1
|
Naia Fioretto M, Colombelli KT, da Silva CLF, Dos Santos SAA, Camargo ACL, Constantino FB, Portela LMF, Aquino AMD, Barata LA, Mattos R, Scarano WR, Zambrano E, Justulin LA. Maternal malnutrition associated with postnatal sugar consumption increases inflammatory response and prostate disorders in rat offspring. Mol Cell Endocrinol 2024; 588:112223. [PMID: 38556160 DOI: 10.1016/j.mce.2024.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-β1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFβ1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.
Collapse
Affiliation(s)
- Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | | | - Sérgio Alexandre Alcantara Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flávia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico; Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Kanbay M, Copur S, Yildiz AB, Covic A, Covic A, Ciceri P, Magagnoli L, Cozzolino M. Intrauterine life to adulthood: a potential risk factor for chronic kidney disease. Nephrol Dial Transplant 2023; 38:2675-2684. [PMID: 37370229 DOI: 10.1093/ndt/gfad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple risk factors for chronic kidney disease (CKD), one of the major causes of morbidity and mortality in the adult population globally, have been identified, including older age, male gender, family history, smoking, diabetes mellitus, hypertension, ischaemic heart diseases and various medications. Preterm delivery, affecting >10% of the newborns in the USA, is a global concern with increasing incidence in recent decades. Preterm birth has been linked to multiple medical comorbidities such as diabetes mellitus, hypertension and cardiovascular diseases, while its association with CKD has recently been investigated. Prematurity and intrauterine growth restriction (IUGR) have been associated with an increased risk for CKD, specific histopathological examination findings and CKD-associated risk factors such as diabetes mellitus, hypertension and dyslipidaemia. In this narrative review, our aim is to evaluate and summarize the association between the risk for CKD and prematurity, low birthweight and IUGR along with potential underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Andreea Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Voggel J, Fink G, Zelck M, Wohlfarth M, Post JM, Bindila L, Rauh M, Amann K, Alejandre Alcázar MA, Dötsch J, Nüsken KD, Nüsken E. Elevated n-3/n-6 PUFA ratio in early life diet reverses adverse intrauterine kidney programming in female rats. J Lipid Res 2022; 63:100283. [PMID: 36152882 PMCID: PMC9619183 DOI: 10.1016/j.jlr.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2–P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.
Collapse
Affiliation(s)
- Jenny Voggel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Gregor Fink
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Magdalena Zelck
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Maria Wohlfarth
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Julia M Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Miguel A Alejandre Alcázar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany.
| |
Collapse
|
4
|
Zapaterini JR, Fonseca ARB, Bidinotto LT, Colombelli KT, Rossi ALD, Kass L, Justulin LA, Barbisan LF. Maternal Low-Protein Diet Deregulates DNA Repair and DNA Replication Pathways in Female Offspring Mammary Gland Leading to Increased Chemically Induced Rat Carcinogenesis in Adulthood. Front Cell Dev Biol 2022; 9:756616. [PMID: 35178394 PMCID: PMC8844450 DOI: 10.3389/fcell.2021.756616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague-Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.
Collapse
Affiliation(s)
- Joyce R Zapaterini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Antonio R B Fonseca
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Botucatu, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luis F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
6
|
Awazu M. Structural and functional changes in the kidney caused by adverse fetal and neonatal environments. Mol Biol Rep 2021; 49:2335-2344. [PMID: 34817775 DOI: 10.1007/s11033-021-06967-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Health and disease risk in the adulthood are known to be affected by the early developmental environment. Kidney diseases are one of these diseases, and kidneys are altered both structurally and functionally by adverse pre- and perinatal events. The most known structural change is low nephron number seen in subjects born low birth weight and/or preterm. In various animal models of intrauterine growth restriction (IUGR), one of the causes of low birth weight, the mechanism of low nephron number was investigated. While apoptosis of metanephric mesenchyme has been suggested to be the cause, I showed that suppression of ureteric branching, global DNA methylation, and caspase-3 activity also contributes to the mechanism. Other structural changes caused by adverse fetal and neonatal environments include peritubular and glomerular capillary rarefaction and low podocyte endowment. These are aggravated by postnatal development of focal glomerulosclerosis and tubulointerstitial fibrosis that result from low nephron number. Functional changes can be seen in tubules, endothelium, renin-angiotensin system, sympathetic nervous system, oxidative stress, and others. As an example, I reported that aggravated nitrosative stress in a rat IUGR model resulted in more severe tubular necrosis and tubulointerstitial fibrosis after unilateral ureteral obstruction. The mechanism of various functional changes needs to be clarified but may be explained by epigenetic modifications.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan.
| |
Collapse
|
7
|
Makayes Y, Resnick E, Hinden L, Aizenshtein E, Shlomi T, Kopan R, Nechama M, Volovelsky O. Increasing mTORC1 Pathway Activity or Methionine Supplementation during Pregnancy Reverses the Negative Effect of Maternal Malnutrition on the Developing Kidney. J Am Soc Nephrol 2021; 32:1898-1912. [PMID: 33958489 PMCID: PMC8455268 DOI: 10.1681/asn.2020091321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.
Collapse
Affiliation(s)
- Yaniv Makayes
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elad Resnick
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Liad Hinden
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | | | | | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Morris Nechama
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Volovelsky
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Hoogenboom LA, Wolfs TGAM, Hütten MC, Peutz-Kootstra CJ, Schreuder MF. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr Nephrol 2021; 36:1673-1681. [PMID: 32880745 PMCID: PMC8172498 DOI: 10.1007/s00467-020-04712-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Prematurity and perinatal stress, such as intrauterine growth restriction (IUGR) and chorioamnionitis, are pathological processes creating an impaired intrauterine environment. These intrauterine factors are associated with the development of proteinuria, hypertension, and chronic kidney disease (CKD) later in life. Initially, this was thought to be secondary to oligonephropathy, subsequent glomerular hypertrophy, and hyperfiltration, leading to glomerulosclerosis, a further decrease in nephron number, and finally CKD. Nowadays, there is increasing evidence that prematurity and perinatal stress affect not only nephron endowment but also the maturation of podocytes and vasculogenesis. IUGR is associated with podocyte damage and an aggravated course of nephrotic syndrome. Moreover, preterm birth and IUGR are known to cause upregulation of the postnatal renin-angiotensin system, resulting in hypertension. Chorioamnionitis causes damage to the glomeruli, thereby predisposing to the development of glomerulosclerosis. This review aims to summarize current knowledge on the influence of prematurity, IUGR, and chorioamnionitis on the development of different glomerular structures. After summarizing human and experimental data on low nephron number in general, a specific focus on the current understanding of podocyte and glomerular capillary formation in relation to prematurity and different causes of perinatal stress is presented.
