1
|
Gerges SH, Alammari AH, El-Ghiaty MA, Isse FA, El-Kadi AOS. Sex- and enantiospecific differences in the formation rate of hydroxyeicosatetraenoic acids in rat organs. Can J Physiol Pharmacol 2023; 101:425-436. [PMID: 37220651 DOI: 10.1139/cjpp-2023-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydroxyeicosatetraenoic acids (HETEs) are hydroxylated arachidonic acid (AA) metabolites that are classified into midchain, subterminal, and terminal HETEs. Hydroxylation results in the formation of R and S enantiomers for each HETE, except for 20-HETE. HETEs have multiple physiological and pathological effects. Several studies have demonstrated sex-specific differences in AA metabolism in different organs. In this study, microsomes from the heart, liver, kidney, lung, intestine, and brain of adult male and female Sprague-Dawley rats were isolated and incubated with AA. Thereafter, the enantiomers of all HETEs were analyzed by liquid chromatography-tandem mass spectrometry. We found significant sex- and enantiospecific differences in the formation levels of different HETEs in all organs. The majority of HETEs, especially midchain HETEs and 20-HETE, showed significantly higher formation rates in male organs. In the liver, the R enantiomer of several HETEs showed a higher formation rate than the corresponding S enantiomer (e.g., 8-, 9-, and 16-HETE). On the other hand, the brain and small intestine demonstrated a higher abundance of the S enantiomer. 19(S)-HETE was more abundant than 19(R)-HETE in all organs except the kidney. Elucidating sex-specific differences in HETE levels provides interesting insights into their physiological and pathophysiological roles and their possible implications for different diseases.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice. Nat Commun 2023; 14:390. [PMID: 36693830 PMCID: PMC9873739 DOI: 10.1038/s41467-023-35944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Statins play an important role in the treatment of diabetic nephropathy. Increasing attention has been given to the relationship between statins and insulin resistance, but many randomized controlled trials confirm that the therapeutic effects of statins on diabetic nephropathy are more beneficial than harmful. However, further confirmation of whether the beneficial effects of chronic statin administration on diabetic nephropathy outweigh the detrimental effects is urgently needed. Here, we find that long-term statin administration may increase insulin resistance, interfere with lipid metabolism, leads to inflammation and fibrosis, and ultimately fuel diabetic nephropathy progression in diabetic mice. Mechanistically, activation of insulin-regulated phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway leads to increased fatty acid synthesis. Furthermore, statins administration increases lipid uptake and inhibits fatty acid oxidation, leading to lipid deposition. Here we show that long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice.
Collapse
|
3
|
Abstract
Mortality in acute kidney injury (AKI) remains very high, yet the cause of death is often failure of extrarenal organs. We and others have demonstrated remote organ dysfunction after renal ischemia. The term "cardiorenal syndrome" was first applied to the "cross talk" between the organs by the National Heart, Lung, and Blood Institute of the National Institutes of Health, and the clinical importance is being increasingly appreciated. Nevertheless, more information is needed to effectively address the consequences of renal injury on the heart. Since AKI often occurs in patients with comorbidities, we investigated the effect of renal ischemia in the setting of existing cardiac failure. We hypothesized that the cardiac effects of renal ischemia would be significantly amplified in experimental cardiomyopathy. Male Sprague-Dawley rats with preexisting cardiac and renal injury due to low-dose doxorubicin were subjected to bilateral renal artery occlusion. Cardiac structure and function were examined 2 days after reperfusion. Loss of functional myocardial tissue with decreases in left ventricular pressure, increases in apoptotic cell death, inflammation, and collagen, and greater disruption in ultrastructure with mitochondrial fragmentation were seen in the doxorubicin/ischemia group compared with animals in the groups treated with doxorubicin alone or following ischemia alone. Systemic inflammation and cardiac abnormalities persisted for at least 21 wk. These results suggest that preexisting comorbidities can result in much more severe distant organ effects of acute renal injury. The results of this study are relevant to human AKI.NEW & NOTEWORTHY Acute kidney injury is common, expensive, and deadly, yet morbidity and mortality are often secondary to remote organ dysfunction. We hypothesized that the effects of renal ischemia would be amplified in the setting of comorbidities. Sustained systemic inflammation and loss of functional myocardium with significantly decreased systolic and diastolic function, apoptotic cell death, and increased collagen and inflammatory cells were found in the heart after renal ischemia in the doxorubicin cardiomyopathy model (vs. renal ischemia alone). Understanding the remote effects of renal ischemia has the potential to improve outcomes in acute kidney injury.
Collapse
Affiliation(s)
- Jesus H Dominguez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danhui Xie
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
4
|
He L, Wang B, Wang X, Liu Y, Song X, Zhang Y, Li X, Yang H. Uncover diagnostic immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation-related CCR5, CD86, CD8A, ITGAM, and PTPRC in kidney transplantation patients with allograft rejection. Ren Fail 2022; 44:1850-1865. [PMID: 36330810 PMCID: PMC9639483 DOI: 10.1080/0886022x.2022.2141648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify predictive immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation (EMT)-related biomarkers, pathways and new drugs in allograft rejection in kidney transplant patients. First, gene expression data were downloaded followed by identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) analysis. Second, diagnostic model was construction based on key genes, followed by correlation analysis between immune/hypoxia/ferroptosis/EMT and key diagnostic genes. Finally, drug prediction of diagnostic key genes was carried out. Five diagnostic genes were further identified, including CCR5, CD86, CD8A, ITGAM, and PTPRC, which were positively correlated with allograft rejection after the kidney transplant. Highly infiltrated immune cells, highly expression of hypoxia-related genes and activated status of EMT were significantly positively correlated with five diagnostic genes. Interestingly, suppressors of ferroptosis (SOFs) and drivers of ferroptosis (DOFs) showed a complex regulatory relationship between ferroptosis and five diagnostic genes. CD86, CCR5, and ITGAM were respectively drug target of ABATACEPT, MARAVIROC, and CLARITHROMYCIN. PTPRC was drug target of both PREDNISONE and EPOETIN BETA. In conclusion, the study could be useful in understanding changes in the microenvironment within transplantation, which may promote or sustain the development of allograft rejection after kidney transplantation.
