to astrocytes from the normal mouse brain. In silico analysis was validated by both qRT-PCR and immunoblotting using reactive astrocyte cultures from the normal rat brain treated with TNF and from the brain of a hSOD1G93A transgenic mouse model. We evaluated the phosphorylation of Cx43 serine residue 373 (S373) by AKT and ATP release as a functional assay for HC opening. In vivo experiments were also performed with an AKT inhibitor (AKTi). RESULTS The bioinformatics analysis revealed that genes of the PI3K/AKT signaling pathway were among the most significantly altered in reactive astrocytes. mRNA and protein levels of PI3K, AKT, as well as Cx43, were elevated in reactive astrocytes from normal rats and from hSOD1G93A transgenic mice, as compared to controls. In vitro, reactive astrocytes stimulated with Thy-1 responded by activating AKT, which phosphorylated S373Cx43. Increased pS373Cx43 augmented the release of ATP to the extracellular medium and AKTi inhibited these Thy-1-induced responses. Furthermore, in an in vivo model of inflammation (brain damage), AKTi decreased the levels of astrocyte reactivity markers and S373Cx43 phosphorylation. CONCLUSIONS Here, we identify changes in the PI3K/AKT molecular signaling network and show how they participate in astrogliosis by regulating the HC protein Cx43. Moreover, because HC opening and ATP release are important in astrocyte reactivity, the phosphorylation of Cx43 by AKT and the associated increase in ATP release identify a potential therapeutic window of opportunity to limit the adverse effects of astrogliosis.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Alejandro Chamorro
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - María Fernanda González
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Pamela Contreras
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Rocío Artigas
- grid.7870.80000 0001 2157 0406Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile
| | - Alejandro H. Corvalán
- grid.7870.80000 0001 2157 0406Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile ,grid.7870.80000 0001 2157 0406Department of Hematology and Oncology, Facultad de Medicina, Pontificia Universidad Católica de Chile (PUC), 833-1150 Santiago, Chile
| | - Brigitte van Zundert
- grid.412848.30000 0001 2156 804XInstitute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, 837-0186 Santiago, Chile ,grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655 USA
| | - Christopher Reyes
- grid.412185.b0000 0000 8912 4050Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R. Moya
- grid.412185.b0000 0000 8912 4050Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana María Avalos
- grid.441837.d0000 0001 0765 9762Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Pascal Schneider
- grid.9851.50000 0001 2165 4204Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Andrew F. G. Quest
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Lisette Leyton
- grid.443909.30000 0004 0385 4466Department of Cell and Molecular Biology, Cellular Communication Laboratory, Center for Studies On Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile ,grid.443909.30000 0004 0385 4466Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| |
Collapse
|
7
|
Yan BX, Chen XY, Wang ZY, Cui YZ, Landeck L, Fu NC, Yang XY, Xu F, Zhou Y, Chen JQ, Man XY. Mupirocin blocks imiquimod-induced psoriasis-like skin lesion by inhibiting epidermal isoleucyl-tRNA synthetase. Cell Commun Signal 2022; 20:185. [PMID: 36419191 PMCID: PMC9682813 DOI: 10.1186/s12964-022-00995-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Isoleucyl-tRNA synthetase (IARS) catalyzes isoleucine to the corresponding tRNA, maintaining the accuracy of gene translation. Its role in psoriasis has been not investigated so far. In this study, we aimed to investigate the mechanisms underlying the efficacy of IARS inhibitor, mupirocin, treatment for psoriasis. METHODS The expression of IARS was determined by immunofluorescence, Western blot and qRT-PCR in normal healthy control- and psoriatic human skin. An imiquimod (IMQ) -induced psoriasis-like skin disease model was used to study the phenotypes changed by an IARS inhibitor, mupirocin (MUP). Endotypes were analyzed by RNA-seq, R&D Luminex multi-factor technique, ELISA, immunofluorescence and flow cytometry. Additionally, the effect of MUP on epidermal keratinocytes (KCs) were conducted in-vitro in primary cultured human KCs. RESULTS We found the expression of IARS was higher in psoriatic skin than in healthy controls. In IMQ-induced psoriasis-like C57BL/6 J mouse model, MUP reversed IMQ-induced keratinocytes proliferation, expression of inflammatory cytokines and infiltration of immune cells. Furthermore, in cultured human keratinocytes, MUP inhibited proliferation, but promoted apoptosis, which may be related with STAT3 signaling pathway. CONCLUSION Our finding of blocking the infiltration of immune cells by inhibiting the formation of IARS, could be one mechanism to explain the effect of MUP in the treatment of psoriasis. Developing strategies targeting suppression IARS should open new perspectives for the treatment of psoriasis. Video Abstract.