Collapse
Affiliation(s)
- Lieke A. Hoogenboom
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, Maastricht University Medical Centre+, Maastricht, The Netherlands ,grid.461578.9Department of Pediatric Nephrology, Radboudumc Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Tim G. A. M. Wolfs
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, Maastricht University Medical Centre+, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands ,grid.5012.60000 0001 0481 6099Department of Biomedical Engineering (BMT), Maastricht University, Maastricht, The Netherlands
| | - Matthias C. Hütten
- grid.5012.60000 0001 0481 6099Department of Pediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands ,grid.412966.e0000 0004 0480 1382Department of Neonatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Carine J. Peutz-Kootstra
- grid.412966.e0000 0004 0480 1382Department of Pathology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michiel F. Schreuder
- grid.461578.9Department of Pediatric Nephrology, Radboudumc Amalia Children’s Hospital, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Mendelian randomization and experimental IUGR reveal the adverse effect of low birth weight on lung structure and function. Sci Rep 2020; 10:22395. [PMID: 33372189 PMCID: PMC7769986 DOI: 10.1038/s41598-020-79245-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) and low birth weigth (LBW) are risk factors for neonatal chronic lung disease. However, maternal and fetal genetic factors and the molecular mechanisms remain unclear. We investigated the relationship between LBW and lung function with Mendelian randomisation analyses and studied angiogenesis in a low protein diet rat model of IUGR. Our data indicate a possible association between LBW and reduced FEV1 (p = 5.69E−18, MR-PRESSO) and FVC (6.02E-22, MR-PRESSO). Complimentary, we demonstrated two-phased perinatal programming after IUGR. The intrauterine phase (embryonic day 21) is earmarked by a reduction of endothelial cell markers (e.g. CD31) as well as mRNA expression of angiogenic factors (e.g., Vegfa, Flt1, Klf4). Protein analysis identified an activation of anti-angiogenic mTOR effectors. In the postnatal phase, lung capillaries (< 20 µm) were significantly reduced, expression of CD31 and VE-Cadherin were unaffected, whereas SMAD1/5/8 signaling and Klf4 protein were increased (p < 0.01). Moreover, elevated proteolytic activity of MMP2 and MMP9 was linked to a 50% reduction of lung elastic fibres. In conclusion, we show a possible link of LBW in humans and reduced lung function in adulthood. Experimental IUGR identifies an intrauterine phase with inhibition of angiogenic signaling, and a postnatal phase with proteolytic activity and reduced elastic fibres.
Collapse
|
10
|
Nüsken E, Voggel J, Fink G, Dötsch J, Nüsken KD. Impact of early-life diet on long-term renal health. Mol Cell Pediatr 2020; 7:17. [PMID: 33269431 PMCID: PMC7710776 DOI: 10.1186/s40348-020-00109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
In the last years, great advances have been made in the effort to understand how nutritional influences can affect long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand, molecular pathways can be influenced in opposite directions by different dietary interventions during early life. Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
Collapse
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
11
|
Hucklenbruch-Rother E, Vohlen C, Mehdiani N, Keller T, Roth B, Kribs A, Mehler K. Delivery room skin-to-skin contact in preterm infants affects long-term expression of stress response genes. Psychoneuroendocrinology 2020; 122:104883. [PMID: 33027708 DOI: 10.1016/j.psyneuen.2020.104883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/27/2022]
Abstract
Premature birth is a traumatic event that puts mother and child at risk for subsequent psychopathology. Skin-to-skin contact in the form of intermittent kangaroo mother care has been shown to positively affect the infant's stress response and cognitive development, but underlying mechanisms remain unclear. Moreover, first skin-to-skin contact is usually delayed for days after birth. In the delivery room skin-to-skin study (DR-SSC), a prospective randomized controlled trial conducted from 2/2012 to 7/2015, we set out to assess the effect of delivery room skin-to-skin contact on the infant's mRNA expression of six key molecules involved in stress response and neurobehavioral development at hospital discharge. 88 firstborn, singleton preterm infants (born at 25-32 weeks of gestational age) were included. In the delivery room after initial stabilization, infants were randomized to either 60 min of skin-to-skin or 5 min of visual contact with their mother. In this explorative add-on study on the original DR-SSC study, we determined the expression of six important stress response genes (CRHR1 and CRHR2, AVP, NR3C1, HTR2A, and SLC6A4) in peripheral white blood cells of infants during routine blood sampling upon hospital discharge (corrected gestational age of 40 weeks). Infants were followed up to six months corrected age. Relative mRNA expression of the corticotropin releasing hormone receptor 2 (CRH R2), the glucocorticoid receptor gene (NR3C1), and the serotonin transporter gene (SLC6A4) was significantly reduced in the delivery room SSC infants. Additionally, gene expression of CRH R2 showed a correlation with HPA axis reactivity and parameters of mother-child interaction at six months corrected age. Our results highlight the importance of delivery room mother-child skin-to-skin contact and underline the urgent need for in-depth studies on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Eva Hucklenbruch-Rother
- Metabolism and Perinatal Programming, Children's Hospital, University of Cologne, Cologne, Germany.
| | - Christina Vohlen
- Metabolism and Perinatal Programming, Children's Hospital, University of Cologne, Cologne, Germany
| | - Nava Mehdiani
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Titus Keller
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Bernhard Roth
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Angela Kribs
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany
| | - Katrin Mehler
- Division of Neonatology, Children's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Altered molecular signatures during kidney development after intrauterine growth restriction of different origins. J Mol Med (Berl) 2020; 98:395-407. [PMID: 32008055 PMCID: PMC7080693 DOI: 10.1007/s00109-020-01875-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Abstract This study was performed to identify transcriptional alterations in male intrauterine growth restricted (IUGR) rats during and at the end of nephrogenesis in order to generate hypotheses which molecular mechanisms contribute to adverse kidney programming. IUGR was induced by low protein (LP) diet throughout pregnancy, bilateral uterine vessel ligation (LIG), or intrauterine stress (IUS) by sham operation. Offspring of unimpaired dams served as controls. Significant acute kidney damage was ruled out by negative results for proteins indicative of ER-stress, autophagy, apoptosis, or infiltration with macrophages. Renal gene expression was examined by transcriptome microarrays, demonstrating 53 (LP, n = 12; LIG, n = 32; IUS, n = 9) and 134 (LP, n = 10; LIG, n = 41; IUS, n = 83) differentially expressed transcripts on postnatal days (PND) 1 and 7, respectively. Reduced Pilra (all IUGR groups, PND 7), Nupr1 (LP and LIG, PND 7), and Kap (LIG, PND 1) as well as increased Ccl20, S100a8/a9 (LIG, PND 1), Ifna4, and Ltb4r2 (IUS, PND 7) indicated that inflammation-related molecular dysregulation could be a “common” feature after IUGR of different origins. Network analyses of transcripts and predicted upstream regulators hinted at proinflammatory adaptions mainly in LIG (arachidonic acid-binding, neutrophil aggregation, toll-like-receptor, NF-kappa B, and TNF signaling) and dysregulation of AMPK and PPAR signaling in LP pups. The latter may increase susceptibility towards obesity-associated kidney damage. Western blots of the most prominent predicted upstream regulators confirmed significant dysregulation of RICTOR in LP (PND 7) and LIG pups (PND 1), suggesting that mTOR-related processes could further modulate kidney programming in these groups of IUGR pups. Key messages Inflammation-related transcripts are dysregulated in neonatal IUGR rat kidneys. Upstream analyses indicate renal metabolic dysregulation after low protein diet. RICTOR is dysregulated after low protein diet and uterine vessel ligation.
