1
|
Sikdar O, Harris C, Greenough A. Improving early diagnosis of bronchopulmonary dysplasia. Expert Rev Respir Med 2024; 18:283-294. [PMID: 38875260 DOI: 10.1080/17476348.2024.2367584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Bronchopulmonary disease (BPD) is associated with long-term neurodevelopmental and cardiorespiratory complications, often requiring significant use of resources. To reduce this healthcare burden, it is essential that those at high risk of BPD are identified early so that strategies are introduced to prevent disease progression. Our aim was to discuss potential methods for improving early diagnosis in the first week after birth. AREAS COVERED A narrative review was undertaken. The search strategy involved searching PubMed, Embase and Cochrane databases from 1967 to 2024. The results of potential biomarkers and imaging modes are discussed. Furthermore, the value of scoring systems is explored. EXPERT OPINION BPD occurs as a result of disruption to pulmonary vascular and alveolar development, thus abnormal levels of factors regulating those processes are promising avenues to explore with regard to early detection of high-risk infants. Data from twin studies suggests genetic factors can be attributed to 82% of the observed difference in moderate to severe BPD, but large genome-wide studies have yielded conflicting results. Comparative studies are required to determine which biomarker or imaging mode may most accurately diagnose early BPD development. Models which include the most predictive factors should be evaluated going forward.
Collapse
Affiliation(s)
- Oishi Sikdar
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christopher Harris
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Barnes EA, Knutsen C, Kindt A, Che X, Ying L, Adams E, Gonzalez E, Oak P, Hilgendorff A, Alvira CM, Cornfield DN. Hypoxia-Inducible Factor-1α in SM22α-Expressing Cells Modulates Alveolarization. Am J Respir Cell Mol Biol 2023; 69:470-483. [PMID: 37290124 PMCID: PMC10557922 DOI: 10.1165/rcmb.2023-0045oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Worldwide, the incidence of both preterm births and chronic lung disease of infancy, or bronchopulmonary dysplasia, remains high. Infants with bronchopulmonary dysplasia have larger and fewer alveoli, a lung pathology that can persist into adulthood. Although recent data point to a role for hypoxia-inducible factor-1α (HIF-1α) in mediating pulmonary angiogenesis and alveolarization, the cell-specific role of HIF-1α remains incompletely understood. Thus, we hypothesized that HIF-1α, in a distinct subset of mesenchymal cells, mediates postnatal alveolarization. To test the hypothesis, we generated mice with a cell-specific deletion of HIF-1α by crossing SM22α promoter-driven Cre mice with HIF-1αflox/flox mice (SM22α-HIF-1α-/-), determined SM-22α-expressing cell identity using single-cell RNA sequencing, and interrogated samples from preterm infants. Deletion of HIF-1α in SM22α-expressing cells had no effect on lung structure at day 3 of life. However, at 8 days, there were fewer and larger alveoli, a difference that persisted into adulthood. Microvascular density, elastin organization, and peripheral branching of the lung vasculature were decreased in SM22α-HIF-1α-/- mice, compared with control mice. Single-cell RNA sequencing demonstrated that three mesenchymal cell subtypes express SM22α: myofibroblasts, airway smooth muscle cells, and vascular smooth muscle cells. Pulmonary vascular smooth muscle cells from SM22α-HIF-1α-/- mice had decreased angiopoietin-2 expression and, in coculture experiments, a diminished capacity to promote angiogenesis that was rescued by angiopoietin-2. Angiopoietin-2 expression in tracheal aspirates of preterm infants was inversely correlated with overall mechanical ventilation time, a marker of disease severity. We conclude that SM22α-specific HIF-1α expression drives peripheral angiogenesis and alveolarization in the lung, perhaps by promoting angiopoietin-2 expression.
Collapse
Affiliation(s)
- Elizabeth A. Barnes
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Carsten Knutsen
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands; and
| | - Xibing Che
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Lihua Ying
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Eloa Adams
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Erika Gonzalez
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Prajakta Oak
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina M. Alvira
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David N. Cornfield
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| |
Collapse
|
3
|
Adiponectin ameliorates hyperoxia-induced lung endothelial dysfunction and promotes angiogenesis in neonatal mice. Pediatr Res 2022; 91:545-555. [PMID: 33767374 DOI: 10.1038/s41390-021-01442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common respiratory disease of preterm infants. Lower circulatory/intrapulmonary levels of the adipokine, adiponectin (APN), occur in premature and small-for-gestational-age infants and at saccular/alveolar stages of lung development in the newborn rat. However, the role of low intrapulmonary APN during hyperoxia exposure in developing lungs is unknown. METHODS We test the hypothesis that treatment of hyperoxia-exposed newborn mice with recombinant APN protein attenuates the BPD phenotype characterized by inflammation, impaired alveolarization, and dysregulated vascularization. We used developmentally appropriate in vitro and in vivo BPD modeling systems as well as human lung tissue. RESULTS We observed reduced levels of intrapulmonary APN in experimental BPD mice and human BPD lungs. APN-deficient (APN-/-) newborn mice exposed to moderate (60% O2) hyperoxia showed a worse BPD pulmonary phenotype (inflammation, enhanced endothelial dysfunction, impaired pulmonary vasculature, and alveolar simplification) as compared to wild-type (WT) mice. Treatment of hyperoxia-exposed newborn WT mice with recombinant APN protein attenuated the BPD phenotype (diminished inflammation, decreased pulmonary vascular injury, and improved pulmonary alveolarization) and improved pulmonary function tests. CONCLUSIONS Low intrapulmonary APN is associated with disruption of lung development during hyperoxia exposure, while recombinant APN protein attenuates the BPD pulmonary phenotype. IMPACT Intrapulmonary APN levels were significantly decreased in lungs of experimental BPD mice and human BPD lung tissue at various stages of BPD development. Correlative data from human lung samples with decreased APN levels were associated with increased lung adhesion markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin). Decreased APN levels were associated with endothelial dysfunction and moderate BPD phenotype in APN-deficient, as compared to WT, experimental BPD mice. WT experimental BPD mice treated with recombinant APN protein had an improved pulmonary structural and functional phenotype. Exogenous APN may be considered as a potential therapeutic agent to prevent BPD.
