1
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Li J, Gao J, Liu A, Liu W, Xiong H, Liang C, Fang Y, Dai Y, Shao J, Yu H, Wang L, Wang L, Yang L, Yan M, Zhai X, Shi X, Tian X, Ju X, Chen Y, Wang J, Zhang L, Liang H, Chen S, Zhang J, Cao H, Jin J, Hu Q, Wang J, Wang Y, Zhou M, Han Y, Zhang R, Zhao W, Wang X, Lin L, Zhang R, Gao C, Xu L, Zhang Y, Fan J, Wu Y, Lin W, Yu J, Qi P, Huang P, Peng X, Peng Y, Wang T, Zheng H. Homoharringtonine-Based Induction Regimen Improved the Remission Rate and Survival Rate in Chinese Childhood AML: A Report From the CCLG-AML 2015 Protocol Study. J Clin Oncol 2023; 41:4881-4892. [PMID: 37531592 PMCID: PMC10617822 DOI: 10.1200/jco.22.02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE Homoharringtonine (HHT) is commonly used for the treatment of Chinese adult AML, and all-trans retinoic acid (ATRA) has been verified in acute promyelocytic leukemia (APL). However, the efficacy and safety of HHT-based induction therapy have not been confirmed for childhood AML, and ATRA-based treatment has not been evaluated among patients with non-APL AML. PATIENTS AND METHODS This open-label, multicenter, randomized Chinese Children's Leukemia Group-AML 2015 study was performed across 35 centers in China. Patients with newly diagnosed childhood AML were first randomly assigned to receive an HHT-based (H arm) or etoposide-based (E arm) induction regimen and then randomly allocated to receive cytarabine-based (AC arm) or ATRA-based (AT arm) maintenance therapy. The primary end points were the complete remission (CR) rate after induction therapy, and the secondary end points were the overall survival (OS) and event-free survival (EFS) at 3 years. RESULTS We enrolled 1,258 patients, of whom 1,253 were included in the intent-to-treat analysis. The overall CR rate was significantly higher in the H arm than in the E arm (79.9% v 73.9%, P = .014). According to the intention-to-treat analysis, the 3-year OS was 69.2% (95% CI, 65.1 to 72.9) in the H arm and 62.8% (95% CI, 58.7 to 66.6) in the E arm (P = .025); the 3-year EFS was 61.1% (95% CI, 56.8 to 65.0) in the H arm and 53.4% (95% CI, 49.2 to 57.3) in the E arm (P = .022). Among the per-protocol population, who received maintenance therapy, the 3-year EFS did not differ significantly across the four arms (H + AT arm: 70.7%, 95% CI, 61.1 to 78.3; H + AC arm: 74.8%, 95% CI, 67.0 to 81.0, P = .933; E + AC arm: 72.9%, 95% CI, 65.1 to 79.2, P = .789; E + AT arm: 66.2%, 95% CI, 56.8 to 74.0, P = .336). CONCLUSION HHT is an alternative combination regimen for childhood AML. The effects of ATRA-based maintenance are comparable with those of cytarabine-based maintenance therapy.
Collapse
Affiliation(s)
- Jing Li
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Ju Gao
- West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
| | | | - Wei Liu
- Children's Hospital of Henan Province, Zhengzhou, China
| | - Hao Xiong
- Wuhan Children's Hospital, Wuhan, China
| | - Changda Liang
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Yongjun Fang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yunpeng Dai
- Shandong First Medical University Affiliated Shandong Provincial Hospital, Jinan, China
| | - Jingbo Shao
- Shanghai Children's Hospital, Shanghai, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingzhen Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Wang
- Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, China
| | - Mei Yan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaowen Zhai
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaodong Shi
- Capital Institute of Pediatrics' Children's Hospital, Beijing, China
| | - Xin Tian
- Kunming Children's Hospital, Kunming, China
| | - Xiuli Ju
- Qilu Hospital of Shandong University, Jinan, China
| | - Yan Chen
- Children's Hospital of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Wang
- Children's Hospital of Shanxi Province, Taiyuan, China
| | - Leping Zhang
- Peking University People's Hospital, Beijing, China
| | - Hui Liang
- Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Sen Chen
- Tianjin Children's Hospital, Tianjin, China
| | | | - Haixia Cao
- Qinghai Women's and Children's Hospital, Xining, China
| | - Jiao Jin
- The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qun Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junlan Wang
- Northwest Women's and Children's Hospital, Xian, China
| | | | - Min Zhou
- Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Yueqin Han
- Children's Hospital of Liaocheng, Liaocheng, China
| | - Rong Zhang
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Weihong Zhao
- First Hospital, Peking University, Beijing, China
| | | | - Limin Lin
- Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ruidong Zhang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Laboratory of Hematologic Diseases, Beijing Pediatric Research Institute, Beijing, China
| | - Liting Xu
- Children's Hospital of Zhejiang University School of Medicine, the Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuanyuan Zhang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jia Fan
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Ying Wu
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Wei Lin
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jiaole Yu
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Peijing Qi
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Pengli Huang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xiaoxia Peng
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yaguang Peng
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianyou Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Maffeo B, Panuzzo C, Moraca A, Cilloni D. A Leukemic Target with a Thousand Faces: The Mitochondria. Int J Mol Sci 2023; 24:13069. [PMID: 37685874 PMCID: PMC10487524 DOI: 10.3390/ijms241713069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In the era of personalized medicine greatly improved by molecular diagnosis and tailor-made therapies, the survival rate of acute myeloid leukemia (AML) at 5 years remains unfortunately low. Indeed, the high heterogeneity of AML clones with distinct metabolic and molecular profiles allows them to survive the chemotherapy-induced changes, thus leading to resistance, clonal evolution, and relapse. Moreover, leukemic stem cells (LSCs), the quiescent reservoir of residual disease, can persist for a long time and activate the recurrence of disease, supported by significant metabolic differences compared to AML blasts. All these points highlight the relevance to develop combination therapies, including metabolism inhibitors to improve treatment efficacy. In this review, we summarized the metabolic differences in AML blasts and LSCs, the molecular pathways related to mitochondria and metabolism are druggable and targeted in leukemia therapies, with a distinct interest for Venetoclax, which has revolutionized the therapeutic paradigms of several leukemia subtype, unfit for intensive treatment regimens.
Collapse
Affiliation(s)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (B.M.); (A.M.); (D.C.)
| | | | | |
Collapse
|
4
|
Pravdic Z, Vukovic NS, Gasic V, Marjanovic I, Karan-Djurasevic T, Pavlovic S, Tosic N. The influence of BCL2, BAX, and ABCB1 gene expression on prognosis of adult de novo acute myeloid leukemia with normal karyotype patients. Radiol Oncol 2023:raon-2023-0017. [PMID: 37078709 DOI: 10.2478/raon-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Deregulation of the apoptotic process underlies the pathogenesis of many cancers, including leukemia, but is also very important for the success of chemotherapy treatment. Therefore, the gene expression profile of main apoptotic factors, such as anti-apoptotic BCL2 (B-cell lymphoma protein 2) and pro-apoptotic BAX (BCL2-associated X), as well as genes involved in the multi-drug resistance (ABCB1), could have significant impact on the prognosis and could be used as targets for specific therapy. PATIENTS AND METHODS We analyzed the expression of BCL2, BAX, and ABCB1 in bone-marrow samples collected at diagnosis from 51 adult patients with acute myeloid leukemia with normal karyotype (AML-NK) using real-time polymerase chain reaction method, and examined their prognostic potential. RESULTS Increased expression of BCL2 (BCL2 +) was associated with the presence of chemoresistance (p = 0.024), while patients with low BAX expression were more prone to relapse (p = 0.047). Analysis of the combined effect of BCL2 and BAX expression showed that 87% of patients with BAX/BCL2 low status were resistant to therapy (p = 0.044). High expression of ABCB1 was associated with BCL2 + status (p < 0.001), and with absence FLT3-ITD mutations (p = 0.019). CONCLUSIONS The present analysis of BCL2, BAX, and ABCB1 gene expression profiles is the first study focusing solely on AML-NK patients. Preliminary results showed that patients with high BCL2 expression are likely to experience resistance to chemotherapy, and may benefit from specific anti-BCL2 treatment. Further investigations conducted on a larger number of patients could elucidate actual prognostic significance of these genes in AML-NK patients.