Collapse
Affiliation(s)
- Bing-Xi Yan
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Xue-Yan Chen
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Zhao-Yuan Wang
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Ying-Zhe Cui
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Lilla Landeck
- Ernst Von Bergmann General Hospital, Teaching Hospital of Charité, University Medicine Berlin–Humboldt University Berlin, Potsdam, Germany
| | - Ni-Chang Fu
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Xing-Yu Yang
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Fan Xu
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Yuan Zhou
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Jia-Qi Chen
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| | - Xiao-Yong Man
- grid.412465.0Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88Th Jiefang Road, Hangzhou, 310009 China
| |
Collapse
|
8
|
Hu P, Leyton L, Hagood JS, Barker TH. Thy-1-Integrin Interactions in cis and Trans Mediate Distinctive Signaling. Front Cell Dev Biol 2022; 10:928510. [PMID: 35733855 PMCID: PMC9208718 DOI: 10.3389/fcell.2022.928510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears a broad mosaic of biological roles across various cell types. Thy-1 displays strong physiological and pathological implications in development, cancer, immunity, and tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling through direct trans- and cis-interaction with integrins. Both interaction types have shown distinctive roles, even when interacting with the same type of integrin, where binding in trans or in cis often yields divergent signaling events. In this review, we will revisit recent progress and discoveries of Thy-1–integrin interactions in trans and in cis, highlight their pathophysiological consequences and explore other potential binding partners of Thy-1 within the integrin regulation/signaling paradigm.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile and Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - James S. Hagood
- Department of Pediatrics, Division of Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Program for Rare and Interstitial Lung Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Thomas H. Barker,
| |
Collapse
|
9
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
10
|
Local application reduces number of needed EPC for beneficial effects on wound healing compared to systemic treatment in mice. Eur J Trauma Emerg Surg 2021; 48:1613-1624. [PMID: 33813603 PMCID: PMC9192367 DOI: 10.1007/s00068-021-01621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Introduction Stem cell transplantation is one of the most promising strategies to improve healing in chronic wounds as systemic administration of endothelial progenitor cells (EPC) enhances healing by promoting neovascularization and homing though a high amount of cells is needed. In the following study, we analysed whether local application can reduce the number of EPC needed achieving the same beneficial effect on wound healing. Material and Methods Wound healing after local or systemic treatment with EPC was monitored in vivo by creating standardized wounds on the dorsum of hairless mice measuring wound closure every second day. Systemic group received 2 × 106 EPC i.v. and locally treated group 2 × 105 EPC, locally injected. As control PBS injection was performed the same way. Expression of CD31, VEGF, CD90 and, SDF-1α was analysed immunohistochemically for evaluation of neovascularisation and amelioration of homing. Results Local (7.1 ± 0.45 SD) as well as systemic (6.1 ± 0.23 SD) EPC transplantation led to a significant acceleration of wound closure compared to controls (PBS local: 9.7 ± 0.5 SD, PBS systemic 10.9 ± 0.38 SD). Systemic application enhanced CD31 expression on day 6 after wounding and local EPC on 6 and 9 in comparison to control. VEGF expression was not significantly affected. Systemic and local EPC treatment resulted in a significantly enhanced SDF-1α and CD90 expression on all days investigated. Conclusion Local as well as systemic EPC treatment enhances wound healing. Moreover, beneficial effects are obtained with a tenfold decrease number of EPC when applied locally. Thus, local EPC treatment might be more convenient way to enhance wound healing as number of progenitor cells is limited.
Collapse
|
11
|
Herster F, Karbach S, Chatterjee M, Weber ANR. Platelets: Underestimated Regulators of Autoinflammation in Psoriasis. J Invest Dermatol 2021; 141:1395-1403. [PMID: 33810836 DOI: 10.1016/j.jid.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023]
Abstract
Platelets have long been known as mediators of hemostasis and, more recently, as mediators of thromboinflammation, although their physiopathological role has mostly been investigated in the context of disease of internal organs, such as liver and kidney, or systemic disorders. Of late, exciting recent data suggest that platelets may also play a role in inflammation at distal sites such as the skin: recent studies show that platelets, by engaging polymorphonuclear neutrophils (PMNs), contribute to local inflammation in the frequent skin disorder, psoriasis. In an experimental model, systemic depletion of platelets drastically attenuated skin inflammation by preventing PMN infiltration of the skin. A broader role of platelets in different types of skin inflammation is therefore likely, and in this paper, we specifically review recent advances in psoriasis. Special emphasis is given to the crosstalk with systemic platelet effects, which may be of interest in psoriasis-related cardiovascular comorbidities. Furthermore, we discuss the potential for platelet-centered interventions in the therapy for psoriasis.
Collapse
Affiliation(s)
- Franziska Herster
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany; Department of Molecular Oncology, Robert Bosch Centrum für Tumorerkrankungen (RBCT), Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Susanne Karbach
- Center for Cardiology - Cardiology I, University Medical Center Mainz and Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Zhao J, Xie P, Galiano RD, Qi S, Mao R, Mustoe TA, Hong SJ. Imiquimod-induced skin inflammation is relieved by knockdown of sodium channel Na x. Exp Dermatol 2020; 28:576-584. [PMID: 30903711 DOI: 10.1111/exd.13917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Abstract
Nax is an atypical sodium channel that mediates inflammatory pathways in pathological conditions of the skin. In this study, we developed a skin inflammation model in the rabbit ear through application of imiquimod (IMQ). Knockdown of Nax using RNAi attenuated IMQ-induced skin inflammation, including skin erythema, scaling and papule formation. Histologic analysis showed that thickening and insufficient differentiation of the epidermis found in psoriasis-like skin were normalized by administration of Nax -RNAi. Excessive infiltration of inflammatory cells found in inflammatory lesions, such as mast cells, eosinophils, neutrophils, T cells and macrophages, was reduced by Nax -RNAi. Expression of S100A9, which is a downstream gene of Nax and a mediator of inflammation, was decreased by Nax -RNAi. Our results demonstrated that knockdown of Nax ameliorated IMQ-induced psoriasis-like skin inflammation in vivo. Thus, targeting of Nax may represent a potential therapeutic option for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Ping Xie
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Robert D Galiano
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renxiang Mao
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Thomas A Mustoe
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| | - Seok Jong Hong
- Department of Surgery/Plastic Surgery Division, Laboratory for Tissue Repair and Regenerative Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illionis
| |
Collapse
|
13
|
Abstract
Psoriasis is a common inflammatory disease that can involve the skin, joints, or both. The abnormalities of innate immunity play crucial roles in the pathogenesis of psoriasis. Neutrophils are the most abundant leukocytes in the circulation. Emerging evidences have demonstrated that neutrophils may play a role in autoimmune diseases. The neutrophil-to-lymphocyte ratio (NLR), the activity of neutrophils, and the number of NETotic cells were significantly higher in psoriasis patients compared to healthy controls. The number of low-density granulocytes (LDGs) in the blood of psoriasis patients was significantly higher than those in the control blood. Furthermore, neutrophils may play important roles in the cardiovascular risk in psoriasis. However, the exact role of neutrophils in psoriasis remains unclear. In this review, we highlight the role of neutrophils in the pathogenesis of psoriasis.
