1
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
2
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
4
|
Xiao X, Hu X, Yao J, Cao W, Zou Z, Wang L, Qin H, Zhong D, Li Y, Xue P, Jin R, Li Y, Shi Y, Li J. The role of short-chain fatty acids in inflammatory skin diseases. Front Microbiol 2023; 13:1083432. [PMID: 36817115 PMCID: PMC9932284 DOI: 10.3389/fmicb.2022.1083432] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites of gut microbes that can modulate the host inflammatory response, and contribute to health and homeostasis. Since the introduction of the gut-skin axis concept, the link between SCFAs and inflammatory skin diseases has attracted considerable attention. In this review, we have summarized the literature on the role of SCFAs in skin inflammation, and the correlation between SCFAs and inflammatory skin diseases, especially atopic dermatitis, urticaria, and psoriasis. Studies show that SCFAs are signaling factors in the gut-skin axis and can alleviate skin inflammation. The information presented in this review provides new insights into the molecular mechanisms driving gut-skin axis regulation, along with possible pathways that can be targeted for the treatment and prevention of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianjun Xiao
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoshen Hu
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junpeng Yao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Cao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zihao Zou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haiyan Qin
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongling Zhong
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuxi Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peiwen Xue
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rongjiang Jin
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunzhou Shi
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Yunzhou Shi,
| | - Juan Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Juan Li,
| |
Collapse
|
5
|
Baindara P, Ganguli S, Chakraborty R, Mandal SM. Preventing Respiratory Viral Diseases with Antimicrobial Peptide Master Regulators in the Lung Airway Habitat. Clin Pract 2023; 13:125-147. [PMID: 36648852 PMCID: PMC9844411 DOI: 10.3390/clinpract13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The vast surface area of the respiratory system acts as an initial site of contact for microbes and foreign particles. The whole respiratory epithelium is covered with a thin layer of the airway and alveolar secretions. Respiratory secretions contain host defense peptides (HDPs), such as defensins and cathelicidins, which are the best-studied antimicrobial components expressed in the respiratory tract. HDPs have an important role in the human body's initial line of defense against pathogenic microbes. Epithelial and immunological cells produce HDPs in the surface fluids of the lungs, which act as endogenous antibiotics in the respiratory tract. The production and action of these antimicrobial peptides (AMPs) are critical in the host's defense against respiratory infections. In this study, we have described all the HDPs secreted in the respiratory tract as well as how their expression is regulated during respiratory disorders. We focused on the transcriptional expression and regulation mechanisms of respiratory tract HDPs. Understanding how HDPs are controlled throughout infections might provide an alternative to relying on the host's innate immunity to combat respiratory viral infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Radiation Oncology, University of Missouri, Columbia, MO 65211, USA
| | - Sriradha Ganguli
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, P.O. NBU, Siliguri 734013, West Bengal, India
| | - Santi M. Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
6
|
Siman-Tov R, Zelikson N, Caspi M, Levi Y, Perry C, Khair F, Stauber H, Sznitman J, Rosin-Arbesfeld R. Circulating Wnt Ligands Activate the Wnt Signaling Pathway in Mature Erythrocytes. Arterioscler Thromb Vasc Biol 2021; 41:e243-e264. [PMID: 33626913 DOI: 10.1161/atvbaha.120.315413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Yakir Levi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Chava Perry
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
- BMT Unit, Institute of Hematology, Tel-Aviv Sourasky Medical Center, Israel (C.P.)
| | - Fayhaa Khair
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Hagit Stauber
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| |
Collapse
|
7
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
8
|
Jiménez M, Muñoz FC, Cervantes-García D, Cervantes MM, Hernández-Mercado A, Barrón-García B, Moreno Hernández-Duque JL, Rodríguez-Carlos A, Rivas-Santiago B, Salinas E. Protective Effect of Glycomacropeptide on the Atopic Dermatitis-Like Dysfunctional Skin Barrier in Rats. J Med Food 2020; 23:1216-1224. [DOI: 10.1089/jmf.2019.0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mariela Jiménez
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Fabiola C. Muñoz
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Daniel Cervantes-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
- National Council of Science and Technology, Mexico City, México
| | - Maritza M. Cervantes
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Berenice Barrón-García
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| | | | - Adrián Rodríguez-Carlos
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Bruno Rivas-Santiago
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, México
| | - Eva Salinas
- Department of Microbiology, Autonomous University of Aguascalientes, Aguascalientes, México
| |
Collapse
|
9
|
Saternus R, Reichrath J. [Power station sun and hormone factory skin : A current assessment of the importance of vitamin D metabolism during human evolution and strategies for UV prevention]. Hautarzt 2020; 71:772-785. [PMID: 32915242 DOI: 10.1007/s00105-020-04684-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sun is of great importance for human health. One important reason for this is the production of vitamin D, endorphins and many other hormones by the skin due to stimulation by sunlight. Insufficient access to sunlight increases the risk for vitamin D deficiency, a pandemic which would affect more than one billion people worldwide and under which ca. 60% of the population in Germany would suffer. The skin has a unique position in vitamin D metabolism as elementary steps for vitamin D production take place here and it is furthermore a target organ for actions of vitamin D. Due to the many positive effects of the sun, a healthy balance must be found between UV protection to shield against skin cancer but also ensuring sufficient vitamin D production. For regulation of this fragile balance between photoprotection and vitamin D production, which has accompanied mankind throughout evolution, sunscreens are an integral part of the modern lifestyle, although critical reports on possible risks for their use have recently become more frequent. This article discusses the current state of knowledge on the importance of vitamin D metabolism in human skin and the use of sun creams.
Collapse
Affiliation(s)
- R Saternus
- Klinik für Dermatologie, Venerologie und Allergologie, Hautklinik und Poliklinik, Universitätsklinikum des Saarlandes, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland.
| | - J Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie, Hautklinik und Poliklinik, Universitätsklinikum des Saarlandes, Kirrberger Str. 100, 66421, Homburg/Saar, Deutschland
| |
Collapse
|
10
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
11
|
Wu J, Ma N, Johnston LJ, Ma X. Dietary Nutrients Mediate Intestinal Host Defense Peptide Expression. Adv Nutr 2020; 11:92-102. [PMID: 31204774 PMCID: PMC7442325 DOI: 10.1093/advances/nmz057] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/14/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal tract is the shared locus of intestinal epithelial cells, immune cells, nutrient digestion and absorption, and microbial survival. The gut in animals faces continuous challenges in communicating with the external environment. Threats from endogenous imbalance and exogenous feeds, especially pathogens, could trigger a disorder of homeostasis, leading to intestinal disease and even systematic disease risk. As a part of the intestinal protective barrier, endogenous host defense peptides (HDPs) play multiple beneficial physiological roles in the gut mucosa. Moreover, enhancing endogenous HDPs is being developed as a new strategy for resisting pathogens and commensal microbes, and to maintain intestinal health and reduce antibiotic use. In recent years, multiple nutrients such as branched-chain amino acids, SCFAs, lactose, zinc, and cholecalciferol (vitamin D3) have been reported to significantly increase HDP expression. Nutritional intervention has received more attention and is viewed as a promising means to defend against pathogenic infections and intestinal inflammation. The present review focuses on current discoveries surrounding HDP expression and nutritional regulation of mechanisms in the gut. Our aim is to provide a comprehensive overview, referable tactics, and novel opinions.