Collapse
|
4
|
Chitin-Derived AVR-48 Prevents Experimental Bronchopulmonary Dysplasia (BPD) and BPD-Associated Pulmonary Hypertension in Newborn Mice. Int J Mol Sci 2021; 22:ijms22168547. [PMID: 34445253 PMCID: PMC8395179 DOI: 10.3390/ijms22168547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of prematurity and a key contributor to the large health care burden associated with prematurity, longer hospital stays, higher hospital costs, and frequent re-hospitalizations of affected patients through the first year of life and increased resource utilization throughout childhood. This disease is associated with abnormal pulmonary function that may lead to BPD-associated pulmonary hypertension (PH), a major contributor to neonatal mortality and morbidity. In the absence of any definitive treatment options, this life-threatening disease is associated with high resource utilization during and after neonatal intensive care unit (NICU) stay. The goal of this study was to test the safety and efficacy of a small molecule derivative of chitin, AVR-48, as prophylactic therapy for preventing experimental BPD in a mouse model. Two doses of AVR-48 were delivered either intranasally (0.11 mg/kg), intraperitoneally (10 mg/kg), or intravenously (IV) (10 mg/kg) to newborn mouse pups on postnatal day (P)2 and P4. The outcomes were assessed by measuring total inflammatory cells in the broncho-alveolar lavage fluid (BALF), chord length, septal thickness, and radial alveolar counts of the alveoli, Fulton’s Index (for PH), cell proliferation and cell death by immunostaining, and markers of inflammation by Western blotting and ELISA. The bioavailability and safety of the drug were assessed by pharmacokinetic and toxicity studies in both neonatal mice and rat pups (P3-P5). Following AVR-48 treatment, alveolar simplification was improved, as evident from chord length, septal thickness, and radial alveolar counts; total inflammatory cells were decreased in the BALF; Fulton’s Index was decreased and lung inflammation and cell death were decreased, while angiogenesis and cell proliferation were increased. AVR-48 was found to be safe and the no-observed-adverse-effect level (NOAEL) in rat pups was determined to be 100 mg/kg when delivered via IV dosing with a 20-fold safety margin. With no reported toxicity and with a shorter half-life, AVR-48 is able to reverse the worsening cardiopulmonary phenotype of experimental BPD and BPD-PH, compared to controls, thus positioning it as a future drug candidate.
Collapse
|
5
|
Associations of Plasma Angiopoietins-1 and -2 and Angiopoietin-2/-1 Ratios With Measures of Organ Injury and Clinical Outcomes in Children With Sepsis: A Preliminary Report. Pediatr Crit Care Med 2020; 21:e874-e878. [PMID: 32740186 DOI: 10.1097/pcc.0000000000002508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Results from preclinical and adult sepsis studies suggest that the balance of circulating angiopoietin-1 and -2 levels, represented as angiopoietin-2/-1 ratios, plays a pivotal role in mediating vascular dysfunction and organ injury during sepsis. However, the relationship of plasma angiopoietins with organ injury and clinical outcomes in children with sepsis remains unknown. We sought to determine whether plasma angiopoietin-1 and -2 levels and angiopoietin-2/-1 ratios in the acute phase of sepsis correlated with measures of organ injury and clinical outcomes in children with sepsis. DESIGN Prospective observational cohort study. SETTING PICU within a tertiary freestanding children's hospital. PATIENTS Children 18 years old or less and greater than 3 kg admitted to the PICU for sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma angiopoietin-1 and -2 levels were measured in 38 children with sepsis 0-6, 24, 48, and 72 hours following PICU admission. Children with elevated pediatric Sequential Organ Failure Assessment scores on the third day after PICU admission demonstrated significantly higher 24-72-hour angiopoietin-2/-1 ratios predominantly as a function of higher angiopoietin-2 levels. In children with sepsis-induced organ dysfunction, angiopoietin-2/-1 ratios correlated with oxygenation indices and serum levels of creatinine and bilirubin. Forty-eight- and 72-hour angiopoietin-2/-1 ratios correlated with PICU length of stay (Spearman rho = 0.485, p = 0.004 and rho = 0.440, p = 0.015, respectively). CONCLUSIONS In the acute phase of sepsis in children, plasma angiopoietin-2/-1 ratios rise significantly above control levels and correlate with measures of organ injury and worse clinical outcomes after 24 hours. Our findings suggest that angiopoietin dysregulation begins early in sepsis and, if sustained, may promote greater organ injury that can lead to worse clinical outcomes.
