1
|
Han W, Matissek SJ, Jackson DA, Sklavanitis B, Elsawa SF. Targeting IL-6 receptor reduces IgM levels and tumor growth in Waldenström macroglobulinemia. Oncotarget 2019; 10:3400-3407. [PMID: 31164961 PMCID: PMC6534366 DOI: 10.18632/oncotarget.26946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 01/17/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in cancer cell biology and is implicated in resistance to therapy. In Waldenström macroglobulinemia (WM), a subtype of Non-Hodgkin lymphoma, the TME modulates WM biology by secreting cytokines that promote the malignant phenotype. In previous work, we have shown that TME-IL-6 promotes WM cell growth and IgM secretion in WM. Tocilizumab/Actemra is an anti-IL-6R antibody, which can competitively block IL-6 binding to the IL-6R. We investigated the efficacy of Tocilizumab in a preclinical mouse model of WM that considers the role of the TME in disease biology. Hairless SCID mice were subcutaneously implanted with BCWM.1 or RPCI-WM1 and bone marrow stromal cells. Groups of mice were treated with Tocilizumab or control antibody three times/week for 5 weeks and the effect on tumor burden and disease biology were evaluated. Although Tocilizumab had no effect on mice survival, there was a significant reduction in tumor growth rate in mice injected with RPCI-WM1 cells treated with Tocilizumab. In mice injected with BCWM.1 cells, there was a significant reduction in human IgM secretion in mice sera with Tocilizumab treatment. There was no significant change in mice weight suggesting Tocilizumab induced no toxicities to the mice. Taken together, our data found that administration of Tocilizumab to tumor bearing mice, results in a significant reduction in tumor volume and IgM secretion. Therefore, the evaluation of the role of Tocilizumab in WM patients may provide therapeutic efficacy by reducing IgM production and slowing the rate of tumor growth.
Collapse
Affiliation(s)
- Weiguo Han
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Current address: Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Stephan J Matissek
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Current address: Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - David A Jackson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Brandon Sklavanitis
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Sherine F Elsawa
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.,Current address: Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Ryland GL, Jones K, Chin M, Markham J, Aydogan E, Kankanige Y, Caruso M, Guinto J, Dickinson M, Prince HM, Yong K, Blombery P. Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. J Clin Pathol 2018; 71:895-899. [PMID: 29760015 DOI: 10.1136/jclinpath-2018-205195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023]
Abstract
AIMS Multiple myeloma is a genomically complex haematological malignancy with many genomic alterations recognised as important in diagnosis, prognosis and therapeutic decision making. Here, we provide a summary of genomic findings identified through routine diagnostic next-generation sequencing at our centre. METHODS A cohort of 86 patients with multiple myeloma underwent diagnostic sequencing using a custom hybridisation-based panel targeting 104 genes. Sequence variants, genome-wide copy number changes and structural rearrangements were detected using an inhouse-developed bioinformatics pipeline. RESULTS At least one mutation was found in 69 (80%) patients. Frequently mutated genes included TP53 (36%), KRAS (22.1%), NRAS (15.1%), FAM46C/DIS3 (8.1%) and TET2/FGFR3 (5.8%), including multiple mutations not previously described in myeloma. Importantly we observed TP53 mutations in the absence of a 17 p deletion in 8% of the cohort, highlighting the need for sequencing-based assessment in addition to cytogenetics to identify these high-risk patients. Multiple novel copy number changes and immunoglobulin heavy chain translocations are also discussed. CONCLUSIONS Our results demonstrate that many clinically relevant genomic findings remain in multiple myeloma which have not yet been identified through large-scale sequencing efforts, and provide important mechanistic insights into plasma cell pathobiology.