Collapse
Affiliation(s)
- Jianmin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Infante M, Ricordi C, Padilla N, Alvarez A, Linetsky E, Lanzoni G, Mattina A, Bertuzzi F, Fabbri A, Baidal D, Alejandro R. The Role of Vitamin D and Omega-3 PUFAs in Islet Transplantation. Nutrients 2019; 11:E2937. [PMID: 31816979 PMCID: PMC6950335 DOI: 10.3390/nu11122937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Recurrence of autoimmunity and allograft rejection represent major challenges that impact the success of islet transplantation. Despite the remarkable improvements achieved in immunosuppression strategies after the publication of the Edmonton protocol, long-term data of intra-hepatic islet transplantation show a gradual decline in beta-cell function. Therefore, there is a growing interest in the investigation of novel, safe and effective anti-inflammatory and immunomodulatory strategies able to promote long-term islet graft survival and notable improvements in clinical outcomes of islet transplant recipients. Vitamin D has been shown to exert anti-inflammatory and immunomodulatory effects. Pre-clinical studies investigating the use of vitamin D and its analogs (alone or in combination with immunosuppressive agents and/or other anti-inflammatory agents, such as omega-3 polyunsaturated fatty acids) showed beneficial results in terms of islet graft survival and prevention of recurrence of autoimmunity/allograft rejection in animal models of syngeneic and allogeneic islet transplantation. Moreover, epidemiologic studies demonstrated that vitamin D deficiency is highly prevalent after solid organ transplantation (e.g., heart, liver or kidney transplantation). However, studies that critically assess the prevalence of vitamin D deficiency among islet transplant recipients have yet to be conducted. In addition, prospective studies aimed to address the safety and efficacy of vitamin D supplementation as an adjuvant immunomodulatory strategy in islet transplant recipients are lacking and are therefore awaited in the future.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Elina Linetsky
- Diabetes Research Institute (DRI) and Cell Transplant Center, cGMP Cell Processing Facility, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Giacomo Lanzoni
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Alessandro Mattina
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), UPMC, 90127 Palermo, Italy;
| | | | - Andrea Fabbri
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| |
Collapse
|
13
|
Febriza A, Hatta M, Natzir R, Kasim VN, Idrus HH. Activity of Antimicrobial Peptide; Cathelicidin, on Bacterial Infection. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptide is an effector molecule from the natural immune system which plays a central role in defense as an antimicrobial. Cathelicidin is one of the antimicrobial peptides. Human only has one cathelicidin antimicrobial peptide called LL-37 or hCAP18. The detailed mechanism on CAMP (Cathelicidin Antimicrobial Peptide) gene regulation is still unknown, however, cathelicidin is found to have upregulation when there is bacterial infection. The most effective expression inducer of CAMP gene is 1,25-dihydroxyvitamin D3(1,25(OH)2D3), which is the active form of vitamin D. Vitamin D mediates cathelicidin synthesis through the expression of Vitamin D Receptor (VDR), then the interaction activates CAMP gene to express cathelicidin. The work mechanisms of cathelicidin against bacterial infection include damaging the bacterial cell membrane, inducing autophagy process of macrophage cell, neutralizing LPS produced by bacteria, and chemotactic activities of PMNs, monocytes and lymphocytes.
Collapse
|
14
|
Wei R, Dhawan P, Baiocchi RA, Kim KY, Christakos S. PU.1 and epigenetic signals modulate 1,25-dihydroxyvitamin D 3 and C/EBPα regulation of the human cathelicidin antimicrobial peptide gene in lung epithelial cells. J Cell Physiol 2018; 234:10345-10359. [PMID: 30387140 DOI: 10.1002/jcp.27702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
LL-37, the only known human cathelicidin which is encoded by the human antimicrobial peptide (CAMP) gene, plays a critical role in protection against bacterial infection. We previously demonstrated that cathelicidin is induced by 1,25-dihydroxyvitamin D3 (1,25(OH) 2 D 3 ) in human airway epithelial cells with a resultant increase in bactericidal activity. In this study we identify key factors that co-operate with 1,25(OH) 2 D 3 in the regulation of CAMP. Our results show for the first time that PU.1, the myeloid transcription factor (which has also been identified in lung epithelial cells), co-operates with the vitamin D receptor and CCAAT/enhancer binding protein α (CEBPα) to enhance the induction of CAMP in lung epithelial cells. Our findings also indicate that enhancement of 1,25(OH) 2 D 3 regulation of CAMP by histone deacetylase inhibitors involves co-operation between acetylation and chromatin remodeling through Brahma-related gene 1 (BRG1; a component of the SWItch/sucrose nonfermentable [SWI/SNF] complex). BRG1 can be an activator or repressor depending on BRG1-associated factors. Protein arginine methyltransferase 5 (PRMT5), a methlytransferase which interacts with BRG1, represses 1,25(OH) 2 D 3 induced CAMP in part through dimethylation of H4R3. Our findings identify key mediators involved in the regulation of the CAMP gene in lung epithelial cells and suggest new approaches for therapeutic manipulation of gene expression to increase the antibacterial capability of the airway.
Collapse
Affiliation(s)
- Ran Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Robert A Baiocchi
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | - Ki-Yoon Kim
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
15
|
Lüthje P, Walker S, Kamolvit W, Mohanty S, Pütsep K, Brauner A. Statins influence epithelial expression of the anti-microbial peptide LL-37/hCAP-18 independently of the mevalonate pathway. Clin Exp Immunol 2018; 195:265-276. [PMID: 30216432 DOI: 10.1111/cei.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
Anti-microbial resistance increases among bacterial pathogens and new therapeutic avenues needs to be explored. Boosting innate immune mechanisms could be one attractive alternative in the defence against infectious diseases. The cholesterol-lowering drugs, statins, have been demonstrated to also affect the immune system. Here we investigate the effect of statins on the expression of the human cathelicidin anti-microbial peptide (CAMP) LL-37/hCAP-18 [encoded by the CAMP gene] and explore the underlying mechanisms in four epithelial cell lines of different origin. Simvastatin induced CAMP expression in bladder epithelial cells telomerase-immortalized uroepithelial cells (TERT-NHUCs), intestinal cells HT-29 and keratinocytes HEKa, but not in airway epithelial cells A549. Gene induction in HEKa cells was reversible by mevalonate, while this effect was independent of the cholesterol biosynthesis pathway in TERT-NHUCs. Instead, inhibition of histone deacetylases by simvastatin seems to be involved. For HT-29 cells, both mechanisms may contribute. In addition, simvastatin increased transcription of the vitamin D-activating enzyme CYP27B1 which, in turn, may activate LL-37/hCAP-18 production. Taken together, simvastatin is able to promote the expression of LL-37/hCAP-18, but cell line-specific differences in efficacy and the involved signalling pathways exist.
Collapse
Affiliation(s)
- P Lüthje
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - S Walker
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - W Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - S Mohanty
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - K Pütsep
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - A Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Dias Bastos PA, Lara Santos L, Pinheiro Vitorino RM. How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases. J Pept Sci 2018. [PMID: 29542263 DOI: 10.1002/psc.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human gut barrier is the tissue exposed to the highest load of microorganisms, harbouring 100 trillion bacteria. In addition, the gut's renewal rate outruns that of any other human tissue. Antimicrobial peptides (AMPs) are highly optimized defense molecules in the intestinal barrier optimized to maintain gastrointestinal homeostasis. Alterations in AMPs activity can lead to or result from human gastrointestinal diseases. In this review, unique, conserved, or otherwise regular alterations in the expression patterns of human AMPs across gastrointestinal inflammatory and infectious diseases were analyzed for pattern elucidation. Human gastrointestinal diseases are associated with alterations in gut AMPs' expression patterns in a peptide-specific, disease-specific, and pathogen-specific way, modulating human gastrointestinal functioning. Across diseases, there is a (i) marked reduction in otherwise constitutively expressed AMPs, leading to increased disease susceptibility, and a (ii) significant increase in the expression of inducible AMPs, leading to tissue damage and disease severity. Infections and inflammatory conditions are associated with altered gene expression in the gut, whose patterns may favour cellular metaplasia, mucosal dysfunction, and disease states. Altered expression of AMPs can thus thrive disease severity and evolution since its early stages. Nevertheless, the modulation of AMP expression patterns unveils promising therapeutic targets.