Collapse
|
6
|
Nitkin CR, Xia S, Menden H, Yu W, Xiong M, Heruth DP, Ye SQ, Sampath V. FOSL1 is a novel mediator of endotoxin/lipopolysaccharide-induced pulmonary angiogenic signaling. Sci Rep 2020; 10:13143. [PMID: 32753701 PMCID: PMC7403357 DOI: 10.1038/s41598-020-69735-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Systemic sepsis is a known risk factor for bronchopulmonary dysplasia (BPD) in premature infants, a disease characterized by dysregulated angiogenesis and impaired vascular and alveolar development. We have previoulsy reported that systemic endotoxin dysregulates pulmonary angiogenesis resulting in alveolar simplification mimicking BPD in neonatal mice, but the underlying mechanisms remain unclear. We undertook an unbiased discovery approach to identify novel signaling pathways programming sepsis-induced deviant lung angiogenesis. Pulmonary endothelial cells (EC) were isolated for RNA-Seq from newborn C57BL/6 mice treated with intraperitoneal lipopolysaccharide (LPS) to mimic systemic sepsis. LPS significantly differentially-regulated 269 genes after 6 h, and 1,934 genes after 24 h. Using bioinformatics, we linked 6 h genes previously unknown to be modulated by LPS to 24 h genes known to regulate angiogenesis/vasculogenesis to identify pathways programming deviant angiogenesis. An immortalized primary human lung EC (HPMEC-im) line was generated by SV40 transduction to facilitate mechanistic studies. RT-PCR and transcription factor binding analysis identified FOSL1 (FOS like 1) as a transcriptional regulator of LPS-induced downstream angiogenic or vasculogenic genes. Over-expression and silencing studies of FOSL1 in immortalized and primary HPMEC demonstrated that baseline and LPS-induced expression of ADAM8, CXCR2, HPX, LRG1, PROK2, and RNF213 was regulated by FOSL1. FOSL1 silencing impaired LPS-induced in vitro HPMEC angiogenesis. In conclusion, we identified FOSL1 as a novel regulator of sepsis-induced deviant angiogenic signaling in mouse lung EC and human fetal HPMEC.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| | - Sheng Xia
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Heather Menden
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Wei Yu
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Min Xiong
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Unaffiliated, Kansas City, USA
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Shui Qing Ye
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| |
Collapse
|
7
|
Gilfillan M, Das P, Shah D, Alam MA, Bhandari V. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res 2020; 21:92. [PMID: 32321512 PMCID: PMC7178994 DOI: 10.1186/s12931-020-01353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) has been implicated as a protective factor in the development of bronchopulmonary dysplasia (BPD) and is known to be regulated by MicroRNA-451 (miR-451). The aim of this study was to evaluate the role of miR-451 and the MIF signaling pathway in in vitro and in vivo models of BPD. Methods Studies were conducted in mouse lung endothelial cells (MLECs) exposed to hyperoxia and in a newborn mouse model of hyperoxia-induced BPD. Lung and cardiac morphometry as well as vascular markers were evaluated. Results Increased expression of miR-451 was noted in MLECs exposed to hyperoxia and in lungs of BPD mice. Administration of a miR-451 inhibitor to MLECs exposed to hyperoxia was associated with increased expression of MIF and decreased expression of angiopoietin (Ang) 2. Treatment with the miR-451 inhibitor was associated with improved lung morphometry indices, significant reduction in right ventricular hypertrophy, decreased mean arterial wall thickness and improvement in vascular density in BPD mice. Western blot analysis demonstrated preservation of MIF expression in BPD animals treated with a miR-451 inhibitor and increased expression of vascular endothelial growth factor-A (VEGF-A), Ang1, Ang2 and the Ang receptor, Tie2. Conclusion We demonstrated that inhibition of miR-451 is associated with mitigation of the cardio-pulmonary phenotype, preservation of MIF expression and increased expression of several vascular growth factors.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA
| | - Mohammad Afaque Alam
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA.,Temple University, Philadelphia, PA, 19140, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, 19103, USA. .,St Christopher's Hospital for Children, Philadelphia, PA, 19134, USA. .,Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, (Room #206), Camden, NJ, 08103, USA. .,Temple University, Philadelphia, PA, 19140, USA. .,Pediatrics, Obstetrics and Gynecology and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. .,Neonatology, The Children's Regional Hospital at Cooper, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
8
|
Das P, Curstedt T, Agarwal B, Prahaladan VM, Ramirez J, Bhandari S, Syed MA, Salomone F, Casiraghi C, Pelizzi N, Bhandari V. Small Molecule Inhibitor Adjuvant Surfactant Therapy Attenuates Ventilator- and Hyperoxia-Induced Lung Injury in Preterm Rabbits. Front Physiol 2020; 11:266. [PMID: 32327998 PMCID: PMC7160647 DOI: 10.3389/fphys.2020.00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Invasive mechanical ventilation (IMV) has become one of the mainstays of therapy in NICUs worldwide, as a result of which premature babies with extremely low birth weight have been able to survive. Although lifesaving, IMV can result in lung inflammation and injury. Surfactant therapy is considered a standard of care in preterm infants with immature lungs. Recently, small molecule inhibitors like siRNAs and miRNAs have been used for therapeutic purposes. Ddit3 (CHOP), Ang2 and miR34a are known to be upregulated in experimental lung injury. We wanted to test whether inhibitors for these molecules (CHOP siRNA, Ang2 siRNA, and miR34a antagomir) if used alone or with a combination with surfactant (Curosurf®) would help in reducing ventilation and hyperoxia-induced injury in an experimental lung injury model. Methods Preterm rabbits born by cesarean section were intratracheally instilled with the three small molecule inhibitors with or without Curosurf® prior to IMV and hyperoxia exposure. Prior to testing the inhibitors in rabbits, these small molecule inhibitors were transfected in mouse lung epithelial cells (MLE12 and AECII) and delivered to neonatal mouse pups intranasally as a proof of concept that surfactant (Curosurf®) could be used as an effective vehicle for administration of such drugs. Survival, pulmonary function tests, histopathology, immunostaining, quantitative PCR and western blotting were done to see the adjuvant effect of surfactant with these three small molecule inhibitors. Results Our data shows that Curosurf® can facilitate transfection of small molecules in MLE12 cells with the same and/or increased efficiency as Lipofectamine. Surfactant given alone or as an adjuvant with small molecule inhibitors increases survival, decreases IMV and hyperoxia-induced inflammation, improves pulmonary function and lung injury scores in preterm rabbit kits. Conclusion Our study shows that Curosurf® can be used successfully as an adjuvant therapy with small molecule inhibitors for CHOP/Ang2/miR34a. In this study, of the three inhibitors used, miR34a inhibitor seemed to be the most promising compound to combat IMV and hyperoxia-induced lung injury in preterm rabbits.