Electronic supplementary material The online version of this article (10.1007/s00109-020-01875-1) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Polányi L, Niessen CM, Vohlen C, Stinn J, Kretschmer T, Jentgen V, Hirani D, Koningsbruggen-Rietschel SV, Dötsch J, Alejandre Alcazar MA. Intrauterine growth restriction induces skin inflammation, increases TSLP and impairs epidermal barrier function. J Mol Med (Berl) 2020; 98:279-289. [PMID: 31912169 DOI: 10.1007/s00109-019-01867-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
Intrauterine growth restriction (IUGR) and low birth weight are risk factors for childhood asthma. Atopic march describes the progression from early dermatitis to asthma during life. Since inflammatory signaling is linked to increased airway resistance and lung remodeling in rats after IUGR, we queried if these findings are related to skin inflammatory response. Firstly, we induced IUGR in Wistar rats by isocaloric protein restriction during gestation. IUGR rats showed lower body weight at postnatal day 1 (P1), catch-up growth at P21, and similar body weight like controls at P90. At P1 and P90, mRNA of inflammatory as well as fibrotic markers and number of skin immune cells (macrophages) were increased after IUGR. Skin thymic stromal lymphopoietin (TSLP) mRNA at P1 and serum TSLP at P1 and P21 were elevated in IUGR. Moreover, IUGR impaired transepidermal water loss at P21 and P90. IUGR induced higher. Secondly, the increase of TEWL after Oxazolone treatment as a model of atopic dermatitis (AD) was greater in IUGR than in Co. Our data demonstrate an early inflammatory skin response, which is linked to persistent macrophage infiltration in the skin and impaired epidermal barrier function after IUGR. These findings coupled with elevated TSLP could underlie atopic diseases in rats after IUGR. KEY MESSAGES: • The present study shows that IUGR increases macrophage infiltration and induces an inflammatory and fibrotic gene expression pattern in the skin of newborn rats. • Early postnatal inflammatory response in the skin after IUGR is followed by impaired epidermal barrier function later in life. • IUGR aggravates transepidermal water loss in an experimental atopic dermatitis model, possibly through elevated TSLP in skin and serum. • Early anti-inflammatory treatment and targeting TSLP signaling could offer novel avenues for early prevention of atopic disorders and late asthma in high-risk infants.
Collapse
Affiliation(s)
- Laura Polányi
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics, Experimental Pulmonology, University of Cologne, Kerpener Strasse 62, D-50937, Cologne, Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics, Experimental Pulmonology, University of Cologne, Kerpener Strasse 62, D-50937, Cologne, Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Stinn
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Tobias Kretschmer
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Jentgen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics, Experimental Pulmonology, University of Cologne, Kerpener Strasse 62, D-50937, Cologne, Germany
| | - Dharmesh Hirani
- Center of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Pediatrics, Experimental Pulmonology, University of Cologne, Kerpener Strasse 62, D-50937, Cologne, Germany. .,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Center of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
15
|
Coats LE, Davis GK, Newsome AD, Ojeda NB, Alexander BT. Low Birth Weight, Blood Pressure and Renal Susceptibility. Curr Hypertens Rep 2019; 21:62. [PMID: 31228030 PMCID: PMC8109258 DOI: 10.1007/s11906-019-0969-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to highlight the clinical significance of increased renal risk that has its origins in fetal life. This review will also discuss the critical need to identify therapeutic interventions for use in a pregnancy complicated by placental dysfunction and intrauterine growth restriction that can mitigate the developmental origins of kidney disease without inflicting additional harm on the developing fetus. RECENT FINDINGS A reduction in nephron number is a contributory factor in the pathogenesis of hypertension and kidney disease in low birth weight individuals. Reduced nephron number may heighten susceptibility to a secondary renal insult, and recent studies suggest that perinatal history including birth weight should be considered in the assessment of renal risk in kidney donors. This review highlights current findings related to placental dysfunction, intrauterine growth restriction, increased risk for renal injury and disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura E Coats
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Gwendolyn K Davis
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ashley D Newsome
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Norma B Ojeda
- Department of Pediatrics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Barbara T Alexander
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
16
|
Renal injury after uninephrectomy in male and female intrauterine growth-restricted aged rats. PLoS One 2019; 14:e0213404. [PMID: 30845173 PMCID: PMC6405063 DOI: 10.1371/journal.pone.0213404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies report an inverse association between birth weight and risk for kidney disease that may differ between males and females, but studies investigating this association are limited. This study tested the hypothesis that male intrauterine growth-restricted offspring in a model of low birth weight induced by placental insufficiency in the rat exhibit enhanced renal injury in response to a persistent secondary renal insult while female growth-restricted offspring are protected. For this study, control offspring from sham-operated dams and growth-restricted offspring from reduced uterine perfusion dams underwent uninephrectomy or a sham procedure at 18 months of age. One month later, urinary markers of renal injury, renal function, and histological damage were measured. Results were analyzed using 2-way ANOVA. Male and female offspring were assessed separately. Proteinuria and urinary neutrophil gelatinase-associated lipocalin were significantly elevated in male growth-restricted offspring exposed to uninephrectomy when compared to male uninephrectomized control. Urinary kidney injury marker-1 was elevated in male uninephrectomized growth-restricted offspring relative to male sham growth-restricted but not to male uninephrectomized controls. Likewise, urinary neutrophil gelatinase-associated lipocalin was elevated in female uninephrectomized growth-restricted offspring but only when compared to female sham growth-restricted offspring. Markers of renal function including glomerular filtration rate and serum creatinine were impaired after uninephrectomy in female offspring regardless of birth weight. Histological parameters did not differ between control and growth-restricted offspring. Collectively, these studies suggest that both male and female growth-restricted offspring demonstrate susceptibility to renal injury following uninephrectomy; however, only male growth-restricted offspring exhibited an increase in renal markers of injury in response to uninephrectomy relative to same-sex control counterparts. These findings further suggest that urinary excretion of protein, kidney injury marker-1, and neutrophil gelatinase-associated lipocalin may be early markers of kidney injury in growth-restricted offspring exposed to a secondary renal insult such as reduction in renal mass.
Collapse
|
17
|
Murano Y, Shoji H, Hara T, Ikeda N, Endo A, Nishizaki N, Shimizu T. Long-term renal tubular damage in intrauterine growth-restricted rats. Pediatr Int 2018; 60:565-568. [PMID: 29575245 DOI: 10.1111/ped.13570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) has been shown to be associated with increased risk of renal disease or hypertension in later life. Glomerular dysfunction, however, has mainly been reported, and limited information is available to link IUGR with renal tubular damage. The aim of this study was therefore to investigate urinary markers of tubular damage in a rat model of IUGR induced by bilateral uterine artery ligation. METHODS Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation, while the control group underwent sham surgery. RESULTS Birthweight was reduced, and urinary β2-microglobulin (β2-MG)-, cystatin C (Cys-C)-, and calbindin-to-creatinine ratios were significantly higher at weeks 4 and 8 in the IUGR group compared with the control group. These urinary markers were not significantly different at week 16 between the two groups. Increased excretion of urinary β2-MG, Cys-C, and calbindin was observed in IUGR rats at ≥8 weeks of age. CONCLUSION Children born with IUGR are at increased risk for renal tubular damage.