Collapse
Affiliation(s)
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal.,Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Rui Miguel Pinheiro Vitorino
- iBiMED, Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Lyu W, Deng Z, Sunkara LT, Becker S, Robinson K, Matts R, Zhang G. High Throughput Screening for Natural Host Defense Peptide-Inducing Compounds as Novel Alternatives to Antibiotics. Front Cell Infect Microbiol 2018; 8:191. [PMID: 29942796 PMCID: PMC6004375 DOI: 10.3389/fcimb.2018.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
A rise in antimicrobial resistance demands novel alternatives to antimicrobials for disease control and prevention. As an important component of innate immunity, host defense peptides (HDPs) are capable of killing a broad spectrum of pathogens and modulating a range of host immune responses. Enhancing the synthesis of endogenous HDPs has emerged as a novel host-directed antimicrobial therapeutic strategy. To facilitate the identification of natural products with a strong capacity to induce HDP synthesis, a stable macrophage cell line expressing a luciferase reporter gene driven by a 2-Kb avian β-defensin 9 (AvBD9) gene promoter was constructed through lentiviral transduction and puromycin selection. A high throughput screening assay was subsequently developed using the stable reporter cell line to screen a library of 584 natural products. A total of 21 compounds with a minimum Z-score of 2.0 were identified. Secondary screening in chicken HTC macrophages and jejunal explants further validated most compounds with a potent HDP-inducing activity in a dose-dependent manner. A follow-up oral administration of a lead natural compound, wortmannin, confirmed its capacity to enhance the AvBD9 gene expression in the duodenum of chickens. Besides AvBD9, most other chicken HDP genes were also induced by wortmannin. Additionally, butyrate was also found to synergize with wortmannin and several other newly-identified compounds in AvBD9 induction in HTC cells. Furthermore, wortmannin acted synergistically with butyrate in augmenting the antibacterial activity of chicken monocytes. Therefore, these natural HDP-inducing products may have the potential to be developed individually or in combinations as novel antibiotic alternatives for disease control and prevention in poultry and possibly other animal species including humans.
Collapse
Affiliation(s)
- Wentao Lyu
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Zhuo Deng
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Lakshmi T Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Sage Becker
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Kelsy Robinson
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States.,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States.,Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
18
|
Arababadi MK, Nosratabadi R, Asadikaram G. Vitamin D and toll like receptors. Life Sci 2018; 203:105-111. [PMID: 29596922 DOI: 10.1016/j.lfs.2018.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vitamin D (VD) significantly modulates immune responses. Toll like receptors (TLRs) are the main innate immunity receptors which are expressed on the cell membrane and intracellular vesicles and recognize several pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) to induce immune responses. Based on the important roles played by TLRs in physiologic and pathologic functions of immune responses and due to the immunomodulatory functions of VD, it has been hypothesized that VD may present its immunomodulatory functions via modulation of TLRs. This review article collates recent studies regarding the interactions between VD and TLRs and discussed the controversial investigations.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
19
|
Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics. ACTA ACUST UNITED AC 2018; 4:160-169. [PMID: 30140755 PMCID: PMC6104571 DOI: 10.1016/j.aninu.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention. However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017. An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance. Host defense peptides (HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities. While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective, antibiotic-alternative approach to disease control and prevention. Several different classes of small-molecule compounds have been found capable of promoting HDP synthesis. Among the most efficacious compounds are butyrate and vitamin D. Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis. This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.
Collapse
|
20
|
Vanherwegen AS, Gysemans C, Mathieu C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinol Metab Clin North Am 2017; 46:1061-1094. [PMID: 29080635 DOI: 10.1016/j.ecl.2017.07.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence exists for a role for vitamin D and its active metabolites in modulating immune functions. In animal models, vitamin D deficiency is associated with a higher risk for autoimmunity in genetically predisposed subjects and increases in susceptibility to infections. In addition, high-dose vitamin D can improve immune health, prevent autoimmunity, and improve defense against infections. In humans, evidence exists on associations between vitamin D deficiency and impaired immune function, leading to autoimmunity in genetically predisposed people and increased risk for infections; data on therapeutic immune effects of vitamin D supplementation when vitamin D levels are already sufficient are lacking.
Collapse
Affiliation(s)
- An-Sofie Vanherwegen
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, O&N1 Herestraat 49 - bus 902, Leuven 3000, Belgium
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, O&N1 Herestraat 49 - bus 902, Leuven 3000, Belgium.
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, O&N1 Herestraat 49 - bus 902, Leuven 3000, Belgium
| |
Collapse
|
21
|
Hertting O, Lüthje P, Sullivan D, Aspenström P, Brauner A. Vitamin D-deficient mice have more invasive urinary tract infection. PLoS One 2017; 12:e0180810. [PMID: 28749951 PMCID: PMC5531565 DOI: 10.1371/journal.pone.0180810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.
Collapse
Affiliation(s)
- Olof Hertting
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Pediatric Infectious Diseases Unit, Astrid Lindgren Children´s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Devin Sullivan
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
22
|
Kao MS, Huang S, Chang WL, Hsieh MF, Huang CJ, Gallo RL, Huang CM. Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J 2017; 12. [PMID: 27982519 DOI: 10.1002/biot.201600399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Recent creation of a Unified Microbiome Initiative (UMI) has the aim of understanding how microbes interact with each other and with us. When pathogenic Staphylococcus aureus infects the skin, the interplay between S. aureus and skin commensal bacteria occurs. Our previous data revealed that skin commensal bacteria can mediate fermentation against the growth of USA300, a community-acquired methicillin-resistant S. aureus MRSA. By using a fermentation process with solid media on a small scale, we define poly(ethylene glycol) dimethacrylate (PEG-DMA) as a selective fermentation initiator which can specifically intensify the probiotic ability of skin commensal Staphylococcus epidermidis bacteria. At least five short-chain fatty acids including acetic, butyric and propionic acids with anti-USA300 activities are produced by PEG-DMA fermentation of S. epidermidis. Furthermore, the S. epidermidis-laden PEG-DMA hydrogels effectively decolonized USA300 in skin wounds in mice. The PEG-DMA and its derivatives may become novel biomaterials to specifically tailor the human skin microbiome against invading pathogens.