Collapse
Affiliation(s)
- Long He
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Boqian Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xueyi Wang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yuewen Liu
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xing Song
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Yijian Zhang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Xin Li
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| | - Hongwei Yang
- Organ Transplantation Center, General Hospital of Northern Theater Command, Shenyang City, China
| |
Collapse
|
5
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
6
|
Rodríguez-Rodríguez AE, Donate-Correa J, Luis-Lima S, Díaz-Martín L, Rodríguez-González C, Pérez-Pérez JA, Acosta-González NG, Fumero C, Navarro-Díaz M, López-Álvarez D, Villacampa-Jiménez J, Navarro-González JA, Ortiz A, Porrini E. Obesity and metabolic syndrome induce hyperfiltration, glomerulomegaly, and albuminuria in obese ovariectomized female mice and obese male mice. Menopause 2021; 28:1296-1306. [PMID: 34581293 DOI: 10.1097/gme.0000000000001842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Obese patients with metabolic syndrome have a high risk of chronic kidney disease. The prevalence of obesity, metabolic syndrome, and insulin resistance increase in women after menopause, as does the risk of chronic kidney disease. This may indicate an interaction between obesity, metabolic syndrome, and menopause in the induction of renal damage. However, the pathogenesis of kidney disease in postmenopausal obese women is poorly understood. METHODS We investigated the interaction of an obesogenic diet and menopause on renal dysfunction in ovariectomized and non-ovariectomized lean (n = 8 and 17) and obese (n = 12 and 20) female mice. Obese (n = 12) and lean (n = 10) male mice were also studied. Glucose metabolism, insulin resistance, and kidney function were evaluated with gold standards procedures. Changes in kidney histology and lipid deposition were analyzed. Females had a lower number of glomeruli than males at baseline. RESULTS Only female ovariectomized obese animals developed insulin resistance, hyperglycemia, and kidney damage, evidenced as glomerulomegaly, glomerular hyperfiltration, and increased urinary albumin excretion, despite a similar increase in weight than obese non-ovariectomized female mice. Male obese mice developed hyperglycemia, insulin resistance, and hyperfiltration without major renal histological changes. Males on high fat diet showed higher renal lipid content and females on high fat diet (ovariectomized or non-ovariectomized) showed higher total cholesterol content than males. CONCLUSIONS In mice, there is a clear interplay between obesity, metabolic syndrome, and menopause in the induction of kidney damage.
Collapse
Affiliation(s)
- Ana Elena Rodríguez-Rodríguez
- Research Unit, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
- Fundacion General de la Universidad, University of La Laguna, Tenerife, Spain
| | - Javier Donate-Correa
- Research Unit, Hospital Universitario de Nuestra Señora de La Candelaria, La Laguna, Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Sergio Luis-Lima
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Laura Díaz-Martín
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | - Cecilia Fumero
- Research Unit, Hospital Universitario de Canarias, FIISC (Fundación Canaria Investigación Sanitaria de Canarias), La Laguna, Tenerife, Spain
| | | | | | | | | | - Alberto Ortiz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Department of Nephology and Hypertension, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Esteban Porrini
- Research Unit, Hospital Universitario de Canarias, University of La Laguna, Faculty of Medicine, Tenerife, Spain
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JM. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol 2018; 316:F316-F327. [PMID: 30539649 DOI: 10.1152/ajprenal.00162.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brianca Fizer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Pennington
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley Szabo-Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie L Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
8
|
Caolo V, Roblain Q, Lecomte J, Carai P, Peters L, Cuijpers I, Robinson EL, Derks K, Sergeys J, Noël A, Jones EAV, Moons L, Heymans S. Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes. Sci Rep 2018; 8:11922. [PMID: 30093686 PMCID: PMC6085379 DOI: 10.1038/s41598-018-29812-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR.
Collapse
Affiliation(s)
- Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.
| | - Quentin Roblain
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Paolo Carai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Linsey Peters
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ilona Cuijpers
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Emma Louise Robinson
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jurgen Sergeys
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
9
|
La Han B, Guan Q, Chafeeva I, Mendelson AA, da Roza G, Liggins R, Kizhakkedathu JN, Du C. Peritoneal and Systemic Responses of Obese Type II Diabetic Rats to Chronic Exposure to a Hyperbranched Polyglycerol-Based Dialysis Solution. Basic Clin Pharmacol Toxicol 2018; 123:494-503. [PMID: 29753311 DOI: 10.1111/bcpt.13038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Metabolic syndrome (MetS) is commonly observed among peritoneal dialysis (PD) patients, and hyperbranched polyglycerol (HPG) is a promising glucose-sparing osmotic agent for PD. However, the biocompatibility of a HPG-based PD solution (HPG) in subjects with MetS has not been investigated. This study compared the local and systemic effects of a HPG solution with conventional physioneal (PYS) and icodextrin (ICO) PD solutions in rats with MetS. Obese type 2 diabetic ZSF1 rats received a daily intraperitoneal injection of PD solutions (10 mL) for 3 months. The peritoneal membrane (PM) function was determined by ultrafiltration (UF), and the systemic responses were determined by profiling blood metabolic substances, cytokines and oxidative status. Tissue damage was assessed by histology. At the end of the 3-month treatment with PD solutions, PM damage and UF loss in both the PYS and ICO groups were greater than those in the HPG group. Blood analyses showed that compared to the baseline control, the rats in the HPG group exhibited a significant decrease only in serum albumin and IL-6 and a minor glomerular injury, whereas in both the PYS and ICO groups, there were more significant decreases in serum albumin, antioxidant activity, IL-6, KC/GRO (CXCL1) and TNF-α (in ICO only) as well as a more substantial glomerular injury compared to the HPG group. Furthermore, PYS increased serum creatinine, serum glucose and urine production. In conclusion, compared to PYS or ICO solutions, the HPG solution had less adverse effects locally on the PM and systemically on distant organs (e.g. kidneys) and the plasma oxidative status in rats with MetS.