Collapse
Affiliation(s)
- Pragnya Das
- Department of Pediatrics, Drexel University, Philadelphia, PA, United States
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Varsha M Prahaladan
- Department of Pediatrics, Drexel University, Philadelphia, PA, United States
| | - John Ramirez
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Shreya Bhandari
- Department of Pediatrics, Drexel University, Philadelphia, PA, United States
| | - Mansoor A Syed
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | | | | | | | - Vineet Bhandari
- Department of Pediatrics, Drexel University, Philadelphia, PA, United States.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Stark A, Dammann C, Nielsen HC, Volpe MV. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front Pediatr 2018; 6:125. [PMID: 29951473 PMCID: PMC6008318 DOI: 10.3389/fped.2018.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/16/2018] [Indexed: 01/11/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are common and significant morbidities of prematurely born infants. These diseases have in common altered and pathologic vascular formation in the face of incomplete organ development. Therefore, it is reasonable to question whether factors affecting angiogenesis could have a joint pathogenic role for both diseases. Inhibition or induced expression of a single angiogenic factor is unlikely to be 100% causative or protective of either of BPD or ROP. It is more likely that interactions of multiple factors leading to disordered angiogenesis are present, increasing the likelihood of common pathways in both diseases. This review explores this possibility by assessing the evidence showing involvement of specific angiogenic factors in the vascular development and maldevelopment in each disease. Theoretical interactions of specific factors mutually contributing to BPD and ROP are proposed and, where possible, a timeline of the proposed relationships between BPD and ROP is developed. It is hoped that future research will be inspired by the theories put forth in this review to enhance the understanding of the pathogenesis in both diseases.
Collapse
Affiliation(s)
- Ashley Stark
- Tufts University School of Medicine, Boston, MA, United States
| | - Christiane Dammann
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States.,Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Heber C Nielsen
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States.,Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - MaryAnn V Volpe
- Tufts University School of Medicine, Boston, MA, United States.,Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
10
|
Bhandari A, Carroll C, Bhandari V. BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood. Front Pediatr 2016; 4:60. [PMID: 27379219 PMCID: PMC4908128 DOI: 10.3389/fped.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that pediatric acute respiratory distress syndrome (PARDS) may be a different entity, vis-à-vis adult acute respiratory distress syndrome (ARDS), based on its epidemiology and outcomes. A more pediatric-specific definition of PARDS to include the subgroup of patients with underlying lung (and heart) disease has been proposed. Epidemiological data suggest that up to 13% of the children with ARDS have a history of prematurity and/or underlying chronic lung disease. However, the specific contribution of bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, to the development of PARDS is not known. BPD leads to damaged lungs with long-term consequences secondary to disordered growth and immune function. These damaged lungs could potentially act as a substrate, which given the appropriate noxious stimuli, can predispose a child to PARDS. Interestingly, similar biomarkers [KL-6, interleukin (IL)-6, IL-8, sICAM-1, angiopoietin-2, and matrix metalloproteinase-8 and -9] of pulmonary injury have been associated both with BPD and ARDS. Recognition of a unique pattern of clinical symptomatology and/or outcomes of PARDS, if present, could potentially be useful for investigating targeted therapeutic interventions.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, University of Connecticut School of Medicine , Hartford, CT , USA
| | - Christopher Carroll
- Division of Pediatric Critical Care Medicine, Connecticut Children's Medical Center, University of Connecticut School of Medicine , Hartford, CT , USA
| | - Vineet Bhandari
- Section of Neonatology, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| |
Collapse
|
11
|
Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:90. [PMID: 26734611 PMCID: PMC4685088 DOI: 10.3389/fmed.2015.00090] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The concerted interaction of genetic and environmental factors acts on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants – bronchopulmonary dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes persistent immune dysregulation. In this review article, we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process/immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence, translational research aimed at prevention/amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD.
Collapse
Affiliation(s)
- Jherna Balany
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| |
Collapse
|
12
|
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res 2015; 16:4. [PMID: 25591994 PMCID: PMC4307226 DOI: 10.1186/s12931-014-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Background Earlier studies have reported that transforming growth factor beta 1(TGFβ1) is a critical mediator of hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFβ1-induced inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that TGFβ1 signaling via TGFβR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI. Methods We utilized lung epithelial cell-specific TGFβ1 overexpressing transgenic and TGFβR2 null mutant mice to evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed. Results Our data reveals that increased TGFβ1 expression in newborn mice lungs leads to increased mortality, macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs), impaired alveolarization, and dysregulated angiogenic molecular markers. Conclusions Our study has demonstrated the potential role of inhibition of TGFβ1 signaling via TGFβR2 for improved survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic strategies targeted against HALI and BPD.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Mansoor A Syed
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Chandra Sekhar Boddupalli
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Madhav V Dhodapkar
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Parviz Minoo
- Department of Pediatrics, University of Southern California, 1200 North State Street, Los Angeles, CA, 90033, USA.
| | - Vineet Bhandari
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
13
|
Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L936-47. [PMID: 25305249 DOI: 10.1152/ajplung.00159.2014] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.