Collapse
Affiliation(s)
- Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kate Jones
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Melody Chin
- Department of Haematology, University College London Cancer Institute, London, UK
| | - John Markham
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elle Aydogan
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yamuna Kankanige
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Marisa Caruso
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jerick Guinto
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Dickinson
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - H Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kwee Yong
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Bar-Natan M, Stroopinsky D, Luptakova K, Coll MD, Apel A, Rajabi H, Pyzer AR, Palmer K, Reagan MR, Nahas MR, Leaf RK, Jain S, Arnason J, Ghobrial IM, Anderson KC, Kufe D, Rosenblatt J, Avigan D. Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1. Br J Haematol 2017; 176:929-938. [PMID: 28107546 PMCID: PMC5800979 DOI: 10.1111/bjh.14493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023]
Abstract
Multiple myeloma (MM) is a lethal haematological malignancy that arises in the context of a tumour microenvironment that promotes resistance to apoptosis and immune escape. In the present study, we demonstrate that co-culture of MM cells with stromal cells results in increased resistance to cytotoxic and biological agents as manifested by decreased rates of cell death following exposure to alkylating agents and the proteosome inhibitor, bortezomib. To identify the mechanism of increased resistance, we examined the effect of the co-culture of MM cells with stroma cells, on expression of the MUC1 oncogene, known to confer tumour cells with resistance to apoptosis and necrosis. Co-culture of stroma with MM cells resulted in increased MUC1 expression by tumour cells. The effect of stromal cell co-culture on MUC1 expression was not dependent on cell contact and was therefore thought to be due to soluble factors secreted by the stromal cells into the microenvironment. We demonstrated that MUC1 expression was mediated by interleukin-6 and subsequent up-regulation of the JAK-STAT pathway. Interestingly, the effect of stromal cell co-culture on tumour resistance was partially reversed by silencing of MUC1 in MM cells, consistent with the potential role of MUC1 in mediating resistance to cytotoxic-based therapies.
Collapse
Affiliation(s)
| | | | | | - Maxwell D. Coll
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Arie Apel
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hasan Rajabi
- Dana Farber Cancer Institute, Harvard Medical School and
| | | | - Kristen Palmer
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Michaela R. Reagan
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Myrna R. Nahas
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Salvia Jain
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jon Arnason
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Irene M. Ghobrial
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Donald Kufe
- Dana Farber Cancer Institute, Harvard Medical School and
| | | | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
4
|
Zhang XD, Baladandayuthapani V, Lin H, Mulligan G, Li B, Esseltine DLW, Qi L, Xu J, Hunziker W, Barlogie B, Usmani SZ, Zhang Q, Crowley J, Hoering A, Shah JJ, Weber DM, Manasanch EE, Thomas SK, Li BZ, Wang HH, Zhang J, Kuiatse I, Tang JL, Wang H, He J, Yang J, Milan E, Cenci S, Ma WC, Wang ZQ, Davis RE, Yang L, Orlowski RZ. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell 2016; 29:639-652. [PMID: 27132469 PMCID: PMC4983190 DOI: 10.1016/j.ccell.2016.03.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/26/2015] [Accepted: 03/25/2016] [Indexed: 01/15/2023]
Abstract
Proteasome inhibitors have revolutionized outcomes in multiple myeloma, but they are used empirically, and primary and secondary resistance are emerging problems. We have identified TJP1 as a determinant of plasma cell proteasome inhibitor susceptibility. TJP1 suppressed expression of the catalytically active immunoproteasome subunits LMP7 and LMP2, decreased proteasome activity, and enhanced proteasome inhibitor sensitivity in vitro and in vivo. This occurred through TJP1-mediated suppression of EGFR/JAK1/STAT3 signaling, which modulated LMP7 and LMP2 levels. In the clinic, high TJP1 expression in patient myeloma cells was associated with a significantly higher likelihood of responding to bortezomib and a longer response duration, supporting the use of TJP1 as a biomarker to identify patients most likely to benefit from proteasome inhibitors.
Collapse
Affiliation(s)
- Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | | | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Mulligan
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | - Bin Li
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | | | - Lin Qi
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | - Jianliang Xu
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Saad Z Usmani
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - John Crowley
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Jatin J Shah
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Weber
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheeba K Thomas
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing-Zong Li
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Han Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexin Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isere Kuiatse
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin-Le Tang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enrico Milan
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Wen-Cai Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi-Qiang Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China.
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol 2012; 96:492-500. [PMID: 22972171 DOI: 10.1007/s12185-012-1171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Single-nucleotide polymorphism genotyping microarray (SNP array) analysis provides detailed information on chromosomal copy number aberrations. To obtain detailed information on genomic abnormalities related to pathogenesis or prognosis of multiple myeloma (MM), we performed 250K SNP array analysis in 39 MM patients and 11 cell lines. We identified an accumulation of deletions and uniparental disomies at 22q12.1. Among the hyperdiploid MM cases, chromosomal imbalance at this locus was associated with poor prognosis. On sequencing, we also found a mutation in the seizure-related 6 homolog (mouse)-like (SEZ6L) gene located at ch.22q12.1 in an MM cell line, NOP1. We further found isolated deletions in 17 genes, five of which are known tumor suppressor genes. Of these, deletion of protein tyrosine phosphatase, receptor type D (PTPRD) was found in three samples, including two patients. Consistent with previous reports, non-hyperdiploid MM, deletion of 13q (del13q) and gain of 1q in non-hyperdiploid MMs were predictive of poor prognosis (p = 0.039, p = 0.049, and p = 0.013, respectively). However, our analysis revealed that unless accompanied by gain of 1q, the prognosis of non-hyperdiploid MM was as good as that of hyperdiploid MM. Thus, SNP array analysis provides significant information useful to understanding the pathogenesis and prognosis of MM.