Collapse
Affiliation(s)
- Bo La Han
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Irina Chafeeva
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asher A Mendelson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gerald da Roza
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Richard Liggins
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats. Food Chem Toxicol 2018; 118:526-531. [PMID: 29860019 DOI: 10.1016/j.fct.2018.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
Abstract
In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet.
Collapse
|
11
|
Warden CH, Bettaieb A, Min E, Fisler JS, Haj FG, Stern JS. Chow fed UC Davis strain female Lepr fatty Zucker rats exhibit mild glucose intolerance, hypertriglyceridemia, and increased urine volume, all reduced by a Brown Norway strain chromosome 1 congenic donor region. PLoS One 2017; 12:e0188175. [PMID: 29211750 PMCID: PMC5718614 DOI: 10.1371/journal.pone.0188175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
Our objective is to identify genes that influence the development of any phenotypes of type 2 diabetes (T2D) or kidney disease in obese animals. We use the reproductively isolated UC Davis fatty Zucker strain rat model in which the defective chromosome 4 leptin receptor (LeprfaSte/faSte) results in fatty obesity. We previously produced a congenic strain with the distal half of chromosome 1 from the Brown Norway strain (BN) on a Zucker (ZUC) background (BN.ZUC-D1Rat183–D1Rat90). Previously published studies in males showed that the BN congenic donor region protects from some phenotypes of renal dysfunction and T2D. We now expand our studies to include females and expand phenotyping to gene expression. We performed diabetes and kidney disease phenotyping in chow-fed females of the BN.ZUC-D1Rat183-D1Rat90 congenic strain to determine the specific characteristics of the UC Davis model. Fatty LeprfaSte/faSte animals of both BN and ZUC genotype in the congenic donor region had prediabetic levels of fasting blood glucose and blood glucose 2 hours after a glucose tolerance test. We observed significant congenic strain chromosome 1 genotype effects of the BN donor region in fatty females that resulted in decreased food intake, urine volume, glucose area under the curve during glucose tolerance test, plasma triglyceride levels, and urine glucose excretion per day. In fatty females, there were significant congenic strain BN genotype effects on non-fasted plasma urea nitrogen, triglyceride, and creatinine. Congenic region genotype effects were observed by quantitative PCR of mRNA from the kidney for six genes, all located in the chromosome 1 BN donor region, with potential effects on T2D or kidney function. The results are consistent with the hypothesis that the BN genotype chromosome 1 congenic region influences traits of both type 2 diabetes and kidney function in fatty UC Davis ZUC females and that there are many positional candidate genes.
Collapse
Affiliation(s)
- Craig H. Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, United States of America
| | - Esther Min
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Janis S. Fisler
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Fawaz G. Haj
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
| | - Judith S. Stern
- Department of Nutrition, University of California, Davis, Davis, CA, United States of America
- Internal Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
12
|
Babelova A, Burckhardt BC, Salinas-Riester G, Pommerenke C, Burckhardt G, Henjakovic M. Next generation sequencing of sex-specific genes in the livers of obese ZSF1 rats. Genomics 2015. [PMID: 26200819 DOI: 10.1016/j.ygeno.2015.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes induces pathophysiological changes in the liver. The aim of this study was to identify differently expressed genes in the livers of male and female ZSF1 rats (ZDFxSHHF-hybrid, generation F1), a model for type 2 diabetes. Gene expression was investigated using next-generation sequencing (NGS). Selected candidate genes were verified by real-time PCR in the livers of obese and lean rats. 103 sex-different genes, associated to pathways "response to chemical stimulus", "lipid metabolism", and "response to organic substance", were identified. Male-specific genes were involved in hepatic metabolism, detoxification, and secretion, e.g. cytochrome P450 2c11 (Cyp2c11), Cyp4a2, glutathione S-transferases mu 2 (Gstm2), and Slc22a8 (organic anion transporter 3, Oat3). Most female-specific genes were associated to lipid metabolism (e.g. glycerol-3-phosphate acyltransferase 1, Gpam) or glycolysis (e.g. glucokinase, Gck). Our data suggest the necessity to pay attention to sex- and diabetes-dependent changes in pre-clinical testing of hepatic metabolized and secreted drugs.
Collapse
Affiliation(s)
- Andrea Babelova
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 83391 Bratislava, Slovak Republic
| | - Birgitta C Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Gerhard Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Maja Henjakovic
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
13
|
Babelova A, Burckhardt BC, Wegner W, Burckhardt G, Henjakovic M. Sex-differences in renal expression of selected transporters and transcription factors in lean and obese Zucker spontaneously hypertensive fatty rats. J Diabetes Res 2015; 2015:483238. [PMID: 25710042 PMCID: PMC4325971 DOI: 10.1155/2015/483238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to identify sex-dependent expression of renal transporter mRNA in lean and obese Zucker spontaneously hypertensive fatty (ZSF1) rats and to investigate the interaction of the most altered transporter, organic anion transporter 2 (Oat2), with diabetes-relevant metabolites and drugs. Higher incidence of glomerulosclerosis, tubulointerstitial fibrosis, and protein casts in Bowman's space and tubular lumen was detected by PAS staining in obese male compared to female ZSF1 rats. Real-time PCR on RNA isolated from kidney cortex revealed that Sglt1-2, Oat1-3, and Oct1 were higher expressed in kidneys of lean females. Oct2 and Mrp2 were higher expressed in obese males. Renal mRNA levels of transporters were reduced with diabetic nephropathy in females and the expression of transcription factors Hnf1β and Hnf4α in both sexes. The highest difference between lean and obese ZSF1 rats was found for Oat2. Therefore, we have tested the interaction of human OAT2 with various substances using tritium-labeled cGMP. Human OAT2 showed no interaction with diabetes-related metabolites, diabetic drugs, and ACE-inhibitors. However, OAT2-dependent uptake of cGMP was inhibited by furosemide. The strongly decreased expression of Oat2 and other transporters in female diabetic ZSF1 rats could possibly impair renal drug excretion, for example, of furosemide.