Collapse
Affiliation(s)
- Zlatko Pravdic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
| | - Nada Suvajdzic Vukovic
- Clinic of Hematology, Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Serbia
| | - Vladimir Gasic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | | | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| |
Collapse
|
5
|
Casado P, Cutillas PR. Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine. Mol Cell Proteomics 2023; 22:100517. [PMID: 36805445 PMCID: PMC10152134 DOI: 10.1016/j.mcpro.2023.100517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. However, due to disease complexity, these therapies produce very diverse responses, and survival rates are still low. Thus, despite considerable advances, there remains a need for therapies that target different aspects of leukemic biology and for associated biomarkers that define patient populations likely to respond to each available therapy. To meet this need, drugs that target different AML vulnerabilities are currently in advanced stages of clinical development. Here, we review proteomics and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease heterogeneity not attainable with genomic approaches. To place the discussion in context, we first provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins targeted by compounds that have been approved or are under clinical trials for AML treatment and, if available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics approaches can play a crucial role in the development and implementation of precision medicine for AML patients.
Collapse
Affiliation(s)
- Pedro Casado
- Cell Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro R Cutillas
- Cell Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; The Alan Turing Institute, The British Library, London, United Kingdom; Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
6
|
Sahasrabudhe KD, Mims AS. Venetoclax and acute myeloid leukaemia: an expanding new frontier. THE LANCET HAEMATOLOGY 2022; 9:e387-e389. [DOI: 10.1016/s2352-3026(22)00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
|
7
|
Venetoclax plus 3 + 7 daunorubicin and cytarabine chemotherapy as first-line treatment for adults with acute myeloid leukaemia: a multicentre, single-arm, phase 2 trial. THE LANCET HAEMATOLOGY 2022; 9:e415-e424. [DOI: 10.1016/s2352-3026(22)00106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
|
8
|
Lachowiez CA, Atluri H, DiNardo CD. Advancing the standard: venetoclax combined with intensive induction and consolidation therapy for acute myeloid leukemia. Ther Adv Hematol 2022; 13:20406207221093964. [PMID: 35510212 PMCID: PMC9058453 DOI: 10.1177/20406207221093964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
The B-cell lymphoma 2 (BCL-2) inhibitor venetoclax (VEN) in combination with lower-intensity therapy is an efficacious treatment for acute myeloid leukemia (AML). VEN in combination with the hypomethylating agent azacitidine improved rates of response and measurable residual disease (MRD)-negative remissions in addition to overall survival in the pivotal phase 3 VIALE-A trial compared with azacitidine monotherapy and has since emerged as the current standard of care in older or unfit patients with AML. In younger, fit patients with AML, intensive induction and consolidation chemotherapy (IC) is commonly employed as frontline therapy; however, relapse remains the principal cause of treatment failure in approximately 30-40% of patients. Improved IC regimens that increase MRD-negative response rates, result in durable remissions, and enable transition to curative allogeneic hematopoietic stem cell transplantation in appropriate patients remain an area of active inquiry. Preliminary results from trials investigating the combination of VEN with IC have reported promising findings to date, with composite complete remission and MRD-negative remission rates of approximately 89-94% and 82-93%, respectively, correlating with improved 12-month event-free and overall survival compared to historical outcomes with IC. Herein, we discuss ongoing trials investigating VEN in combination with IC in addition to outcomes within specific molecularly defined subgroups; review the molecular mechanisms of sensitivity and resistance to VEN, and highlight future combinations of VEN with novel targeted therapies for the treatment of AML.
Collapse
Affiliation(s)
- Curtis A. Lachowiez
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Himachandana Atluri
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kropp EM, Li Q. Mechanisms of Resistance to Targeted Therapies for Relapsed or Refractory Acute Myeloid Leukemia. Exp Hematol 2022; 111:13-24. [PMID: 35417742 PMCID: PMC10116852 DOI: 10.1016/j.exphem.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease of clonal hematopoiesis with a high rate of relapse and refractory disease despite intensive therapy. Traditionally, relapsed or refractory AML has increased therapeutic resistance and poor long-term survival. In recent years, advancements in the mechanistic understanding of leukemogenesis have allowed for the development of targeted therapies. These therapies offer novel alternatives to intensive chemotherapy and have prolonged survival in relapsed or refractory AML. Unfortunately, a significant portion of patients do not respond to these therapies and relapse occurs in most patients who initially responded. This review focuses on the mechanisms of resistance to targeted therapies in relapsed or refractory AML.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan-Ann Arbor, Ann Arbor, MI.
| |
Collapse
|
10
|
Makowka P, Stolp V, Stoschek K, Serve H. Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia. Biol Chem 2021; 402:1547-1564. [PMID: 34700366 DOI: 10.1515/hsz-2021-0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, highly malignant disease of the bone marrow. After decades of slow progress, recent years saw a surge of novel agents for its treatment. The most recent advancement is the registration of the Bcl-2 inhibitor ventoclax in combination with a hypomethylating agent (HMA) in the US and Europe for AML patients not eligible for intensive chemotherapy. Treatment of newly diagnosed AML patients with this combination results in remission rates that so far could only be achieved with intensive treatment. However, not all AML patients respond equally well, and some patients relapse early, while other patients experience longer periods of complete remission. A hallmark of AML is its remarkable genetic, molecular and clinical heterogeneity. Here, we review the current knowledge about molecular features of AML that help estimate the probability of response to venetoclax-containing therapies. In contrast to other newly developed AML therapies that target specific recurrent molecular alterations, it seems so far that responses are not specific for a certain subgroup. One exception is spliceosome mutations, where good response has been observed in clinical trials with venetoclax/azacitidine. These mutations are rather associated with a more unfavorable outcome with chemotherapy. In summary, venetoclax in combination with hypomethylating agents represents a significant novel option for AML patients with various molecular aberrations. Mechanisms of primary and secondary resistance seem to overlap with those towards chemotherapy.
Collapse
Affiliation(s)
- Philipp Makowka
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Verena Stolp
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Karoline Stoschek
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
12
|
Chen W, Li J. Alternative splicing of BCL-X and implications for treating hematological malignancies. Oncol Lett 2021; 22:670. [PMID: 34345295 PMCID: PMC8323006 DOI: 10.3892/ol.2021.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
BCL-X is a member of the BCL-2 family. It regulates apoptosis and plays a critical role in hematological malignancies. It is well-known that >90% of human genes undergo alternative splicing. A total of 10 distinct splicing transcripts of the BCL-X gene have been identified, including transcript variants 1–9 and ABALON. Different transcripts from the same gene have different functions. The present review discusses the progress in understanding the different alternative splicing transcripts of BCL-X, including their characteristics, functions and expression patterns. The potential use of BCL-X in targeted therapies for hematological malignancies is also discussed.
