1
|
Orr JC, Laali A, Durrenberger PF, Lazarus KA, El Mdawar MB, Janes SM, Hynds RE. A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence. Am J Physiol Lung Cell Mol Physiol 2024; 327:L587-L599. [PMID: 39137525 PMCID: PMC11482462 DOI: 10.1152/ajplung.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024] Open
Abstract
Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ("bronchosphere") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.NEW & NOTEWORTHY Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.
Collapse
Affiliation(s)
- Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
| | - Asma Laali
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
| | - Pascal F Durrenberger
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Kyren A Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Marie-Belle El Mdawar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
2
|
Balinth S, Fisher ML, Hwangbo Y, Wu C, Ballon C, Sun X, Mills AA. EZH2 regulates a SETDB1/ΔNp63α axis via RUNX3 to drive a cancer stem cell phenotype in squamous cell carcinoma. Oncogene 2022; 41:4130-4144. [PMID: 35864175 PMCID: PMC10132824 DOI: 10.1038/s41388-022-02417-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/01/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.
Collapse
Affiliation(s)
- Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, USA
| | | | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xueqin Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation. Nat Commun 2022; 13:1626. [PMID: 35338152 PMCID: PMC8956607 DOI: 10.1038/s41467-022-29312-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
The combination of EGF, CHIR99021, A83-01, SB431542, VPA, and Y27632 (EGF/CASVY) facilitates the derivation of trophoblast stem (TS) cells from human blastocysts and first-trimester, but not term, cytotrophoblasts. The mechanism underlying this chemical induction of TS cells remains elusive. Here we demonstrate that the induction efficiency of cytotrophoblast is determined by functional antagonism of the placental transcription factor GCM1 and the stemness regulator ΔNp63α. ΔNp63α reduces GCM1 transcriptional activity, whereas GCM1 inhibits ΔNp63α oligomerization and autoregulation. EGF/CASVY cocktail activates ΔNp63α, thereby partially inhibiting GCM1 activity and reverting term cytotrophoblasts into stem cells. By applying hypoxia condition, we can further reduce GCM1 activity and successfully induce term cytotrophoblasts into TS cells. Consequently, we identify mitochondrial creatine kinase 1 (CKMT1) as a key GCM1 target crucial for syncytiotrophoblast differentiation and reveal decreased CKMT1 expression in preeclampsia. Our study delineates the molecular underpinnings of trophoblast stemness and differentiation and an efficient method to establish TS cells from term placentas. Trophoblast stem cells can be derived from human blastocysts and first-trimester, but not term, cytotrophoblasts. Here the authors show that induction efficiency of cytotrophoblast is determined by antagonism between GCM1 and ΔNp63α and manipulating this antagonism facilitates derivation of TS cells from term placenta.
Collapse
|
4
|
Miyake Y, Nagaoka Y, Okamura K, Takeishi Y, Tamaoki S, Hatta M. SNAI2 is induced by transforming growth factor-β1, but is not essential for epithelial-mesenchymal transition in human keratinocyte HaCaT cells. Exp Ther Med 2021; 22:1124. [PMID: 34466140 PMCID: PMC8383325 DOI: 10.3892/etm.2021.10558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial cells lose their epithelial traits and shift to the mesenchymal phenotype, and is associated with various biological events, such as embryogenesis, wound healing and cancer progression. The transcriptional program that promotes phenotype switching is dynamically controlled by transcription factors during EMT, including Snail (SNAI1), twist family bHLH transcription factor (TWIST) and zinc finger E-box binding homeobox 1 (ZEB1). The present study aimed to investigate the molecular mechanisms underlying EMT in squamous epithelial cells. Western blot analysis and immunocytochemical staining identified Slug (SNAI2) as a transcription factor that is induced during transforming growth factor (TGF)-β1-mediated EMT in the human keratinocyte cell line HaCaT. The effect of SNAI2 overexpression and knockdown on the phenotypic characteristics of HaCaT cells was evaluated. Filamentous actin staining and western blot analysis revealed that the overexpression of SNAI2 did not induce the observed EMT-related phenotypic changes. In addition, SNAI2 knockdown demonstrated almost no impact on the EMT phenotypes induced by TGF-β1. Notably, DNA microarray analysis followed by comprehensive bioinformatics analysis revealed that the differentially expressed genes upregulated by TGF-β1 were significantly enriched in cell adhesion and extracellular matrix binding, whereas the genes downregulated in response to TGF-β1 were significantly enriched in the cell cycle. No enriched gene ontology term and biological pathways were identified in the differentially expressed gene sets of SNAI2-overexpressing cells. In addition, the candidates for master transcription factors regulating the TGF-β1-induced EMT were identified using transcription factor enrichment analysis. In conclusion, the results of study demonstrated that SNAI2 does not play an essential role in the EMT of HaCaT cells and identified candidate transcription factors that may be involved in EMT-related gene expression induced by TGF-β1. These findings may enhance the understanding of molecular events in EMT and contribute to the development of a novel therapeutic approach against EMT in cancers and wound healing.
Collapse
Affiliation(s)
- Yuki Miyake
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yoshiyuki Nagaoka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Yukimasa Takeishi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Mitsutoki Hatta
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|
5
|
NF-Y Subunits Overexpression in HNSCC. Cancers (Basel) 2021; 13:cancers13123019. [PMID: 34208636 PMCID: PMC8234210 DOI: 10.3390/cancers13123019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer cells have altered gene expression profiles. This is ultimately elicited by altered structure, expression or binding of transcription factors to regulatory regions of genomes. The CCAAT-binding trimer is a pioneer transcription factor involved in the activation of “cancer” genes. We and others have shown that the regulatory NF-YA subunit is overexpressed in epithelial cancers. Here, we examined large datasets of bulk gene expression profiles, as well as single-cell data, in head and neck squamous cell carcinomas by bioinformatic methods. We partitioned tumors according to molecular subtypes, mutations and positivity for HPV. We came to the conclusion that high levels of the histone-like subunits and the “short” NF-YAs isoform are protective in HPV-positive tumors. On the other hand, high levels of the “long” NF-YAl were found in the recently identified aggressive and metastasis-prone cell population undergoing partial epithelial to mesenchymal transition, p-EMT. Abstract NF-Y is the CCAAT-binding trimer formed by the histone fold domain (HFD), NF-YB/NF-YC and NF-YA. The CCAAT box is generally prevalent in promoters of “cancer” genes. We reported the overexpression of NF-YA in BRCA, LUAD and LUSC, and of all subunits in HCC. Altered splicing of NF-YA was found in breast and lung cancer. We analyzed RNA-seq datasets of TCGA and cell lines of head and neck squamous cell carcinomas (HNSCC). We partitioned all TCGA data into four subtypes, deconvoluted single-cell RNA-seq of tumors and derived survival curves. The CCAAT box was enriched in the promoters of overexpressed genes. The “short” NF-YAs was overexpressed in all subtypes and the “long” NF-YAl in Mesenchymal. The HFD subunits are overexpressed, except Basal (NF-YB) and Atypical (NF-YC); NF-YAl is increased in p53 mutated tumors. In HPV-positive tumors, high levels of NF-YAs, p16 and ΔNp63 correlate with better prognosis. Deconvolution of single cell RNA-seq (scRNA-seq) found a correlation of NF-YAl with Cancer Associated Fibroblasts (CAFs) and p-EMT cells, a population endowed with metastatic potential. We conclude that overexpression of HFD subunits and NF-YAs is protective in HPV-positive tumors; expression of NF-YAl is largely confined to mutp53 tumors and malignant p-EMT cells.