Collapse
Affiliation(s)
- Andrea Babelova
- Institute for Cardiovascular Physiology (Physiology I), Faculty of Medicine, Goethe-University, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 83391 Bratislava, Slovakia
| | - Birgitta C. Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Waja Wegner
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Gerhard Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Maja Henjakovic
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- *Maja Henjakovic:
| |
Collapse
|
14
|
Wen S, Liu DF, Cui Y, Harris SS, Chen YC, Li KC, Ju SH, Teng GJ. In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE-deficient mice by using LOX-1 targeted iron nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:639-49. [DOI: 10.1016/j.nano.2013.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
|
15
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
16
|
Kelly KJ, Liu Y, Zhang J, Goswami C, Lin H, Dominguez JH. Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiol Genomics 2013; 45:710-9. [PMID: 23757392 DOI: 10.1152/physiolgenomics.00028.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the treatment of diabetic nephropathy (DN), currently available therapies have not prevented the epidemic of progressive chronic kidney disease (CKD). The morbidity of CKD, and the inexorable increase in the prevalence of end-stage renal disease, demands more effective approaches to prevent and treat progressive CKD. We undertook next-generation sequencing in a rat model of diabetic nephropathy to study in depth the pathogenic alterations involved in DN with progressive CKD. We employed the obese, diabetic ZS rat, a model that develops diabetic nephropathy, characterized by progressive CKD, inflammation, and fibrosis, the hallmarks of human disease. We then used RNA-seq to examine the combined effects of renal cells and infiltrating inflammatory cells acting as a pathophysiological unit. The comprehensive systems biology analysis of progressive CKD revealed multiple interactions of altered genes that were integrated into morbid networks. These pathological gene assemblies lead to renal inflammation and promote apoptosis and cell cycle arrest in progressive CKD. Moreover, in what is clearly a major therapeutic challenge, multiple and redundant pathways were found to be linked to renal fibrosis, a major cause of kidney loss. We conclude that systems biology applied to progressive CKD in DN can be used to develop novel therapeutic strategies directed to restore critical anomalies in affected gene networks.
Collapse
Affiliation(s)
- K J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ucero AC, Sabban B, Benito-Martin A, Carrasco S, Joeken S, Ortiz A. Laser Therapy in Metabolic Syndrome-Related Kidney Injury. Photochem Photobiol 2013; 89:953-60. [DOI: 10.1111/php.12055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
|
18
|
Fellmann L, Nascimento AR, Tibiriça E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 2012. [PMID: 23178510 DOI: 10.1016/j.pharmthera.2012.11.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome has been described as the association of insulin resistance, hypertension, hyperlipidemia and obesity. Its prevalence increased dramatically, mainly in developed countries. Animal models are essential to understand the pathophysiology of this syndrome. This review presents the murine models of metabolic syndrome the most often used in pharmacological studies. The most common metabolic syndrome models exhibit a non-functional leptin pathway, or metabolic disorders induced by high fat diets. In a first part, and after a short introduction on leptin, its receptor and mechanism of action, we provide a detailed description of each model: SHROB, SHHF, JCR:LA-cp, Zucker, ZDF, Wistar Ottawa Karlsburg W, and Otsuka Long-Evans Tokushima Fatty rats, ob/ob, db/db, agouti yellow and Mc4R KO mice. The second part of this review is dedicated to metabolic syndrome models obtained by high fat feeding.