Collapse
Affiliation(s)
- Ming-Shan Kao
- Department of Dermatology, University of California, San Diego, California, USA.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Stephen Huang
- Surface Bioadvances Inc., San Diego, California, USA
| | - Wei-Lin Chang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, California, USA
| | - Chun-Ming Huang
- Department of Dermatology, University of California, San Diego, California, USA.,Moores Cancer Center, University of California, San Diego, California, USA
| |
Collapse
|
23
|
Carson CF, Ash O, Chakera A. In vitro data support the investigation of vinegar as an antimicrobial agent for PD-associated Pseudomonas exit site infections. Nephrology (Carlton) 2017; 22:179-181. [PMID: 28064452 DOI: 10.1111/nep.12848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 11/29/2022]
Abstract
Peritoneal dialysis exit site infections caused by Pseudomonas spp. are difficult to treat and can lead to peritonitis and/or modality failure. Effective alternative or adjunct non-antibiotic antimicrobial agents could improve treatment as well as reduce the use of antibiotics and contribute to a reduction in antibiotic selection pressure and the further development of antibiotic resistance. Vinegar is popularly promoted as a topical antimicrobial agent and has been recommended as an adjunct treatment for Pseudomonas exit site infections in PD patients. Systematic empirical data on the susceptibility of pseudomonads to vinegar are lacking. This study aimed to determine the susceptibility to vinegar of 57 isolates of Pseudomonas. The MICs and MBCs of four vinegars were determined for clinical, environmental and/or reference isolates of P. aeruginosa (n = 34), P. fluorescens (n = 11) and P. putida (n = 12) using a broth microdilution method. The MIC90 and MBC90 were also determined for each species. The MIC90 of all four vinegars against P. aeruginosa was 2% (vol/vol). The MBC90 was 8%. The MIC90 s for P. fluorescens and P. putida were also 2%. The MIC90 s were 4%. Dilutions of vinegar recommended for the treatment of Pseudomonas exit site infections have in vitro activity against these notoriously resistant bacteria. In light of increasing rates of antibiotic resistance and the need to reduce antibiotic selection pressure as part of good antibiotic stewardship, the efficacy of vinegar, or its active constituent acetic acid, for the treatment of Pseudomonas exit site infections should be investigated further.
Collapse
Affiliation(s)
- Christine F Carson
- School of Medicine and Pharmacology, The University of Western Australia (M503), Crawley, Australia.,Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Australia
| | - Oliver Ash
- School of Medicine, The University of Notre Dame Australia, Fremantle, Australia
| | - Aron Chakera
- School of Medicine and Pharmacology, The University of Western Australia (M503), Crawley, Australia.,Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Australia.,Renal Unit, Sir Charles Gairdner Hospital, Nedlands, Australia
| |
Collapse
|
24
|
Steiger J, Stephan A, Inkeles MS, Realegeno S, Bruns H, Kröll P, de Castro Kroner J, Sommer A, Batinica M, Pitzler L, Kalscheuer R, Hartmann P, Plum G, Stenger S, Pellegrini M, Brachvogel B, Modlin RL, Fabri M. Imatinib Triggers Phagolysosome Acidification and Antimicrobial Activity against Mycobacterium bovis Bacille Calmette-Guérin in Glucocorticoid-Treated Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 197:222-32. [PMID: 27233968 DOI: 10.4049/jimmunol.1502407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022]
Abstract
Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial responses, independent of the intracellular vitamin D metabolism. Despite upregulating cathelicidin, glucocorticoids failed to promote macrophage antimycobacterial activity. Gene expression profiles of human macrophages treated with glucocorticoids and/or IFN-γ, which promotes induction of cathelicidin, as well as antimycobacterial activity, were investigated. Using weighted gene coexpression network analysis, we identified a module of highly connected genes that was strongly inversely correlated with glucocorticoid treatment and associated with IFN-γ stimulation. This module was linked to the biological functions autophagy, phagosome maturation, and lytic vacuole/lysosome, and contained the vacuolar H(+)-ATPase subunit a3, alias TCIRG1, a known antimycobacterial host defense gene, as a top hub gene. We next found that glucocorticoids, in contrast with IFN-γ, failed to trigger expression and phagolysosome recruitment of TCIRG1, as well as to promote lysosome acidification. Finally, we demonstrated that the tyrosine kinase inhibitor imatinib induces lysosome acidification and antimicrobial activity in glucocorticoid-treated macrophages without reversing the anti-inflammatory effects of glucocorticoids. Taken together, we provide evidence that the induction of cathelicidin by glucocorticoids is not sufficient for macrophage antimicrobial activity, and identify the vacuolar H(+)-ATPase as a potential target for host-directed therapy in the context of glucocorticoid therapy.
Collapse
Affiliation(s)
- Julia Steiger
- Department of Dermatology, University of Cologne, Cologne 50937, Germany
| | - Alexander Stephan
- Department of Dermatology, University of Cologne, Cologne 50937, Germany
| | - Megan S Inkeles
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095
| | - Susan Realegeno
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University Hospital Erlangen, Erlangen 91054, Germany
| | - Philipp Kröll
- Department of Dermatology, University of Cologne, Cologne 50937, Germany
| | - Juliana de Castro Kroner
- Department of Dermatology, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine, University of Cologne, Cologne 50937, Germany
| | - Andrea Sommer
- Department of Dermatology, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine, University of Cologne, Cologne 50937, Germany
| | - Marina Batinica
- Department of Dermatology, University of Cologne, Cologne 50937, Germany
| | - Lena Pitzler
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50937, Germany
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Pia Hartmann
- 1st Department of Internal Medicine, University of Cologne, Cologne 50937, Germany; Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne 50935, Germany
| | - Georg Plum
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne 50935, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital of Ulm, Ulm 89081, Germany
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095
| | - Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50937, Germany; Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne 50937, Germany; and
| | - Robert L Modlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095; Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne 50937, Germany; Center for Molecular Medicine, University of Cologne, Cologne 50937, Germany;
| |
Collapse
|
25
|
Zhang L, Lu L, Li S, Zhang G, Ouyang L, Robinson K, Tang Y, Zhu Q, Li D, Hu Y, Liu Y. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens. PLoS One 2016; 11:e0154546. [PMID: 27135828 PMCID: PMC4852925 DOI: 10.1371/journal.pone.0154546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Host defense peptides (HDPs) play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3) is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD) expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs) and peripheral blood mononuclear cells (PBMCs) to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS). On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.
Collapse
Affiliation(s)
- Long Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lu Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Siming Li
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| | - Linghua Ouyang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Kelsy Robinson
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, 74078, United States of America
| | - Yanqiang Tang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, P. R. China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yaodong Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| |
Collapse
|
26
|
Wang M, Yue Z, Paus R, Ramot Y. SIRT2 as a new player in epigenetic programming of keratinocyte differentiation and a candidate tumor suppressor. Exp Dermatol 2016; 23:636-8. [PMID: 24814870 DOI: 10.1111/exd.12434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/23/2022]
Abstract
Epidermal keratinocytes undergo a continuous process of terminal differentiation, which is accompanied by a dramatic change in the expression and composition of keratins. This complex and carefully orchestrated process is regulated by a large number of signal transduction events and transcriptional factors as well as by epigenetic regulatory mechanisms, namely by histone methylation/acetylation and DNA methylation. In a recent issue of Exp Dermatol, Ming et al. provide evidence that sirtuin-2 (SIRT2), a NAD+-dependent deacetylase, inhibits the expression of keratin 15 and keratin 19, epidermal stem cell markers, while it stimulates the expression of loricrin, a marker of terminal keratinocyte differentiation. Human skin cancer cells show downregulation of SIRT2, and its deletion increases tumor growth in mice. Overall, these findings suggest that this deacetylase is involved in the epigenetic regulation of keratinocyte differentiation and exerts intracutaneous tumor suppressor functions.