Collapse
|
6
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
7
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
9
|
Song EAC, Min S, Oyelakin A, Smalley K, Bard JE, Liao L, Xu J, Romano RA. Genetic and scRNA-seq Analysis Reveals Distinct Cell Populations that Contribute to Salivary Gland Development and Maintenance. Sci Rep 2018; 8:14043. [PMID: 30232460 PMCID: PMC6145895 DOI: 10.1038/s41598-018-32343-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Stem and progenitor cells of the submandibular salivary gland (SMG) give rise to, maintain, and regenerate the multiple lineages of mature epithelial cells including those belonging to the ductal, acinar, basal and myoepithelial subtypes. Here we have exploited single cell RNA-sequencing and in vivo genetic lineage tracing technologies to generate a detailed map of the cell fate trajectories and branch points of the basal and myoepithelial cell populations of the mouse SMG during embryonic development and in adults. Our studies show that the transcription factor p63 and alpha-smooth muscle actin (SMA) serve as faithful markers of the basal and myoepithelial cell lineages, respectively and that both cell types are endowed with progenitor cell properties. However, p63+ basal and SMA+ myoepithelial cells exhibit distinct cell fates by virtue of maintaining different cellular lineages during morphogenesis and in adults. Collectively, our results reveal the dynamic and complex nature of the diverse SMG cell populations and highlight the distinct differentiation potential of the p63 and SMA expressing subtypes in the stem and progenitor cell hierarchy. Long term these findings have profound implications towards a better understanding of the molecular mechanisms that dictate lineage commitment and differentiation programs during development and adult gland maintenance.
Collapse
Affiliation(s)
- Eun-Ah Christine Song
- 0000 0004 1936 9887grid.273335.3Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Sangwon Min
- 0000 0004 1936 9887grid.273335.3Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Akinsola Oyelakin
- 0000 0004 1936 9887grid.273335.3Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Kirsten Smalley
- 0000 0004 1936 9887grid.273335.3Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203 USA
| | - Jonathan E. Bard
- 0000 0004 1936 9887grid.273335.3Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, New York 14222 USA
| | - Lan Liao
- 0000 0001 2160 926Xgrid.39382.33Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030 USA
| | - Jianming Xu
- 0000 0001 2160 926Xgrid.39382.33Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030 USA
| | - Rose-Anne Romano
- 0000 0004 1936 9887grid.273335.3Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214 USA ,0000 0004 1936 9887grid.273335.3Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203 USA
| |
Collapse
|
10
|
Benatti P, Basile V, Dolfini D, Belluti S, Tomei M, Imbriano C. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription. Oncotarget 2018; 7:45901-45915. [PMID: 27323853 PMCID: PMC5216769 DOI: 10.18632/oncotarget.9974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Margherita Tomei
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
11
|
Sethi I, Gluck C, Zhou H, Buck MJ, Sinha S. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes. Nucleic Acids Res 2017; 45:8208-8224. [PMID: 28505376 PMCID: PMC5737389 DOI: 10.1093/nar/gkx416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs.
Collapse
Affiliation(s)
- Isha Sethi
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Huiqing Zhou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
12
|
Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells. Proc Natl Acad Sci U S A 2016; 113:E6107-E6116. [PMID: 27681615 DOI: 10.1073/pnas.1613417113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The p53-related transcription factor p63 is required for maintenance of epithelial cell differentiation. We found that activated forms of the Harvey Rat Sarcoma Virus GTPase (H-RAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) oncogenes strongly repress expression of ∆Np63α, the predominant p63 isoform in basal mammary epithelial cells. This regulation occurs at the transcriptional level, and a short region of the ∆Np63 promoter is sufficient for repression induced by H-RasV12. The suppression of ∆Np63α expression by these oncogenes concomitantly leads to an epithelial-to-mesenchymal transition (EMT). In addition, the depletion of ∆Np63α alone is sufficient to induce EMT. Both H-RasV12 expression and ∆Np63α depletion induce individual cell invasion in a 3D collagen gel in vitro system, thereby demonstrating how Ras can drive the mammary epithelial cell state toward greater invasive ability. Together, these results suggest a pathway by which RAS and PIK3CA oncogenes induce EMT through regulation of ∆Np63α.
Collapse
|
13
|
von Grabowiecki Y, Abreu P, Blanchard O, Palamiuc L, Benosman S, Mériaux S, Devignot V, Gross I, Mellitzer G, Gonzalez de Aguilar JL, Gaiddon C. Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63. eLife 2016; 5. [PMID: 26919175 PMCID: PMC4786414 DOI: 10.7554/elife.10528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Paula Abreu
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Orphee Blanchard
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Lavinia Palamiuc
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Samir Benosman
- Sanford Burnham Medical Research Institute, San Diego, United States
| | - Sophie Mériaux
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Sanford Burnham Medical Research Institute, San Diego, United States
| | - Véronique Devignot
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Isabelle Gross
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - Georg Mellitzer
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| | - José L Gonzalez de Aguilar
- Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France.,Institut national de la santé et de la recherche médicale, Laboratoire SMN, Strasbourg, France
| | - Christian Gaiddon
- UMR_S 1113, Molecular mechanisms of stress response and pathologies, Institut national de la santé et de la recherche médicale, Strasbourg, France.,Fédération de Recherche Translationnelle, Strasbourg University, Strasbourg, France
| |
Collapse
|
14
|
ΔNp63 regulates IL-33 and IL-31 signaling in atopic dermatitis. Cell Death Differ 2016; 23:1073-85. [PMID: 26768665 PMCID: PMC4987726 DOI: 10.1038/cdd.2015.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease with no well-delineated cause or effective cure. Here we show that the p53 family member p63, specifically the ΔNp63, isoform has a key role in driving keratinocyte activation in AD. We find that overexpression of ΔNp63 in transgenic mouse epidermis results in a severe skin phenotype that shares many of the key clinical, histological and molecular features associated with human AD. This includes pruritus, epidermal hyperplasia, aberrant keratinocyte differentiation, enhanced expression of selected cytokines and chemokines and the infiltration of large numbers of inflammatory cells including type 2 T-helper cells – features that are highly representative of AD dermatopathology. We further demonstrate several of these mediators to be direct transcriptional targets of ΔNp63 in keratinocytes. Of particular significance are two p63 target genes, IL-31 and IL-33, both of which are key players in the signaling pathways implicated in AD. Importantly, we find these observations to be in good agreement with elevated levels of ΔNp63 in skin lesions of human patients with AD. Our studies reveal an important role for ΔNp63 in the pathogenesis of AD and offer new insights into its etiology and possible therapeutic targets.