Collapse
Affiliation(s)
- Lyne Fellmann
- Laboratory of Neurobiology and Cardiovascular Pharmacology, EA4438, Faculty of Medicine, University of Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Hu Z, Ren L, Wang C, Liu B, Song G. Effect of Chenodeoxycholic Acid on Fibrosis, Inflammation and Oxidative Stress in Kidney in High-Fructose-Fed Wistar Rats. ACTA ACUST UNITED AC 2012; 36:85-97. [DOI: 10.1159/000341485] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 12/20/2022]
|
20
|
Presnell SC, Bruce AT, Wallace SM, Choudhury S, Genheimer CW, Cox B, Guthrie K, Werdin ES, Tatsumi-Ficht P, Ilagan RM, Kelley RW, Rivera EA, Ludlow JW, Wagner BJ, Jayo MJ, Bertram TA. Isolation, Characterization, and Expansion Methods for Defined Primary Renal Cell Populations from Rodent, Canine, and Human Normal and Diseased Kidneys. Tissue Eng Part C Methods 2011; 17:261-73. [DOI: 10.1089/ten.tec.2010.0399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sharon C. Presnell
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Andrew T. Bruce
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Shay M. Wallace
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Sumana Choudhury
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | | | - Bryan Cox
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Kelly Guthrie
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Eric S. Werdin
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Patricia Tatsumi-Ficht
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Roger M. Ilagan
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Russell W. Kelley
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Elias A. Rivera
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - John W. Ludlow
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Belinda J. Wagner
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Manuel J. Jayo
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Timothy A. Bertram
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| |
Collapse
|
21
|
Baynes J, Murray DB. Cardiac and renal function are progressively impaired with aging in Zucker diabetic fatty type II diabetic rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:328-34. [PMID: 20716921 PMCID: PMC2835922 DOI: 10.4161/oxim.2.5.9831] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated the temporal relationship between cardiomyopathy and renal pathology in the type II diabetic Zucker diabetic fatty (ZDF) rat. We hypothesized that changes in renal function will precede the development of cardiac dysfunction in the ZDF rat. Animals (10 weeks old) were divided into four experimental groups: Lean Control (fa/?) LC (n = 7), untreated ZDF rats (n = 7) sacrificed at 16 weeks of age, and LC (n = 7) untreated ZDF rats (n = 9) sacrificed at 36 weeks of age. LV structural/functional parameters were assessed via Millar conductance catheter. Renal function was evaluated via markers of proteinuria and evidence of hydronephrosis. LV mass was significantly less in the ZDF groups at both time points compared to age-matched LC. End diastolic volume was increased by 16% at 16 weeks and by 37% at 36 weeks of age (p < 0.05 vs. LC). End diastolic pressure and end systolic volume were significantly increased (42% and 27% respectively) at 36 weeks of age in the ZDF compared to LC. Kidney weights were significantly increased at both 16 and 36 week in ZDF animals (p < 0.05 vs. LC). Increased urinary albumin and decreased urinary creatinine were paralleled by a marked progression in the severity of hydronephrosis from 16 to 36 weeks of age in the ZDF group. In summary, there is evidence of progressive structural and functional changes in both the heart and kidney, starting as early as 16 weeks, without evidence that one pathology precedes or causes the other in the ZDF model of type II diabetes.
Collapse
Affiliation(s)
- John Baynes
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | | |
Collapse
|
22
|
Wang R, Ding G, Liang W, Chen C, Yang H. Role of LOX-1 and ROS in oxidized low-density lipoprotein induced epithelial-mesenchymal transition of NRK52E. Lipids Health Dis 2010; 9:120. [PMID: 20958994 PMCID: PMC2978210 DOI: 10.1186/1476-511x-9-120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023] Open
Abstract
Background To investigate the effect of oxidized low density lipoprotein receptor-1 (LOX-1) on tubular epithelial-mesenchymal transition (TEMT) induced by oxidized low-density lipoprotein (ox-LDL) and its mechanism. Methods NRK-52E cells were incubated with ox-LDL (0, 25, 50, and 100 μg/ml) for 24 hours or pre-treated with the chemical inhibitor of the LOX-1 receptor polyinosinic acid (poly I) and carrageenan or the antioxidant N-acetyl-L-cysteine (NAC), the cells were then exposed to 50 μg/ml of ox-LDL.The expression of LOX-I, E-cadherin, α-smooth muscle actin (α-SMA) and reactive oxygen species (ROS) were analyzed by real-time PCR, western blotting analysis, immunofluorescence and confocal laser scanning microscopy. Results Ox-LDL increased the expression of LOX-1 mRNA and protein in a dose-dependent manner from 0 to 100 μg/ml (P < 0.05). Following the increase in the LOX-1 protein level, the lipid intake, ROS generation and α-SMA expression increased; however, the E-cadherin level decreased. The pre-treatment with poly I or carrageenan or NAC significantly inhibited the LOX-1 expression, α-SMA expression, the lipid intake and ROS generation and reversed decrease of E-cadherin expression induced by ox-LDL. Meanwhile, the ROS generation were associated with a increase in the LOX-1 expression. The α-SMA expression was positively correlated with the ROS generation and LOX-1 expression, and the E-cadherin expression was negatively correlated with the ROS generation and LOX-1 expression. Conclusions LOX-1 and ROS may play a important role in epithelial-mesenchymal transition of NRK52E induced by OX-LDL.
Collapse
Affiliation(s)
- Rui Wang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
23
|
Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, Yeum KJ, Negrisoli G, Carini M. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2010; 15:1339-54. [PMID: 20518851 PMCID: PMC4373334 DOI: 10.1111/j.1582-4934.2010.01101.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non-diabetic, Zucker obese rat. The Zucker rats received a daily dose of L-CAR or D-CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L- and D-CAR greatly reduced obese-related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L- and D-CAR was almost superimposable, we conclude that the pharmacological action of L-CAR is not due to a pro-histaminic effect (D-CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, Scherzer P, Lewis L, Miyazaki-Anzai S, Levi M. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol 2009; 297:F1587-96. [PMID: 19776172 DOI: 10.1152/ajprenal.00404.2009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diet-induced obesity is associated with proteinuria and glomerular disease in humans and rodents. We have shown that in mice fed a high-fat diet, increased renal expression of the transcriptional factor sterol-regulatory element binding protein-1 (SREBP-1) plays a critical role in renal lipid accumulation and increases the activity of proinflammatory cytokines and profibrotic growth factors. In the current study, we have determined a key role of the farnesoid X receptor (FXR) in modulating renal SREBP-1 activity, glomerular lesions, and proteinuria. We found that feeding a Western-style diet to DBA/2J mice results in proteinuria, podocyte loss, mesangial expansion, renal lipid accumulation, and increased expression of proinflammatory factors, oxidative stress, and profibrotic growth factors. Treatment of these mice with the highly selective and potent FXR-activating ligand 6-alpha-ethyl-chenodeoxycholic acid (INT-747) ameliorates triglyceride accumulation by modulating fatty acid synthesis and oxidation, improves proteinuria, prevents podocyte loss, mesangial expansion, accumulation of extracellular matrix proteins, and increased expression of profibrotic growth factors and fibrosis markers, and modulates inflammation and oxidative stress. Our results therefore indicate that FXR activation could represent an effective therapy for treatment of abnormal renal lipid metabolism with associated inflammation, oxidative stress, and kidney pathology in patients affected by obesity.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Medicine, University of Colorado Denver, and Veterans Affairs Medical Center, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kelly KJ, Burford JL, Dominguez JH. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am J Physiol Renal Physiol 2009; 297:F923-31. [PMID: 19656916 DOI: 10.1152/ajprenal.00205.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a major epidemic, and diabetic nephropathy is the most common cause of end-stage renal disease. Two critical components of diabetic nephropathy are persistent inflammation and chronic renal ischemia from widespread vasculopathy. Moreover, acute ischemic renal injury is common in diabetes, potentially causing chronic kidney disease or end-stage renal disease. Accordingly, we tested the hypothesis that acute renal ischemia accelerates nephropathy in diabetes by activating proinflammatory pathways. Lean and obese-diabetic ZS rats (F(1) hybrids of spontaneously hypertensive heart failure and Zucker fatty diabetic rats) were subjected to bilateral renal ischemia or sham surgery before the onset of proteinuria. The postischemic state in rats with obesity-diabetes was characterized by progressive chronic renal failure, increased proteinuria, and renal expression of proinflammatory mediators. Leukocyte number in obese-diabetic rat kidney was markedly increased for months after ischemia. Intrarenal blood flow velocity was decreased after ischemia in lean control and obese-diabetic rats, although it recovered in lean rats. At 2 mo after ischemia, blood flow velocity decreased further in sham-surgery and postischemia obese-diabetic rats, so that RBC flow velocity was only 39% of control in the obese-diabetic rats after ischemia. In addition, microvascular density remained depressed at 2 mo in kidneys of obese-diabetic rats after ischemia. Abnormal microvascular permeability and increases in interstitial fibrosis and apoptotic renal cell death were also more pronounced after ischemia in obese-diabetic rats. These data support the hypothesis that acute renal ischemia in obesity-diabetes severely aggravates chronic inflammation and vasculopathy, creating a self-perpetuating postischemia inflammatory syndrome, which accelerates renal failure.
Collapse
Affiliation(s)
- K J Kelly
- Division of Nephrology, Indiana Univ. School of Medicine, 950 West Walnut St., RII-202, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
26
|
Toblli JE, Ferrini MG, Cao G, Vernet D, Angerosa M, Gonzalez-Cadavid NF. Antifibrotic effects of pioglitazone on the kidney in a rat model of type 2 diabetes mellitus. Nephrol Dial Transplant 2009; 24:2384-91. [PMID: 19297362 PMCID: PMC2727296 DOI: 10.1093/ndt/gfp103] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/19/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent evidence suggests that treatment of type 2 diabetes with thiazolidinediones [peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists], ameliorates glomerulosclerosis and tubulointerstitial fibrosis in the rat kidney. In the current work, we have investigated whether these drugs, and specifically pioglitazone (PGT), act by preventing fibrosis and kidney dysfunction mainly through antioxidant and anti-inflammatory effects, independently of glycaemic control. METHODS Male 2- to 3-month-old obese Zucker fa/fa (OZR) and ZDF fa/fa rats (ZDFR), and their control the lean Zucker rat (LZR), were used. Diabetic rats were given either a low dose (0.6 mg/kg/day) or a high dose (12 mg/ kg/day) of PGT in the chow for 2 or 4-5 months. Glycaemia, blood pressure, creatinine clearance and proteinuria were determined, and the underlying histopathology was defined with markers of fibrosis, glomerular damage, oxidative stress and inflammation by immunohistochemistry/ quantitative image analysis in tissue sections, and western blots and ad hoc assays in fresh tissue. RESULTS PGT at low doses given for 4-5 months considerably reduced blood pressure, proteinuria and creatinine clearance. This was associated with amelioration of renal tissue damage and fibrosis, evidenced by the glomerulosclerosis, tubulointerstitial fibrosis, tubular atrophy and podocyte injury indexes, and of oxidative stress and inflammation, as shown by the decrease in the respective markers, although glycaemia remained high and obesity was not affected. CONCLUSIONS These results indicate that low doses of PGT ameliorate renal fibrosis and preserve renal function in this animal model of metabolic syndrome, independently of glycaemic control or effects on body weight.
Collapse
Affiliation(s)
- Jorge E. Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | | | - Gabriel Cao
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | | | - Margarita Angerosa
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | | |
Collapse
|
27
|
Kelly KJ, Wu P, Patterson CE, Temm C, Dominguez JH. LOX-1 and inflammation: a new mechanism for renal injury in obesity and diabetes. Am J Physiol Renal Physiol 2008; 294:F1136-45. [PMID: 18322020 DOI: 10.1152/ajprenal.00396.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The early nephropathy in obese, diabetic, dyslipidemic (ZS) rats is characterized by tubular lipid accumulation and pervasive inflammation, two critically interrelated events. We now tested the hypothesis that proximal tubules from ZS obese diabetic rats in vivo, and proximal tubule cells (NRK52E) exposed to oxidized LDL (oxLDL) in vitro, change their normally quiescent epithelial phenotype into a proinflammatory phenotype. Urine of obese diabetic rats contained more lipid peroxides, and LOX-1, a membrane receptor that internalizes oxidized lipids, was mobilized to luminal sites. Levels of ICAM-1 and focal adhesion kinase, which participate in leukocyte migration and epithelial dedifferentiation, respectively, were also upregulated in tubules. NRK52E cells exposed to oxLDL showed similar modifications, plus suppression of anti-inflammatory transcription factor peroxisome proliferator-activated receptor-delta. In addition, oxLDL impaired epithelial barrier function. These alterations were prevented by an anti-LOX-1 antibody. The data support the concept that tubular LOX-1 activation driven by lipid oxidants in the preurine fluid is critical in the inflammatory changes. We suggest that luminal lipid oxidants and abnormal tubular permeability may be partly responsible for the renal tubulointerstitial injury of obesity, diabetes, and dyslipidemia.