Collapse
Affiliation(s)
- Ming Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | | | | | | |
Collapse
|
27
|
Ko EJ, Kim BH, Jeong HY, Soe SU, Yang DH, Lee SY. Serum 25-hydroxyvitamin D as a predictor of hospitalization-free survival in predialysis and dialysis patients with chronic kidney disease: a single-center prospective observational analysis. Kidney Res Clin Pract 2016; 35:22-8. [PMID: 27069854 PMCID: PMC4811977 DOI: 10.1016/j.krcp.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background Vitamin D has pleiotropic effects important for the proper functioning of multiple organ systems. We investigated whether serum 25-hydroxyvitamin D [25(OH)D] levels influenced hospitalization-free survival in patients with chronic kidney disease (CKD). Methods In this prospective study, serum levels of 25(OH)D were measured in 210 patients with CKD in the winter of 2009. Data regarding hospitalizations were collected over the subsequent 3 years. Results Vitamin D deficiency, as defined by a serum 25(OH)D level below 15 ng/mL, was observed in 76.7% of the patients. The mean 25(OH)D serum level was 13.6 ± 7.8 ng/mL in predialysis patients (n = 62) and 11.3 ± 6.7 ng/mL in dialysis patients (n = 148). During the follow-up, 107 patients (28 predialysis and 79 dialysis) were hospitalized because of infectious (33.6%) or cardiovascular diseases (23.4%). Predialysis and dialysis groups were divided into 2 subgroups based on the median 25(OH)D serum level. Kaplan–Meier analysis revealed that the risk of hospitalization was significantly lower in both predialysis and dialysis patients with above-median serum 25(OH)D levels (log-rank test; P = 0.043 and 0.002, respectively). Multivariate Cox proportional hazards models also demonstrated that the risk of hospitalization was significantly lower for patients with higher serum 25(OH)D levels in both the predialysis (hazard ratio, 0.963; 95% confidence interval, 0.93–0.99) and dialysis groups (hazard ratio, 0.955; 95% confidence interval, 0.91–0.99). Conclusion A lower serum 25(OH)D level predicted poorer hospitalization-free survival in both predialysis and dialysis CKD patients.
Collapse
Affiliation(s)
- Eun-Jung Ko
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Bo Hye Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hye Yun Jeong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung Un Soe
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong Ho Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
28
|
Potential role of reduced environmental UV exposure as a driver of the current epidemic of atopic dermatitis. J Allergy Clin Immunol 2015; 136:1163-9. [DOI: 10.1016/j.jaci.2015.06.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022]
|
29
|
Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients 2015; 7:8251-60. [PMID: 26404359 PMCID: PMC4632412 DOI: 10.3390/nu7105392] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases.
Collapse
Affiliation(s)
- Ran Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, 185 South Orange Ave, Newark, NJ 07103, USA.
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, 185 South Orange Ave, Newark, NJ 07103, USA.
| |
Collapse
|
30
|
Vitamin D every day to keep the infection away? Nutrients 2015; 7:4170-88. [PMID: 26035244 PMCID: PMC4488779 DOI: 10.3390/nu7064170] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023] Open
Abstract
Within the last decade, vitamin D has emerged as a central regulator of host defense against infections. In this regard, vitamin D triggers effective antimicrobial pathways against bacterial, fungal and viral pathogens in cells of the human innate immune system. However, vitamin D also mediates potent tolerogenic effects: it is generally believed that vitamin D attenuates inflammation and acquired immunity, and thus potentially limits collateral tissue damage. Nevertheless, several studies indicate that vitamin D promotes aspects of acquired host defense. Clinically, vitamin D deficiency has been associated with an increased risk for various infectious diseases in epidemiological studies; yet, robust data from controlled trials investigating the use of vitamin D as a preventive or therapeutic agent are missing. In this review, we summarize the current knowledge regarding the effect of vitamin D on innate and acquired host defense, and speculate on the difficulties to translate the available molecular medicine data into practical therapeutic or preventive recommendations.
Collapse
|
31
|
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2015; 22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Wound healing is a complex and systematic tissue level response to mechanical and chemical injuries that may cause the release of growth factors, cytokines, and chemokines by damaged tissues. For the complex features of these restorative processes, it is a crucial challenge to identify the relevant cell types and biochemical pathways that are involved in wound healing. Epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding regulatory RNA editing, play important roles in many biological processes, including cell proliferation, migration and differentiation, signal pathway activation or inhibition, and cell senescence. Epigenetic regulations can coordinately control a considerable subset of known repair genes and thus serve as master regulators of wound healing. An abundance of evidence has also shown that epigenetic modifications participate in the short- and long-term control of crucial gene expression and cell signal transduction that are involved in the healing process. These data provide a foundation for probable epigenetic-based therapeutic strategies that are aimed at stimulating tissue regeneration. This review describes the epigenetic alterations in different cellular types at injury sites, induced signals, and resulting tissue repair. With the increased interest in the epigenetics of wound and repair processes, this field will soon begin to flourish.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
32
|
Dhawan P, Wei R, Sun C, Gombart AF, Koeffler HP, Diamond G, Christakos S. C/EBPα and the Vitamin D Receptor Cooperate in the Regulation of Cathelicidin in Lung Epithelial Cells. J Cell Physiol 2014; 230:464-72. [DOI: 10.1002/jcp.24729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology; Rutgers, the State University of New Jersey, New Jersey Medical School; Newark New Jersey
| | - Ran Wei
- Department of Biochemistry and Molecular Biology; Rutgers, the State University of New Jersey, New Jersey Medical School; Newark New Jersey
| | - Cheng Sun
- Department of Biochemistry and Molecular Biology; Rutgers, the State University of New Jersey, New Jersey Medical School; Newark New Jersey
| | - Adrian F. Gombart
- Linus Pauling Institute; Department of Biochemistry and Biophysics; Oregon State University Corvallis; Oregon
| | - H. Phillip Koeffler
- Division of Hematology/Oncology; Cedars-Sinai Medical Center; UCLA School of Medicine; Los Angeles California
| | - Gill Diamond
- Department of Oral Biology; University of Florida; College of Dentistry; Gainsville Florida
| | - Sylvia Christakos
- Department of Biochemistry and Molecular Biology; Rutgers, the State University of New Jersey, New Jersey Medical School; Newark New Jersey
| |
Collapse
|
33
|
Olofinsae SA, Ibeh BO, Ahluwalia J. Increased oxygen consumption observed in phorbol 12-myristate 13-acetate stimulated human cultured promonocytic U937 cell lines treated with calcitriol and retinoic acid. ASIAN PAC J TROP MED 2014; 7S1:S272-7. [PMID: 25312135 DOI: 10.1016/s1995-7645(14)60245-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the effect of phorbol 12-myristate 13-acetate (PMA) and formyl-methionyl-leucyl-phenylalanine (FMLP) on oxygen consumption of differentiated and non-differentiated immune cell lines by retinoic acid and calcitriol treatment which might be useful in subsequent elicitation of immunological action during immunosuppressive states. METHODS PMA and FMLP were used to artificially stimulate reactive oxygen production in cultured promonocytic U937 cell line. Paralleled samples of the cultured cells were separately prepared with calcitriol (1, 25- dihydroxyvitamin D3) and retinoic acid followed by a 72-hour incubation period. The rate of respiratory burst was measured using the Clark oxygen electrode. RESULTS The average increase in cell concentrations per mL observed was significantly higher in retinoic acid-treated cells (9×10(6) cells/mL) when compared with calcitriol-treated samples (4×10(6) cells/mL). There was a marked increase in oxygen consumption of the calcitriol-treated cell lines against the retinoic acid-treated ones. Exposure of differentiated U937 cells to PMA and FMLP increased significantly (P<0.05) in their oxygen consumption when compared with the control. PMA calcitriol-treated cells resulted in 55% oxygen consumption more than the control while FMLP oxygen consumption increased 78% by comparison with the control. CONCLUSIONS The result demonstrated that calcitriol may serve as a physiological promoter of normal differentiation of precursor cells which may exert an immunological action. This effect could elicit a marker potential and increase immune cell activity of the host especially in immunosuppressed diseased states.