Collapse
Affiliation(s)
- Yayoi Murano
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Taichi Hara
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naho Ikeda
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Amane Endo
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoto Nishizaki
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
18
|
Thangaratnarajah C, Dinger K, Vohlen C, Klaudt C, Nawabi J, Lopez Garcia E, Kwapiszewska G, Dobner J, Nüsken KD, van Koningsbruggen-Rietschel S, von Hörsten S, Dötsch J, Alejandre Alcázar MA. Novel role of NPY in neuroimmune interaction and lung growth after intrauterine growth restriction. Am J Physiol Lung Cell Mol Physiol 2017; 313:L491-L506. [PMID: 28572154 DOI: 10.1152/ajplung.00432.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 01/21/2023] Open
Abstract
Individuals with intrauterine growth restriction (IUGR) are at risk for chronic lung disease. Using a rat model, we showed in our previous studies that altered lung structure is related to IL-6/STAT3 signaling. As neuropeptide Y (NPY), a coneurotransmitter of the sympathetic nervous system, regulates proliferation and immune response, we hypothesized that dysregulated NPY after IUGR is linked to IL-6, impaired myofibroblast function, and alveolar growth. IUGR was induced in rats by isocaloric low-protein diet; lungs were analyzed on embryonic day (E) 21, postnatal day (P) 3, P12, and P23. Finally, primary neonatal lung myofibroblasts (pnF) and murine embryonic fibroblasts (MEF) were used to assess proliferation, apoptosis, migration, and IL-6 expression. At E21, NPY and IL-6 expression was decreased, and AKT/PKC and STAT3/AMPKα signaling was reduced. Early reduction of NPY/IL-6 was associated with increased chord length in lungs after IUGR at P3, indicating reduced alveolar formation. At P23, however, IUGR rats exhibited a catch-up of body weight and alveolar growth coupled with more proliferating myofibroblasts. These structural findings after IUGR were linked to activated NPY/PKC, IL-6/AMPKα signaling. Complementary, IUGR-pnF showed increased survival, impaired migration, and reduced IL-6 compared with control-pnF (Co-pnF). In contrast, NPY induced proliferation, migration, and increased IL-6 synthesis in fibroblasts. Additionally, NPY-/- mice showed reduced IL-6 signaling and less proliferation of lung fibroblasts. Our study presents a novel role of NPY during alveolarization: NPY regulates 1) IL-6 and lung STAT3/AMPKα signaling, and 2) proliferation and migration of myofibroblasts. These new insights in pulmonary neuroimmune interaction offer potential strategies to enable lung growth.
Collapse
Affiliation(s)
- Chansutha Thangaratnarajah
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Katharina Dinger
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Klaudt
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jawed Nawabi
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Eva Lopez Garcia
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | - Julia Dobner
- Experimental Therapy, Preclinical Centre, University Hospital Erlangen, Erlangen, Germany
| | - Kai D Nüsken
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Silke van Koningsbruggen-Rietschel
- Pediatric Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany; and
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Centre, University Hospital Erlangen, Erlangen, Germany
| | - Jörg Dötsch
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcázar
- Translational Experimental Pediatrics, Experimental Pulmonology, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany; .,University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Abstract
Hypertension and chronic kidney disease (CKD) have a significant impact on global morbidity and mortality. The Low Birth Weight and Nephron Number Working Group has prepared a consensus document aimed to address the relatively neglected issue for the developmental programming of hypertension and CKD. It emerged from a workshop held on April 2, 2016, including eminent internationally recognized experts in the field of obstetrics, neonatology, and nephrology. Through multidisciplinary engagement, the goal of the workshop was to highlight the association between fetal and childhood development and an increased risk of adult diseases, focusing on hypertension and CKD, and to suggest possible practical solutions for the future. The recommendations for action of the consensus workshop are the results of combined clinical experience, shared research expertise, and a review of the literature. They highlight the need to act early to prevent CKD and other related noncommunicable diseases later in life by reducing low birth weight, small for gestational age, prematurity, and low nephron numbers at birth through coordinated interventions. Meeting the current unmet needs would help to define the most cost-effective strategies and to optimize interventions to limit or interrupt the developmental programming cycle of CKD later in life, especially in the poorest part of the world.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Perinatal programming of renal function reflects the epigenetic alteration of genetically determined development by environmental factors. These include intrauterine malnutrition, pre and postnatal overnutrition, glucocorticoids, and certain toxins such as smoking. This review aims to summarize the most important findings. RECENT FINDINGS Human studies may show an increased susceptibility toward the general prevalence of renal failure in already small for gestational age children and adolescents. In particular, glomerular diseases present with a more severe clinical course. Partially related, partially independently, arterial hypertension is found in this at-risk group. The findings can mostly be confirmed in animal models. Both intrauterine nutrient deprived and overfed rodents show a tendency toward developing glomerulosclerosis and other renal disorders. Animal studies attempt to imitate clinical conditions, however, there are difficulties in transferring the findings to the human setting. The reduction of nephron number, especially in intrauterine growth-restricted humans and animals, is one mechanism of perinatal programming in the kidneys. In addition, vascular and endocrine alterations are prevalent. The molecular changes behind these mechanisms include epigenetic changes such as DNA-methylation, microRNAs, and histone modifications. SUMMARY Future research will have to establish clinical studies with clear and well defined inclusion criteria which also reflect prenatal life. The use of transgenic animal models might help to obtain a deeper insight into the underlying mechanisms.
Collapse
|
21
|
Yuasa K, Kondo T, Nagai H, Mino M, Takeshita A, Okada T. Maternal protein restriction that does not have an influence on the birthweight of the offspring induces morphological changes in kidneys reminiscent of phenotypes exhibited by intrauterine growth retardation rats. Congenit Anom (Kyoto) 2016; 56:79-85. [PMID: 26537761 DOI: 10.1111/cga.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/29/2015] [Indexed: 11/28/2022]
Abstract
Severe restriction of maternal protein intake to 6-8% protein diet results in intrauterine growth retardation (IUGR), low birthweight and high risk of metabolic syndrome in the adult life of the offspring. However, little information is available on the effects of maternal protein restriction on offspring under the conditions that does not have an influence on their birthweight of the offspring,. In the present study, pregnant rats were kept on a diet consisting of either 9% (low-protein, Lp rats) or 18% (normal-protein, Np rats) protein by weight/volume/etc. After birth, both Lp and Np rats were kept on a diet containing 18% protein. Neonatal body weight was significantly lower in Lp rats compared to Np rats from 4 days to 5 weeks after birth. While glomerular number per unit volume (1 mm(3) ) of the kidney (Nv) was comparable between Lp and Np rats 4 weeks after birth, the Nv was significantly decreased in Lp rats at 20 weeks after birth. Four and 20 weeks after birth, glomerular sclerosis index, interstitial fibrosis score, and ratio of ED1-positive cell ratio were all significantly higher in Lp compared to Np rats. Transforming growth factor-β1-positive cells were observed in the distal tubules in the kidney of 4- and 20-week-old Lp rats kidneys, but not in those of age-matched Np rats. Altogether, these findings revealed that maternal protein restriction that does not have an influence on the birthweight of the offspring, induces similar changes as those seen in the kidneys of IUGR neonates.
Collapse
Affiliation(s)
- Ko Yuasa
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| | - Tomohiro Kondo
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| | - Hiroaki Nagai
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| | - Masaki Mino
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| | - Ai Takeshita
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| | - Toshiya Okada
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumi-Sano, Osaka, 598-8531, Japan
| |
Collapse
|
22
|
Programmierung durch intrauterine Mangelversorgung. Monatsschr Kinderheilkd 2015. [DOI: 10.1007/s00112-015-3420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Sun Z, Hu S, Zuo N, Yang S, He Z, Ao Y, Wang H. Prenatal nicotine exposure induced GDNF/c-Ret pathway repression-related fetal renal dysplasia and adult glomerulosclerosis in male offspring. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00040h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prenatal nicotine exposure could induce fetal renal dysplasia associated with the suppression of the GDNF/c-Ret pathway and adult glomerulosclerosis in male offspring, which might be mediated by alterations in angiotensin II receptors.
Collapse
Affiliation(s)
- Zhaoxia Sun
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Shuangshuang Hu
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Na Zuo
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Shuailong Yang
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Zheng He
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
| | - Ying Ao
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder
| | - Hui Wang
- Department of Pharmacology
- Wuhan University School of Basic Medical Sciences
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder
| |
Collapse
|
24
|
Zohdi V, Lim K, Pearson JT, Black MJ. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Nutrients 2014; 7:119-52. [PMID: 25551250 PMCID: PMC4303830 DOI: 10.3390/nu7010119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022] Open
Abstract
Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of "programming". The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype.