Collapse
|
15
|
Habryka A, Gogler-Pigłowska A, Sojka D, Kryj M, Krawczyk Z, Scieglinska D. Cell type-dependent modulation of the gene encoding heat shock protein HSPA2 by hypoxia-inducible factor HIF-1: Down-regulation in keratinocytes and up-regulation in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1155-69. [PMID: 26164067 DOI: 10.1016/j.bbagrm.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
HSPA2 belongs to the multigene HSPA family, whose members encode chaperone proteins. Although expression and function of HSPA2 is mainly associated with spermatogenesis, recent studies demonstrated that in humans, the gene is active in various cancers, as well as in normal tissues, albeit in a cell type-specific manner. In the epidermis, HSPA2 is expressed in keratinocytes in the basal layer. Currently, the mechanisms underlying the regulation of HSPA2 expression remain unknown. This study was aimed at determining whether HIF-1 and its binding site, the hypoxia-response element (HRE) located in the HSPA2 promoter, are involved in HSPA2 regulation. As a model system, we used an immortal human keratinocyte line (HaCaT) and cervical cancer cells (HeLa) grown under control or hypoxic conditions. Using an in vitro gene reporter assay, we demonstrated that in keratinocytes HSPA2 promoter activity is reduced under conditions that facilitate stabilization of HIF-1α, whereas HIF-1 inhibitors abrogated the suppressive effect of hypoxia on promoter activity. Chromatin immunoprecipitation revealed that HIF-1α binds to the HSPA2 promoter. In keratinocytes, hypoxia or overexpression of a stable form of HIF-1α attenuated the expression of endogenous HSPA2, whereas targeted repression of HIF-1α by RNAi increased transcription of HSPA2 under hypoxia. Conversely, in HeLa cells, HSPA2 expression increased under conditions that stimulated HIF-1α activity, whereas inhibition of HIF-1α abrogated hypoxia-induced up-regulation of HSPA2 expression. Taken together, our results demonstrate that HIF-1 can exert differential, cell context-dependent regulatory control of the HSPA2 gene. Additionally, we also showed that HSPA2 expression can be stimulated during hypoxia/reoxygenation stress.
Collapse
Affiliation(s)
- Anna Habryka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Damian Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Mariusz Kryj
- The Oncologic and Reconstructive Surgery Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
16
|
Antonini D, Sirico A, Aberdam E, Ambrosio R, Campanile C, Fagoonee S, Altruda F, Aberdam D, Brissette JL, Missero C. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms. Nucleic Acids Res 2015; 43:862-74. [PMID: 25567987 PMCID: PMC4333422 DOI: 10.1093/nar/gku1396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis.
Collapse
Affiliation(s)
| | - Anna Sirico
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Edith Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | | | | | - Sharmila Fagoonee
- Institute for Biostructures and Bioimages (CNR), c/o Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Daniel Aberdam
- INSERM UMR-S 976, Paris, France Université Paris-Diderot, Hopital St-Louis, Paris, France
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Medical Center, NY, USA
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy Department of Biology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
17
|
Yoh K, Prywes R. Pathway Regulation of p63, a Director of Epithelial Cell Fate. Front Endocrinol (Lausanne) 2015; 6:51. [PMID: 25972840 PMCID: PMC4412127 DOI: 10.3389/fendo.2015.00051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023] Open
Abstract
The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate.
Collapse
Affiliation(s)
- Kathryn Yoh
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, NY, USA
- *Correspondence: Ron Prywes, Department of Biological Sciences, Columbia University, Fairchild 813A, MC2420, 1212 Amsterdam Avenue, New York, NY 10027, USA,
| |
Collapse
|
18
|
Chin SS, Romano RA, Nagarajan P, Sinha S, Garrett-Sinha LA. Aberrant epidermal differentiation and disrupted ΔNp63/Notch regulatory axis in Ets1 transgenic mice. Biol Open 2013; 2:1336-45. [PMID: 24337118 PMCID: PMC3863418 DOI: 10.1242/bio.20135397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transcription factor Ets1 is expressed at low levels in epidermal keratinocytes under physiological conditions, but is over-expressed in cutaneous squamous cell carcinoma (SCC). We previously showed that over-expression of Ets1 in differentiated keratinocytes of the skin leads to significant pro-tumorigenic alterations. Here, we further extend these studies by testing the effects of over-expressing Ets1 in the proliferative basal keratinocytes of the skin, which includes the putative epidermal stem cells. We show that induction of the Ets1 transgene in the basal layer of skin during embryogenesis results in epidermal hyperplasia and impaired differentiation accompanied by attenuated expression of spinous and granular layer markers. A similar hyper-proliferative skin phenotype was observed when the transgene was induced in the basal layer of the skin of adult mice leading to hair loss and open sores. The Ets1-mediated phenotype is accompanied by a variety of changes in gene expression including alterations in Notch signaling, a crucial mediator of normal skin differentiation. Finally, we show that Ets1 disrupts Notch signaling in part via its ability to upregulate ΔNp63, an established transcriptional repressor of several of the Notch receptors. Given the established tumor suppressive role for Notch signaling in skin tumorigenesis, the demonstrated ability of Ets1 to interfere with this signaling pathway may be important in mediating its pro-tumorigenic activities.
Collapse
Affiliation(s)
- Shu Shien Chin
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | |
Collapse
|
19
|
Isolation and enhancement of a homogenous in vitro human Hertwig's epithelial root sheath cell population. Int J Mol Sci 2013; 14:11157-70. [PMID: 23712356 PMCID: PMC3709725 DOI: 10.3390/ijms140611157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/09/2013] [Accepted: 05/22/2013] [Indexed: 01/09/2023] Open
Abstract
Hertwig's epithelial root sheath (HERS) cells play a pivotal role during root formation of the tooth and are able to form cementum-like tissue. The aim of the present study was to establish a HERS cell line for molecular and biochemical studies using a selective digestion method. Selective digestion was performed by the application of trypsin-EDTA for 2 min, which led to the detachment of fibroblast-like-cells, with the rounded cells attached to the culture plate. The HERS cells displayed a typical cuboidal/squamous-shaped appearance. Characterization of the HERS cells using immunofluorescence staining and flow cytometry analysis showed that these cells expressed pan-cytokeratin, E-cadherin, and p63 as epithelial markers. Moreover, RT-PCR confirmed that these cells expressed epithelial-related genes, such as cytokeratin 14, E-cadherin, and ΔNp63. Additionally, HERS cells showed low expression of CD44 and CD105 with absence of CD34 and amelogenin expressions. In conclusion, HERS cells have been successfully isolated using a selective digestion method, thus enabling future studies on the roles of these cells in the formation of cementum-like tissue in vitro.