Collapse
|
14
|
Leyton L, Díaz J, Martínez S, Palacios E, Pérez LA, Pérez RD. Thy-1/CD90 a Bidirectional and Lateral Signaling Scaffold. Front Cell Dev Biol 2019; 7:132. [PMID: 31428610 PMCID: PMC6689999 DOI: 10.3389/fcell.2019.00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023] Open
Abstract
Thy-1/CD90 is a glycoprotein attached to the outer face of the plasma membrane with various functions, which depend on the context of specific physiological or pathological conditions. Many of these reported functions for Thy-1/CD90 arose from studies by our group, which identified the first ligand/receptor for Thy-1/CD90 as an integrin. This finding initiated studies directed toward unveiling the molecular mechanisms that operate downstream of Thy-1/CD90 activation, and its possible interaction with proteins in the membrane plane to regulate their function. The association of Thy-1/CD90 with a number of cell surface molecules allows the formation of extra/intracellular multiprotein complexes composed of various ligands and receptors, extracellular matrix proteins, intracellular signaling proteins, and the cytoskeleton. The complexes sense changes that occur inside and outside the cells, with Thy-1/CD90 at the core of this extracellular molecular platform. Molecular platforms are scaffold-containing microdomains where key proteins associate to prominently influence cellular processes and behavior. Each component, by itself, is less effective, but when together with various scaffold proteins to form a platform, the components become more specific and efficient to convey the messages. This review article discusses the experimental evidence that supports the role of Thy-1/CD90 as a membrane-associated platform (ThyMAP).
Collapse
Affiliation(s)
- Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samuel Martínez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Esteban Palacios
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Laboratorio de Microbiología Celular, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ramón D Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Exercise, Metabolism and Cancer Studies (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
MiR-21 binding site SNP within ITGAM associated with psoriasis susceptibility in women. PLoS One 2019; 14:e0218323. [PMID: 31211819 PMCID: PMC6581264 DOI: 10.1371/journal.pone.0218323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Great progress has been made in the understanding of inflammatory processes in psoriasis. However, clarifying the role of genetic variability in processes regulating inflammation, including post-transcriptional regulation by microRNA (miRNA), remains a challenge. OBJECTIVES We therefore investigated single nucleotide polymorphisms (SNPs) with a predicted change in the miRNA/mRNA interaction of genes involved in the psoriasis inflammatory processes. METHODS Studied SNPs rs2910164 C/G-miR-146a, rs4597342 T/C-ITGAM, rs1368439 G/T-IL12B, rs1468488 C/T-IL17RA were selected using a bioinformatics analysis of psoriasis inflammation-associated genes. These SNPs were then genotyped using a large cohort of women with psoriasis (n = 241) and healthy controls (n = 516). RESULTS No significant association with psoriasis was observed for rs2910164, rs1368439, and rs1468488 genotypes. However, the major allele T of rs4597342 -ITGAM was associated with approximately 28% higher risk for psoriasis in comparison to the patients with the C allele (OR = 1.28, 95% CI 1.01-1.61, p = 0.037). In case of genotypes, the effect of the T allele indicates the dominant model of disease penetrance as the CT and TT genotypes increase the chance of psoriasis up to 42% in comparison to CC homozygotes of rs4597342 (OR = 1.42, 95% CI = 1.05-1.94, p = 0.025). CONCLUSION SNP rs4597342 in 3'UTR of ITGAM influencing miR-21 binding may be considered a risk factor for psoriasis development. Upregulated miR-21 in psoriasis is likely to inhibit CD11b production in the case of the rs4597342 T allele which may lead to Mac-1 dysfunction, resulting in an aberrant function of innate immune cells and leading to the production of cytokines involved in psoriasis pathogenesis.
Collapse
|
16
|
White MM, Geraghty P, Hayes E, Cox S, Leitch W, Alfawaz B, Lavelle GM, McElvaney OJ, Flannery R, Keenan J, Meleady P, Henry M, Clynes M, Gunaratnam C, McElvaney NG, Reeves EP. Neutrophil Membrane Cholesterol Content is a Key Factor in Cystic Fibrosis Lung Disease. EBioMedicine 2017; 23:173-184. [PMID: 28835336 PMCID: PMC5605378 DOI: 10.1016/j.ebiom.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Identification of mechanisms promoting neutrophil trafficking to the lungs of patients with cystic fibrosis (CF) is a challenge for next generation therapeutics. Cholesterol, a structural component of neutrophil plasma membranes influences cell adhesion, a key step in transmigration. The effect of chronic inflammation on neutrophil membrane cholesterol content in patients with CF (PWCF) remains unclear. To address this we examined neutrophils of PWCF to evaluate the cause and consequence of altered membrane cholesterol and identified the effects of lung transplantation and ion channel potentiator therapy on the cellular mechanisms responsible for perturbed membrane cholesterol and increased cell adhesion. Methodology PWCF homozygous for the ΔF508 mutation or heterozygous for the G551D mutation were recruited (n = 48). Membrane protein expression was investigated by mass spectrometry. The effect of lung transplantation or ivacaftor therapy was assessed by ELISAs, and calcium fluorometric and μ-calpain assays. Findings Membranes of CF neutrophils contain less cholesterol, yet increased integrin CD11b expression, and respond to inflammatory induced endoplasmic reticulum (ER) stress by activating μ-calpain. In vivo and in vitro, increased μ-calpain activity resulted in proteolysis of the membrane cholesterol trafficking protein caveolin-1. The critical role of caveolin-1 for adequate membrane cholesterol content was confirmed in caveolin-1 knock-out mice. Lung transplant therapy or treatment of PWCF with ivacaftor, reduced levels of circulating inflammatory mediators and actuated increased caveolin-1 and membrane cholesterol, with concurrent normalized neutrophil adhesion. Interpretation Results demonstrate an auxiliary benefit of lung transplant and potentiator therapy, evident by a reduction in circulating inflammation and controlled neutrophil adhesion. This study explored neutrophil adhesion in cystic fibrosis. Altered membrane cholesterol lead to increased adhesion. Circulating inflammatory mediators caused increased calpain activity and reduced membrane cholesterol content.