Collapse
Affiliation(s)
- Vladislava Zohdi
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute, P.O. Box 6492 St Kilda Rd Central, Melbourne 8008, Australia.
| | - James T Pearson
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia.
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
25
|
Alcázar MAA, Dinger K, Rother E, Östreicher I, Vohlen C, Plank C, Dötsch J. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction. J Nutr 2014; 144:1943-51. [PMID: 25411031 DOI: 10.3945/jn.114.197657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. OBJECTIVE The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. METHODS IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). RESULTS Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. CONCLUSIONS This study demonstrates a dual mechanism in IUGR-associated lung disease that is 1) IUGR-dependent and 2) HA-mediated and thereby offers new avenues to develop innovative preventive strategies for perinatal programming of adult lung diseases.
Collapse
Affiliation(s)
| | - Katharina Dinger
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Eva Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Iris Östreicher
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Christian Plank
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| |
Collapse
|
26
|
Beinder L, Faehrmann N, Wachtveitl R, Winterfeld I, Hartner A, Menendez-Castro C, Rauh M, Ruebner M, Huebner H, Noegel SC, Doerr HG, Rascher W, Fahlbusch FB. Detection of expressional changes induced by intrauterine growth restriction in the developing rat mammary gland via exploratory pathways analysis. PLoS One 2014; 9:e100504. [PMID: 24955840 PMCID: PMC4067350 DOI: 10.1371/journal.pone.0100504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022] Open
Abstract
Background Intrauterine growth restriction (IUGR) is thought to lead to fetal programming that in turn contributes to developmental changes of many organs postnatally. There is evidence that IUGR is a risk factor for the development of metabolic and cardiovascular disease later in life. A higher incidence of breast cancer was also observed after IUGR. This could be due to changes in mammary gland developmental pathways. We sought to characterise IUGR-induced alterations of the complex pathways of mammary development at the level of the transcriptome in a rat model of IUGR, using pathways analysis bioinformatics. Methodology/Principal Findings We analysed the mammary glands of Wistar rats with IUGR induced by maternal low protein (LP) diet at the beginning (d21) and the end (d28) of pubertal ductal morphogenesis. Mammary glands of the LP group were smaller in size at d28, however did not show morphologic changes. We identified multiple differentially expressed genes in the mammary gland using Agilent SurePrint arrays at d21 and d28. In silico analysis was carried out using Ingenuity Pathways Analysis. In mammary gland tissue of LP rats at d21 of life a prominent upregulation of WT1 and CDKN1A (p21) expression was observed. Differentially regulated genes were associated with the extracellular regulated kinase (ERK)-1/-2 pathway. Western Blot analysis showed reduced levels of phosphorylated ERK-1/-2 in the mammary glands of the LP group at d21. To identify possible changes in circulating steroid levels, serum LC-Tandem mass-spectrometry was performed. LP rats showed higher serum progesterone levels and an increased corticosterone/dehydrocorticosterone-ratio at d28. Conclusions/Significance Our data obtained from gene array analysis support the hypothesis that IUGR influences pubertal development of the rat mammary gland. We identified prominent differential regulation of genes and pathways for factors regulating cell cycle and growth. Moreover, we detected new pathways which appear to be programmed by IUGR.
Collapse
Affiliation(s)
- Lea Beinder
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Faehrmann
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Wachtveitl
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ilona Winterfeld
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie C. Noegel
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Helmuth G. Doerr
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian B. Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
27
|
Menendez-Castro C, Toka O, Fahlbusch F, Cordasic N, Wachtveitl R, Hilgers KF, Rascher W, Hartner A. Impaired myocardial performance in a normotensive rat model of intrauterine growth restriction. Pediatr Res 2014; 75:697-706. [PMID: 24603294 DOI: 10.1038/pr.2014.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is an important risk factor for cardiovascular disease. Previous studies revealed altered myocardial matrix composition after IUGR. We hypothesized that IUGR is accompanied by compromised myocardial performance independently from arterial hypertension. METHODS IUGR was induced in Wistar rats by maternal protein restriction, and hearts of male offspring were studied using echocardiography, immunohistochemistry, real-time PCR, and western blot analysis. RESULTS At day 70 of life, in the absence of arterial hypertension (mean arterial blood pressure: 101.3 ± 7.1 mmHg in IUGR vs. 105.3 ± 4.6 mmHg in controls, not significant (NS)), echocardiography showed a reduced contractility (ejection fraction: 65.4 ± 1.8% in IUGR vs. 82.2 ± 1.5% in controls, P < 0.001) of a more distensible myocardium in IUGR rats. Altered expression patterns of myosin chains and titin isoforms and increased expression levels of atrial natriuretic peptide, Na/K-ATPase, and β-adrenergic receptor 1 were detected. A higher number of cardiac fibroblasts and vascular cross-sections were observed in IUGR rats, accompanied by elevated expression of hypoxia inducible factor 1 target genes, such as vascular endothelial growth factor and its receptors. CONCLUSION We observed a blood pressure-independent impairment of myocardial function after IUGR, which possibly favors cardiovascular disease later in life. Some IUGR-induced myocardial changes (e.g., sarcomeric components) may partly explain the compromised cardiac performance, whereas others (e.g., elevated vascular supply) reflect compensatory mechanisms.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Okan Toka
- Department of Pediatric Cardiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Fahlbusch
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Wachtveitl
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Fetale und perinatale Programmierung der Nierenfunktion. GYNAKOLOGISCHE ENDOKRINOLOGIE 2014. [DOI: 10.1007/s10304-013-0593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Schlote J, Schröder A, Dahlmann A, Karpe B, Cordasic N, Daniel C, Hilgers KF, Titze J, Amann K, Benz K. Cardiovascular and renal effects of high salt diet in GDNF+/- mice with low nephron number. Kidney Blood Press Res 2013; 37:379-91. [PMID: 24247178 DOI: 10.1159/000355716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS To test the suggested association of low nephron number and later development of renal and cardiovascular disease we investigated the effects of high sodium diet in heterozygous GDNF+/- mice. METHODS Aged wild type and GDNF+/- mice were grouped together according to high sodium (HS, 4%) or low sodium (LS, 0.03%) diet for 4 weeks. The heart, the aorta and the kidneys were processed for morphometric and stereological evaluations and TaqMan PCR. RESULTS On HS GDNF+/- mice showed significantly higher drinking volume and urine production than wt and mean arterial blood pressure tended to be higher. Heart weight was higher in GDNF+/- than in wt, but the difference was only significant for LS. HS significantly increased cardiac interstitial tissue in GDNF+/-, but not in wt. On LS GDNF+/- mice had significantly larger glomeruli than wt and HS led to an additional two fold increase of glomerular area compared to LS. On electron microscopy glomerular damage after HS was seen in GDNF+/-, but not in wt. Dietary salt intake modulated renal IL-10 gene expression in GDNF+/-. CONCLUSION In the setting of 30% lower nephron number HS diet favoured maladaptive changes of the kidney as well as of the cardiovascular system.