Collapse
Affiliation(s)
- Jessica Berger
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:189-201. [PMID: 24578018 DOI: 10.1002/bdra.23220] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/18/2022]
Abstract
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Taha D, Kirkby S, Nawab U, Dysart KC, Genen L, Greenspan JS, Aghai ZH. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J Matern Fetal Neonatal Med 2014; 27:1698-702. [PMID: 24479608 DOI: 10.3109/14767058.2014.885941] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine if an early commencement of caffeine is associated with improved survival without bronchopulmonary dysplasia (BPD) in preterm infants. METHODS Retrospective data analysis from the Alere Neonatal Database for infants weighing ≤1250 g, and treated with caffeine within the first 10 days of life. The neonatal outcomes were compared between the infants who received early caffeine (0-2 days) with the infants who received delayed caffeine (3-10 days). RESULTS A total of 2951 infants met the inclusion criteria (early caffeine 1986, late caffeine 965). The early use of caffeine was associated with reduction in BPD (OR 0.69, 95% CI 0.58-0.82, p < 0.001) and BPD or death (OR 0.77, 95% CI 0.63-0.94, p = 0.01). Other respiratory outcomes also improved with the early commencement of caffeine. The frequency of severe intraventricular hemorrhage and patent ductus arteriosus was lower and the length of hospitalization was shorter in infants receiving early caffeine therapy. However, early use of caffeine was associated with an increase in the risk of nectrotizing enterocolits (NEC) (OR 1.41, 95% CI 1.04-1.91, p = 0.027). CONCLUSION Early commencement of caffeine was associated with improvement in survival without BPD in preterm infants. The risk of NEC with early caffeine use requires further investigation.
Collapse
Affiliation(s)
- Dalal Taha
- Division of Pediatrics/Neonatology, Thomas Jefferson University/Nemours , Philadelphia, PA , USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
OBJECTIVE Capillary integrity continues to challenge critical care physicians worldwide when treating children with sepsis. Vascular growth factors, specifically angiopoietin-1 and angiopoietin-2, play opposing roles in capillary stabilization in patients with sepsis. We aim to determine whether pediatric patients with severe sepsis/shock have persistently high angiopoietin-2/1 ratios when compared with nonseptic PICU patients over a 7-day period. DESIGN Prospective observational study. Patients were classified within 24 hours of admission into non-systemic inflammatory response syndrome, systemic inflammatory response syndrome/sepsis, or severe sepsis/shock. Plasma levels of angiopoietin-1 and angiopoietin-2 were measured via enzyme-linked immunosorbent assay. The angiopoietin-2/1 ratio was graphically plotted and determined whether patients fell into "constant" or "variable" patterns. SETTING Tertiary care center PICU. PATIENTS Critically ill pediatric patients with varying sepsis severity. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Forty-five patients were enrolled (nine non-systemic inflammatory response syndrome, 19 systemic inflammatory response syndrome/sepsis, and 17 severe sepsis/shock). Gender, age, weight, comorbidities, and PICU length of stay were not significantly different between the groups. Admission pediatric risk stratification scores and net fluid ins/outs were significantly elevated in the severe sepsis/shock group when compared (all p < 0.05). Admission angiopoietin-2 levels and angiopoietin-2/1 ratios were significantly different in the severe sepsis/shock group when all groups were compared (both p < 0.05). Additionally, the latter were significantly elevated in the severe sepsis/shock group at multiple time points (all p ≤ 0.05) with the peak occurring on day 2 of illness. In a separate analysis, 32% of systemic inflammatory response syndrome/sepsis and 82% of severe sepsis/shock had variable angiopoietin-2/1 ratio patterns compared with none in the control group (p < 0.001). CONCLUSIONS Pediatric patients with severe sepsis and septic shock possess significantly elevated angiopoietin-2/1 ratios during their first 3 days of illness, which peak at day 2 of illness. A subset of these patients demonstrated variable angiopoietin-2/1 ratio patterns.
Collapse
|
17
|
Mammoto T, Jiang E, Jiang A, Lu Y, Juan AM, Chen J, Mammoto A. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression. PLoS One 2013; 8:e73407. [PMID: 24023872 PMCID: PMC3759405 DOI: 10.1371/journal.pone.0073407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability.
Collapse
Affiliation(s)
- Tadanori Mammoto
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth Jiang
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Jiang
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yongbo Lu
- 2 Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas, United States of America
| | - Aimee M. Juan
- 3 Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jing Chen
- 3 Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akiko Mammoto
- 1 Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Bronchopulmonary dysplasia (BPD) is a complex disorder secondary to gene-environment interactions, and is the commonest chronic lung disease in infancy. There is no specific or effective treatment available to date for BPD. Since the aetiopathogenesis of BPD is multifactorial, involving diverse molecular signaling pathways, a variety of biomarkers detected in biological fluids have been proposed for early identification of infants predisposed to BPD. This review will be restricted to biomarker studies in human infants, conducted mostly in the last decade. The majority of the studies have been conducted using blood, urine or tracheal aspirate samples. Despite the multitude of biomarkers proposed, most studies have been conducted in small numbers of infants, with few being replicated by independent investigators. Confirmatory studies with adequate sample sizes and assessment of the role of putative biomarkers in the aetiology of BPD in developmentally appropriate animal models and human lungs with BPD will enhance the potential for therapeutic interventions. Genomic and proteomic approaches have the greatest potential to significantly advance the field of biomarkers in BPD.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, CT, USA.