Collapse
Affiliation(s)
| | | | - Jatinder Ahluwalia
- School of Health, Sport and Bioscience, University of East London, United Kingdom
| |
Collapse
|
34
|
Di Grazia A, Luca V, Segev-Zarko LAT, Shai Y, Mangoni ML. Temporins A and B stimulate migration of HaCaT keratinocytes and kill intracellular Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:2520-7. [PMID: 24514087 PMCID: PMC3993219 DOI: 10.1128/aac.02801-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/31/2014] [Indexed: 12/16/2022] Open
Abstract
The growing number of microbial pathogens resistant to available antibiotics is a serious threat to human life. Among them is the bacterium Staphylococcus aureus, which colonizes keratinocytes, the most abundant cell type in the epidermis. Its intracellular accumulation complicates treatments against resulting infections, mainly due to the limited diffusion of conventional drugs into the cells. Temporins A (Ta) and B (Tb) are short frog skin antimicrobial peptides (AMPs). Despite extensive studies regarding their antimicrobial activity, very little is known about their activity on infected cells or involvement in various immunomodulatory functions. Here we show that Tb kills both ATCC-derived and multidrug-resistant clinical isolates of S. aureus within infected HaCaT keratinocytes (80% and 40% bacterial mortality, respectively) at a nontoxic concentration, i.e., 16 μM, whereas a weaker effect is displayed by Ta. Furthermore, the peptides prevent killing of keratinocytes by the invading bacteria. Further studies revealed that both temporins promote wound healing in a monolayer of HaCaT cells, with front speed migrations of 19 μm/h and 12 μm/h for Ta and Tb, respectively. Migration is inhibited by mitomycin C and involves the epidermal growth factor receptor (EGFR) signaling pathway. Finally, confocal fluorescence microscopy indicated that the peptides diffuse into the cells. By combining antibacterial and wound-healing activities, Ta and Tb may act as multifunctional mediators of innate immunity in humans. Particularly, their nonendogenous origin may reduce microbial resistance to them as well as the risk of autoimmune diseases in mammals.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Luca
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Sapienza Università di Roma, Rome, Italy
| | | | - Yechiel Shai
- The Weizmann Institute of Science, Rehovot, Israel
| | - Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
35
|
Genome-wide mapping of gene-microbiota interactions in susceptibility to autoimmune skin blistering. Nat Commun 2014; 4:2462. [PMID: 24042968 PMCID: PMC3778513 DOI: 10.1038/ncomms3462] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Susceptibility to chronic inflammatory diseases is determined by immunogenetic and environmental risk factors. Resident microbial communities often differ between healthy and diseased states, but whether these differences are of primary aetiological importance or secondary to the altered inflammatory environment remains largely unknown. Here we provide evidence for host gene–microbiota interactions contributing to disease risk in a mouse model of epidermolysis bullosa acquisita, an autoantibody-induced inflammatory skin disease. Using an advanced intercross, we identify genetic loci contributing to skin microbiota variability, susceptibility to skin blistering and their overlap. Furthermore, by treating bacterial species abundances as covariates with disease we reveal a novel disease locus. The majority of the identified covariate taxa are characterized by reduced abundance being associated with increased disease risk, providing evidence of a primary role in protection from disease. Further characterization of these putative probiotic species or species assemblages offers promising potential for preventative and therapeutic treatment development. The pathogenesis of inflammatory disorders afflicting the skin is multifactorial. Srinivas et al. show that diversity of the skin microbiota is a critical factor determining the susceptibility to epidermolysis bullosa acquisita, a chronic mucocutaneous autoimmune skin blistering disease.
Collapse
|
36
|
Park K, Kim YI, Shin KO, Seo HS, Kim JY, Mann T, Oda Y, Lee YM, Holleran WM, Elias PM, Uchida Y. The dietary ingredient, genistein, stimulates cathelicidin antimicrobial peptide expression through a novel S1P-dependent mechanism. J Nutr Biochem 2014; 25:734-40. [PMID: 24768661 DOI: 10.1016/j.jnutbio.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
We recently discovered that a signaling lipid, sphingosine-1-phosphate (S1P), generated by sphingosine kinase 1, regulates a major epidermal antimicrobial peptide's [cathelicidin antimicrobial peptide (CAMP)] expression via an NF-κB→C/EBPα-dependent pathway, independent of vitamin D receptor (VDR) in epithelial cells. Activation of estrogen receptors (ERs) by either estrogens or phytoestrogens also is known to stimulate S1P production, but it is unknown whether ER activation increases CAMP production. We investigated whether a phytoestrogen, genistein, simulates CAMP expression in keratinocytes, a model of epithelial cells, by either a S1P-dependent mechanism(s) or the alternate VDR-regulated pathway. Exogenous genistein, as well as an ER-β ligand, WAY-200070, increased CAMP mRNA and protein expression in cultured human keratinocytes, while ER-β antagonist, ICI182780, attenuated the expected genistein- and WAY-200070-induced increase in CAMP mRNA/protein expression. Genistein treatment increased acidic and alkaline ceramidase expression and cellular S1P levels in parallel with increased S1P lyase inhibition, accounting for increased CAMP production. In contrast, siRNA against VDR did not alter genistein-mediated up-regulation of CAMP. Taken together, genistein induces CAMP production via an ER-β→S1P→NF-κB→C/EBPα- rather than a VDR-dependent mechanism, illuminating a new role for estrogens in the regulation of epithelial innate immunity and pointing to potential additional benefits of dietary genistein in enhancing cutaneous antimicrobial defense.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Young-Il Kim
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, South Korea
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 580-185, South Korea
| | - Jong Youl Kim
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Medicine and Endocrinology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Taj Mann
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Yuko Oda
- Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA; Department of Medicine and Endocrinology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, South Korea
| | - Walter M Holleran
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Peter M Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, CA 94121, USA; Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA.
| |
Collapse
|
37
|
Barnett N, Zhao Z, Koyama T, Janz DR, Wang CY, May AK, Bernard GR, Ware LB. Vitamin D deficiency and risk of acute lung injury in severe sepsis and severe trauma: a case-control study. Ann Intensive Care 2014; 4:5. [PMID: 24559079 PMCID: PMC3944729 DOI: 10.1186/2110-5820-4-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to determine the association between 25-hydroxyvitamin D (25-OHD) levels at the onset of critical illness and the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with sepsis or trauma. Methods We performed two nested case-control studies of 478 patients with sepsis and trauma with or without ALI/ARDS admitted to the medical, surgical and trauma ICUs of a tertiary-care center. Cases consisted of patients with either sepsis or trauma and ALI/ARDS; controls consisted of equivalent numbers of matched patients with either sepsis or trauma alone. We measured serum 25-OHD levels the morning after ICU admission and used multivariable regression to assess the relationship between 25-OHD and diagnosis of ALI/ARDS during the first four ICU days, controlling for age, gender, diabetes, smoking status and season. Results 25-OHD levels did not differ between cases with ALI/ARDS and controls in either the sepsis or trauma cohorts. Using a conditional logistic regression model, sepsis patients during the winter season with higher 25-OHD levels were more likely to develop acute lung injury (odds ratio 1.68, 95% confidence interval of 1.05 to 2.69, P = 0.03). This association did not hold for the trauma cohort in either season. Sepsis and trauma patients had a lower risk of hospital mortality at higher 25-OHD levels but neither relationship reached significance. Higher one-year mortality after trauma was associated with lower 25-OHD levels (HR 0.50, CI 0.35,0.72 P = 0.001). Conclusions Serum 25-OHD measured early after admission to intensive care is not associated with the development of acute lung injury, hospital or one-year mortality in critically ill patients with sepsis although lower 25-OHD levels were associated with higher one-year mortality in patients with severe trauma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine in the Department of Medicine, Vanderbilt University, T1218 MCN, 1161 21st Avenue South, Nashville, TN, USA.