In patients with cystic fibrosis (CF), chronic inflammation in the circulation, in part originating from the pulmonary compartment, leads to decreased membrane cholesterol in circulating neutrophils, resulting in increased cell adhesion. The mechanism of action involves proteolytic down-regulation of the cholesterol trafficking protein caveolin-1. The overall effect of lung transplant therapy, or CFTR potentiator treatment, was to significantly diminish the circulating inflammatory burden thereby permitting caveolin-1 expression, with concomitant decreased CF cell adhesion and significant clinical improvement.
Collapse
Affiliation(s)
- Michelle M White
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Elaine Hayes
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Stephen Cox
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - William Leitch
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gillian M Lavelle
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Ryan Flannery
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Coláiste Dhúlaigh College of Further Education, Dublin 17, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
17
|
Schön MP, Broekaert SMC, Erpenbeck L. Sexy again: the renaissance of neutrophils in psoriasis. Exp Dermatol 2017; 26:305-311. [PMID: 27194625 DOI: 10.1111/exd.13067] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergolosgy, University Medical Center Göttingen, Göttingen, Germany
| | - Sigrid M C Broekaert
- Department of Dermatology, Venereology and Allergolosgy, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergolosgy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Martini E, Wikén M, Cheuk S, Gallais Sérézal I, Baharom F, Ståhle M, Smed-Sörensen A, Eidsmo L. Dynamic Changes in Resident and Infiltrating Epidermal Dendritic Cells in Active and Resolved Psoriasis. J Invest Dermatol 2016; 137:865-873. [PMID: 28011143 DOI: 10.1016/j.jid.2016.11.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022]
Abstract
Epidermal Langerhans cells (LCs) are spatially separated from dermal dendritic cells (DCs) in healthy human skin. In active psoriasis, maintained by local production of IL-23 and IL-17, inflammatory DCs infiltrate both skin compartments. Here we show that CCR2+ epidermal DCs (eDCs) were confined to lesional psoriasis and phenotypically distinct from dermal DCs. The eDCs exceeded the number of LCs and displayed high expression of genes involved in neutrophil recruitment and the activation of keratinocytes and T cells. Resident LCs responded to toll-like receptor 4 and toll-like receptor 7/8 activation with increased IL-23 production, whereas eDCs additionally produced IL-1β together with IL-23 and tumor necrosis factor. Psoriasis typically recur in fixed skin lesions. eDCs were absent from resolved psoriasis. Instead, LCs from anti-tumor necrosis factor-treated lesions retained high IL23A expression and responded to toll-like receptor stimulation by producing IL-23. Our results reveal phenotypic and functional properties of eDCs and resident LCs in different clinical phases of psoriasis, and the capacity of these cells to amplify the epidermal microenvironment through the secretion of IL-17 polarizing cytokines.
Collapse
Affiliation(s)
- Elisa Martini
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Maria Wikén
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Irène Gallais Sérézal
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Faezzah Baharom
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mona Ståhle
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Liv Eidsmo
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis. Postepy Dermatol Alergol 2016; 33:435-439. [PMID: 28035220 PMCID: PMC5183782 DOI: 10.5114/ada.2016.63882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO) enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. AIM To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS) and MPO. MATERIAL AND METHODS A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. RESULTS While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. CONCLUSIONS Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.
Collapse
|
20
|
Aden K, Rehman A, Falk-Paulsen M, Secher T, Kuiper J, Tran F, Pfeuffer S, Sheibani-Tezerji R, Breuer A, Luzius A, Jentzsch M, Häsler R, Billmann-Born S, Will O, Lipinski S, Bharti R, Adolph T, Iovanna JL, Kempster SL, Blumberg RS, Schreiber S, Becher B, Chamaillard M, Kaser A, Rosenstiel P. Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation. Cell Rep 2016; 16:2208-2218. [PMID: 27524624 PMCID: PMC5443566 DOI: 10.1016/j.celrep.2016.07.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/16/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.
Collapse
Affiliation(s)
- Konrad Aden
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; First Medical Department, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Thomas Secher
- University Toulouse, CNRS, Inserm, CHU Toulouse, UMR 1043-UMR 5282, Centre de Physiopathologie Toulouse Purpan, 31024 Toulouse, France
| | - Jan Kuiper
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Steffen Pfeuffer
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Alexandra Breuer
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Marlene Jentzsch
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Olga Will
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon Adolph
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Juan L Iovanna
- Aix-Marseille University, Institut Paoli-Calmettes, CNRS, Inserm, UMR 1068-UMR 7258, Centre de Recherche en Carcérologie de Marseille, 13273 Marseille, France
| | - Sarah L Kempster
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; First Medical Department, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Mathias Chamaillard
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
21
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
22
|
Mathias D, Mitchel REJ, Barclay M, Wyatt H, Bugden M, Priest ND, Whitman SC, Scholz M, Hildebrandt G, Kamprad M, Glasow A. Low-dose irradiation affects expression of inflammatory markers in the heart of ApoE -/- mice. PLoS One 2015; 10:e0119661. [PMID: 25799423 PMCID: PMC4370602 DOI: 10.1371/journal.pone.0119661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.
Collapse
Affiliation(s)
- Daniel Mathias
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
| | - Ronald E. J. Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Mirela Barclay
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Heather Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Nicholas D. Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Stewart C. Whitman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
23
|
Julier Z, Martino MM, de Titta A, Jeanbart L, Hubbell JA. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine. Sci Rep 2015; 5:8569. [PMID: 25708982 PMCID: PMC4338432 DOI: 10.1038/srep08569] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 11/09/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with its neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. In addition, we reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8+ T cell responses in two murine cancer models.