| | | |
Collapse
|
19
|
Sun H, Choo-Wing R, Sureshbabu A, Fan J, Leng L, Yu S, Jiang D, Noble P, Homer RJ, Bucala R, Bhandari V. A critical regulatory role for macrophage migration inhibitory factor in hyperoxia-induced injury in the developing murine lung. PLoS One 2013; 8:e60560. [PMID: 23637753 PMCID: PMC3639272 DOI: 10.1371/journal.pone.0060560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/27/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The role and mechanism of action of MIF in hyperoxia-induced acute lung injury (HALI) in the newborn lung are not known. We hypothesized that MIF is a critical regulatory molecule in HALI in the developing lung. METHODOLOGY We studied newborn wild type (WT), MIF knockout (MIFKO), and MIF lung transgenic (MIFTG) mice in room air and hyperoxia exposure for 7 postnatal (PN) days. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. RESULTS MIF mRNA and protein expression were significantly increased in WT lungs at PN7 of hyperoxia exposure. The pattern of expression of Angiopoietin 2 protein (in MIFKO>WT>MIFTG) was similar to the mortality pattern (MIFKO>WT>MIFTG) in hyperoxia at PN7. In room air, MIFKO and MIFTG had modest but significant increases in chord length, compared to WT. This was associated with decreased expression of Angiopoietin 1 and Tie 2 proteins in the MIFKO and MIFTG, as compared to the WT control lungs in room air. However, on hyperoxia exposure, while the chord length was increased from their respective room air controls, there were no differences between the 3 genotypes. CONCLUSION These data point to the potential roles of Angiopoietins 1, 2 and their receptor Tie2 in the MIF-regulated response in room air and upon hyperoxia exposure in the neonatal lung.
Collapse
Affiliation(s)
- Huanxing Sun
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Rayman Choo-Wing
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Angara Sureshbabu
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
| | - Juan Fan
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Lin Leng
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Shuang Yu
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Dianhua Jiang
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paul Noble
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Homer
- Department of Pathology, Yale University, New Haven, Connecticut, United States of America
| | - Richard Bucala
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Vineet Bhandari
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
20
|
Sun H, Choo-Wing R, Fan J, Leng L, Syed MA, Hare AA, Jorgensen WL, Bucala R, Bhandari V. Small molecular modulation of macrophage migration inhibitory factor in the hyperoxia-induced mouse model of bronchopulmonary dysplasia. Respir Res 2013; 14:27. [PMID: 23448134 PMCID: PMC3637059 DOI: 10.1186/1465-9921-14-27] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/19/2013] [Indexed: 01/11/2023] Open
Abstract
Background The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung. Methods We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. Results The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist. Conclusions These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD.
Collapse
Affiliation(s)
- Huanxing Sun
- Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Aghai ZH, Saslow JG, Mody K, Eydelman R, Bhat V, Stahl G, Pyon K, Bhandari V. IFN-γ and IP-10 in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia. Pediatr Pulmonol 2013; 48:8-13. [PMID: 22431160 DOI: 10.1002/ppul.22540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Interferon-gamma (IFN-γ) and interferon-inducible protein of 10 kDa (IP-10) are potent inflammatory mediators and contribute to acute lung injury in adults. Recently, a potential role for IFN-γ and IP-10 in the pathogenesis of bronchopulmonary dysplasia (BPD) has been reported in animal models. OBJECTIVE To study the association between IFN-γ and IP-10 in tracheal aspirate (TA) and the development of BPD in premature infants. DESIGN/METHODS TA samples collected within 48 hr after birth from 79 mechanically ventilated premature neonates [gestational age (GA) <30 weeks (w), birth weight (BW) <1,250 g (g)] were analyzed. IFN-γ was measured in a subgroup of 38 infants by using a biochip multi-analyte immunoassay. The level of IP-10 was determined using a commercially available ELISA kit. Total protein in TA was measured by Bradford assay to correct for sampling related dilution. BPD was defined as the need of supplemental oxygen at 36 weeks postmenstrual age (PMA). RESULTS Twenty infants (GA 26.4 ± 1.9w, BW 860 ± 201 g) survived without BPD at 36 weeks PMA and 59 infants (GA 25.5 ± 1.5w, BW 751 ± 163 g) died before 36 weeks PMA or developed BPD. The mean IFN-γ level was higher in infants who died or developed BPD (9.7 ± 2.8 vs. 3.1 ± 1.1 pg/ml, P = 0.03). Similarly, the mean IP-10 level was higher in infants who died or developed BPD (63.4 ± 17.5 pg/ml) compared to those who survived without BPD (18.5 ± 7.5 pg/ml, P = 0.02). CONCLUSIONS Higher IFN-γ and IP-10 levels in TA samples are associated with the development of BPD or death in premature infants.