Collapse
Affiliation(s)
- Julia Schlote
- Department of Pathology, IZKF Nachwuchsgruppe, Department of Nephrology and Hypertension, Department of Pediatrics, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koleganova N, Benz K, Piecha G, Ritz E, Amann K. Renal, cardiovascular and metabolic effects of fetal programming. Nephrol Dial Transplant 2013; 27:3003-7. [PMID: 22851622 DOI: 10.1093/ndt/gfs167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Menendez-Castro C, Hilgers KF, Amann K, Daniel C, Cordasic N, Wachtveitl R, Fahlbusch F, Plank C, Dötsch J, Rascher W, Hartner A. Intrauterine growth restriction leads to a dysregulation of Wilms' tumour supressor gene 1 (WT1) and to early podocyte alterations. Nephrol Dial Transplant 2012; 28:1407-17. [PMID: 23229934 DOI: 10.1093/ndt/gfs517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) leads to low nephron number and higher incidence of renal disease. We hypothesized that IUGR induces early podocyte alterations based on a dysregulation of Wilms' tumour suppressor gene 1 (WT1), a key player of nephrogenesis and mediator of podocyte integrity. METHODS IUGR was induced in rats by maternal protein restriction during pregnancy. Kidneys were harvested from male offspring at Days 1 and 70 of life. qRT-PCR, immunohistochemistry and electron microscopy were performed in renal tissue. Albuminuria was assessed by enzyme-linked immunosorbent assay. RESULTS At Day 70 of life, higher albuminuria and overt alterations of podocyte ultrastructure were detected in IUGR animals in spite of normal blood pressure. Moreover, we found increased glomerular immunoreactivity and expression of desmin, while synaptopodin and nephrin were decreased. Glomerular immunoreactivity and expression of WT1 were increased in IUGR animals at this time point with an altered expressional ratio of WT1 +KTS and -KTS isoforms. These changes of WT1 expression were already present at the time of birth. CONCLUSIONS IUGR results in early podocyte damage possibly due to a dysregulation of WT1. We suggest that an imbalance of WT1 isoforms to the disadvantage of -KTS affects nephrogenesis in IUGR rats and that persistent dysregulation of WT1 results in a reduced ability to maintain podocyte integrity, rendering IUGR rats more susceptible for renal disease.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Intrauterine growth restriction promotes vascular remodelling following carotid artery ligation in rats. Clin Sci (Lond) 2012; 123:437-44. [PMID: 22519758 DOI: 10.1042/cs20110637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological studies revealed an association between IUGR (intrauterine growth restriction) and an increased risk of developing CVDs (cardiovascular diseases), such as atherosclerosis or hypertension, in later life. Whether or not IUGR contributes to the development of atherosclerotic lesions, however, is unclear. We tested the hypothesis that IUGR aggravates experimentally induced vascular remodelling. IUGR was induced in rats by maternal protein restriction during pregnancy (8% protein diet). To detect possible differences in the development of vascular injury, a model of carotid artery ligation to induce vascular remodelling was applied in 8-week-old intrauterine-growth-restricted and control rat offspring. Histological and immunohistochemical analyses were performed in the ligated and non-ligated carotid arteries 8 weeks after ligation. IUGR alone neither caused overt histological changes nor significant dedifferentiation of VSMCs (vascular smooth muscle cells). After carotid artery ligation, however, neointima formation, media thickness and media/lumen ratio were significantly increased in rats after IUGR compared with controls. Moreover, dedifferentiation of VSMCs and collagen deposition in the media were more prominent in ligated carotids from rats after IUGR compared with ligated carotids from control rats. We conclude that IUGR aggravates atherosclerotic vascular remodelling induced by a second injury later in life.
Collapse
|
33
|
Dötsch J, Plank C, Amann K. Fetal programming of renal function. Pediatr Nephrol 2012; 27:513-20. [PMID: 21298502 DOI: 10.1007/s00467-011-1781-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 01/10/2023]
Abstract
Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.
Collapse
Affiliation(s)
- Jörg Dötsch
- Department of Pediatrics, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | | | | |
Collapse
|
34
|
Rother E, Kuschewski R, Alcazar MAA, Oberthuer A, Bae-Gartz I, Vohlen C, Roth B, Dötsch J. Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 2012; 153:770-81. [PMID: 22147015 DOI: 10.1210/en.2011-1589] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic inflammation has been demonstrated to be an important mechanism in the pathogenesis of obesity-induced type 2 diabetes mellitus. Feeding pregnant and lactating rodents a diet rich in saturated fatty acids has consistently been shown to predispose the offspring for the development of obesity and impaired glucose metabolism. However, hypothalamic inflammation in the offspring has not been addressed as a potential underlying mechanism. In this study, virgin female C57BL/6 mice received high-fat feeding starting at conception until weaning of the offspring at postnatal d 21. The offspring developed increased body weight, body fat content, and serum leptin concentrations during the nursing period. Analysis of hypothalamic tissue of the offspring at postnatal d 21 showed up-regulation of several members of the toll-like receptor 4 signaling cascade and subsequent activation of c-Jun N-terminal kinase 1 and IκB kinase-β inflammatory pathways. Interestingly, glucose tolerance testing in the offspring revealed signs of impaired glucose tolerance along with increased hepatic expression of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. In addition, significantly increased hepatic and pancreatic PGC1α expression suggests a role for sympathetic innervation in mediating the effects of hypothalamic inflammation to the periphery. Taken together, our data indicate an important role for hypothalamic inflammation in the early pathogenesis of glucose intolerance after maternal perinatal high-fat feeding.
Collapse
Affiliation(s)
- Eva Rother
- Department of Pediatrics, University Hospital of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Alejandre Alcazar MA, Ostreicher I, Appel S, Rother E, Vohlen C, Plank C, Dötsch J. Developmental regulation of inflammatory cytokine-mediated Stat3 signaling: the missing link between intrauterine growth restriction and pulmonary dysfunction? J Mol Med (Berl) 2012; 90:945-57. [PMID: 22271168 DOI: 10.1007/s00109-012-0860-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/05/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for impairment of lung function in adolescence and adulthood. Inflammatory and proliferative processes linking IUGR and perturbed extracellular matrix (ECM) as an underlying mechanism have not been addressed so far. Therefore, in this study, we aimed to investigate the developmental regulation of inflammatory and profibrotic processes in the lung subsequent to IUGR. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 28 and P70. Lungs were obtained at P1, P42, and P70 for assessment of mRNA, protein expression, immunohistochemistry, and gelatinolytic activity. Both respiratory system resistance and compliance were impaired subsequent to IUGR at P28 and this impairment was even more pronounced at P70. In line with these results, the expression of ECM components and metabolizing enzymes was deregulated. The deposition of collagen was increased at P70. In addition, the expression of inflammatory cytokines and both the activity and the expression of target genes of Stat3 signaling were dynamically regulated, with unaltered or decreased expression at P1 and significantly increased expression art P70. Taken together, these data give evidence for an age-dependent impairment of lung function as a result of a developmentally regulated increase in inflammatory and profibrotic processes subsequent to IUGR.
Collapse
|
36
|
Inhibition of TGF-β signaling and decreased apoptosis in IUGR-associated lung disease in rats. PLoS One 2011; 6:e26371. [PMID: 22028866 PMCID: PMC3197638 DOI: 10.1371/journal.pone.0026371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/25/2011] [Indexed: 01/04/2023] Open
Abstract
Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease.