| |
Collapse
|
38
|
van der Does AM, Kenne E, Koppelaar E, Agerberth B, Lindbom L. Vitamin D₃ and phenylbutyrate promote development of a human dendritic cell subset displaying enhanced antimicrobial properties. J Leukoc Biol 2014; 95:883-91. [PMID: 24550524 DOI: 10.1189/jlb.1013549] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A promising strategy in the fight against multidrug-resistant pathogens is the induction of endogenous AMPs, with compounds such as VitD₃ and PBA. These compounds display an array of immunomodulatory effects that remain to be investigated in further detail to establish their role in the clearance of infection and possible modulation of AMP expression. Here, we have investigated the effects of VitD₃ and PBA on human monocyte-DC differentiation and found that VitD₃ and PBA promote the development of a stretched CD14⁺/CD1a⁻ DC subset. This subset produced enhanced levels of ROS and human cathelicidin; furthermore, it displayed enhanced killing capacity of Staphylococcus aureus compared with control DCs. When experiments were performed in WT and cathelicidin-deficient mice, we established that a ROS-producing, stretched DC subset was also induced in mouse-derived cells, independent of cathelicidin expression. However, in contrast to the human DCs, enhanced cathelicidin expression and enhanced antimicrobial activities were not found in the murine VitD₃/PBA DC subset. In conclusion, the results of this study show that VitD₃ and PBA induce a human DC subset that is effective against infection. These results promote further research into the use of these compounds as an antimicrobial treatment strategy.
Collapse
Affiliation(s)
| | | | | | - Birgitta Agerberth
- Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
39
|
Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Front Immunol 2014; 4:507. [PMID: 24409186 PMCID: PMC3884195 DOI: 10.3389/fimmu.2013.00507] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/15/2022] Open
Abstract
In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity.
Collapse
Affiliation(s)
- Aisling F Brown
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| | - Thomas R Rogers
- Sir Patrick Dun Laboratory, Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital , Dublin , Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute , Dublin , Ireland
| |
Collapse
|
40
|
El-Shafey BI, El-Srougy HA. Does serum 25 hydroxy vitamin D level play a role in COPD? EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2013.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
41
|
New insights in the pathogenesis of atopic dermatitis. Pediatr Res 2014; 75:171-5. [PMID: 24192701 DOI: 10.1038/pr.2013.196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023]
Abstract
Atopic dermatitis (AD) is characterized by skin barrier defects and increased interleukin (IL)-4/IL-13 expression. Recent evidence also suggests the involvement of innate immunity including Toll-like receptors, IL-33, IL-25, and innate lymphoid cells in the pathogenesis of AD. This article reviews these innate immune components and how they may become an integral part of prognostic factors and therapeutic targets in the treatment of AD.
Collapse
|
42
|
Haisma EM, Rietveld MH, de Breij A, van Dissel JT, El Ghalbzouri A, Nibbering PH. Inflammatory and antimicrobial responses to methicillin-resistant Staphylococcus aureus in an in vitro wound infection model. PLoS One 2013; 8:e82800. [PMID: 24340061 PMCID: PMC3858326 DOI: 10.1371/journal.pone.0082800] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023] Open
Abstract
Treatment of patients with burn wound infections may become complicated by the presence of antibiotic resistant bacteria and biofilms. Herein, we demonstrate an in vitro thermal wound infection model using human skin equivalents (HSE) and biofilm-forming methicillin-resistant Staphylococcus aureus (MRSA) for the testing of agents to combat such infections. Application of a liquid nitrogen-cooled metal device on HSE produced reproducible wounds characterized by keratinocyte death, detachment of the epidermal layer from the dermis, and re-epithelialization. Thermal wounding was accompanied by up-regulation of markers for keratinocyte activation, inflammation, and antimicrobial responses. Exposure of thermal wounded HSEs to MRSA resulted in significant numbers of adherent MRSA/HSE after 1 hour, and multiplication of these bacteria over 24-48 hours. Exposure to MRSA enhanced expression of inflammatory mediators such as TLR2 (but not TLR3), IL-6 and IL-8, and antimicrobial proteins human β-defensin-2, -3 and RNAse7 by thermal wounded as compared to control HSEs. Moreover, locally applied mupirocin effectively reduced MRSA counts on (thermal wounded) HSEs by more than 99.9% within 24 hours. Together, these data indicate that this thermal wound infection model is a promising tool to study the initial phase of wound colonization and infection, and to assess local effects of candidate antimicrobial agents.
Collapse
Affiliation(s)
- Elisabeth M. Haisma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Marion H. Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna de Breij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap T. van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Jiang W, Sunkara LT, Zeng X, Deng Z, Myers SM, Zhang G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides 2013; 50:129-38. [PMID: 24140860 DOI: 10.1016/j.peptides.2013.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
Abstract
LL-37 is the single cathelicidin host defense peptide in humans with direct antimicrobial and immunomodulatory activities. Specific regulation of LL-37 synthesis has emerged as a novel non-antibiotic approach to disease control and prevention. Short-chain fatty acids, and butyrate in particular, were found recently to be strong inducers of LL-37 gene expression without causing inflammation. Here, we further evaluated the LL-37-inducing efficiency of a broad range of saturated free fatty acids and their derivatives in human HT-29 colonic epithelial cells and U-937 monocytic cells by real-time RT-PCR. Surprisingly, we revealed that valerate, hexanoate, and heptanoate with 5-7 carbons are more potent than 4-carbon butyrate in promoting LL-37 gene expression in both cell types. Free fatty acids with longer than 7 or shorter than 4 carbons showed only a marginal effect on LL-37 expression. Studies with a series of fatty acid derivatives with modifications in the aliphatic chain or carboxylic acid group yielded several analogs such as benzyl butyrate, trans-cinnamyl butyrate, glyceryl tributyrate, and phenethyl butyrate with a comparable LL-37-inducing activity to sodium butyrate. On the other hand, although reactive, the anhydride derivatives of short- and medium-chain fatty acids are as potent as their corresponding free acid forms in LL-37 induction. Thus, these newly identified free fatty acids and their analogs with a strong capacity to augment LL-37 synthesis may hold promise as immune boosting dietary supplements for antimicrobial therapy.
Collapse
Affiliation(s)
- Weiyu Jiang
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74048, USA
| | | | | | | | | | | |
Collapse
|
44
|
Guo C, Sinnott B, Niu B, Lowry MB, Fantacone ML, Gombart AF. Synergistic induction of human cathelicidin antimicrobial peptide gene expression by vitamin D and stilbenoids. Mol Nutr Food Res 2013; 58:528-536. [PMID: 24039193 DOI: 10.1002/mnfr.201300266] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/07/2022]
Abstract
SCOPE The cathelicidin antimicrobial peptide (CAMP) gene is induced by 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3), lithocholic acid, curcumin, nicotinamide, and butyrate. Discovering additional small molecules that regulate its expression will identify new molecular mechanisms involved in CAMP regulation and increase understanding of how diet and nutrition can improve immune function. METHODS AND RESULTS We discovered that two stilbenoids, resveratrol and pterostilbene, induced CAMP promoter-luciferase expression. Synergistic activation was observed when either stilbenoid was combined with 1α,25(OH)2 D3. Both stilbenoids increased CAMP mRNA and protein levels in the monocyte cell line U937 and synergy was observed in both U937 and the keratinocyte cell line, HaCaT. Inhibition of resveratrol targets sirtuin-1, cyclic AMP production and the c-Jun N-terminal, phosphoinositide 3 and AMP-activated kinases did not block induction of CAMP by resveratrol or synergy with 1α,25(OH)2 D3. Nevertheless, inhibition of the extracellular signal regulated 1/2 and p38 mitogen-activated protein kinases, increased CAMP gene expression in combination with 1α,25(OH)2 D3 suggesting that inhibition of these kinases by resveratrol may explain, in part, its synergy with vitamin D. CONCLUSION Our findings demonstrate for the first time that stilbenoid compounds may have the potential to boost the innate immune response by increasing CAMP gene expression, particularly in combination with 1α,25(OH)2 D3.