Collapse
|
20
|
Hsueh YJ, Kuo PC, Chen JK. Transcriptional regulators of the ΔNp63: their role in limbal epithelial cell proliferation. J Cell Physiol 2013; 228:536-46. [PMID: 22806179 DOI: 10.1002/jcp.24160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 12/11/2022]
Abstract
The surface cells of corneal epithelium are regularly shed off and replaced by new cells that are derived from limbal epithelial stem cells (LESC). LESC are believed to reside in the basal layer of the limbal epithelium and are characterized with high expression levels of ΔNp63, a transcription factor (TF) which is believed to play roles in the regulation of LESC proliferation. In this study, we examined the transcriptional regulation of ΔNp63 in limbal epithelial cell. We employed DNA pull down assay followed by LC/MS analysis and cDNA microarray analysis to identify the TFs that were capable of binding to ΔNp63 promoter or were expressed at higher levels in limbus over cornea. The TFs thus selected were further examined for their in vivo ΔNp63 promoter binding by chromatin immunoprecipitation assay. We identified six putative TFs (PAX6, EGR1, CEBPB, JUN, ATF3, and ARID5B) through the aforementioned approaches. Among them, PAX6 and EGR1 were shown to promote the transcription of ΔNp63 and led to increased cell proliferation. In contrast, CEBPB and ATF3 appeared to exert little or no effect on ΔNp63 expression, however, their silencing suppressed cell proliferation. Although JUN exhibited low promoter-binding specificity, however, it affected ΔNp63 expression and limbal epithelial cell proliferation in ways similar to that of PAX6 and EGR1. Intriguingly, ARID5B was highly expressed in the limbal epithelial cell, however, its silencing by siRNA did not obviously affect the expression of ΔNp63, nor did it reduce cell proliferation of the limbal epithelial cell.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Physiology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | |
Collapse
|
21
|
Antonini D, Sibilio A, Dentice M, Missero C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front Endocrinol (Lausanne) 2013; 4:104. [PMID: 23986743 PMCID: PMC3749490 DOI: 10.3389/fendo.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders.
Collapse
Affiliation(s)
| | - Annarita Sibilio
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Monica Dentice
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Fondazione IRCCS SDN, Napoli, Italy
- *Correspondence: Caterina Missero, CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 486, Napoli 80145, Italy e-mail:
| |
Collapse
|
22
|
Li F, Lu Y, Ding M, Wu G, Sinha S, Wang S, Zheng Q. Putative function of TAP63α during endochondral bone formation. Gene 2012; 495:95-103. [PMID: 22244744 PMCID: PMC3278498 DOI: 10.1016/j.gene.2011.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/29/2011] [Indexed: 02/07/2023]
Abstract
P63, a member of the P53 tumor suppressor family, is known to play important functions in cancer and development. Interestingly, previous studies have shown that p63 null mice are absent or have truncated limbs, while mutations in human P63 cause several skeletal syndromes that also show limb and digit abnormalities, suggesting its essential role in long bone development. Indeed, we detected increased level of p63 transcript in hypertrophic MCT cells (an established cell model of chondrocyte maturation) than in proliferative MCT cells. To investigate the in vivo role of P63 upon endochondral bone formation, we have established transgenic mouse lines in which HA- and Flag-tagged TAP63α (the longest P63 isoform) is driven by the hypertrophic chondrocyte-specific Col10a1 regulatory elements. Skeletal staining of Col10a1-TAP63α transgenic mice at either embryonic day 17.5 (E17.5) or postnatal day 1 (P1) observed accelerated ossification in long bone, digit and tail bones compared to their wild-type littermates, suggesting a putative function of P63 during skeletal development. We also detected decreased level of Sox9 and Bcl-2 transcripts, while Alp and Ank are slightly upregulated in Col10a1-TAP63α transgenic mouse limbs. Further immunohistochemical analysis confirmed the decreased Sox9 expression in the proliferative and hypertrophic zone of these mice. Von Kossa staining suggests increased mineralization in hypertrophic zone of transgenic mice compared to littermate controls. Together, our results suggest a role of TAP63α upon skeletal development. TAP63a may promote endochondral ossification through interaction with genes relevant to matrix mineralization and chondrocyte maturation or apoptosis.
Collapse
Affiliation(s)
- Feifei Li
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Yaojuan Lu
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
| | - Ming Ding
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
| | - Guojun Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China
| | - Qiping Zheng
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
23
|
Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S, Sinha S. ΔNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139:772-82. [PMID: 22274697 PMCID: PMC3265062 DOI: 10.1242/dev.071191] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 12/17/2022]
Abstract
The transcription factor p63 is important in the development of the skin as p63-null mice exhibit striking defects in embryonic epidermal morphogenesis. Understanding the mechanisms that underlie this phenotype is complicated by the existence of multiple p63 isoforms, including TAp63 and ΔNp63. To investigate the role of ΔNp63 in epidermal morphogenesis we generated ΔNp63 knock-in mice in which the ΔNp63-specific exon is replaced by GFP. Homozygous ΔNp63(gfp/gfp) animals exhibit severe developmental anomalies including truncated forelimbs and the absence of hind limbs, largely phenocopying existing knockouts in which all p63 isoforms are deleted. ΔNp63-null animals show a poorly developed stratified epidermis comprising isolated clusters of disorganized epithelial cells. Despite the failure to develop a mature stratified epidermis, the patches of ΔNp63-null keratinocytes are able to stratify and undergo a program of terminal differentiation. However, we observe premature expression of markers associated with terminal differentiation, which is unique to ΔNp63-null animals and not evident in the skin of mice lacking all p63 isoforms. We posit that the dysregulated and accelerated keratinocyte differentiation phenotype is driven by significant alterations in the expression of key components of the Notch signaling pathway, some of which are direct transcriptional targets of ΔNp63 as demonstrated by ChIP experiments. The analysis of ΔNp63(gfp/gfp) knockout mice reaffirms the indispensable role of the ΔN isoform of p63 in epithelial biology and confirms that ΔNp63-null keratinocytes are capable of committing to an epidermal cell lineage, but are likely to suffer from diminished renewal capacity and an altered differentiation fate.
Collapse
Affiliation(s)
- Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Kirsten Smalley
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Caitlin Magraw
- College of Dental Medicine and Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Vanida Ann Serna
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Takeshi Kurita
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Srikala Raghavan
- College of Dental Medicine and Department of Dermatology, Columbia University, New York, NY 10032, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
24
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
25
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
26
|
Abstract
The ability of the olfactory epithelium (OE) to regenerate after injury is mediated by at least two populations of presumed stem cells-globose basal cells (GBCs) and horizontal basal cells (HBCs). Of the two, GBCs are molecularly and phenotypically analogous to the olfactory progenitors of the embryonic placode (OPPs). In contrast, HBCs are a reserve stem cell population that appears later in development and requires activation by severe epithelial damage before contributing to epithelial reconstitution. Neither HBC emergence nor the mechanism of activation after injury is understood. Here we show that the transcription factor p63 (Trp63), which is expressed selectively by adult HBCs, is required for HBC differentiation. The first evidence of HBC differentiation is the expression of p63 by cells that closely resemble embryonic OPPs and adult GBCs by morphology and expression of the transcription factors Sox2, Ascl1, and Hes1. HBC formation is delayed in Ascl1 knock-out OE and is completely abrogated in p63-null mice. Strikingly, other cell types of the OE form normally in the p63 knock-out OE. The role of p63 in HBC differentiation appears to be conserved in the regenerating rat OE, where HBCs disappear and then reappear after tissue lesion. Finally, p63 protein is downregulated in HBCs activated by lesion to become multipotent progenitor cells. Together, our data identify a novel mechanism for the generation of a reserve stem cell population and suggest that a p63-dependent molecular switch is responsible for activating reserve stem cells when they are needed.