Collapse
Affiliation(s)
- Ziad Julier
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Mikaël M Martino
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [2] World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexandre de Titta
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Laura Jeanbart
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- 1] Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [2] Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland [3] Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA [4] Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
24
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
25
|
Degroote RL, Hauck SM, Treutlein G, Amann B, Fröhlich KJH, Kremmer E, Merl J, Stangassinger M, Ueffing M, Deeg CA. Expression Changes and Novel Interaction Partners of Talin 1 in Effector Cells of Autoimmune Uveitis. J Proteome Res 2013; 12:5812-9. [DOI: 10.1021/pr400837f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Stefanie M. Hauck
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | | | | | | | - Elisabeth Kremmer
- Institute
of Molecular Immunology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Marchioninistraße 25, D-81377 Munich, Germany
| | - Juliane Merl
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | | | - Marius Ueffing
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
- Center
for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls Universitaet of Tuebingen, Roentgenweg 11, D-72076 Tuebingen, Germany
| | | |
Collapse
|
26
|
Guérard S, Allaeys I, Martin G, Pouliot R, Poubelle PE. Psoriatic keratinocytes prime neutrophils for an overproduction of superoxide anions. Arch Dermatol Res 2013; 305:879-89. [PMID: 23974213 DOI: 10.1007/s00403-013-1404-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/30/2013] [Accepted: 08/09/2013] [Indexed: 12/25/2022]
Abstract
Psoriatic plaques result from an abnormal proliferation of keratinocytes associated with the local presence of T lymphocytes and neutrophils. The exact role of neutrophils in psoriatic lesions remains unclear. The present investigation was aimed at deciphering the capacity of psoriatic keratinocytes to alter in vitro functions of neutrophils. Blood neutrophils from healthy donors were incubated with psoriatic (PK) or healthy keratinocytes (HK) with and without IL-2-activated healthy T lymphocytes. The study was focussed on neutrophil capacity of adherence, viability and superoxide anion production. PK or HK with or without T lymphocytes similarly augmented neutrophil viability after 48 h of co-incubation. PK or HK did not directly activate the superoxide production by neutrophils. However, they both primed neutrophils for an increased fMLF-induced production of superoxide, an effect enhanced by the presence of T lymphocytes. PK were 1.5-fold more efficient than HK to augment this superoxide production. PK cultured with T lymphocytes induced the adhesion of neutrophils 4.7 times more efficiently than HK. The adherence of neutrophils was mediated through ICAM-1, LFA-1 and Mac-1, independently of bioactive lipids. The effects of PK and HK on neutrophil viability and priming were independent of direct cellular contact. In conclusion, keratinocytes can impact neutrophils by increasing their lifespan, and by priming them to overproduce superoxide. PK are more efficient than HK in priming neutrophils, an effect enhanced by T lymphocytes. These results indicate that neutrophils could contribute to psoriasis pathogenesis partly through their pathological interactions with PK.
Collapse
Affiliation(s)
- Simon Guérard
- Laboratoire d'Organogénèse Expérimentale (LOEX), Centre de Recherche FRSQ du CHU de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Pigozzo AB, Macedo GC, Santos RWD, Lobosco M. On the computational modeling of the innate immune system. BMC Bioinformatics 2013; 14 Suppl 6:S7. [PMID: 23734602 PMCID: PMC3633047 DOI: 10.1186/1471-2105-14-s6-s7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In recent years, there has been an increasing interest in the mathematical and computational modeling of the human immune system (HIS). Computational models of HIS dynamics may contribute to a better understanding of the relationship between complex phenomena and immune response; in addition, computational models will support the development of new drugs and therapies for different diseases. However, modeling the HIS is an extremely difficult task that demands a huge amount of work to be performed by multidisciplinary teams. In this study, our objective is to model the spatio-temporal dynamics of representative cells and molecules of the HIS during an immune response after the injection of lipopolysaccharide (LPS) into a section of tissue. LPS constitutes the cellular wall of Gram-negative bacteria, and it is a highly immunogenic molecule, which means that it has a remarkable capacity to elicit strong immune responses. We present a descriptive, mechanistic and deterministic model that is based on partial differential equations (PDE). Therefore, this model enables the understanding of how the different complex phenomena interact with structures and elements during an immune response. In addition, the model's parameters reflect physiological features of the system, which makes the model appropriate for general use.
Collapse
Affiliation(s)
- Alexandre Bittencourt Pigozzo
- Universidade Federal de Juiz de Fora, Campus Universitário, Bairro São Pedro, Rua José Lourenço Kelmer s/n, Juiz de Fora, MG, Brazil.
| | | | | | | |
Collapse
|
29
|
Kretschmer S, Dethlefsen I, Hagner-Benes S, Marsh LM, Garn H, König P. Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker. PLoS One 2013; 8:e55201. [PMID: 23408960 PMCID: PMC3568125 DOI: 10.1371/journal.pone.0055201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/28/2012] [Indexed: 01/31/2023] Open
Abstract
Background Lymphatic vessels play a pivotal role in fluid drainage and egress of immune cells from the lung. However, examining murine lung lymphatics is hampered by the expression of classical lymph endothelial markers on other cell types, which hinders the unambiguous identification of lymphatics. The expression of CD90/Thy-1 on lymph endothelium was recently described and we therefore examined its suitability to identify murine pulmonary lymph vessels under healthy and inflammatory conditions. Methodology/Principal Findings Immunohistochemistry with a monoclonal antibody against CD90.2/Thy-1.2 on 200 µm thick precision cut lung slices labeled a vascular network that was distinct from blood vessels. Preembedding immunostaining and electron microscopy verified that the anti-CD90.2/Thy-1.2 antibody labeled lymphatic endothelium. Absence of staining in CD90.1/Thy-1.1 expressing FVB mice indicated that CD90/Thy-1 was expressed on lymph endothelium and labeling was not due to antibody cross reactivity. Double-labeling immunohistochemistry for CD90/Thy-1 and α-smooth muscle actin identified two routes for lymph vessel exit from the murine lung. One started in the parenchyma or around veins and left via venous blood vessels. The other began in the space around airways or in the space between airways and pulmonary arteries and left via the main bronchi. As expected from the pulmonary distribution of lymph vessels, intranasal application of house dust mite led to accumulation of T cells around veins and in the connective tissue between airways and pulmonary arteries. Surprisingly, increased numbers of T cells were also detected around intraacinar arteries that lack lymph vessels. This arterial T cell sheath extended to the pulmonary arteries where lymph vessels were located. Conclusions/Significance These results indicate that CD90/Thy-1 is expressed on lymphatic endothelial cells and represents a suitable marker for murine lung lymph vessels. Combining CD90/Thy-1 labeling with precision cut lung slices allows visualizing the anatomy of the lymphatic system in normal and inflamed conditions.