Collapse
Affiliation(s)
- Wanling Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Jinggang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
13
|
Ding YY, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, Zhang R, Xu J, Chen CH, Hu Y, Tasian SK, Tan K. Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:5109-5122. [PMID: 34210682 DOI: 10.1158/1078-0432.ccr-21-0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Systems biology approaches can identify critical targets in complex cancer signaling networks to inform new therapy combinations that may overcome conventional treatment resistance. EXPERIMENTAL DESIGN We performed integrated analysis of 1,046 childhood B-ALL cases and developed a data-driven network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a common high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. RESULTS We identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Genetic cotargeting of the synergistic key regulator pair STAT5B and BCL2-associated athanogene 1 (BAG1) significantly reduced leukemia cell viability in vitro. Pharmacologic inhibition with dual small molecule inhibitor therapy targeting this pair of key nodes further demonstrated enhanced antileukemia efficacy of combining the BCL-2 inhibitor venetoclax with the tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple childhood Ph-like ALL patient-derived xenograft models. Consistent with network controllability theory, co-inhibitor treatment also shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically favorable childhood B-ALL subtypes. CONCLUSIONS Our study represents a powerful conceptual framework for combinatorial drug discovery based on systematic interrogation of synergistic vulnerability pathways with pharmacologic inhibitor validation in preclinical human leukemia models.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Kim
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kellyn Madden
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P Loftus
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Hottman Allen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruitao Zhang
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Sarah K Tasian
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
15
|
Saliba AN, John AJ, Kaufmann SH. Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:125-142. [PMID: 33796823 PMCID: PMC8011583 DOI: 10.20517/cdr.2020.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
Collapse
Affiliation(s)
- Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - August J John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Parry N, Wheadon H, Copland M. The application of BH3 mimetics in myeloid leukemias. Cell Death Dis 2021; 12:222. [PMID: 33637708 PMCID: PMC7908010 DOI: 10.1038/s41419-021-03500-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Execution of the intrinsic apoptotic pathway is controlled by the BCL-2 proteins at the level of the mitochondrial outer membrane (MOM). This family of proteins consists of prosurvival (e.g., BCL-2, MCL-1) and proapoptotic (e.g., BIM, BAD, HRK) members, the functional balance of which dictates the activation of BAX and BAK. Once activated, BAX/BAK form pores in the MOM, resulting in cytochrome c release from the mitochondrial intermembrane space, leading to apoptosome formation, caspase activation, and cleavage of intracellular targets. This pathway is induced by cellular stress including DNA damage, cytokine and growth factor withdrawal, and chemotherapy/drug treatment. A well-documented defense of leukemia cells is to shift the balance of the BCL-2 family in favor of the prosurvival proteins to protect against such intra- and extracellular stimuli. Small molecule inhibitors targeting the prosurvival proteins, named 'BH3 mimetics', have come to the fore in recent years to treat hematological malignancies, both as single agents and in combination with standard-of-care therapies. The most significant example of these is the BCL-2-specific inhibitor venetoclax, given in combination with standard-of-care therapies with great success in AML in clinical trials. As the number and variety of available BH3 mimetics increases, and investigations into applying these novel inhibitors to treat myeloid leukemias continue apace the need to evaluate where we currently stand in this rapidly expanding field is clear.
Collapse
Affiliation(s)
- Narissa Parry
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK.
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Timofeeva N, Gandhi V. Metabolism meets apoptosis in AML. Leuk Lymphoma 2020; 62:514-516. [PMID: 33356786 DOI: 10.1080/10428194.2020.1858294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
19
|
Gangat N, Tefferi A. Venetoclax-based chemotherapy in acute and chronic myeloid neoplasms: literature survey and practice points. Blood Cancer J 2020; 10:122. [PMID: 33230098 PMCID: PMC7684277 DOI: 10.1038/s41408-020-00388-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Venetoclax (VEN), a small-molecule inhibitor of B cell leukemia/lymphoma-2, is now FDA approved (November 2018) for use in acute myeloid leukemia (AML), specific to newly diagnosed elderly or unfit patients, in combination with a hypomethylating agent (HMA; including azacitidine or decitabine) or low-dose cytarabine. A recent phase-3 study compared VEN combined with either azacitidine or placebo, in the aforementioned study population; the complete remission (CR) and CR with incomplete count recovery (CRi) rates were 28.3% and 66.4%, respectively, and an improvement in overall survival was also demonstrated. VEN-based chemotherapy has also shown activity in relapsed/refractory AML (CR/CRi rates of 33-46%), high-risk myelodysplastic syndromes (CR 39% in treatment naïve, 5-14% in HMA failure), and blast-phase myeloproliferative neoplasm (CR 25%); in all instances, an additional fraction of patients met less stringent criteria for overall response. Regardless, venetoclax-induced remissions were often short-lived (less than a year) but long enough to allow some patients transition to allogeneic stem cell transplant. Herein, we review the current literature on the use of VEN-based combination therapy in both acute and chronic myeloid malignancies and also provide an outline of procedures we follow at our institution for drug administration, monitoring of adverse events and dose adjustments.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Clinical Trials, Phase III as Topic
- Cytarabine/therapeutic use
- Decitabine/therapeutic use
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Randomized Controlled Trials as Topic
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| | | |
Collapse
|
20
|
Absence of BCL-2 Expression Identifies a Subgroup of AML with Distinct Phenotypic, Molecular, and Clinical Characteristics. J Clin Med 2020; 9:jcm9103090. [PMID: 32992732 PMCID: PMC7599534 DOI: 10.3390/jcm9103090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most—and least—likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2−. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.
Collapse
|
21
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
22
|
Wilde L, Ramanathan S, Kasner M. B-cell lymphoma-2 inhibition and resistance in acute myeloid leukemia. World J Clin Oncol 2020; 11:528-540. [PMID: 32879842 PMCID: PMC7443828 DOI: 10.5306/wjco.v11.i8.528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Spurred by better understanding of disease biology, improvements in molecular diagnostics, and the development of targeted therapies, the treatment of acute myeloid leukemia (AML) has undergone significant evolution in recent years. Arguably, the most exciting shift has come from the success of treatment with the B-cell lymphoma-2 inhibitor venetoclax. When given in combination with a hypomethylating agent or low dose cytarabine, venetoclax demonstrates high response rates, some of which are durable. In spite of this, relapses after venetoclax treatment are common, and much interest exists in elucidating the mechanisms of resistance to the drug. Alterations in leukemic stem cell metabolism have been identified as a possible escape route, and clinical trials focusing on targeting metabolism in AML are ongoing. This review article highlights current research regarding venetoclax treatment and resistance in AML with a focus on cellular metabolism.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Sabarina Ramanathan
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Margaret Kasner
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| |
Collapse
|
23
|
Shallis RM, Boddu PC, Bewersdorf JP, Zeidan AM. The golden age for patients in their golden years: The progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia. Blood Rev 2020; 40:100639. [DOI: 10.1016/j.blre.2019.100639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022]
|
24
|
Abstract
OBJECTIVE To provide a comprehensive review of evidence-based data on the newly approved therapeutic agents in acute myeloid leukemia (AML) with regards to appropriate indications for use, efficacy, and safety. DATA SOURCES Published clinical trials and observational studies. CONCLUSION Optimal treatment decisions for AML should be personalized based on individual patients' performance status, disease risk as determined by mutational profile, response status, and prior therapies received. While the treatment options have expanded, several questions remain regarding appropriate patient selection, long-term efficacy and safety of these agents, and sequencing of therapies among available options. IMPLICATIONS FOR NURSING PRACTICE Nurses need to be familiar with the peculiarities of the administration regimens of newer AML therapies, adopt formal monitoring strategies for side effects that are unique to these agents, and develop a framework to facilitate timeliness of follow-up and monitoring while on these therapies.