Collapse
|
27
|
TP63 P2 promoter functional analysis identifies β-catenin as a key regulator of ΔNp63 expression. Oncogene 2011; 30:4656-65. [PMID: 21643019 DOI: 10.1038/onc.2011.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ΔNp63 protein, a product of the TP63 gene that lacks the N-terminal domain, has a critical role in the maintenance of self renewal and progenitor capacity in several types of epithelial tissues. ΔNp63 is frequently overexpressed in squamous cell carcinoma (SCC) and in some other epithelial tumours. This overexpression may contribute to tumour progression through dominant-negative effects on the transcriptionally active (TA) isoforms of the p53 family (TAp63, TAp73 and p53), as well as through independent mechanisms. However, the molecular basis of ΔNp63 overexpression is not fully understood. Here, we show that the expression of ΔNp63 is regulated by the Wnt/β-catenin pathway in human hepatocellular carcinoma (HCC) and SCC cell lines. This regulation operates in particular through TCF/LEF sites present in the P2 promoter of TP63. In addition, we show that ΔNp63 and β-catenin are frequently coexpressed and accumulated in oesophageal SCC, but not in HCC. These results suggest that activation of the β-catenin pathway may contribute to overexpression of ΔNp63 during tumour progression, in a cell type-specific manner.
Collapse
|
28
|
The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett 2011; 16:296-327. [PMID: 21442444 PMCID: PMC6275999 DOI: 10.2478/s11658-011-0009-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
The transcription factor p63 has important functions in tumorigenesis, epidermal differentiation and stem cell self-renewal. The TP63 gene encodes multiple protein isoforms that have different or even antagonistic roles in these processes. The balance of p63 isoforms, together with the presence or absence of the other p53 family members, p73 and p53, has a striking biological impact. There is increasing evidence that interactions between p53-family members, whether cooperative or antagonistic, are involved in various cell processes. This review summarizes the current understanding of the role of p63 in tumorigenesis, metastasis, cell migration and senescence. In particular, recent data indicate important roles in adult stem cell and cancer stem cell regulation and in the response of cancer cells to therapy.
Collapse
|
29
|
Nagarajan P, Chin SS, Wang D, Liu S, Sinha S, Garrett-Sinha LA. Ets1 blocks terminal differentiation of keratinocytes and induces expression of matrix metalloproteases and innate immune mediators. J Cell Sci 2011; 123:3566-75. [PMID: 20930145 DOI: 10.1242/jcs.062240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The transcription factor Ets1 is normally expressed in the proliferative layer of stratified epithelium, but expression of Ets1 is significantly upregulated in squamous cell carcinomas. How elevated levels of Ets1 impact tumor initiation and progression is not well understood. To determine the biological consequences of overexpression of Ets1, we developed a transgenic mouse model that allows induction of Ets1 expression in keratinocytes of stratified epithelium in a regulatable fashion. Induction of Ets1 during embryonic development results in a dramatic alteration in epidermal structure and function by suppressing the expression of multiple stratum corneum constituents, while at the same time inducing expression of EGF ligands, AP1 transcription factors and matrix metalloproteases. Interestingly, expression of certain immune-related genes, including defensins, chemokines and cytokines was increased as well, suggesting a possible role for immune dysregulation in the promotion of squamous dysplasia. Experiments using cultured mouse keratinocytes indicate that Ets1 can induce expression of some of these mediators in a cell-intrinsic fashion. Collectively, our data reveal that elevated expression of Ets1 has a much broader array of pro-tumorigenic effects on epithelial cells than previously appreciated.
Collapse
Affiliation(s)
- Priyadharsini Nagarajan
- Department of Biochemistry, Developmental Genomics Focus Group, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | | | |
Collapse
|
30
|
Romano RA, Smalley K, Liu S, Sinha S. Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing DeltaNp63alpha. Development 2010; 137:1431-9. [PMID: 20335364 DOI: 10.1242/dev.045427] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transcription factor p63 plays an essential role in epidermal morphogenesis. Animals lacking p63 fail to form many ectodermal organs, including the skin and hair follicles. Although the indispensable role of p63 in stratified epithelial skin development is well established, relatively little is known about this transcriptional regulator in directing hair follicle morphogenesis. Here, using specific antibodies, we have established the expression pattern of DeltaNp63 in hair follicle development and cycling. DeltaNp63 is expressed in the developing hair placode, whereas in mature hair its expression is restricted to the outer root sheath (ORS), matrix cells and to the stem cells of the hair follicle bulge. To investigate the role of DeltaNp63 in hair follicle morphogenesis and cycling, we have utilized a Tet-inducible mouse model system with targeted expression of this isoform to the ORS of the hair follicle. DeltaNp63 transgenic animals display dramatic defects in hair follicle development and cycling, eventually leading to severe hair loss. Strikingly, expression of DeltaNp63 leads to a switch in cell fate of hair follicle keratinocytes, causing them to adopt an interfollicular epidermal (IFE) cell identity. Moreover, DeltaNp63 transgenic animals exhibit a depleted hair follicle stem-cell niche, which further contributes to the overall cycling defects observed in the mutant animals. Finally, global transcriptome analysis of transgenic skin identified altered expression levels of crucial mediators of hair morphogenesis, including key members of the Wnt/beta-catenin signaling pathway, which, in part, account for these effects. Our data provide evidence supporting a role for DeltaNp63alpha in actively suppressing hair follicle differentiation and directing IFE cell lineage commitment.
Collapse
Affiliation(s)
- Rose-Anne Romano
- Department of Biochemistry, Center for Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | |
Collapse
|
31
|
Cheng CC, Wang DY, Kao MH, Chen JK. The growth-promoting effect of KGF on limbal epithelial cells is mediated by upregulation of ΔNp63α through the p38 pathway. J Cell Sci 2009; 122:4473-80. [DOI: 10.1242/jcs.054791] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Corneal epithelial stem cells are thought to reside in the limbus, the transition zoon between cornea and conjunctiva. Keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF) are two paracrine factors that regulate the proliferation, migration and differentiation of the limbal epithelial cells; however, the underlying mechanisms are still poorly understood. In an ex vivo limbal explant culture, we found that KGF is a more potent growth stimulator for the epithelial outgrowth than HGF. Immunofluorescence studies of the epithelial outgrowth from cells treated with HGF or KGF showed similar expression patterns of keratin-3 and keratin-14. Interestingly, p63 was highly expressed in KGF-treated limbal epithelial sheets but not in those treated with HGF. Kinase inhibitor studies showed that induction of ΔNp63α expression by KGF is mediated via the p38 pathway. The effect of KGF on limbal epithelial outgrowth was significantly reduced when endogenous ΔNp63α was suppressed, suggesting that KGF-induced limbal epithelial outgrowth is dependent on the expression of ΔNp63α. Our findings strongly suggest that limbal keratocytes regulate limbal epithelial cell growth and differentiation through a KGF paracrine loop, with ΔNp63α expression as one of the downstream targets.