Collapse
|
6
|
Elsawa SF, Almada LL, Ziesmer SC, Novak AJ, Witzig TE, Ansell SM, Fernandez-Zapico ME. GLI2 transcription factor mediates cytokine cross-talk in the tumor microenvironment. J Biol Chem 2011; 286:21524-34. [PMID: 21454528 DOI: 10.1074/jbc.m111.234146] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cells interact with their surrounding microenvironment to survive and persist within the host. Cytokines play a key role in regulating this crosstalk between malignant cells and surrounding cells in the microenvironment. Although this phenomenon is clearly established, the molecular mechanisms mediating this cellular event remain elusive. Here, using as a model bone marrow stromal cells, we describe a novel signaling mechanism initiated by CCL5 in these cells leading to up-regulation of immunoglobulin secretion by malignant B cells. CCL5 increases IL-6 expression and secretion in bone marrow stromal cells. IL-6 in turn induces Ig secretion by malignant B cells. Analysis of the mechanism reveals that CCL5 signaling induces GLI2 through a PI3K-AKT-IκBα-p65 pathway and requires GLI2 transcriptional activity to modulate IL-6 expression and Ig secretion in vitro and in vivo. Together, these results identify a novel signaling pathway mediating the stromal-cancer cell interactions, leading to increased Ig production by malignant cells.
Collapse
Affiliation(s)
- Sherine F Elsawa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Dingli D, Arendt BK, Bajzer Z, Jelinek DF. Evolutionary dynamics of two related malignant plasma cell lines. Cell Cycle 2010; 9:3792-7. [PMID: 20890105 DOI: 10.4161/cc.9.18.13047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cancer is the consequence of sequential acquisition of mutations within somatic cells. Mutations alter the relative reproductive fitness of cells, enabling the population to evolve in time as a consequence of selection. Cancer therapy itself can select for or against specific subclones. Given the large population of tumor cells, subclones inevitably emerge and their fate will depend on the evolutionary dynamics that define the interactions between such clones. Using a combination of in vitro studies and mathematical modeling, we describe the dynamic behavior of two cell lines isolated from the same patient at different time points of disease progression and show how the two clones relate to one another. We provide evidence that the two clones coexisted at the time of initial presentation. The dominant clone presented with biopsy proven cardiac AL amyloidosis. Initial therapy selected for the second clone that expanded leading to a change in the diagnosis to multiple myeloma. The evolutionary dynamics relating the two cell lines are discussed and a hypothesis is generated in regard to the mechanism of one of the phenotypic characteristics that is shared by these two cell lines.
Collapse
Affiliation(s)
- David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | |
Collapse
|
8
|
Shushakova N, Tkachuk N, Dangers M, Tkachuk S, Park JK, Zwirner J, Hashimoto K, Haller H, Dumler I. Urokinase-induced activation of the gp130/Tyk2/Stat3 pathway mediates a pro-inflammatory effect in human mesangial cells via expression of the anaphylatoxin C5a receptor. J Cell Sci 2005; 118:2743-53. [PMID: 15944400 DOI: 10.1242/jcs.02409] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glomerular mesangial cells (MCs) are central to the pathogenesis of progressive glomeruli-associated renal diseases. However, molecular mechanisms underlying changes in MC functions still remain poorly understood. Here, we show that in MCs, the urokinase-type plasminogen activator (uPA) induces, via its specific receptor (uPAR, CD87), upregulated expression of the complement anaphylatoxin C5a receptor (C5aR, CD88), and modulates C5a-dependent functional responses. This effect is mediated via the interaction of the uPA-specific receptor (uPAR, CD87) and gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. The Janus kinase Tyk2 and the transcription factor Stat3 serve as downstream components in the signaling cascade resulting in upregulation of C5aR expression. In vivo, expression of C5aR and uPAR was increased in the mesangium of wild-type mice in a lipopolysaccharide (LPS)-induced model of inflammation, whereas in uPAR(-/-) animals C5aR expression remained unchanged. This is the first demonstration in vitro and in vivo that uPA acts in MCs as a modulator of immune responses via control of immune-competent receptors. The data suggest a novel role for uPA/uPAR in glomeruli-associated renal failure via a signaling cross-talk between the fibrinolytic and immune systems.