Collapse
Affiliation(s)
- Sudipto Mukherjee
- Department of Hematology and Medical Oncology, Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Mikkael A Sekeres
- Department of Hematology and Medical Oncology, Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
25
|
Yiau SKX, Lee C, Mohd Tohit ER, Chang KM, Abdullah M. Potential CD34 signaling through phosphorylated-BAD in chemotherapy-resistant acute myeloid leukemia. J Recept Signal Transduct Res 2019; 39:276-282. [PMID: 31509041 DOI: 10.1080/10799893.2019.1660899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemia (AML) constitutively express growth factors and cytokines for survival. Chemotherapy alters these signals to induce cell death. However, drug resistance in AML remains a major hindrance to successful treatment and early warning is unavailable. Modulation of signaling pathways during chemotherapy may provide a window to detect response and predict treatment outcome. Blood samples collected from AML patients before and at day-3 of induction therapy were compared for changes in expression of CD117, CD34, pro-inflammatory cytokines and mediators of Akt and MAPK pathways, using multi-color flow cytometry. Nine patients were diagnosed as drug-resistant and seven sensitive to chemotherapy. Twelve were paired. Average percentages of CD34 (66.8 ± 11.7% vs. 26.2 ± 5.8%, p = 0.033) and pBAD (66.9 ± 8.2% vs. 28.9 ± 8.2%, p = 0.016) were significantly increased in chemo-resistant (N = 9) compared to chemo-sensitive (N = 5) samples. Percentages of CD34 were strongly correlated with pBAD (R = 0.785; p = 0.001; N = 14) and pFKHR (R = 0.755; p = 0.002; N = 14) at day-3 induction. Chemo-sensitive cases expressed significantly higher percentages of IL-18Rα (71.9 ± 9.6% vs. 29.8 ± 5.8%, p = 0.016). Though not significantly different in the outcome, IL-1β was strongly associated with activated Akt-S473, IL-6 with phosphorylated JNK and FKHR while TNF-α appeared to trigger Bim, in treated samples. These preliminary results suggested AML cells resistant to chemotherapy increased expression of CD34 and may signal through pBAD while cells sensitive to chemotherapy-induced IL18Rα expression. These were observed early during induction therapy. Identifying CD34 is interesting as it is a convenient marker to monitor drug-resistance in AML patients. Inhibition of CD34 and pBAD signaling may be important in treating drug-resistant AML.
Collapse
Affiliation(s)
- Stephnie Kang-Xian Yiau
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia
| | - CinDee Lee
- Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| | - Eusni Rahayu Mohd Tohit
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia
| | - Kian Meng Chang
- Department of Hematology, Hospital Ampang, Jalan Mewah Utara , Ampang , Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
26
|
Abstract
Apoptosis, the process of programmed cell death, occurs normally during development and aging. Members of the B-cell lymphoma 2 (BCL2) family of proteins are central regulators of apoptosis, and resistance to apoptosis is one of the hallmarks of cancer. Targeting the apoptotic pathway via BCL2 inhibitors has been considered a promising treatment strategy in the past decade. Initial efforts with small molecule BH3 mimetics such as ABT-737 and ABT-263 (navitoclax) pioneered the development of the first-in-class Food and Drug Administration (FDA)-approved oral BCL2 inhibitor, venetoclax. Venetoclax was approved for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia, and is now being studied in a number of hematologic malignancies. Several other inhibitors targeting different BCL2 family members are now in early stages of development.
Collapse
Affiliation(s)
- Fevzi F Yalniz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Gotsbacher MP, Cho SM, Kim NH, Liu F, Kwon HJ, Karuso P. Reverse Chemical Proteomics Identifies an Unanticipated Human Target of the Antimalarial Artesunate. ACS Chem Biol 2019; 14:636-643. [PMID: 30840434 DOI: 10.1021/acschembio.8b01004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Artemisinins are the most potent and safe antimalarials available. Despite their clinical potential, no human target for the artemisinins is known. The unbiased interrogation of several human cDNA libraries, displayed on bacteriophage T7, revealed a single human target of artesunate; the intrinsically disordered Bcl-2 antagonist of cell death promoter (BAD). We show that artesunate inhibits the phosphorylation of BAD, thereby promoting the formation of the proapoptotic BAD/Bcl-xL complex and the subsequent intrinsic apoptotic cascade involving cytochrome c release, PARP cleavage, caspase activation, and ultimately cell death. This unanticipated role of BAD as a possible drug target of artesunate points to direct clinical exploitation of artemisinins in the Bcl-xL life/death switch and that artesunate's anticancer activity is, at least in part, independent of reactive oxygen species.
Collapse
Affiliation(s)
| | - Sung Min Cho
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Nam Hee Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Fei Liu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
28
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
29
|
Küley‐Bagheri Y, Kreuzer K, Monsef I, Lübbert M, Skoetz N. Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (non-APL)). Cochrane Database Syst Rev 2018; 8:CD011960. [PMID: 30080246 PMCID: PMC6513628 DOI: 10.1002/14651858.cd011960.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is the most common acute leukaemia affecting adults. Most patients diagnosed with AML are at advanced age and present with co-morbidities, so that intensive therapy such as stem cell transplantation (SCT) is impossible to provide or is accompanied by high risks for serious adverse events and treatment-related mortality. Especially for these patients, it is necessary to find out whether all-trans retinoic acid (ATRA), an intermediate of vitamin A inducing terminal differentiation of leukaemic cell lines, added to chemotherapy confers increased benefit or harm when compared with the same chemotherapy alone. OBJECTIVES This review aims to determine benefits and harms of ATRA in addition to chemotherapy compared to chemotherapy alone for adults with AML (not those with acute promyelocytic leukaemia (non-APL)). SEARCH METHODS We searched the Central Register of Controlled Trials (CENTRAL), MEDLINE, study registries and relevant conference proceedings up to July 2018 for randomised controlled trials (RCTs). We also contacted experts for unpublished data. SELECTION CRITERIA We included RCTs comparing chemotherapy alone with chemotherapy plus ATRA in patients with all stages of AML. We excluded trials if less than 80% of participants were adults or participants with AML, and if no subgroup data were available. Patients with myelodysplastic syndrome (MDS) were included, if they had a refractory anaemia and more than 20% of blasts. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the quality of trials. We contacted study authors to obtain missing information. We used hazard ratios (HR) for overall survival (OS) and disease-free survival (DFS; instead of the pre-planned event-free survival, as this outcome was not reported), and we calculated risk ratios (RR) for the other outcomes quality of life, on-study mortality and adverse events. We presented all measures with 95% confidence intervals (CIs). We assessed the certainty of evidence using GRADE methods. MAIN RESULTS Our search resulted in 2192 potentially relevant references, of which we included eight trials with 28 publications assessing 3998 patients. Overall, we judged the potential risk of bias of the eight included trials as moderate. Two of eight trials were published as abstracts only. All the included trials used different chemotherapy schedules and one trial only evaluated the effect of the hypomethylating agent decitabine, a drug know to affect epigenetics, in combination with ATRA.The addition of ATRA to chemotherapy resulted in probably little or no difference in OS compared to chemotherapy only (2985 participants; HR 0.94 (95% confidence interval (CI) 0.87 to 1.02); moderate-certainty evidence). Based on a mortality rate at 24 months of 70% with chemotherapy alone, the mortality rate with chemotherapy plus ATRA was 68% (95% CI 65% to 71%).For DFS, complete response rate (CRR) and on-study mortality there was probably little or no difference between treatment groups (DFS: 1258 participants, HR 0.99, 95% CI 0.87 to 1.12; CRR: 3081 participants, RR 1.02, 95% CI 0.96 to 1.09; on-study mortality: 2839 participants, RR 1.02, 95% CI 0.81 to 1.30, all moderate-certainty evidence).Three trials with 1428 participants reported the adverse events 'infection' and 'cardiac toxicity': There was probably no, or little difference in terms of infection rate between participants receiving ATRA or not (RR 1.05, 95% CI 0.96 to 1.15; moderate-certainty evidence). We are uncertain whether ATRA decreases cardiac toxicity (RR 0.46, 95% CI 0.24 to 0.90; P = 0.02, very low certainty-evidence, however, cardiac toxicity was low).Rates and severity of diarrhoea and nausea/vomiting were assessed in two trials with 337 patients and we are uncertain whether there is a difference between treatment arms (diarrhoea: RR 2.19, 95% CI 1.07 to 4.47; nausea/vomiting: RR 1.46, 95% CI 0.75 to 2.85; both very low-certainty evidence).Quality of life was not reported by any of the included trials. AUTHORS' CONCLUSIONS We found no evidence for a difference between participants receiving ATRA in addition to chemotherapy or chemotherapy only for the outcome OS. Regarding DFS, CRR and on-study mortality, there is probably no evidence for a difference between treatment groups. Currently, it seems the risk of adverse events are comparable to chemotherapy only.As quality of life has not been evaluated in any of the included trials, further research is needed to clarify the effect of ATRA on quality of life.