Collapse
Affiliation(s)
- Zubair H Aghai
- Department of Pediatrics, Cooper University Hospital, Camden, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mammoto T, Chen J, Jiang E, Jiang A, Smith LE, Ingber DE, Mammoto A. LRP5 regulates development of lung microvessels and alveoli through the angiopoietin-Tie2 pathway. PLoS One 2012; 7:e41596. [PMID: 22848540 PMCID: PMC3404972 DOI: 10.1371/journal.pone.0041596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/27/2012] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is crucial for lung development. Although there has been considerable exploration, the mechanism by which lung vascular and alveolar formation is controlled is still not completely understood. Here we show that low-density lipoprotein receptor-related protein 5 (LRP5), a component of the Wnt ligand-receptor complex, regulates angiogenesis and alveolar formation in the lung by modulating expression of the angiopoietin (Ang) receptor, Tie2, in vascular endothelial cells (ECs). Vascular development in whole mouse lungs and in cultured ECs is controlled by LRP5 signaling, which is, in turn, governed by a balance between the activities of the antagonistic Tie2 ligands, Ang1 and Ang2. Under physiological conditions when Ang1 is dominant, LRP5 knockdown decreases Tie2 expression and thereby, inhibits vascular and alveolar development in the lung. Conversely, when Ang2 dominates under hyperoxia treatment in neonatal mice, high LRP5 and Tie2 expression suppress angiogenesis and lung development. These findings suggest that the LRP5-Tie2-Ang signaling axis plays a central role in control of both angiogenesis and alveolarization during postnatal lung development, and that deregulation of this signaling mechanism might lead to developmental abnormalities of the lung, such as are observed in bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lois E. Smith
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States of America
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States of America
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bhandari V, Choo-Wing R, Harijith A, Sun H, Syed MA, Homer RJ, Elias JA. Increased hyperoxia-induced lung injury in nitric oxide synthase 2 null mice is mediated via angiopoietin 2. Am J Respir Cell Mol Biol 2012; 46:668-76. [PMID: 22227562 DOI: 10.1165/rcmb.2011-0074oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Supplemental oxygen is frequently prescribed. However, prolonged exposure to high concentrations of oxygen causes hyperoxic acute lung injury (HALI), which manifests as acute respiratory distress syndrome in adults and leads to bronchopulmonary dysplasia in newborns (NBs). Nitric oxide (NO), NO synthases (NOSs), and angiopoietin (Ang) 2 have been implicated in the pathogenesis of HALI. However, the mechanisms of the contributions of NOS/NO and the relationship(s) between NOS/NO and Ang2 have not been addressed. In addition, the relevance of these moieties in adults and NBs has not been evaluated. To address these issues, we compared the responses in hyperoxia of wild-type (NOS [+/+]) and NOS null (-/-) young adult and NB mice. When compared with NOS2(+/+) adult controls, NOS2(-/-) animals manifest exaggerated alveolar-capillary protein leak and premature death. These responses were associated with enhanced levels of structural cell death, enhanced expression of proapoptotic regulatory proteins, and Ang2. Importantly, silencing RNA knockdown of Ang2 decreased the levels of cell death and the expression of proapoptotic mediators. These effects were at least partially NOS2 specific, and were development dependent, because survival was similar in adult NOS3(+/+) and NOS3(-/-) mice and NB NOS2(+/+) and NOS2(-/-) mice, respectively. These studies demonstrate that NOS2 plays an important protective role in HALI in adult animals. They also demonstrate that this response is mediated, at least in part, by the ability of NOS2 to inhibit hyperoxia-induced Ang2 production and thereby decrease Ang2-induced tissue injury.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Yale University School of Medicine, Department of Pediatrics, Children's Hospital, 20 York Street, New Haven, CT 06520-8057, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Thomas W, Seidenspinner S, Kramer BW, Wirbelauer J, Kawczyńska-Leda N, Szymankiewicz M, Speer CP. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome. Pediatr Pulmonol 2011; 46:777-84. [PMID: 21337734 DOI: 10.1002/ppul.21435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 11/11/2010] [Accepted: 12/13/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pulmonary angiogenesis is a prerequisite for lung development. Angiopoietin-2 (Ang2) destabilizes endothelial cells through its endothelial receptor TIE-2, enabling vascular sprouting. Ang1 stabilizes new blood vessels. Soluble TIE-2 (sTIE-2) modulates these effects. We hypothesized that histological funisitis is associated with alterations of Ang2 in airways and of the systemic angiopoietin-TIE-2 homeostasis in very low birth weight (VLBW) infants, contributing to pulmonary morbidity and mortality. METHODS We measured Ang2 in tracheobronchial aspirate fluid (TAF) of 42 VLBW <30 weeks of gestation from day 1 through 15 and Ang1, Ang2, and sTIE-2 in umbilical cord serum of 28 infants by enzyme-linked immunosorbent assay. Histological examination distinguished three groups: funisitis, chorioamnionitis, and controls. RESULTS Funisitis was associated with lower Ang2 values in TAF but not with changes of Ang1, Ang2, and sTIE-2 in umbilical cord serum. Infants who developed bronchopulmonary dysplasia (BPD) or died had a persistently decreased ratio of previously measured Ang1 to Ang2 in TAF on days 1-5 and increased cord serum concentrations of sTIE-2. Moderate BPD/death was associated with an increase of Ang2 in TAF on day 10 and decreased Ang1/Ang2 ratio from day 3-15. Small for gestational age (SGA) infants had increased Ang2 in TAF on day 1-7 and a lower Ang1/Ang2 ratio on days 5-7. CONCLUSIONS The predominance of Ang2 in airway fluid of infants with BPD/death and SGA infants suggests a link between disrupted placental and fetal pulmonary angiogenesis. Histological funisitis with reduced Ang2 in TAF was of minor relevance for outcome in our cohort.