Collapse
Affiliation(s)
- Katherine J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
28
|
Dominguez JH, Mehta JL, Li D, Wu P, Kelly KJ, Packer CS, Temm C, Goss E, Cheng L, Zhang S, Patterson CE, Hawes JW, Peterson R. Anti-LOX-1 therapy in rats with diabetes and dyslipidemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol 2008; 294:F110-9. [DOI: 10.1152/ajprenal.00013.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LOX-1 is a multifunctional membrane receptor that binds and internalizes oxidized LDL (oxLDL). We tested the hypothesis that blockade of LOX-1 with an anti-LOX-1 antibody limits nephropathy in male rats with diabetes and dyslipidemia (ZS rats; F1hybrid product of Zucker fatty diabetic rats and spontaneous hypertensive heart failure rats). Lean ZS rats were controls, while untreated obese ZS (OM), ZS obese rats injected with nonspecific rabbit IgG (OM-IgG; 2 μg intravenous injection given weekly), and obese ZS rats given anti-LOX-1 rabbit antibody (OM-Ab; 2 μg intravenous injection given weekly) were the experimental groups. The rats were treated from 6 to 21 wk of age. All obese groups had severe dyslipidemia and hyperglycemia. Kidneys of obese rats expressed LOX-1 in capillaries and tubules, were larger, accumulated lipid, had intense oxidative stress, leukocyte infiltration, depressed mitochondrial enzyme level and function, and peritubular fibrosis (all P < 0.05 vs. lean ZS rats). Injections with LOX-1 antibody limited these abnormalities ( P < 0.01 vs. data in OM or OM-lgG rats). In vitro, renal epithelial LOX-1 expression was verified in a cultured proximal tubule cell line. Our study indicates that anti-LOX-1 (vascular and epithelial) therapy may effectively reverse critical pathogenic elements of nephropathy in diabetes and dyslipidemia.
Collapse
|
29
|
Orioli M, Aldini G, Benfatto MC, Facino RM, Carini M. HNE Michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC-MS/MS profiling in Zucker obese rats. Anal Chem 2007; 79:9174-84. [PMID: 17979257 DOI: 10.1021/ac7016184] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach, based on the precursor ion scanning technique using a triple-stage quadrupole, has been developed to detect free and protein-bound histidine (His) residues modified by reactive carbonyl species (RCS) generated by lipid peroxidation. This approach has been applied to urines from Zucker obese rats, a nondiabetic animal model characterized by obesity and hyperlipidemia, where RCS formation plays a key role in the development of renal and cardiac dysfunction. The immonium ion of His at m/z 110 was used as a specific product ion of His-containing peptides to generate precursor ion spectra, followed by MS2 acquisitions of each precursor ion of interest for structural characterization. By this approach, three novel adducts, which are excreted in free form only, have been identified, two of them originating from the conjugation of 4-hydroxy-trans-2-nonenal (HNE) to His, followed by reduction/oxidation of the aldehyde: His-1,4-dihydroxynonane (His-DHN), His-4-hydroxynonanoic acid (His-HNA), and carnosine-HNE, this last recognized in previous in vitro studies as a new potential biomarker of carbonyl stress. No free His-HNE was found in urines, which was detected only in protein hydrolysates. The same LC-MS/MS method, working in multiple reaction monitoring (MRM) mode, has been developed, validated, and applied to quantitatively profile in Zucker urines both conventional (1,4-dihydroxynonane mercapturic acid, DHN-MA) and the newly identified adducts, except His-HNA. The analytes were separated on a C12 reversed-phase column by gradient elution from 100% A (water containing 5 mM nonafluoropentanoic acid) to 80% B (acetonitrile) in 24 min at a flow rate of 0.2 mL/min and analyzed for quantification in MRM mode by applying the following precursor-to-product ion transitions m/z 322.2 --> 164.1 + 130.1 (DHN-MA), m/z 314.7 --> 268.2 + 110.1 (His-DHN), m/z 312.2 --> 110.1 + 156.0 (His-HNE), m/z 383.1 --> 266.2 + 110.1 (CAR-HNE), m/z 319.2 --> 301.6 + 156.5 (H-Tyr-His-OH, internal standard). Precision and accuracy data, as well as the lower limits of quantification in urine, were highly satisfactory (from 0.01 nmol/mL for CAR-HNE, His-DHN, His-HNE, to 0.075 nmol/mL for DHN-MA). The method, applied to evaluate for the first time the advanced lipoxidation end products profile in urine from obese Zucker rats, an animal model for the metabolic syndrome, has proved to be suitable and sensitive enough for testing in vivo the carbonyl quenching ability of newly developed RCS sequestering agents.