Collapse
Affiliation(s)
- Yasemin Küley‐Bagheri
- University Hospital of CologneCochrane Haematological Malignancies Group, Department I of Internal MedicineCologneGermany
| | - Karl‐Anton Kreuzer
- University Hospital of CologneDepartment I of Internal MedicineCologneGermany
| | - Ina Monsef
- University Hospital of CologneCochrane Haematological Malignancies Group, Department I of Internal MedicineCologneGermany
| | | | - Nicole Skoetz
- University Hospital of CologneCochrane Haematological Malignancies Group, Department I of Internal MedicineCologneGermany
| | | |
Collapse
|
30
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
31
|
Nikkhah H, Safarzadeh E, Shamsasenjan K, Yousefi M, Lotfinejad P, Talebi M, Mohammadian M, Golafshan F, Movassaghpour A. The Effect of Bone Marrow Mesenchymal Stem Cells on the Granulocytic Differentiation of HL-60 Cells. Turk J Haematol 2018; 35:42-48. [PMID: 28611013 PMCID: PMC5843773 DOI: 10.4274/tjh.2016.0498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types. They control the process of hematopoiesis by secreting regulatory cytokines and growth factors and by the expression of important cell adhesion molecules for cell-to-cell interactions. This investigation was intended to examine the effect of bone marrow (BM)-derived MSCs on the differentiation of HL-60 cells according to morphological evaluation, flow cytometry analysis, and gene expression profile. Materials and Methods: The BM-MSCs were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (FBS). After the third passage, the BM-MSCs were irradiated at 30 Gy. To compare how the HL-60 cells differentiated in groups treated differently, HL-60 cells were cultured in RPMI-1640 and supplemented with 10% FBS. The HL-60 cells were seeded into six-well culture plates and treated with all-trans-retinoic acid (ATRA), BM-MSCs, or BM-MSCs in combination with ATRA, while one well remained as untreated HL-60 cells. The expression levels of the granulocyte subset-specific genes in the HL-60 cells were assayed by real-time polymerase chain reaction. Results: Our results revealed that BM-MSCs support the granulocytic differentiation of the human promyelocytic leukemia cell line HL-60. Conclusion: Based on the results of this study, we concluded that BM-MSCs may be an effective resource in reducing or even preventing ATRA’s side effects and may promote differentiation for short medication periods. Though BM-MSCs are effective resources, more complementary studies are necessary to improve this differentiation mechanism in clinical cases.
Collapse
Affiliation(s)
- Hossein Nikkhah
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Elham Safarzadeh
- Tabriz University Faculty of Medicine, Drug Applied Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Karim Shamsasenjan
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Mehdi Yousefi
- Tabriz University Faculty of Medicine, Drug Applied Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Parisa Lotfinejad
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran.,Tabriz University Faculty of Medicine, Department of Immunology, Tabriz, Iran
| | - Mehdi Talebi
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| | - Mozhde Mohammadian
- Mazandaran University Faculty of Medicine, Amol Faculty of Paramedical Sciences, Sari, Iran
| | - Farhoud Golafshan
- Hamline University Faculty of Medicine, Department of Biology, Minnesota, USA
| | - Aliakbar Movassaghpour
- Tabriz University Faculty of Medicine, Hematology and Oncology Research Center, Tabriz, Iran
| |
Collapse
|
32
|
Kayser S, Levis MJ. Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol 2018; 180:484-500. [PMID: 29193012 PMCID: PMC5801209 DOI: 10.1111/bjh.15032] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
In the past few years, research in the underlying pathogenic mechanisms of acute myeloid leukaemia (AML) has led to remarkable advances in our understanding of the disease. Cytogenetic and molecular aberrations are the most important factors in determining response to chemotherapy as well as long-term outcome, but beyond prognostication are potential therapeutic targets. Our increased understanding of the pathogenesis of AML, facilitated by next-generation sequencing, has spurred the development of new compounds in the treatment of AML, particularly the creation of small molecules that target the disease on a molecular level. Various new agents, such as tyrosine kinase inhibitors, immune checkpoint inhibitors, monoclonal or bispecific T-cell engager antibodies, metabolic and pro-apoptotic agents are currently investigated within clinical trials. The highest response rates are often achieved when new molecularly targeted therapies are combined with standard chemotherapy. Presented here is an overview of novel therapies currently being evaluated in AML.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Haematology/Oncology, German Cancer Research Centre (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
33
|
Kavanagh S, Murphy T, Law A, Yehudai D, Ho JM, Chan S, Schimmer AD. Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight 2017; 2:95679. [PMID: 28931762 PMCID: PMC5621868 DOI: 10.1172/jci.insight.95679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a poor outcome; overall survival is approximately 35% at two years and some subgroups have a less than 5% two-year survival. Recently, significant improvements have been made in our understanding of AML biology and genetics. These fundamental discoveries are now being translated into new therapies for this disease. This review will discuss recent advances in AML biology and the emerging treatments that are arising from biological studies. Specifically, we will consider new therapies that target molecular mutations in AML and dysregulated pathways such as apoptosis and mitochondrial metabolism. We will also discuss recent advances in immune and cellular therapy for AML.
Collapse
|
34
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
35
|
Schlenk RF, Lübbert M, Benner A, Lamparter A, Krauter J, Herr W, Martin H, Salih HR, Kündgen A, Horst HA, Brossart P, Götze K, Nachbaur D, Wattad M, Köhne CH, Fiedler W, Bentz M, Wulf G, Held G, Hertenstein B, Salwender H, Gaidzik VI, Schlegelberger B, Weber D, Döhner K, Ganser A, Döhner H. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: results of the randomized AMLSG 07-04 study. Ann Hematol 2016; 95:1931-1942. [PMID: 27696203 PMCID: PMC5093206 DOI: 10.1007/s00277-016-2810-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022]
Abstract
The aim of this clinical trial was to evaluate the impact of all-trans retinoic acid (ATRA) in combination with chemotherapy and to assess the NPM1 status as biomarker for ATRA therapy in younger adult patients (18–60 years) with acute myeloid leukemia (AML). Patients were randomized for intensive chemotherapy with or without open-label ATRA (45 mg/m2, days 6–8; 15 mg/m2, days 9–21). Two cycles of induction therapy were followed by risk-adapted consolidation with high-dose cytarabine or allogeneic hematopoietic cell transplantation. Due to the open label character of the study, analysis was performed on an intention-to-treat (ITT) and a per-protocol (PP) basis. One thousand one hundred patients were randomized (556, STANDARD; 544, ATRA) with 38 patients treated vice versa. Median follow-up for survival was 5.2 years. ITT analyses revealed no difference between ATRA and STANDARD for the total cohort and for the subset of NPM1-mutated AML with respect to event-free (EFS; p = 0.93, p = 0.17) and overall survival (OS; p = 0.24 and p = 0.32, respectively). Pre-specified PP analyses revealed better EFS in NPM1-mutated AML (p = 0.05) and better OS in the total cohort (p = 0.03). Explorative subgroup analyses on an ITT basis revealed better OS (p = 0.05) in ATRA for genetic low-risk patients according to ELN recommendations. The clinical trial is registered at clinicaltrialsregister.eu (EudraCT Number: 2004-004321-95).