Collapse
Affiliation(s)
- Sarah Kretschmer
- Institut für Anatomie, Zentrum für medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Lübeck, Germany
| | - Ina Dethlefsen
- Institut für Anatomie, Zentrum für medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Lübeck, Germany
| | - Stefanie Hagner-Benes
- Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik, Philipps-Universität, Marburg, Germany
| | - Leigh M. Marsh
- Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik, Philipps-Universität, Marburg, Germany
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Holger Garn
- Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik, Philipps-Universität, Marburg, Germany
| | - Peter König
- Institut für Anatomie, Zentrum für medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
30
|
Schubert K, Gutknecht D, Köberle M, Anderegg U, Saalbach A. Melanoma Cells Use Thy-1 (CD90) on Endothelial Cells for Metastasis Formation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:266-76. [DOI: 10.1016/j.ajpath.2012.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/10/2012] [Accepted: 10/01/2012] [Indexed: 11/15/2022]
|
31
|
Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:163-216. [DOI: 10.1016/b978-0-12-407695-2.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Abstract
Bacterial infections can be of two types: acute or chronic. The chronic bacterial infections are characterized
by being a large bacterial infection and/or an infection where the bacteria grows rapidly. In these cases, the immune
response is not capable of completely eliminating the infection which may lead to the formation of a pattern
known as microabscess (or abscess). The microabscess is characterized by an area comprising fluids, bacteria,
immune cells (mainly neutrophils), and many types of dead cells. This distinct pattern of formation can only be
numerically reproduced and studied by models that capture the spatiotemporal dynamics of the human immune
system (HIS). In this context, our work aims to develop and implement an initial computational model to study
the process of microabscess formation during a bacterial infection.
Collapse
|
33
|
Pazyar N, Yaghoobi R. Ginkgo biloba Extract: A Novel Addition to Antipsoriasis Ammunition? J Altern Complement Med 2012; 18:316-7. [DOI: 10.1089/acm.2011.0892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nader Pazyar
- Department of Dermatology, Jundishapur University of Medical Sciences, Imam Khomeini Hospital, Ahvaz, Iran
| | - Reza Yaghoobi
- Department of Dermatology, Jundishapur University of Medical Sciences, Imam Khomeini Hospital, Ahvaz, Iran
| |
Collapse
|
34
|
Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G. Thy-1 (CD90) Is an Interacting Partner for CD97 on Activated Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:1442-50. [DOI: 10.4049/jimmunol.1003944] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Sweeney CM, Tobin AM, Kirby B. Innate immunity in the pathogenesis of psoriasis. Arch Dermatol Res 2011; 303:691-705. [DOI: 10.1007/s00403-011-1169-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/08/2011] [Accepted: 08/09/2011] [Indexed: 01/23/2023]
|
36
|
Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 2010; 225:631-7. [PMID: 20635395 DOI: 10.1002/jcp.22322] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblasts are at the heart of cardiac function and are the principal determinants of cardiac fibrosis. Nevertheless, cardiac fibroblasts remain poorly characterized in molecular terms. Evidence is evolving that the cardiac fibroblast is a highly heterogenic cell population, and that such heterogeneity is caused by the distinct origins of fibroblasts in the heart. Cardiac fibroblasts can derive either from resident fibroblasts, from endothelial cells via an endothelial-mesenchynmal transition or from bone marrow-derived circulating progenitor cells, monocytes and fibrocytes. Here, we review the function and origin of fibroblasts in cardiac fibrosis.NB. The information given is correct.
Collapse
Affiliation(s)
- Guido Krenning
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
37
|
Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium. Exp Cell Res 2010; 316:2982-92. [PMID: 20599951 DOI: 10.1016/j.yexcr.2010.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/22/2022]
Abstract
The lymphatic vascular system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined by comparative transcriptional profiling studies of ex vivo isolated mouse intestinal lymphatic endothelial cells versus blood vascular endothelial cells, thymus cell antigen 1 (Thy1, CD90) was expressed at much higher levels in lymphatic endothelial cells than in blood vascular endothelial cells. These findings were confirmed by quantitative PCR, and at the protein level by FACS and immunofluorescence analyses. Thy1 was also strongly expressed by tumor-associated lymphatic vessels, as evaluated in a B16 melanoma footpad model in mice. Blockade of Thy1 inhibited tumor cell adhesion to cultured mouse lymphatic endothelial cells. Importantly, treatment of human dermal microvascular endothelial cells with tumor necrosis factor or phorbol 12-myristate 13-acetate resulted in Thy1 upregulation in podoplanin-expressing lymphatic endothelial cells, but not in podoplanin-negative blood vascular endothelial cells. Moreover, adhesion of human polymorphonuclear and mononuclear leukocytes to human lymphatic endothelial cells was Thy1-dependent. Together, these results identify Thy1 as a novel lymphatic vessel expressed gene and suggest its potential role in the cell adhesion processes required for tumor progression and inflammation.