Collapse
|
37
|
Nistala R, Hayden MR, DeMarco VG, Henriksen EJ, Lackland DT, Sowers JR. Prenatal Programming and Epigenetics in the Genesis of the Cardiorenal Syndrome. Cardiorenal Med 2011; 1:243-254. [PMID: 22096456 PMCID: PMC3214897 DOI: 10.1159/000332756] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The presence of a group of interacting maladaptive factors, including hypertension, insulin resistance, metabolic dyslipidemia, obesity, and microalbuminuria and/or reduced renal function, collectively constitutes the cardiorenal metabolic syndrome (CRS). Nutritional and other environmental cues during fetal development can permanently affect the composition, homeostatic systems, and functions of multiple organs and systems; this process has been referred to as 'programming'. Since the original formulation of the notion that low birth weight is a proxy for 'prenatal programming' of adult hypertension and cardiovascular disease, evidence has also emerged for programming of kidney disease, insulin resistance, obesity, metabolic dyslipidemia, and other chronic diseases. The programming concept was initially predicated on the notion that in utero growth restriction due to famine was responsible for increased hypertension, and cardiovascular and renal diseases. On the other hand, we are now more commonly exposed to increasing rates of maternal obesity. The current review will discuss the overarching role of maternal overnutrition, as well as fetal undernutrition, in epigenetic programming in relation to the pathogenesis of the CRS in children and adults.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
| | - Melvin R. Hayden
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
| | - Vincent G. DeMarco
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
- Department of Physiology and Pharmacology, Columbia, Mo., USA
| | - Erik J. Henriksen
- Department of Physiology, University of Arizona College of Medicine, Tucson, Ariz., USA
| | - Daniel T. Lackland
- Department of Neurosciences, Medical University of South Carolina, Charleston, S.C., USA
| | - James R. Sowers
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
- Department of Physiology and Pharmacology, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
38
|
Dötsch J. Low birth weight, bone metabolism and fracture risk. DERMATO-ENDOCRINOLOGY 2011; 3:240-2. [PMID: 22259651 DOI: 10.4161/derm.3.4.14636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 01/23/2023]
Abstract
As for other diseases of higher age, low birth weight was expected to be a risk factor for an altered bone metabolism and osteoporosis.ON THE FIRST GLANCE THIS EXPECTATION APPEARS TO BE CONFIRMED BY ANIMAL DATA: rats with intrauterine growth restriction following maternal protein malnutrition show a reduction of bone mineral density going in line with a decrease in serum vitamin D concentrations.HOWEVER, THE SITUATION IS LESS CLEAR IN NEWBORNS WITH LOW BIRTH WEIGHT: Some studies show a relation of birth weight and bone mineral density whereas others don't. The older the former low birth weight patients the fainter the effect seems to be. In fact young adults with idiopathic short stature have a low bone mineral density than the low birth weight group irrespective of whether they have experienced catch-up growth or not. As a consequence low birth weight is can not be identified as a relevant risk factor for hip fractures in menopausal women. Postmenopausal women with low birth weight even show higher vitamin D concentrations than normal birth weight individuals.In conclusion, there is no consistent long term effect of low birth weight on bone mineral density or hip fracture risk later in life. Whether methodological weaknesses in the studies performed so far are causal or whether postnatal factors such as physical activity and nutrition are of higher importance can only be speculated upon at present.
Collapse
Affiliation(s)
- Jörg Dötsch
- Klinik und Poliklinik für Kinder-und Jugendmedizin; Uniklinik Köln, Cologne, Germany
| |
Collapse
|
39
|
Menendez-Castro C, Fahlbusch F, Cordasic N, Amann K, Münzel K, Plank C, Wachtveitl R, Rascher W, Hilgers KF, Hartner A. Early and late postnatal myocardial and vascular changes in a protein restriction rat model of intrauterine growth restriction. PLoS One 2011; 6:e20369. [PMID: 21655297 PMCID: PMC3105022 DOI: 10.1371/journal.pone.0020369] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/01/2011] [Indexed: 01/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for cardiovascular disease in later life. Early structural and functional changes in the cardiovascular system after IUGR may contribute to its pathogenesis. We tested the hypothesis that IUGR leads to primary myocardial and vascular alterations before the onset of hypertension. A rat IUGR model of maternal protein restriction during gestation was used. Dams were fed low protein (LP; casein 8.4%) or isocaloric normal protein diet (NP; casein 17.2%). The offspring was reduced to six males per litter. Immunohistochemical and real-time PCR analyses were performed in myocardial and vascular tissue of neonates and animals at day 70 of life. In the aortas of newborn IUGR rats expression of connective tissue growth factor (CTGF) was induced 3.2-fold. At day 70 of life, the expression of collagen I was increased 5.6-fold in aortas of IUGR rats. In the hearts of neonate IUGR rats, cell proliferation was more prominent compared to controls. At day 70 the expression of osteopontin was induced 7.2-fold. A 3- to 7-fold increase in the expression of the profibrotic cytokines TGF-β and CTGF as well as of microfibrillar matrix molecules was observed. The myocardial expression and deposition of collagens was more prominent in IUGR animals compared to controls at day 70. In the low-protein diet model, IUGR leads to changes in the expression patterns of profibrotic genes and discrete structural abnormalities of vessels and hearts in adolescence, but, with the exception of CTGF, not as early as at the time of birth. Invasive and non-invasive blood pressure measurements confirmed that IUGR rats were normotensive at the time point investigated and that the changes observed occurred independently of an increased blood pressure. Hence, altered matrix composition of the vascular wall and the myocardium may predispose IUGR animals to cardiovascular disease later in life.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ojeda NB. Low birth weight increases susceptibility to renal injury in a rat model of mild ischemia-reperfusion. Am J Physiol Renal Physiol 2011; 301:F420-6. [PMID: 21613420 DOI: 10.1152/ajprenal.00045.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal injury due to ischemia-reperfusion (I/R) is the major cause of acute kidney injury. Whether enhanced susceptibility to renal injury due to I/R can be programmed during fetal life is unknown. Epidemiological studies indicate that low birth weight (LBW) individuals are more susceptible to renal injury than normal birth weight (NBW) individuals. Thus, the aim of this study was to test the hypothesis that LBW is associated with an increased susceptibility to renal injury induced by mild renal I/R (15-min ischemia). Systemic and renal hemodynamic parameters were determined in NBW and LBW adult male rats after mild renal I/R; renal superoxide production and tubular injury were also assessed. A subgroup was pretreated with tempol, a superoxide dismutase mimetic, initiated 15 min before ischemia. Mild renal I/R did not alter renal hemodynamic parameters, induce tubular injury, or induce superoxide production in NBW rats. However, renal hemodynamic parameters declined, superoxide production increased, and histological indicators of tubular injury were present following mild renal I/R in LBW rats. Acute treatment with tempol prevented these alterations in LBW rats subjected to mild renal I/R. Thus, these findings suggest that adverse conditions during fetal life can compromise the renal response to subtle insults leading to an increased susceptibility to renal injury, suggesting that LBW individuals may be an "at risk" population for renal disease. Additionally, the outcome of tempol treatment proposes a possible mechanistic pathway involved in mediating enhanced susceptibility to renal injury programmed during fetal life.
Collapse
Affiliation(s)
- Norma B Ojeda
- Dept. of Pediatrics, Univ. of Mississippi Medical Center, Jackson, 39216-4505, USA.
| |
Collapse
|
41
|
Koleganova N, Piecha G, Ritz E, Becker LE, Müller A, Weckbach M, Nyengaard JR, Schirmacher P, Gross-Weissmann ML. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring. Am J Physiol Renal Physiol 2011; 301:F344-54. [PMID: 21593188 DOI: 10.1152/ajprenal.00626.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.