Collapse
Affiliation(s)
- Richard F Schlenk
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany. .,National Center for Tumor Diseases (NCT), German Cancer Research Center, Heidelberg, Germany.
| | - Michael Lübbert
- Department of Hematology and Oncology, University Hospital of Freiburg, Freiburg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Alexander Lamparter
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Jürgen Krauter
- Department of Oncology and Hematology, Klinikum Braunschweig, Braunschweig, Germany.,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herr
- Department of Medicine III, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Internal Medicine III, University of Regensburg, Regensburg, Germany
| | - Hans Martin
- Department of Internal Medicine II, University Hospital, Frankfurt, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, Eberhard-Karls University, Tübingen, Germany
| | - Andrea Kündgen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Heinz-A Horst
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Peter Brossart
- Department of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| | - Katharina Götze
- Department of Internal Medicine III, Technical University of Munich, Munich, Germany
| | - David Nachbaur
- Department of Internal Medicine V, University Hospital Innsbruck, Innsbruck, Austria
| | - Mohammed Wattad
- Department of Hematology, Oncology and Stem Cell Transplantation, Klinikum Essen Süd, Essen, Germany
| | - Claus-Henning Köhne
- Department of Oncology and Hematology, Klinikum Oldenburg, Oldenburg, Germany
| | - Walter Fiedler
- Department of Internal Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, University Hospital of Göttingen, Göttingen, Germany
| | - Gerhard Held
- Department of Internal Medicine I, University Hospital of Saarland, Homburg, Germany
| | - Bernd Hertenstein
- Department of Internal Medicine I, Klinikum Bremen Mitte, Bremen, Germany
| | - Hans Salwender
- Department of Hematology/Oncology, Asklepios Klinik Altona, Hamburg, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Arnold Ganser
- Department of Hematology/Oncology, Asklepios Klinik Altona, Hamburg, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | | |
Collapse
|
36
|
Hütter-Krönke ML, Benner A, Döhner K, Krauter J, Weber D, Moessner M, Köhne CH, Horst HA, Schmidt-Wolf IGH, Rummel M, Götze K, Koller E, Petzer AL, Salwender H, Fiedler W, Kirchen H, Haase D, Kremers S, Theobald M, Matzdorff AC, Ganser A, Döhner H, Schlenk RF. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy. Haematologica 2016; 101:839-45. [PMID: 27036160 DOI: 10.3324/haematol.2015.141622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/24/2016] [Indexed: 12/29/2022] Open
Abstract
Outcome of patients with primary refractory acute myeloid leukemia remains unsatisfactory. We conducted a prospective phase II clinical trial with gemtuzumab ozogamicin (3 mg/m(2) intravenously on day 1), all-trans retinoic acid (45 mg/m(2) orally on days 4-6 and 15 mg/m(2) orally on days 7-28), high-dose cytarabine (3 g/m(2)/12 h intravenously on days 1-3) and mitoxantrone (12 mg/m(2) intravenously on days 2-3) in 93 patients aged 18-60 years refractory to one cycle of induction therapy. Primary end point of the study was response to therapy; secondary end points included evaluation of toxicities, in particular, rate of sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Complete remission or complete remission with incomplete blood count recovery was achieved in 47 (51%) and partial remission in 10 (11%) patients resulting in an overall response rate of 61.5%; 33 (35.5%) patients had refractory disease and 3 patients (3%) died. Allogeneic hematopoietic cell transplantation was performed in 71 (76%) patients; 6 of the 71 (8.5%) patients developed moderate or severe sinusoidal obstruction syndrome after transplantation. Four-year overall survival rate was 32% (95% confidence interval 24%-43%). Patients responding to salvage therapy and undergoing allogeneic hematopoietic cell transplantation (n=51) had a 4-year survival rate of 49% (95% confidence intervaI 37%-64%). Patients with fms-like tyrosine kinase internal tandem duplication positive acute myeloid leukemia had a poor outcome despite transplantation. In conclusion, the described regimen is an effective and tolerable salvage therapy for patients who are primary refractory to one cycle of conventional intensive induction therapy. (clinicaltrials.gov identifier: 00143975).
Collapse
Affiliation(s)
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, Germany
| | - Jürgen Krauter
- Department of Oncology and Hematology, Klinikum Braunschweig, Germany Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital Ulm, Germany
| | - Margit Moessner
- Department of Internal Medicine III, University Hospital Ulm, Germany
| | | | - Heinz A Horst
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Germany
| | | | - Mathias Rummel
- Department of Hematology/Oncology, University-hospital Giessen, Germany
| | - Katharina Götze
- Department of Internal Medicine III, Technical University of Munich, Germany
| | - Elisabeth Koller
- Department of Hematology/Oncology, Hanuschkrankenhaus, Wien, Austria
| | - Andreas L Petzer
- Department of Medical Oncology and Hematology, Krankenhaus der Barmherzigen Schwestern, Linz, Austria
| | - Hans Salwender
- Department of Hematology/Oncology, Asklepios Klinik Altona, Hamburg, Germany
| | - Walter Fiedler
- Department of Internal Medicine II, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heinz Kirchen
- Department of Hematology/Oncology, Krankenhaus der Barmherzigen Brüder, Trier, Germany
| | - Detlef Haase
- Department of Hematology and Oncology, Georg-August-University Hospital of Göttingen, Germany
| | - Stephan Kremers
- Department of Hematology/Oncology, Caritas-Krankenhaus, Lebach, Germany
| | - Matthias Theobald
- Department of Medicine III, Johannes Gutenberg-University Mainz, Germany
| | - Axel C Matzdorff
- Department of Hematology/Oncology, Caritas-Krankenhaus, Saarbrücken, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, Germany
| | - Richard F Schlenk
- Department of Internal Medicine III, University Hospital Ulm, Germany
| |
Collapse
|
37
|
Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety. Oncotarget 2016; 6:5582-96. [PMID: 25714024 PMCID: PMC4467388 DOI: 10.18632/oncotarget.3336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/04/2015] [Indexed: 12/29/2022] Open
Abstract
Anti-apoptotic protein Mcl-1 plays an important role in protecting cell from death in acute myeloid leukemia (AML). The apoptosis blocking activity of Mcl-1 is inhibited by BH3-only protein Noxa. We found that dihydroartemisinin (DHA) and its derivative X-11 are potent apoptosis inducers in AML cells and act through a Noxa-mediate pathway; X-11 is four-fold more active than DHA. DHA and X-11-induced apoptosis is associated with induction of Noxa; apoptosis is blocked by silencing Noxa. DHA and X-11 induce Noxa expression by upregulating the transcription factor FOXO3a in a reactive oxygen species-mediated pathway. Interfering with the integrity of the endoperoxide moiety of DHA and X-11, as well as chelating intracellular iron with deferoxamine, diminish apoptosis and Noxa induction. AML cells expressing Bcl-xL, or with overexpression of Bcl-2, have decreased sensitivity to DHA and X-11-induced apoptosis which could be overcome by addition of Bcl-2/Bcl-xL inhibitor ABT-737. DHA and X-11 represent a new group of AML cells-apoptosis inducing compounds which work through Noxa up-regulation utilizing the specific endoperoxide moiety and intracellular iron.