Collapse
|
38
|
Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE. Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J Biol Chem 2010; 285:22382-93. [PMID: 20463011 DOI: 10.1074/jbc.m110.126227] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts, key effector cells in tissue fibrosis, are specialized contractile cells. Lung myofibroblast contraction induces integrin alpha(v)beta(5)-dependent latent transforming growth factor (TGF)-beta1 activation suggests that myofibroblast contractility may be a driving force for the persistent myofibroblast differentiation observed in fibrotic lungs. Understanding the mechanisms that regulate fibroblast contraction and mechanotransduction will add new insights into the pathogenesis of lung fibrosis and may lead to new therapeutic approaches for treating fibrotic lung diseases. We and others previously demonstrated that lung fibroblast expression of Thy-1 prevents lung fibrosis. The mechanisms underlying the anti-fibrotic effect of Thy-1 are not well understood. In this study, we showed that Thy-1 interacts with integrin alpha(v)beta(5), both in a cell-free system and on the cell surface of rat lung fibroblasts. Thy-1-integrin alpha(v)beta(5) interactions are RLD-dependent because mutated Thy-1, in which RLD is replaced by RLE, loses the ability to bind the integrin. Furthermore, Thy-1 expression prevents fibroblast contraction-induced, integrin alpha(v)beta(5)-dependent latent TGF-beta1 activation and TGF-beta1-dependent lung myofibroblast differentiation. In contrast, lack of Thy-1 expression or disruption of Thy-1-alpha(v)beta(5) interactions renders lung fibroblasts susceptible to contraction-induced latent TGF-beta1 activation and myofibroblast differentiation. These data suggest that Thy-1-integrin alpha(v)beta(5) interactions inhibit contraction-induced latent TGF-beta1 activation, presumably by blocking the binding of extracellular matrix-bound latent TGF-beta1 with integrin alpha(v)beta(5). Our studies suggest that targeting key mechanotransducers to inhibit mechanotransduction might be an effective approach to inhibit the deleterious effects of myofibroblast contraction on lung fibrogenesis.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
39
|
Avalos AM, Valdivia AD, Muñoz N, Herrera-Molina R, Tapia JC, Lavandero S, Chiong M, Burridge K, Schneider P, Quest AFG, Leyton L. Neuronal Thy-1 induces astrocyte adhesion by engaging syndecan-4 in a cooperative interaction with alphavbeta3 integrin that activates PKCalpha and RhoA. J Cell Sci 2009; 122:3462-71. [PMID: 19723805 DOI: 10.1242/jcs.034827] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clustering of alphavbeta3 integrin after interaction with the RGD-like integrin-binding sequence present in neuronal Thy-1 triggers formation of focal adhesions and stress fibers in astrocytes via RhoA activation. A putative heparin-binding domain is present in Thy-1, raising the possibility that this membrane protein stimulates astrocyte adhesion via engagement of an integrin and the proteoglycan syndecan-4. Indeed, heparin, heparitinase treatment and mutation of the Thy-1 heparin-binding site each inhibited Thy-1-induced RhoA activation, as well as formation of focal adhesions and stress fibers in DI TNC(1) astrocytes. These responses required both syndecan-4 binding and signaling, as evidenced by silencing syndecan-4 expression and by overexpressing a syndecan-4 mutant lacking the intracellular domain, respectively. Furthermore, lack of RhoA activation and astrocyte responses in the presence of a PKC inhibitor or a dominant-negative form of PKCalpha implicated PKCalpha and RhoA activation in these events. Therefore, combined interaction of the astrocyte alphavbeta3-integrin-syndecan-4 receptor pair with Thy-1, promotes adhesion to the underlying matrix via PKCalpha- and RhoA-dependent pathways. Importantly, signaling events triggered by such receptor cooperation are shown here to be the consequence of cell-cell rather than cell-matrix interactions. These observations are likely to be of widespread biological relevance because Thy-1-integrin binding is reportedly relevant to melanoma invasion, monocyte transmigration through endothelial cells and host defense mechanisms.
Collapse
Affiliation(s)
- Ana María Avalos
- Laboratory of Cellular Communication, University of Chile, Santiago 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin YK, Leu YL, Huang TH, Wu YH, Chung PJ, Su Pang JH, Hwang TL. Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:51-58. [PMID: 19559779 DOI: 10.1016/j.jep.2009.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/30/2009] [Accepted: 06/17/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indigo naturalis is used by traditional Chinese medicine to treat various inflammatory diseases. AIM OF THE STUDY Topical indigo naturalis ointment showed efficacy in treating psoriasis in our previous clinical studies. In this study, we investigated the anti-inflammatory effects of the extract of indigo naturalis (QD) and its main components indirubin, indigo, and tryptanthrin in human neutrophils. MATERIALS AND METHODS Superoxide anion (O2(.-)) generation and elastase release were measured by spectrophotometry. Some important signals including mitogen-activated protein kinase (MAPK), cAMP, and calcium were studied by Western blot analysis, an enzyme immunoassay, and spectrofluorometry. RESULTS QD significantly inhibited O2(.-) generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils in a concentration-dependent fashion, while neither indirubin, indigo, nor tryptanthrin produced a comparable result. QD attenuated the FMLP-induced phosphorylation of extracellular regulated kinase, p38 MAPK, and c-Jun N-terminal kinase. Furthermore, QD inhibited calcium mobilization caused by FMLP. However, QD did not affect cellular cAMP levels. On the other hand, neither indirubin, indigo, nor tryptanthrin produced similar changes in human neutrophils. CONCLUSIONS Taken collectively, these findings indicate that QD, but not indirubin, indigo, or tryptanthrin, inhibited O2(.-) generation and elastase release in FMLP-induced human neutrophils, which was at least partially mediated by the inhibition of MAPK activation and regulation of calcium mobilization.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Thy-1 or CD90 is a glycophosphatidylinositol-linked glycoprotein expressed on the surface of neurons, thymocytes, subsets of fibroblasts, endothelial cells, mesangial cells and some hematopoietic cells. Thy-1 is evolutionarily conserved, developmentally regulated, and often has dramatic effects on cell phenotype; however, the effects vary between and in some cases within cell types and tissues, and between similar tissues in different species, indicating that the biological role of Thy-1 is context-dependent. Thy-1 exists in soluble form in some body fluids; however, the mechanisms of its shedding are unknown. In addition, Thy-1 expression can be regulated by epigenetic silencing. Because Thy-1 modulates many basic cellular processes and is involved in the pathogenesis of a number of diseases, it is important to better understand its regulation.