Collapse
|
42
|
Alejandre Alcazar MA, Boehler E, Amann K, Klaffenbach D, Hartner A, Allabauer I, Wagner L, von Horsten S, Plank C, Dotsch J. Persistent changes within the intrinsic kidney-associated NPY system and tubular function by litter size reduction. Nephrol Dial Transplant 2011; 26:2453-65. [DOI: 10.1093/ndt/gfq825] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Ritz E, Amann K, Koleganova N, Benz K. Prenatal programming-effects on blood pressure and renal function. Nat Rev Nephrol 2011; 7:137-44. [PMID: 21283139 DOI: 10.1038/nrneph.2011.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired intrauterine nephrogenesis-most clearly illustrated by low nephron number-is frequently associated with low birthweight and has been recognized as a powerful risk factor for renal disease; it increases the risks of low glomerular filtration rate, of more rapid progression of primary kidney disease, and of increased incidence of chronic kidney disease or end-stage renal disease. Another important consequence of impaired nephrogenesis is hypertension, which further amplifies the risk of onset and progression of kidney disease. Hypertension is associated with low nephron numbers in white individuals, but the association is not universal and is not seen in individuals of African origin. The derangement of intrauterine kidney development is an example of a more general principle that illustrates the paradigm of plasticity during development-that is, that transcription of the genetic code is modified by epigenetic factors (as has increasingly been documented). This Review outlines the concept of prenatal programming and, in particular, describes its role in kidney disease and hypertension.
Collapse
Affiliation(s)
- Eberhard Ritz
- Division of Nephrology, Department of Internal Medicine, University of Heidelberg, Heidelberg 69100, Germany.
| | | | | | | |
Collapse
|
44
|
Ostreicher I, Almeida JR, Campean V, Rauh M, Plank C, Amann K, Dotsch J. Changes in 11 -hydroxysteroid dehydrogenase type 2 expression in a low-protein rat model of intrauterine growth restriction. Nephrol Dial Transplant 2010; 25:3195-203. [DOI: 10.1093/ndt/gfq354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Benz K, Amann K. Maternal nutrition, low nephron number and arterial hypertension in later life. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1309-17. [PMID: 20226855 DOI: 10.1016/j.bbadis.2010.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/30/2022]
Abstract
A potential role of the intrauterine environment in the development of low nephron number and hypertension in later life has been recently recognized in experimental studies and is also postulated in certain conditions in human beings. Nephrogenesis is influenced by genetic as well as by environmental and in particular maternal factors. In man nephrogenesis, i.e. the formation of nephrons during embryogenesis, takes place from weeks 5 to 36 of gestation with the most rapid phase of nephrogenesis occurring from the mid-2nd trimester until 36 weeks. This 16 week period is a very vulnerable phase where genetic and environmental factors such as maternal diet or medication could influence and disturb nephron formation leading to lower nephron number. Given a constant rise in body mass until adulthood lower nephron number may become "nephron underdosing" and result in maladaptive glomerular changes, i.e. glomerular hyperfiltration and glomerular enlargement. These maladaptive changes may then eventually lead to the development of glomerular and systemic hypertension and renal disease in later life. It is the purpose of this review to discuss the currently available experimental and clinical evidence for factors and mechanisms that could interfere with nephrogenesis with particular emphasis on maternal nutrition. In addition, we discuss the emerging concept of low nephron number being a new cardiovascular risk factor in particular for essential hypertension in later life.
Collapse
Affiliation(s)
- Kerstin Benz
- Department of Pediatric Nephrology, University of Erlangen-Nürnberg, Germany
| | | |
Collapse
|
46
|
Abstract
Abundant evidence supports the association between low birth weight (LBW) and renal dysfunction in humans. Anatomic measurements of infants, children, and adults show significant inverse correlation between LBW and nephron number. Nephron numbers are also lower in individuals with hypertension compared with normotension among white and Australian Aboriginal populations. The relationship between nephron number and hypertension among black individuals is still unclear, although the high incidence of LBW predicts low nephron number in this population as well. LBW, a surrogate for low nephron number, also associates with increasing BP from childhood to adulthood and increasing risk for chronic kidney disease in later life. Because nephron numbers can be counted only postmortem, surrogate markers such as birth weight, prematurity, adult height, reduced renal size, and glomerulomegaly are potentially useful for risk stratification, for example, during living-donor assessment. Because early postnatal growth also affects subsequent risk for higher BP or reduced renal function, postnatal nutrition, a potentially modifiable factor, in addition to intrauterine effects, has significant influence on long-term cardiovascular and renal health.
Collapse
Affiliation(s)
- Valerie A Luyckx
- Department of Medicine, HMRC 260, University of Alberta, Edmonton, Canada, T6G 2S2.
| | | |
Collapse
|
47
|
The implications of fetal programming of glomerular number and renal function. J Mol Med (Berl) 2009; 87:841-8. [PMID: 19652918 DOI: 10.1007/s00109-009-0507-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/26/2022]
Abstract
Large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcomes evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure. Data from autopsy material and from experimental models suggest that reduction in nephron number via diminished nephrogenesis may be a major mechanism, and factors that lead to this reduction are incompletely elucidated. Other mechanisms appear to be renal (e.g., via the intrarenal renin-angiotensin-aldosterone system) and nonrenal (e.g. changes in endothelial function). It also appears likely that the outcomes of fetal programming may be influenced postnatally, for example, by the amount of nutrients given at critical times.
Collapse
|
48
|
Dötsch J. Renal and extrarenal mechanisms of perinatal programming after intrauterine growth restriction. Hypertens Res 2009; 32:238-41. [DOI: 10.1038/hr.2009.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Statin treatment reduces glomerular inflammation and podocyte damage in rat deoxycorticosterone-acetate-salt hypertension. J Hypertens 2009; 27:376-85. [DOI: 10.1097/hjh.0b013e32831997d6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Plank C, Grillhösl C, Ostreicher I, Meissner U, Struwe FG, Rauh M, Hartner A, Rascher W, Dötsch J. Transient growth hormone therapy to rats with low protein-inflicted intrauterine growth restriction does not prevent elevated blood pressure in later life. Growth Factors 2008; 26:355-64. [PMID: 18951274 DOI: 10.1080/08977190802485442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for the development of hypertension in later life. Insulin-like growth factor I and growth hormone (GH) have the potential to improve metabolic syndrome after IUGR in adult animals. The objective of the present study was to examine whether transient GH treatment of pups after weaning can prevent the development of arterial hypertension in adult rats. IUGR was induced in Wistar rats by isocaloric protein restriction in pregnant dams and litter size was reduced to six male neonates after birth. Recombinant human GH was applied by daily subcutaneous injections at a dose of 3 microg/g body weight between days 24 and 60 of life. Control animals received vehicle treatment (VEH) only. Birth weight was significantly lower in low protein (LP) animals than in normal protein (NP) animals (5.1 +/- 0.3 g vs. 5.9 +/- 0.7 g, p < 0.05). Until weaning at day 23, LP animals reached similar body length, but had reduced body weight compared to NP animals. Intraarterially measured mean arterial blood pressure at day 120 was elevated in LP-VEH compared to NP-VEH animals (113 +/- 6 mmHg vs. 101 +/- 6 mmHg, p < 0.01). However, transient GH-treatment did not prevent arterial hypertension in LP animals (112 +/- 5 mmHg). Our data suggest that GH treatment between days 24 and 60 of life does not or at least not permanently reprogram blood pressure elevation after IUGR.
Collapse
Affiliation(s)
- Christian Plank
- Department of Pediatrics and Adolescent Medicine, University Erlangen, Nuremberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|