Collapse
Affiliation(s)
- Chien-Chia Cheng
- Department of Physiology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Der-Yuan Wang
- Section of Blood Products & IVDs, Drug Biology Division, Bureau of Food and Drug Analysis, Department of Health, Taiwan
| | - Ming-Hui Kao
- Section of Blood Products & IVDs, Drug Biology Division, Bureau of Food and Drug Analysis, Department of Health, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| |
Collapse
|
32
|
Kommagani R, Leonard MK, Lewis S, Romano RA, Sinha S, Kadakia MP. Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. J Cell Sci 2009; 122:2828-35. [PMID: 19622632 DOI: 10.1242/jcs.049619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p63 transcription factor has a pivotal role in epithelial morphogenesis. Multiple transcripts of the TP63 gene are generated because of alternative promoter usage and splicing. DeltaNp63alpha is the predominant isoform of p63 observed during epithelial morphogenesis and in human cancers. Loss of DeltaNp63alpha expression has been shown to promote invasiveness in a subset of human cancer cell lines. Here, we studied whether the regulation of VDR by DeltaNp63alpha controls the invasiveness of an epidermoid cancer cell line. We demonstrate that VDR expression is induced by all p63 isoforms, including DeltaNp63alpha. Endogenous DeltaNp63alpha protein was observed to bind to the VDR promoter, and silencing of endogenous DeltaNp63alpha resulted in diminished VDR expression. Although silencing of p63 inhibits VDR expression leading to an increase in cell migration, overexpression of p63 or VDR results in reduced cell migration as a result of increased VDR expression. Therefore, it is conceivable that p63 inhibits cell invasion by regulating VDR expression. Finally, we observed that expression of p63 and VDR overlaps in the wild-type mouse skin, but a reduced or complete absence of VDR expression was observed in skin from p63-null mice and in p63-null mouse embryonic fibroblasts. In conclusion, we demonstrate a direct transcriptional regulation of VDR by DeltaNp63alpha. Our results highlight a crucial role for VDR in p63-mediated biological functions.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pozzi S, Boergesen M, Sinha S, Mandrup S, Mantovani R. Peroxisome proliferator-activated receptor-alpha is a functional target of p63 in adult human keratinocytes. J Invest Dermatol 2009; 129:2376-85. [PMID: 19458633 DOI: 10.1038/jid.2009.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B. Chromatin immunoprecipitation analyses indicate that p63 is bound to this region, in the absence of a recognizable p63-binding motif, suggesting that it acts through interactions with other transcription factors (TFs). Distinct PPARalpha transcripts are differentially regulated by p63, indicating a bimodal action in promoter and/or transcription start specification. PPARalpha repression is consistent with lack of expression in the interfollicular epidermis under physiological conditions. Furthermore, we show that PPARalpha is a negative regulator of DeltaNp63alpha levels and that it also binds to a functional region of the DeltaNp63 promoter that lacks PPRE motifs. Therefore, the reciprocal regulation is exerted either through binding to non-consensus sites or through interactions with other DNA-bound TFs. In conclusion, our data establish a link between two TFs intimately involved in the maintenance of skin homeostatic conditions.
Collapse
Affiliation(s)
- Silvia Pozzi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
34
|
An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 2009; 4:e5623. [PMID: 19461998 PMCID: PMC2680039 DOI: 10.1371/journal.pone.0005623] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background One major defining characteristic of the basal keratinocytes of the stratified epithelium is the expression of the keratin genes K5 and K14. The temporal and spatial expression of these two genes is usually tightly and coordinately regulated at the transcriptional level. This ensures the obligate pairing of K5 and K14 proteins to generate an intermediate filament (IF) network that is essential for the structure and function of the proliferative keratinocytes. Our previous studies have shown that the basal-keratinocyte restricted transcription factor p63 is a direct regulator of K14 gene. Methodology/Principal Findings Here we provide evidence that p63, specifically the ΔN isoform also regulates the expression of the K5 gene by binding to a conserved enhancer within the 5′ upstream region. By using specific antibodies against ΔNp63, we show a concordance in the expression between basal keratins and ΔNp63 proteins but not the TAp63 isoforms during early embryonic skin development. We demonstrate, that contrary to a previous report, transgenic mice expressing ΔNp63 in lung epithelium exhibit squamous metaplasia with de novo induction of K5 and K14 as well as transdifferentiation to the epidermal cell lineage. Interestingly, the in vivo epidermal inductive properties of ΔNp63 do not require the C-terminal SAM domain. Finally, we show that ΔNp63 alone can restore the expression of the basal keratins and reinitiate the failed epidermal differentiation program in the skin of p63 null animals. Significance ΔNp63 is a critical mediator of keratinocyte stratification program and directly regulates the basal keratin genes.
Collapse
|
35
|
Chavanas S, Adoue V, Méchin MC, Ying S, Dong S, Duplan H, Charveron M, Takahara H, Serre G, Simon M. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte. PLoS One 2008; 3:e3408. [PMID: 18923650 PMCID: PMC2566589 DOI: 10.1371/journal.pone.0003408] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs) catalyse the conversion of protein-bound arginine into citrulline (deimination), a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6). Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE), an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.
Collapse
Affiliation(s)
- Stéphane Chavanas
- UMR 5165, CNRS-Toulouse III University, CHU Purpan, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parikh N, Nagarajan P, Sei-ichi M, Sinha S, Garrett-Sinha LA. Isolation and characterization of an immortalized oral keratinocyte cell line of mouse origin. Arch Oral Biol 2008; 53:1091-100. [PMID: 18721915 DOI: 10.1016/j.archoralbio.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/21/2008] [Accepted: 07/01/2008] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To establish an oral epithelial cell line of mouse origin for molecular and biochemical assays. DESIGN Epithelial cells were isolated from the oral cavity of adult mice and established as a spontaneously immortalized cell line in culture, designated immortalized oral keratinocyte cells (IMOK cells). The cells were then characterized for growth characteristics, differentiation potential, karyotype, transfectability, susceptibility to viral infection and responses to siRNA. RESULTS The IMOK cells exhibit robust growth in both serum-containing and serum-free medium for at least 100 population doublings. IMOK cells have a near diploid karyotype, express keratinocyte marker proteins and can be induced to undergo differentiation by the addition of high levels of calcium to the medium. The differentiation process is characterized by morphological changes and by the induction of oral epithelium specific differentiation marker proteins such as K4 and K13. Transient transfection analyses reveal that IMOK cells are highly transfectable and that several promoters of epithelial cells are active in these cells. Moreover, upon differentiation with calcium, there is an up-regulation of differentiation-specific K4 and Elf5 promoter activity. Finally, we show that the oral keratinocytes are also amenable to infection with retroviruses and to siRNA-based knockdown of gene expression. CONCLUSIONS Our study is the first to establish an immortalized oral keratinocyte cell line of murine origin that can recapitulate the oral epithelium differentiation program and thus could serve as a useful tool for toxicological and molecular analyses of the oral tissue.