Collapse
Affiliation(s)
- John E Bradley
- Department of Pediatrics, University of Alabama-Birmingham, AL, USA
| | | | | |
Collapse
|
42
|
Kisselbach L, Merges M, Bossie A, Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology 2009; 59:31-44. [PMID: 19296231 DOI: 10.1007/s10616-009-9190-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.
Collapse
Affiliation(s)
- Lynn Kisselbach
- Department of Cell Therapy, Lonza Walkersville, Inc., Walkersville, MD, 21793, USA,
| | | | | | | |
Collapse
|
43
|
Marmon S, Cammer M, Raine CS, Lisanti MP. Transcellular migration of neutrophils is a quantitatively significant pathway across dermal microvascular endothelial cells. Exp Dermatol 2009; 18:88-90. [DOI: 10.1111/j.1600-0625.2008.00796.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Saalbach A, Arnhold J, Leßig J, Simon J, Anderegg U. Human Thy-1 induces secretion of matrix metalloproteinase-9 and CXCL8 from human neutrophils. Eur J Immunol 2008; 38:1391-403. [DOI: 10.1002/eji.200737901] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Sabat R, Philipp S, Höflich C, Kreutzer S, Wallace E, Asadullah K, Volk HD, Sterry W, Wolk K. Immunopathogenesis of psoriasis. Exp Dermatol 2007; 16:779-98. [PMID: 17845210 DOI: 10.1111/j.1600-0625.2007.00629.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Psoriasis is a chronic skin disease that affects about 1.5% of the Caucasian population and is characterized by typical macroscopic and microscopic skin alterations. Psoriatic lesions are sharply demarcated, red and slightly raised lesions with silver-whitish scales. The microscopic alterations of psoriatic plaques include an infiltration of immune cells in the dermis and epidermis, a dilatation and an increase in the number of blood vessels in the upper dermis, and a massively thickened epidermis with atypical keratinocyte differentiation. It is considered a fact that the immune system plays an important role in the pathogenesis of psoriasis. Since the early 1990s, it has been assumed that T1 cells play the dominant role in the initiation and maintenance of psoriasis. However, the profound success of anti-tumor necrosis factor-alpha therapy, when compared with T-cell depletion therapies, should provoke us to critically re-evaluate the current hypothesis for psoriasis pathogenesis. Recently made discoveries regarding other T-cell populations such as Th17 and regulatory T cells, dendritic cells, macrophages, the keratinocyte signal transduction and novel cytokines including interleukin (IL)-22, IL-23 and IL-20, let us postulate that the pathogenesis of psoriasis consists of distinct subsequent stages, in each of them different cell types playing a dominant role. Our model helps to explain the varied effectiveness of the currently tested immune modulating therapies and may enable the prediction of the success of future therapies.
Collapse
Affiliation(s)
- Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saalbach A, Klein C, Sleeman J, Sack U, Kauer F, Gebhardt C, Averbeck M, Anderegg U, Simon JC. Dermal fibroblasts induce maturation of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:4966-74. [PMID: 17404278 DOI: 10.4049/jimmunol.178.8.4966] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.
Collapse
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venerology, and Allergology, Medical Faculty of Leipzig University, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wojas-Pelc A, Marcinkiewicz J. What is a role of haeme oxygenase-1 in psoriasis? Current concepts of pathogenesis. Int J Exp Pathol 2007; 88:95-102. [PMID: 17408452 PMCID: PMC2517294 DOI: 10.1111/j.1365-2613.2006.00505.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The skin is constantly exposed to endogenous and environmental pro-oxidant agents, which lead to harmful generation of reactive oxygen species (ROS). Healthy skin, being a potential target for oxidative stress, is equipped with a large number of defence mechanisms including antioxidant systems. This protection can be corrupted by an imbalance between ROS and antioxidants with pathological level of oxidants prevailing. There is a great body of evidence indicating that some inflammatory skin diseases, such as psoriasis, are mediated by oxidative stress. Keratinocytes of normal skin, the primary target for pro-oxidant agents, show strong expression of ROS-detoxifying enzymes. In addition, normal keratinocytes express haeme oxygenase (HO), an enzyme which might be involved in the protection of cells against oxidative stress. HO (inducible HO-1, constitutive HO-2 and HO-3) is the rate-limiting enzyme in haeme catabolism, which leads to the generation of biliverdin, iron, and carbon monoxide. HO-1 is a stress-responsive protein whose expression is induced by various oxidative agents. HO-1 is known for its cytoprotective, antioxidant and anti-inflammatory properties. Interestingly, a strong overexpression of HO-1 was observed in psoriatic skin. However, the role of HO-1 in psoriasis remains unclear. In this review, we will discuss some current concepts concerning pathogenesis of psoriasis and the contribution of HO-1 in skin inflammation to show the relationships between HO-1, ROS and cytokine network in psoriatic skin. We will try to answer a question whether enhanced HO-1 expression in keratinocytes results in beneficial or detrimental effect on the development and severity of psoriatic lesions.
Collapse
Affiliation(s)
- Anna Wojas-Pelc
- Department of Dermatology, Jagiellonian University Medical CollegeCracow, Poland
| | - Janusz Marcinkiewicz
- Department of Chair of Immunology, Jagiellonian University Medical CollegeCracow, Poland
| |
Collapse
|