Collapse
|
38
|
Yamashita M, Nitta E, Suda T. Regulation of hematopoietic stem cell integrity through p53 and its related factors. Ann N Y Acad Sci 2015; 1370:45-54. [DOI: 10.1111/nyas.12986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Masayuki Yamashita
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology; Department of Medicine, University of California San Francisco; San Francisco California
| | - Eriko Nitta
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Cancer Science Institute; National University of Singapore; Singapore
- International Research Center for Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
39
|
Küley-Bagheri Y, Kreuzer KA, Engert A, Skoetz N. Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (APL)). Hippokratia 2015. [DOI: 10.1002/14651858.cd011960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasemin Küley-Bagheri
- University Hospital of Cologne; Cochrane Haematological Malignancies Group, Department I of Internal Medicine; Cologne Germany
| | - Karl-Anton Kreuzer
- University Hospital of Cologne; Department I of Internal Medicine; Cologne Germany
| | - Andreas Engert
- University Hospital of Cologne; Department I of Internal Medicine; Cologne Germany
| | - Nicole Skoetz
- University Hospital of Cologne; Cochrane Haematological Malignancies Group, Department I of Internal Medicine; Cologne Germany
| |
Collapse
|
40
|
Varshney M, Chandra A, Jain R, Ahmad R, Bihari V, Chandran CK, Mudiam MKR, Patnaik S, Goel SK. Occupational health hazards of trichloroethylene among workers in relation to altered mRNA expression of cell cycle regulating genes (p53, p21, bax and bcl-2) and PPARA. Toxicol Rep 2015; 2:748-757. [PMID: 28962410 PMCID: PMC5598265 DOI: 10.1016/j.toxrep.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
Trichloroethylene (TCE) is widely used as a metal degreaser in industrial processes. The present study reports on the effects of TCE exposure on workers employed in the lock industries. To ensure exposure of the workers to TCE, its toxic metabolites, trichloroacetic acid (TCA), dichloroacetic acid (DCA) and trichloroethanol (TCEOH) were detected in the plasma of the subjects through solid phase microextraction-gas chromatography-electron capture detection. TCA, DCA and TCEOH were detected in the range of 0.004–2.494 μg/mL, 0.01–3.612 μg/mL and 0.002–0.617 μg/mL, respectively. Quantitative reverse transcription polymerase chain reaction analysis revealed up-regulated expression of p53 (2.4-fold; p < 0.05), p21 (2-fold; p < 0.01), bax (2.9-fold; p < 0.01) mRNAs and down-regulated expression of bcl-2 (67%; p < 0.05) mRNAs, indicating DNA damaging potential of these metabolites. No effects were observed on the levels of p16 and c-myc mRNAs. Further, as TCA and DCA, the ligand of peroxisome proliferator activated receptor alpha (PPARA), are involved in the process of hepatocarcinogenesis in rodents, we examined expression of PPARA mRNA and let-7c miRNA in the workers. No statistically significant differences in expression of PPARA mRNA and let-7c miRNA in patients were observed as compared to values in controls. Dehydroepiandosterone sulfate (DHEAS) is a reported endogenous ligand of PPARA so its competitive role was also studied. We observed decreased levels of DHEAS hormone in the subjects. Hence, its involvement in mediation of the observed changes in the levels of various mRNAs analyzed in this study appears unlikely.
Collapse
Affiliation(s)
- Meenu Varshney
- Petroleum Toxicology Division, Indian Institute of Toxicology Research (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - Abhijit Chandra
- Surgical Gastroenterology Division, Chhatrapati Shahuji Maharaj Medical University, Chowk, Lucknow 226003, India
| | - Rajeev Jain
- Analytical Chemistry Section, Indian Institute of Toxicology Research, (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - Riaz Ahmad
- Biochemical and Clinical Genetics Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Vipin Bihari
- Epidemiology Division, Indian Institute of Toxicology Research, (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - C Keshava Chandran
- Epidemiology Division, Indian Institute of Toxicology Research, (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - Mohana K R Mudiam
- Analytical Chemistry Section, Indian Institute of Toxicology Research, (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - Satykam Patnaik
- Analytical Chemistry Section, Indian Institute of Toxicology Research, (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| | - S K Goel
- Petroleum Toxicology Division, Indian Institute of Toxicology Research (Formerly - Industrial Toxicology Research Centre), M.G. Marg, Post Box No. 80, Lucknow 226001, India
| |
Collapse
|
41
|
Sasine JP, Schiller GJ. Emerging strategies for high-risk and relapsed/refractory acute myeloid leukemia: Novel agents and approaches currently in clinical trials. Blood Rev 2015; 29:1-9. [DOI: 10.1016/j.blre.2014.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/11/2014] [Indexed: 01/26/2023]
|
42
|
Baev DV, Krawczyk J, O׳Dwyer M, Szegezdi E. The BH3-mimetic ABT-737 effectively kills acute myeloid leukemia initiating cells. Leuk Res Rep 2014; 3:79-82. [PMID: 25379408 PMCID: PMC4216386 DOI: 10.1016/j.lrr.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/22/2014] [Accepted: 06/01/2014] [Indexed: 01/27/2023] Open
Abstract
The anti-apoptotic proteins Bcl-XL and Bcl-2 are abundantly expressed in hematopoietic stem cells and/or progenitor cells. Furthermore, leukemic cells expressing these proteins are enriched in minimal residual disease cell populations. This prompted us to test the BH3-mimetic compound ABT-737 for its ability to eradicate putative leukemic stem cells. ABT-737 demonstrated potent cytotoxic effects in all patient samples tested. The efficacy of ABT-737 against AML blasts and the primitive CD34+/CD38− population was equal and independent of sensitivity to cytarabine/daunorubicin. These results, together with previously reported synergistic effects of ABT-737 with chemotherapeutics make BH3-mimetics promising candidates for future AML treatment regimens. ABT-737 potently kills AML blast cells. ABT-737 has a cytotoxic effect against both bone marrow-derived AML blasts and putative Leukemic Stem cells (pLSCs). ABT-737 has an equally high cytotoxic efficacy in disseminated AML putative Leukemic Stem cells (pLSCs).
Collapse
Affiliation(s)
- Denis V Baev
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Biosciences, Dangan, Galway, Ireland
| | - Janusz Krawczyk
- Department of Hematology, University Hospital Galway, Newcastle Road, Galway, Ireland
| | - Michael O׳Dwyer
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Biosciences, Dangan, Galway, Ireland ; Department of Hematology, University Hospital Galway, Newcastle Road, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Biosciences, Dangan, Galway, Ireland
| |
Collapse
|
43
|
Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9:255-67. [PMID: 24483845 DOI: 10.1517/17460441.2014.883377] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION In the past, clinical studies had demonstrated that aspirin and NSAIDs reduce the risk of colorectal cancer. After the discovery of selective prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitors, the further beneficial effects of celecoxib and some other related structures (coxibs) have been demonstrated in both in vivo and in vitro studies. AREAS COVERED The authors illustrate the role of prostaglandins following the overexpression of PTGS2 (COX-2) in signaling pathways. The authors elucidate the role of coxibs in cell proliferation, apoptosis, angiogenesis and multi-drug resistance and discuss the molecular mechanisms involved. The authors also present the strong evidence related to the usefulness of coxibs in several cancer cell lines. EXPERT OPINION There have been a number of PTGS2 (COX-2) selective inhibitors suggested as potential anticancer therapies. In recent years, the development of nanotechnology has also had an impact on chemotherapy. Indeed, nanoparticles of cytotoxic drug carriers have demonstrated potential through their accumulation in cancer cells, and targeting these nanoparticles has been under evaluation. This area could be opened up for coxib development as they are potentially important targets in cancer cells. Further research using celecoxib as a co-drug with PTGS2-overexpressed and PTGS2-independent cancer is still needed.