Collapse
Affiliation(s)
- Marica Orioli
- Istituto di Chimica Farmaceutica e Tossicologica "Pietro Pratesi", Faculty of Pharmacy, University of Milan, Via Mangiagalli 25, I-20133 Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/facp) model of type 2 diabetes. Am J Physiol Renal Physiol 2007; 293:F1605-13. [PMID: 17728379 DOI: 10.1152/ajprenal.00511.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes and increased blood pressure (BP) are believed to interact synergistically in the pathogenesis and progression of diabetic nephropathy. The present studies were performed to examine if there were differences in BP load and/or protective renal autoregulatory capacity between the obese diabetic Zucker fatty /spontaneously hypertensive heart failure F1 hybrid (ZSF1) ( fa/ facp) rats and their lean controls. By ∼26 wk of age, ZSF1 ( n = 13) but not their lean controls ( n = 16) had developed substantial proteinuria (180 ± 19 vs. 16 ± 1.4 mg/24 h) and glomerulosclerosis (19 ± 2.4 vs. 0.6 ± 0.2%; P < 0.001). However, average ambient systolic BP by radiotelemetry (12–26 wk of age) was modestly lower in ZSF1 than in lean controls (130 ± 1.4 vs. 137 ± 1.7 mmHg, P < 0.002), although the 24-h BP power spectra showed a mild increase at frequencies <0.1 Hz in the ZSF1. Autoregulatory capacity under anesthesia in response to step changes in perfusion pressure between 100 and 140 mmHg was similarly well preserved in both ZSF1 and lean controls at 16–18 wk of age [autoregulatory indexes (AI) <0.1]. Similarly, differences were not observed for dynamic autoregulation in conscious rats [transfer functions between BP (input) and renal blood flow (output) using chronic Transonic flow probes]. Collectively, these data indicate that the pathogenesis of nephropathy in the ZSF1 model of type 2 diabetic nephropathy is largely independent of differences in systemic BP and/or its potential renal transmission. However, these data do not exclude the possibility that the diabetic milieu may alter the glomerular capillaries in the ZSF1, such that there is an enhanced local susceptibility to injury with even normal glomerular pressures.
Collapse
Affiliation(s)
- Karen A Griffin
- Department of Internal Medicine, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ, Nakagawa T. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 2007; 293:F1256-61. [PMID: 17670904 DOI: 10.1152/ajprenal.00181.2007] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The metabolic syndrome has recently been recognized as a risk factor for kidney disease, but the mechanisms mediating this risk remain unclear. High fructose consumption by animals produces a model of the metabolic syndrome with hypertension, hyperlipidemia, and insulin resistance. The present study was conducted to test the hypothesis that consumption of a high-fructose diet could accelerate the progression of chronic kidney disease. Three groups of 14 male Sprague-Dawley rats were pair fed a specialized diet containing 60% fructose (FRU) or 60% dextrose (DEX) or standard rat chow (CON). After the animals were fed their assigned diet for 6 wk, five-sixths nephrectomy was performed, and the assigned diet was continued for 11 wk. Proteinuria was significantly increased and creatinine clearance was decreased in the FRU group compared with the CON and DEX groups, and blood urea nitrogen was higher in the FRU group than in the CON and DEX groups. Kidneys from the FRU group were markedly larger than kidneys from the CON and DEX groups. Glomerular sclerosis, tubular atrophy, tubular dilatation, and cellular infiltration appeared markedly worse in kidneys from the FRU group than in kidneys from the DEX and CON groups. Monocyte chemoattractant protein-1 (MCP-1) was measured in renal tissue homogenate and found to be increased in the FRU group. In vitro studies were conducted to determine the mechanism for increased renal MCP-1, and fructose stimulation of proximal tubular cells resulted in production of MCP-1. In conclusion, consumption of a high-fructose diet greatly accelerates progression of chronic kidney disease in the rat remnant kidney model.
Collapse
Affiliation(s)
- Michael S Gersch
- Division of Nephrology, Dialysis and Transplantation, University of Florida, Gainesville, Florida 32610-0224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dominguez J, Wu P, Packer CS, Temm C, Kelly KJ. Lipotoxic and inflammatory phenotypes in rats with uncontrolled metabolic syndrome and nephropathy. Am J Physiol Renal Physiol 2007; 293:F670-9. [PMID: 17596532 DOI: 10.1152/ajprenal.00021.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anomalous inflammatory responses triggered by the metabolic syndrome cause renal injury. This discovery links renal lipid accumulation with lipotoxicity to inflammation and may explain the insidious fibrosis and cellular decay characteristic of nephropathy in the metabolic syndrome. However, it is not clear whether control of inflammation protects the kidney independently of lipid accumulation, which is a required step for lipotoxicity in hyperglycemia and dyslipidemia. We hypothesized that in rats with the metabolic syndrome, and overt nephropathy, treatment with mycophenolate mofetil (MMF; 10 mg.kg(-1).day(-1) ip for 14 wk) would reduce the abnormal renal lipid depots and limit renal inflammation and injury. We studied groups of lean and obese F1 hybrid Zucker fatty diabetic/spontaneous hypertensive heart failure (ZS) rats. MMF did not affect lean rats. In obese ZS rats, MMF did not change severe hyperglycemia or the higher kidney loads of unutilized lipid and peroxidation products. Nonetheless, MMF dramatically reduced diabetes/obesity-derived systemic and renal inflammation, limited renal size, hyperfiltration, and fibrosis. These data indicate that in rats, anti-inflammatory therapy presumably acting downstream, and independently of lipotoxicity, can effectively limit renal injury and fibrosis.
Collapse
Affiliation(s)
- Jesus Dominguez
- Departments of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Generalized capillary dysfunction is a morbid element in the metabolic syndrome, and it is likely involved in its complications. We tested the hypothesis that vast amounts of serum albumin previously observed in kidneys of rats with the metabolic syndrome were caused, in part, by leakage from renal peritubular capillaries. We report herein large scale leaks of plasma fluid in peritubular capillaries of rats with the metabolic syndrome. This finding was directly demonstrated in vivo, and the presence of leftover albumin residue confirmed the leak in postmortem kidney specimens. Moreover, renal interstitial fibrosis and tubular atrophy were found in a distribution similar to the leaked renal albumin in obese rats. We suggest that there is an important link between peritubular capillary damage and interstitial fibrosis, represented as tubulointerstitial disease in the metabolic syndrome. We propose that maintenance of the peritubular microcirculation may improve renal outcomes in diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Constance Temm
- Department of Medicine, Indiana University, Indianapolis, USA
| | | |
Collapse
|
34
|
Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 2006; 15:318-30. [DOI: 10.1016/j.carpath.2006.09.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/28/2022] Open
|