Collapse
Affiliation(s)
- Neha Parikh
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
37
|
Ortt K, Raveh E, Gat U, Sinha S. A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. J Cell Biochem 2008; 104:1204-19. [PMID: 18275068 DOI: 10.1002/jcb.21700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Development of the skin epidermis and appendages such as hair follicles involves coordinated processes of keratinocyte proliferation and differentiation. The transcription factor p63 plays a critical role in these steps as evident by a complete lack of these structures in p63 null mice. The p63 gene encodes for two proteins TAp63 and DeltaNp63, the latter being the more prevalent and dominant isoform expressed in keratinocytes. Although numerous p63 target genes have been identified, these studies have been limited to transformed human keratinocyte cell lines. Here, we have employed a genomic screening approach of chromatin immunoprecipitation (ChIP) coupled with an enrichment strategy to identify DeltaNp63 response elements in primary mouse keratinocytes. Analysis of p63-ChIP-derived DNA segments has revealed more than 100 potential target genes including novel as well as mouse counterparts of established human p63 targets. Among these is Runx1, a transcription factor important for hair follicle development. We demonstrate that DeltaNp63 binds to a p63-response element located within a well-conserved enhancer of the Runx1 gene. Furthermore, siRNA mediated reduction of DeltaNp63 in mouse keratinocytes reduces Runx1 expression. Consistent with this, endogenous Runx1 levels are lower in the skin of p63(+/-) animals as compared to wild type animals. Lastly, we demonstrate that DeltaNp63 and Runx1 are co-expressed in specific compartments of the hair follicle in a dynamic fashion. Taken together our data demonstrate that p63 directly regulates Runx1 gene expression through a novel enhancer element and suggests a role for these two transcription factors in dictating skin keratinocyte and appendage development.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
38
|
Takagi A, Nishiyama C, Maeda K, Tokura T, Kawada H, Kanada S, Niwa Y, Nakano N, Mayuzumi N, Nishiyama M, Ikeda S, Okumura K, Ogawa H. Role of Sp1 in Transcription of Human ATP2A2 Gene in Keratinocytes. J Invest Dermatol 2008; 128:96-103. [PMID: 17597815 DOI: 10.1038/sj.jid.5700937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ATP2A2 gene encodes Ca2+-dependent ATPase, the dysfunction of which causes Darier disease. In this study, we analyzed the promoter structure of the human ATP2A2 gene using primary normal human keratinocytes (NHK). Reporter assays showed that deletion of -550/-529, -488/-472, -390/-362, or -42/-21 resulted in a significant decrease in human ATP2A2 promoter activity. Electrophoretic mobility shift assay (EMSA) showed that Sp1 is a transcription factor that binds to the -550/-529 and -488/-472 regions of the promoter. Chromatin immunoprecipitation (ChIP) assay demonstrated that Sp1, but not Sp3, binds to the promoter region of the ATP2A2 gene in NHK cells in vivo. Knockdown of Sp1 expression by small interfering RNA resulted in a marked reduction in ATP2A2 promoter activity and ATP2A2 mRNA levels in NHK, suggesting that Sp1 positively transactivates the ATP2A2 promoter in NHK. This is early evidence demonstrating that Sp1 plays an important and positive role in ATP2A2 gene expression in NHK in vivo and in vitro.
Collapse
Affiliation(s)
- Atsushi Takagi
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nagarajan P, Sinha S. Development of an inducible gene expression system for primary murine keratinocytes. J Dermatol Sci 2008; 49:73-84. [PMID: 17964120 PMCID: PMC2246047 DOI: 10.1016/j.jdermsci.2007.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND The tetracycline (Tet) responsive system is a valuable tool that is routinely used in a wide variety of mammalian cells for regulatable expression of gene products. However, technical difficulties such as harsh selection conditions and extensive screening processes to identify suitably responsive clones limit the generation of stable cell lines. Hence, application of this system in mammalian cells with relatively slow growth rates and/or the capacity to undergo terminal differentiation such as primary mouse keratinocytes is particularly challenging. OBJECTIVE To our knowledge, no Tet-responsive stable cell lines have been generated from mouse keratinocytes, presumably due to their sensitivity to selection conditions. Our goal was to utilize a modified and robust Tet-expression system to generate a stable primary mouse keratinocyte cell line. These cells could be then utilized for conditional expression of potentially toxic proteins in an inducible fashion. METHODS We utilized a eukaryotic promoter instead of a viral promoter to express a modified reverse tetracycline transactivator in mouse keratinocytes and optimized the selection process for generating stable cell lines. RESULTS Here, we report the generation of a stable mouse keratinocyte cell line for Tet-regulated gene expression with minimal leakiness and high degree of Tet responsivity. This mouse keratinocyte cell line was further engineered for generation of a double stable cell line, which expresses the transcription factor AP-2alpha in an inducible manner. Importantly, the selected cells retain their inherent keratinocyte morphology, respond to differentiation signals and exhibit a persistent and highly tunable Tet-inducibility upon continuous culturing. CONCLUSION We have generated a tetracycline inducible gene expression model system in mouse epidermal keratinocytes. Such inducible cell lines will serve as valuable in vitro models for future gain-of-function and loss-of-function studies.
Collapse
Affiliation(s)
- Priyadharsini Nagarajan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY 14214, USA.
| | | |
Collapse
|
40
|
Borrelli S, Testoni B, Callari M, Alotto D, Castagnoli C, Romano RA, Sinha S, Viganò AM, Mantovani R. Reciprocal regulation of p63 by C/EBP delta in human keratinocytes. BMC Mol Biol 2007; 8:85. [PMID: 17903252 PMCID: PMC2148061 DOI: 10.1186/1471-2199-8-85] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 09/28/2007] [Indexed: 01/28/2023] Open
Abstract
Background Genetic experiments have clarified that p63 is a key transcription factor governing the establishment and maintenance of multilayered epithelia. Key to our understanding of p63 strategy is the identification of target genes. We perfomed an RNAi screening in keratinocytes for p63, followed by profiling analysis. Results C/EBPδ, member of a family with known roles in differentiation pathways, emerged as a gene repressed by p63. We validated C/EBPδ as a primary target of ΔNp63α by RT-PCR and ChIP location analysis in HaCaT and primary cells. C/EBPδ is differentially expressed in stratification of human skin and it is up-regulated upon differentiation of HaCaT and primary keratinocytes. It is bound to and activates the ΔNp63 promoter. Overexpression of C/EBPδ leads to alteration in the normal profile of p63 isoforms, with the emergence of ΔNp63β and γ, and of the TA isoforms, with different kinetics. In addition, there are changes in the expression of most p63 targets. Inactivation of C/EBPδ leads to gene expression modifications, in part due to the concomitant repression of ΔNp63α. Finally, C/EBPδ is found on the p63 targets in vivo by ChIP analysis, indicating that coregulation is direct. Conclusion Our data highlight a coherent cross-talk between these two transcription factors in keratinocytes and a large sharing of common transcriptional targets.