Collapse
|
9
|
Loria MP, Dambra P, Moretti B, Patella V, Capuzzimati L, Cavallo E, Nettis E, Pesce V, Dell'Osso A, Simone C, Tursi A. Role of cytokines in gonarthrosis and knee prosthesis aseptic loosening. J Orthop Sci 2004; 9:274-9. [PMID: 15168183 DOI: 10.1007/s00776-004-0774-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 02/09/2004] [Indexed: 12/01/2022]
Abstract
Cytokines, which have been demonstrated in synovial fluids during various joint diseases, play an important role in mediating synovial inflammation and in regulating the immune response of many inflammatory processes. We studied synovial fluid, serum, and synovial fragments obtained from 33 patients--10 affected by serious gonarthrosis re-quiring a prosthetic implant, 8 with knee prosthesis aseptic loosening, and (as controls) 15 affected by degenerative meniscopathies--to evaluate the degree of inflammation and level of interleukins (IL-2, IL-4, IL-6, IL-10) and interferon gamma secretion. Histological analysis revealed slightly more infiltration by inflammatory cells in the synovial tissue of patients with gonarthrosis and knee prosthesis aseptic loosening than in that of the control group, with a high prevalence of macrophages. Moreover, we observed enhanced production of the studied cytokines, especially in synovial fluid as compared to serum, indicating that in the pathological conditions examined the inflammatory events are mainly localized. Because the role of these cytokines is to modulate inflammation, better knowledge of the involvement of cells and their soluble mediators in articular damage could guide immunomodulating treatment.
Collapse
Affiliation(s)
- Maria Paola Loria
- Department of Clinical Medicine, Immunology, and Infectious Diseases, Section of Allergology and Clinical Immunology, Policlinico, University of Bari, Piazza G. Cesare, 20124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S. Interruption of the NF-κB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 2004; 103:2761-70. [PMID: 14645003 DOI: 10.1182/blood-2003-09-3037] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Interactions between pharmacologic NF-κB inhibitors (eg, Bay 11-7082, SN-50) and the checkpoint abrogator UCN-01 have been examined in human multiple myeloma (MM) cells. Exposure of U266 cells to Bay 11-7082 (Bay) in combination with UCN-01 resulted in the abrogation of NF-κB/DNA binding activity and the synergistic induction of apoptosis. Comparable synergism was observed in other MM cell lines and patient-derived CD138+ cells and between an inhibitory peptide of NF-κB (SN50) and UCN-01. Bay/UCN-01-mediated lethality involved mitochondrial dysfunction, caspase cleavage, and poly adenosine diphosphate-ribose polymerase (PARP) degradation. Although Bay modestly blocked UCN-01-induced extracellular signal-regulated kinase (ERK) phosphorylation, coadministration activated c-Jun N-terminal kinase (JNK) and cdc2/cdk1 and down-regulated Mcl-1, XIAP, and Bcl-xL. Transfection with a constitutively activated mitogen-activated protein kinase kinase (MEK1)/green fluorescent protein (GFP) construct failed to block apoptosis induced by Bay/UCN-01 but significantly attenuated MEK inhibitor (U0126)/UCN-01-induced lethality. Inhibiting JNK activation with SP600125 or D-JNKI1 peptide markedly reduced Bay/UCN-01-mediated mitochondrial dysfunction and apoptosis and the down-regulation of Mcl-1, XIAP, and Bcl-xL but not of cdc2/cdk1 activation. Stable transfection of cells with dominant-negative caspase-9 dramatically diminished Bay/UCN-01 lethality without altering JNK or cdc2/cdk1 activation. Neither interleukin-6 (IL-6)- nor fibronectin-mediated adherence conferred resistance to Bay/UCN-01-induced apoptosis. Together, these findings suggest that a strategy combining UCN-01 with disruption of the IκB kinase (IKK)/IκB/NF-κB pathway warrants attention in MM. (Blood. 2004;103:2761-2770)
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond 23298, USA
| | | | | | | | | | | |
Collapse
|
11
|
Walters DK, French JD, Arendt BK, Jelinek DF. Atypical expression of ErbB3 in myeloma cells: cross-talk between ErbB3 and the interferon-alpha signaling complex. Oncogene 2003; 22:3598-607. [PMID: 12789268 DOI: 10.1038/sj.onc.1206512] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that the responsiveness of multiple myeloma (MM) cells to interferon-alpha (IFN-alpha) stimulation is variable, with an atypical growth response displayed by some cells. Here we report the ability of IFN-alpha to induce tyrosine phosphorylation of a 180 kDa band in the KAS-6/1 MM cell line, which is growth responsive to IFN-alpha. Further characterization demonstrated that this band corresponds to ErbB3. To our knowledge, this is the first report of ErbB3 expression in a cell type of the hematopoietic