Collapse
Affiliation(s)
- Chunxiao Guo
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Brian Sinnott
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Brenda Niu
- School of Medicine, Oregon Health Sciences University, Portland, Oregon 97239
| | - Malcolm B Lowry
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Microbiology, Oregon State University, Corvallis, Oregon 97331
| | - Mary L Fantacone
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Adrian F Gombart
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
45
|
Zeng X, Sunkara LT, Jiang W, Bible M, Carter S, Ma X, Qiao S, Zhang G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One 2013; 8:e72922. [PMID: 24023657 PMCID: PMC3758276 DOI: 10.1371/journal.pone.0072922] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/13/2013] [Indexed: 01/08/2023] Open
Abstract
Dietary modulation of the synthesis of endogenous host defense peptides (HDPs) represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2), pBD3, epididymis protein 2 splicing variant C (pEP2C), and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3–8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.
Collapse
Affiliation(s)
- Xiangfang Zeng
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Lakshmi T. Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Weiyu Jiang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Megan Bible
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Scott Carter
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
46
|
de Bruin Weller MS, Rockmann H, Knulst AC, Bruijnzeel-Koomen CAFM. Evaluation of the adult patient with atopic dermatitis. Clin Exp Allergy 2013; 43:279-91. [PMID: 23414536 DOI: 10.1111/cea.12030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a large impact on quality of life of the patients and their families. In most cases, the diagnosis of AD can easily be made based on (family) history and clinical examination. If necessary, a practical set of diagnostic criteria such as the UK diagnostic criteria can be used. During the diagnostic phase, it is important to pay attention to atopic comorbidity, such as allergic airway disease (allergic asthma and/or rhinitis), allergic eye disease (atopic (kerato) conjunctivitis) and immediate-type food allergy. This will not have direct consequences for the treatment of AD, but may be important for the overall well-being of the patient. Psychological factors, such as family circumstances, work/school performance and lifestyle factors should also be explored. Severity scoring using properly validated scoring lists may not be necessary for the diagnosis, however, is recommended for monitoring therapy. Simple scoring systems, such as TIS and IGA are easy to perform in daily practice. Several flare factors in AD, such as exposure to irritants or UV light, can be identified by history and clinical examination: in individual cases, additional diagnostic tests may sometimes be useful to confirm clinical suspicion. There is only limited evidence that allergen exposure to aeroallergens and/or food allergens influences AD severity. Therefore, routine allergen testing is not necessary for diagnosis and treatment of AD. The decision to perform allergen tests mainly depends on atopic comorbidity.
Collapse
Affiliation(s)
- M S de Bruin Weller
- Department of Dermatology & Allergology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Duplantier AJ, van Hoek ML. The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds. Front Immunol 2013; 4:143. [PMID: 23840194 PMCID: PMC3699762 DOI: 10.3389/fimmu.2013.00143] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/28/2013] [Indexed: 12/30/2022] Open
Abstract
Diabetic patients often have ulcers on their lower-limbs that are infected by multiple biofilm-forming genera of bacteria, and the elimination of the biofilm has proven highly successful in resolving such wounds in patients. To that end, antimicrobial peptides have shown potential as a new anti-biofilm approach. The single human cathelicidin peptide LL-37 has been shown to have antimicrobial and anti-biofilm activity against multiple Gram-positive and Gram-negative human pathogens, and have wound-healing effects on the host. The combination of the anti-biofilm effect and wound-healing properties of LL-37 may make it highly effective in resolving polymicrobially infected wounds when topically applied. Such a peptide or its derivatives could be a platform from which to develop new therapeutic strategies to treat biofilm-mediated infections of wounds. This review summarizes known mechanisms that regulate the endogenous levels of LL-37 and discusses the anti-biofilm, antibacterial, and immunological effects of deficient vs. excessive concentrations of LL-37 within the wound environment. Here, we review recent advances in understanding the therapeutic potential of this peptide and other clinically advanced peptides as a potential topical treatment for polymicrobial infected wounds.
Collapse
Affiliation(s)
- Allen J Duplantier
- National Center for Biodefense and Infectious Diseases, George Mason University , Manassas, VA , USA
| | | |
Collapse
|
48
|
Liu Q, Liu J, Roschmann KIL, van Egmond D, Golebski K, Fokkens WJ, Wang D, van Drunen CM. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2013; 10:15. [PMID: 23577829 PMCID: PMC3643837 DOI: 10.1186/1476-9255-10-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Abstract
HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Quan Liu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Juan Liu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | - Kristina Irene Lisolette Roschmann
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands.,Hannover Medical School, SFB 587, Immune reactions of the lung in infection and allergy, Hannover, Germany.,Department of Airway Immunology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danielle van Egmond
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands
| | - Korneliusz Golebski
- Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Dehui Wang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200031, China
| | | |
Collapse
|
49
|
Transcriptional effects of 1,25 dihydroxyvitamin D(3) physiological and supra-physiological concentrations in breast cancer organotypic culture. BMC Cancer 2013; 13:119. [PMID: 23497279 PMCID: PMC3637238 DOI: 10.1186/1471-2407-13-119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 03/08/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)(2)D(3) (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)(2)D(3) in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)(2)D(3) at concentrations that can be attained in vivo. METHODS Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)(2)D(3) 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)(2)D(3) 0.5nM, using RT-qPCR, western blot or immunocytochemistry. RESULTS 1,25(OH)(2)D(3) 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)(2)D(3) near physiological concentration. Genes up-modulated by both 1,25(OH)(2)D(3) concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)(2)D(3) was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)(2)D(3) 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)(2)D(3) 0.5nM was detected. CONCLUSIONS In breast cancer specimens a short period of 1,25(OH)(2)D(3) exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)(2)D(3) effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.
Collapse
|
50
|
Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J Invest Dermatol 2013; 133:1942-9. [PMID: 23856934 PMCID: PMC3753186 DOI: 10.1038/jid.2013.133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 12/26/2022]
Abstract
We recently discovered a regulatory mechanism that stimulates production of the multifunctional antimicrobial peptide, cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκB→C/EBPα dependent pathway that enhances CAMP production in cultured human keratinocytes. Since the multifunctional stilbenoid compound, resveratrol (RESV), increases ceramide (Cer) levels, a precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, blockade of Cer→sphingosine→S1P metabolic conversion, with specific inhibitors of ceramidase or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. Moreover, conditioned media from keratinocyte treated with RESV significantly suppressed Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of sphingosine kinase, blocked Staphylococcus aureus invasion into murine skin. These results demonstrate that the dietary stilbenoid, RESV, stimulates S1P signaling of CAMP production through an NF-κB→C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense against exogenous microbial pathogens.
Collapse
|