Collapse
Affiliation(s)
- Mohsen Vosooghi
- Tehran University of Medical Sciences, Faculty of Pharmacy, Drug Design & Development Research Center, Department of Medicinal Chemistry , Tehran , Iran
| | | |
Collapse
|
44
|
Del Principe MI, Del Poeta G, Venditti A, Buccisano F, Maurillo L, Mazzone C, Bruno A, Neri B, Irno Consalvo M, Lo Coco F, Amadori S. Apoptosis and immaturity in acute myeloid leukemia. Hematology 2013; 10:25-34. [PMID: 16019442 DOI: 10.1080/10245330400020454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary cause of treatment failures in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. Among the most frequent agents of these phenomena are defects in the mitochondrial-mediated apoptotic pathway. This pathway is regulated by bcl-2 family of anti-apoptotic (bcl-2, bcl-xl, mcl-1) and pro-apoptotic proteins (bax, bad, bak). In particular, bcl-2 dimerizes with several members of bcl-2 family of proteins, altering the threshold of cell death. The flow cytometric quantitative measurement of bcl-2 and bax expression for the determination of bax/bcl-2 ratio provided crucial clinical information in AML: in our hands, lower bax/bcl-2 ratio conferred a very poor prognosis with decreased rates of complete remission (CR) and overall survival (OS). Moreover, striking correlations were found between lower bax/bcl-2 ratio and higher progenitor marker expression, such as CD34, CD117 and CD133 antigens, confirming the link between this apoptotic index and the maturation pathways. However, the capacity of bax/bcl-2 ratio to clearly identify patients with different prognosis with regard to CR and OS within the CD34+, CD117+ and CD133+ subgroups implies that other mechanisms, such as proliferation and/or cell cycle dysregulation may be involved to explain its clinical significance. Finally, small molecules that target both the receptor- and mitochondrial-mediated pathway of apoptosis are providing encouraging results in patients with relapsed and/or refractory disease (i.e. CDDOMe, bcl-2 antisense oligonucleotides, CEP-701, etc), confirming the key role of apoptotic mechanisms on the outcome of AML patients.
Collapse
|
45
|
Zhang Z, Liu Y, Song T, Xue Z, Shen X, Liang F, Zhao Y, Li Z, Sheng H. An antiapoptotic Bcl-2 family protein index predicts the response of leukaemic cells to the pan-Bcl-2 inhibitor S1. Br J Cancer 2013; 108:1870-8. [PMID: 23558901 PMCID: PMC3658527 DOI: 10.1038/bjc.2013.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bcl-2-like members have been found to be inherently overexpressed in many types of haematologic malignancies. The small-molecule S1 is a BH3 mimetic and a triple inhibitor of Bcl-2, Mcl-1 and Bcl-XL. METHODS The lethal dose 50 (LD(50)) values of S1 in five leukaemic cell lines and 41 newly diagnosed leukaemia samples were tested. The levels of Bcl-2 family members and phosphorylated Bcl-2 were semiquantitatively measured by western blotting. The interactions between Bcl-2 family members were tested by co-immunoprecipitation. The correlation between the LD(50) and expression levels of Bcl-2 family members, alone or in combination, was analysed. RESULTS S1 exhibited variable sensitivity with LD(50) values ranging >2 logs in both established and primary leukaemic cells. The ratio of pBcl-2/(Bcl-2+Mcl-1) could predict the S1 response. Furthermore, we demonstrated that pBcl-2 antagonised S1 by sequestering the Bak and Bim proteins that were released from Mcl-1, andpBcl-2/Bak, pBcl-2/Bax and pBcl-2/Bim complexes cannot be disrupted by S1. CONCLUSION A predictive index was obtained for the novel BH3 mimetic S1. The shift of proapoptotic proteins from being complexed with Mcl-1 to being complexed with pBcl-2 was revealed for the first time, which is the mechanism underlying the index value described herein.
Collapse
Affiliation(s)
- Z Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Erdman VV, Nasibullin TR, Tuktarova IA, Mustafina OE. Association of polymorphic markers of CASP8, BCL2, and BAX genes with aging and longevity. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013020057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A. Tumor endothelial markers as a target in cancer. Expert Opin Ther Targets 2012; 16:1215-25. [PMID: 22978444 DOI: 10.1517/14728222.2012.725047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Several anti-angiogenic agents have been developed and some of them have been clinically applied in the tumor therapy. Anti-angiogenic therapy faces some hurdles: inherent or acquired resistance, increased invasiveness, and lack of biomarkers. Characterization of tumor endothelial markers may help to target endothelium and to identify potential predictive factors of response to anti-angiogenic therapies. Numerous surrogates, angiogenic and endothelium markers have emerged from recent pre-clinical studies, including physiological and soluble molecules in plasma and from platelets, circulating cells, tumor tissue factors and imaging markers. However, no wholly validated biomarkers currently exist to predict the success or the failure of the anti-angiogenic therapy of cancer. Therefore, the research of suitable and validate biomarkers is currently ongoing. AREAS COVERED This review provides an overview of the status of our knowledge concerning tumor endothelial markers, therapeutics targeting, possible resistance mechanisms and predictive value of these biomarkers and discuss future strategies to use and identify them in the anti-angiogenic therapy. EXPERT OPINION Anti-angiogenesis is a milestone to improve the treatment of several types of cancer and predictive biomarkers for a response to anti-endothelium therapy are one of the most important challenges for anti-angiogenesis research.
Collapse
Affiliation(s)
- Domenico Ribatti
- University of Bari Medical School, Department of Basic Medical Sciences, Section of Human Anatomy and Histology, Piazza Giulio Cesare, 11, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
In this issue of Blood, Rahmani et al show in preclinical studies that the combination of the multi-kinase inhibitor sorafenib with the BH3 mimetic obatoclax results in enhanced antileukemic effects compared with the effects of each agent alone. This work has important clinical implications because it describes a novel approach to overcome acute myeloid leukemia (AML) cell resistance by combining agents that are currently being investigated in trials as single agents.
Collapse
|
49
|
Ribatti D. Cancer stem cells and tumor angiogenesis. Cancer Lett 2012; 321:13-7. [PMID: 22388173 DOI: 10.1016/j.canlet.2012.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) have been identified in several human solid and hematological tumors. They are able to initiate tumor formation and metastasis and express specific cell surface markers. CSC tend to be more resistant to chemotherapeutic agents and radiation therapy than more mature cell types from the same tissue because of increased expression of antiapoptotic proteins. In this context, the development of agents that eliminate or control CSC may be an effective strategy for cancer prevention.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
50
|
Joudeh J, Claxton D. Obatoclax mesylate : pharmacology and potential for therapy of hematological neoplasms. Expert Opin Investig Drugs 2012; 21:363-73. [PMID: 22324354 DOI: 10.1517/13543784.2012.652302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Augmentation and acceleration of apoptosis for cancer therapy are logical therapeutic strategies given the increasing body of data suggesting the dysregulation of control of cell death in many neoplasms. Apoptosis is particularly well studied in hematological neoplasms, thus these varied diseases present opportunities for pro-apoptotic drug development both as single agents and in combination with established therapies. Accordingly, several agents targeting function of anti-apoptotic Bcl-2 family members have entered clinical trials in the last decade and are discussed. AREAS COVERED The pan Bcl-2 family member BH3 domain mimetic obatoclax (GX15-070) is currently under clinical evaluation in solid tumors and hematological neoplasms. This agent offers the attractive property of uniformly inhibiting all of the anti-apoptotic members of the Bcl-2 protein family. Its chemistry and preclinical development and activity are reviewed. Pharmacology, pharmacodynamics, drug resistance and clinical use of this agent in leukemias and lymphomas are discussed. The prospects for obatoclax in changing clinical practice are addressed. EXPERT OPINION Obatoclax may not prove to have dramatic single agent activity for hematological neoplasms. It seems more likely that its activity will be manifest in combination therapy with other agents, particularly cytotoxic chemotherapies. Results of ongoing studies are awaited.
Collapse
Affiliation(s)
- Jamal Joudeh
- Department of Medicine, Hematology/Oncology Division, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|