lineage. Although ErbB receptors have been shown to crosscommunicate with various other receptors, our results show for the first time that the IFN-alpha receptor can crosscommunicate with ErbB3. To address the significance of these observations, we transfected ErbB3-negative DP-6 MM cells with ErbB3 and used siRNA to silence ErbB3 in the KAS-6/1 cell line. Although IFN-alpha transactivated ErbB3 in the DP-6 transfectants, it did not confer growth responsiveness to IFN-alpha. Interestingly, silencing ErbB3 expression in the KAS-6/1 cells decreased the overall growth response to IFN-alpha and to interleukin-6. These results suggest that ErbB3 expression alone does not uniquely confer IFN-alpha growth responsiveness, but instead may amplify proliferation rates in MM cells that have acquired atypical expression of this receptor.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology, Tumor Biology Program, Mayo Graduate and Medical Schools, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
12
|
French JD, Walters DK, Jelinek DF. Transactivation of gp130 in myeloma cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3717-23. [PMID: 12646637 DOI: 10.4049/jimmunol.170.7.3717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Receptor transactivation, i.e., interaction between unrelated receptor systems, is a growing theme in cytokine and growth factor signaling. In this study we reveal for the first time the ability of IFN-alpha to transactivate gp130 in myeloma cells. An epidermal growth factor receptor/gp130 chimeric receptor previously shown by us to transactivate endogenous gp130, provided a complementary tool to study the underlying mechanisms of receptor cross-talk. Further analysis revealed that transactivation of gp130 by IFN-alpha did not require the extracellular or trans-membrane domain of gp130. Moreover, transactivation of gp130 was critically dependent upon Janus kinase activation by the initiating receptor and correlated with rapid and sustained Janus kinase 1 and tyrosine kinase (Tyk) 2 tyrosine phosphorylation. Finally, transactivation of gp130 may be a common theme in myeloma cells, perhaps providing a mechanism for enhanced or qualitatively distinct cellular responses to specific stimuli.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytokine Receptor gp130
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Extracellular Space/genetics
- Extracellular Space/immunology
- Extracellular Space/metabolism
- Humans
- Interferon-alpha/physiology
- Janus Kinase 1
- Janus Kinase 2
- Ligands
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Phosphorylation
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins
- Receptor Cross-Talk/immunology
- Receptor, Interferon alpha-beta
- Receptors, Interferon/metabolism
- Receptors, Interferon/physiology
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-6/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- TYK2 Kinase
- Transcriptional Activation/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jena D French
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
13
|
Walters DK, Jelinek DF. The effectiveness of double-stranded short inhibitory RNAs (siRNAs) may depend on the method of transfection. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:411-8. [PMID: 12568315 DOI: 10.1089/108729002321082483] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA interference (RNAi) is a recently described powerful experimental tool that can cause sequence-specific gene silencing, thereby facilitating functional analysis of gene function. Consequently, we became interested in using RNAi to determine the function of aberrantly expressed ErbB3 in the KAS-6/1 human myeloma cell line. Despite the wealth of information available on the use of RNAi, dsRNA target design, and the transfection of dsRNA in vitro, little information is available for transfecting dsRNA into nonadherent cells from any species. In the present study, we report that gene silencing of ErbB3 was not observed in myeloma cells when dsRNA targeting ErbB3 was introduced using conventional transfection agents and protocols that have proved successful for several adherent cell lines. Silencing of ErbB3, however, was observed in T47D cells, an adherent breast carcinoma cell line, using the same transfection methods, indicating that our target sequence was functional for gene silencing of ErbB3. Interestingly, ErbB3 was silenced in myeloma cells when the dsRNA target was introduced by electroporation. Thus, our studies illustrate the striking dependence of dsRNA-mediated gene silencing in some cells on the methods of dsRNA transfection.
Collapse
Affiliation(s)
- D K Walters
- Department of Immunology, Tumor Biology Program, Mayo Graduate and Medical Schools, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|