Collapse
Affiliation(s)
- Wolfgang Thomas
- University Children's Hospital, University of Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Harijith A, Choo-Wing R, Cataltepe S, Yasumatsu R, Aghai ZH, Janér J, Andersson S, Homer RJ, Bhandari V. A role for matrix metalloproteinase 9 in IFNγ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2011; 44:621-30. [PMID: 21216975 DOI: 10.1165/rcmb.2010-0058oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We noted a marked increase in IFNγ mRNA in newborn (NB) murine lungs after exposure to hyperoxia. We sought to evaluate the role of IFNγ in lung injury in newborns. Using a unique triple-transgenic (TTG), IFNγ-overexpressing, lung-targeted, externally regulatable NB murine model, we describe a lung phenotype of impaired alveolarization, resembling human bronchopulmonary dysplasia (BPD). IFNγ-mediated abnormal lung architecture was associated with increased cell death and the upregulation of cell death pathway mediators caspases 3, 6, 8, and 9, and angiopoietin 2. Moreover, an increase was evident in cathepsins B, H, K, L, and S, and in matrix metalloproteinases (MMPs) 2, 9, 12, and 14. The IFNγ-mediated abnormal lung architecture was found to be MMP9-dependent, as indicated by the rescue of the IFNγ-induced pulmonary phenotype and survival during hyperoxia with a concomitant partial deficiency of MMP9. This result was concomitant with a decrease in caspases 3, 6, 8, and 9 and angiopoietin 2, but an increase in the expression of angiopoietin 1. In addition, NB IFNγ TTG mice exhibited significantly decreased survival during hyperoxia, compared with littermate controls. Furthermore, as evidence of clinical relevance, we show increased concentrations of the downstream targets of IFNγ chemokine (C-X-C motif) ligands (CXCL10 and CXCL11) in baboon and human lungs with BPD. IFNγ and its downstream targets may contribute significantly to the final common pathway of hyperoxia-induced injury in the developing lung and in human BPD.
Collapse
Affiliation(s)
- Anantha Harijith
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tabruyn SP, Colton K, Morisada T, Fuxe J, Wiegand SJ, Thurston G, Coyle AJ, Connor J, McDonald DM. Angiopoietin-2-driven vascular remodeling in airway inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3233-43. [PMID: 20952594 DOI: 10.2353/ajpath.2010.100059] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular remodeling is a feature of chronic inflammation during which capillaries transform into venules that expand the region of the vasculature in which leakage and leukocyte emigration both occur. Recently, we found that angiopoietin/Tie2 receptor signaling drives the transformation of capillaries into venules at an early stage of the sustained inflammatory response in the airways of mice infected with Mycoplasma pulmonis. However, the precise contributions of both angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are not clear. In this study, we sought to determine the contribution of Ang2 to this vascular remodeling. Ang2 mRNA expression levels increased and phosphorylated Tie2 immunoreactivity in mucosal blood vessels decreased, indicative of diminished receptor signaling after infection. Selective inhibition of Ang2 throughout the infection by administration of either of two distinct function-blocking antibodies reduced the suppression of Tie2 phosphorylation and decreased the remodeling of mucosal capillaries into venules, the amount of leukocyte influx, and disease severity. These findings are consistent with Ang2 acting as an antagonist of Tie2 receptors and the reduction of Tie2 phosphorylation in endothelial cells rendering the vasculature more responsive to cytokines that promote both vascular remodeling and the consequences of inflammation after M. pulmonis infection. By blocking such changes, Ang2 inhibitors may prove beneficial in the treatment of sustained inflammation in which vascular remodeling, leakage, and leukocyte influx contribute to its pathophysiology.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California 94143-0425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bronchopulmonary dysplasia is a chronic lung disease associated with premature birth and characterized by early lung injury. In this review we discuss some pitfalls, problems, and progress in this condition over the last decade, focusing mainly on the last 5 years, limited to studies in human neonates. Changes in the definition, pathogenesis, genetic susceptibility, and recent biomarkers associated with bronchopulmonary dysplasia will be discussed. Progress in current management strategies, along with novel approaches/therapies, will be critically appraised. Finally, recent data on long-term pulmonary and neurodevelopmental outcomes of infants with bronchopulmonary dysplasia will be summarized.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | | |
Collapse
|
28
|
Bourbon JR, Boucherat O, Boczkowski J, Crestani B, Delacourt C. Bronchopulmonary dysplasia and emphysema: in search of common therapeutic targets. Trends Mol Med 2009; 15:169-79. [DOI: 10.1016/j.molmed.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/11/2009] [Accepted: 02/11/2009] [Indexed: 11/15/2022]
|
29
|
Current world literature. Curr Opin Pediatr 2009; 21:272-80. [PMID: 19307901 DOI: 10.1097/mop.0b013e32832ad5c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
van Meurs M, Kümpers P, Ligtenberg JJM, Meertens JHJM, Molema G, Zijlstra JG. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:207. [PMID: 19435476 PMCID: PMC2689450 DOI: 10.1186/cc7153] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy.
Collapse
Affiliation(s)
- Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Bronchopulmonary dysplasia, or BPD, is a chronic pulmonary disorder of premature infants, commonly defined as having an oxygen requirement at 36 weeks postmenstrual age. It is an important source of morbidity and mortality in premature neonates. Its' etiology appears to be multifactorial with the most common associations being prematurity, need for mechanical ventilation, and oxygen exposure. Implied in the pathogenesis of BPD is the role of cytokines which are immune mediators produced by most cell types. This is evidenced by studies in which there exist alterations in the levels of "pro-inflammatory" and "anti-inflammatory" cytokines. The imbalance of these cytokines have either heralded the onset or predicted the presence of BPD, or indicated a decreased propensity to developing this chronic respiratory disorder of preterm infants. Many other pulmonary markers have been shown to be altered in patients with BPD. These include markers indicative of altered lung repair processes, decreased endothelial integrity, oxidative damage and abnormal fibrinolytic activity, all of which are thought to be mechanisms contributing to the development of BPD.In this review, we will discuss the physiologic role of specific biomarkers in the pulmonary tract of the human premature neonate, the perturbations that enable them to be deranged, and their proposed association with BPD.
Collapse
Affiliation(s)
- Alecia Thompson
- Department of Pediatrics, Division of Perinatal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | | |
Collapse
|