Collapse
Affiliation(s)
- Serena Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Maurizio Callari
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica-Banca della Cute, Ospedale CTO, Torino, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica-Banca della Cute, Ospedale CTO, Torino, Italy
| | | | | | - Alessandra M Viganò
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie. U. di Milano. Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
41
|
Novel in vivo targets of DeltaNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach. BMC Mol Biol 2007; 8:43. [PMID: 17521434 PMCID: PMC1890296 DOI: 10.1186/1471-2199-8-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 05/23/2007] [Indexed: 01/22/2023] Open
Abstract
Background p63 is a transcription factor that plays an important role in skin epidermal development and differentiation. The p63 gene encodes for two major protein isoforms, those containing an amino-terminal trans-activation domain (TAp63) and those lacking this domain (ΔNp63). Both the TA and ΔN transcripts are also alternatively spliced at the 3' end producing proteins with unique C-termini that are designated as α, β and γ isoforms. Recent research has suggested that ΔNp63 is the predominant isoform expressed and active in keratinocytes. Results To better elucidate the biological role of p63 in regulating gene expression in keratinocytes we performed chromatin immunoprecipitation (ChIP) experiments with ΔNp63-specific antibodies. We included an additional step in the ChIP procedure to enrich for ΔNp63 targets by screening the library of immunoprecipitated DNA for its ability to bind recombinant GST-ΔNp63. Cloning of ΔNp63-ChIP-derived DNA fragments identified more than 60 potential ΔNp63 target loci that were located close to or embedded within known or predicted genes. Identity of these target genes suggests that they may participate in a myriad of cellular processes including transcriptional regulation, signaling and metabolism. Here we confirm the binding of ΔNp63 to several of these genomic loci both by EMSA and replicate ChIP assays. Finally we show that the expression of many of these target genes is altered when ΔNp63 levels in keratinocytes are reduced by siRNA, further confirming that these are bona fide targets. Conclusion This unbiased genomic approach has allowed us to uncover functional targets of ΔNp63 and serves as the initial step in further analysis of the transcriptional regulatory mechanisms that are governed by p63 in keratinocytes.
Collapse
|
42
|
Abstract
The p53-related genes p63 and p73 exhibit significant structural homology to p53; however, they do not function as classical tumor suppressors and are rarely mutated in human cancers. Both p63 and p73 exhibit tissue-specific roles in normal development and a complex contribution to tumorigenesis that is due to their expression as multiple protein isoforms. The predominant p63/p73 isoforms expressed both in normal development and in many tumors lack the conserved transactivation (TA) domain; these isoforms instead exhibit a truncated N-terminus (DeltaN) and function at least in part as transcriptional repressors. p63 and p73 isoforms are regulated through both transcriptional and post-translational mechanisms, and they in turn regulate diverse cellular functions including proliferation, survival and differentiation. The net effect of p63/p73 expression in a given context depends on the ratio of TA/DeltaN isoforms expressed, on physical interaction between p63 and p73 isoforms, and on functional interactions with p53 at the promoters of specific downstream target genes. These multifaceted interactions occur in diverse ways in tumor-specific contexts, demonstrating a functional 'p53 family network' in human tumorigenesis. Understanding the regulation and mechanistic contributions of p63 and p73 in human cancers may ultimately provide new therapeutic opportunities for a variety of these diseases.
Collapse
Affiliation(s)
- M P Deyoung
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | |
Collapse
|
43
|
Romano RA, Birkaya B, Sinha S. A functional enhancer of keratin14 is a direct transcriptional target of deltaNp63. J Invest Dermatol 2006; 127:1175-86. [PMID: 17159913 DOI: 10.1038/sj.jid.5700652] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Keratin14 (K14) is a prototypic marker of dividing basal keratinocytes where its gene is transcribed at high levels. Transcriptional regulation of K14 is governed by an evolutionarily conserved functional enhancer marked by DNase 1 hypersensitive sites present upstream of the gene. This enhancer is sufficient to confer epidermal-specific gene expression, which is mediated in part by binding of members of activator protein-2 (AP)-2, AP-1, Ets, and Sp1 families of transcription factors. Here we provide evidence that a keratinocyte-specific nuclear protein identified as deltaNp63 binds to a conserved motif within this enhancer. Interestingly, the selective expression profile of deltaNp63 in various cell lines correlates with both the nuclear complex and the expression of K14. Biochemical studies reveal that deltaNp63 can bind to a specific DNA sequence present in the K14 enhancer and this binding leads to transactivation. In addition, chromatin immunoprecipitation experiments with deltaNp63-specific antibodies demonstrate that the enhancer is occupied by deltaNp63 in cultured keratinocytes and in mouse skin epidermal cells in vivo. Finally, we show that ectopic expression of either p63 isoform (deltaN or TA) can induce de novo expression of K14. These studies provide a potential mechanism by which deltaNp63 directly governs the expression of K14 in a keratinocyte-specific manner.
Collapse
Affiliation(s)
- Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
44
|
Ortt K, Sinha S. Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Lett 2006; 580:4544-50. [PMID: 16870177 DOI: 10.1016/j.febslet.2006.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/28/2006] [Accepted: 07/04/2006] [Indexed: 11/21/2022]
Abstract
p63 is a member of the p53 family of proteins and plays an important role in epithelial development and differentiation. Although some p63 binding sites in the regulatory elements of epithelial genes have been identified, the optimal DNA-binding sequence has not been ascertained for this transcription factor. Here, we identify the preferred DNA-binding site of p63 by performing in vitro DNA selection experiments. Our analysis shows that the optimal p63 DNA-binding consensus motif consists of a CA(T)TG core and an AT-rich 5' and 3' flanking sequence. Gel shift and competition experiments demonstrate that there are specific sequence requirements that confer high DNA-binding affinity for p63 and that significant deviation from the consensus sequences result in poor or no binding. This pattern of DNA-binding is similar for both recombinant p63 and the endogenous protein present in keratinocyte nuclear extracts. Furthermore, we show that the consensus sequence is distinctly different from that of p53, particularly in the flanking sequences. Identification of the p63 consensus DNA-binding sequence will facilitate the validation of in vivo p63-responsive elements that mediate transcriptional regulation of a wide variety of target genes.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
45
|
Djalilian AR, McGaughey D, Patel S, Seo EY, Yang C, Cheng J, Tomic M, Sinha S, Ishida-Yamamoto A, Segre JA. Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 2006; 116:1243-53. [PMID: 16628254 PMCID: PMC1440704 DOI: 10.1172/jci27186] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 03/07/2006] [Indexed: 12/20/2022] Open
Abstract
Inflammatory skin disorders result in significant epidermal changes, including keratinocyte hyperproliferation, incomplete differentiation, and impaired barrier. Here we test whether, conversely, an impaired epidermal barrier can promote an inflammatory response. Mice lacking the transcription factor Kruppel-like factor 4 (Klf4) have a severe defect in epidermal barrier acquisition. Transcription profiling of Klf4(-/-) newborn skin revealed similar changes in gene expression to involved psoriatic plaques, including a significant upregulation of the gap junction protein connexin 26 (Cx26). Ectopic expression of Cx26 from the epidermis-specific involucrin (INV) promoter (INV-Cx26) demonstrated that downregulation of Cx26 is required for barrier acquisition during development. In juvenile and adult mice, persistent Cx26 expression kept wounded epidermis in a hyperproliferative state, blocked the transition to remodeling, and led to an infiltration of immune cells. Mechanistically, ectopic expression of Cx26 in keratinocytes resulted in increased ATP release, which delayed epidermal barrier recovery and promoted an inflammatory response in resident immune cells. These results provide a molecular link between barrier acquisition in utero and epidermal remodeling after wounding. More generally, these studies suggest that the most effective treatments for inflammatory skin disorders might concomitantly suppress the immune response and enhance epidermal differentiation to restore the barrier.
Collapse
Affiliation(s)
- Ali R Djalilian
- National Human Genome Research Institute, National Eye Institute, and National Institute of Child Health and Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|