1
|
Jia J, Ji W, Saliba AN, Csizmar CM, Ye K, Hu L, Peterson KL, Schneider PA, Meng XW, Venkatachalam A, Patnaik MM, Webster JA, Smith BD, Ghiaur G, Wu X, Zhong J, Pandey A, Flatten KS, Deng Q, Wang H, Kaufmann SH, Dai H. AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death. Cell Death Differ 2024; 31:405-416. [PMID: 38538744 PMCID: PMC11043078 DOI: 10.1038/s41418-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.
Collapse
Affiliation(s)
- Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenbo Ji
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford M Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan A Webster
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - B Douglas Smith
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Xinyan Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, 576104, Kamataka, India
| | - Karen S Flatten
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Palmisiano N, Jeschke G, Wilde L, Alpdogan O, Carabasi M, Filicko-O’Hara J, Grosso D, Klumpp T, Martinez U, Wagner J, Carroll MP, Perl A, Kasner M. A Phase I Trial of Sirolimus with "7&3" Induction Chemotherapy in Patients with Newly Diagnosed Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:5129. [PMID: 37958304 PMCID: PMC10650097 DOI: 10.3390/cancers15215129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy remains a primary treatment for younger AML patients, though many relapse. Data from our group have shown that highly phosphorylated S6 in blasts may predict response to sirolimus given with chemotherapy. We report the results of a phase I study of this combination in newly diagnosed AML and the pharmacodynamic analysis of pS6 before and after treatment. Subjects received sirolimus (12 mg on day 1, 4 mg daily, days 2-10), then idarubicin and cytarabine (days 4-10). Response was assessed at hematologic recovery or by day 42 using a modified IWG criteria. Fifty-five patients received sirolimus. Toxicity was similar to published 7 + 3 data, and 53% had high-, 27% intermediate-, and 20% favorable-risk disease. Forty-four percent of the high-risk patients entered into CR/CRp. Seventy-nine percent of the intermediate-risk subjects had a CR/CRp. All favorable-risk patients had a CR by day 42; 9/11 remained alive and in remission with a median follow-up of 660 days. Additionally, 41/55 patients had adequate samples for pharmacodynamic analysis. All patients demonstrated activation of S6 prior to therapy, in contrast to 67% seen in previous studies of relapsed AML. mTORC1 inhibition was observed in 66% of patients without enrichment among patients who achieved remission. We conclude that sirolimus and 7 + 3 is a well-tolerated and safe regimen. mTORC1 appears to be activated in almost all patients at diagnosis of AML. Inhibition of mTORC1 did not differ based on response, suggesting that AML cells may have redundant signaling pathways that regulate chemosensitivity in the presence of mTORC1 inhibition.
Collapse
Affiliation(s)
- Neil Palmisiano
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Grace Jeschke
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA (A.P.)
| | - Lindsay Wilde
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Onder Alpdogan
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Matthew Carabasi
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Joanne Filicko-O’Hara
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Dolores Grosso
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Thomas Klumpp
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Ubaldo Martinez
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - John Wagner
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| | - Martin P. Carroll
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA (A.P.)
| | - Alexander Perl
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA (A.P.)
| | - Margaret Kasner
- Division of Hematology and Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (L.W.); (O.A.); (J.F.-O.); (D.G.); (T.K.); (M.K.)
| |
Collapse
|
3
|
Jalte M, Abbassi M, El Mouhi H, Daha Belghiti H, Ahakoud M, Bekkari H. FLT3 Mutations in Acute Myeloid Leukemia: Unraveling the Molecular Mechanisms and Implications for Targeted Therapies. Cureus 2023; 15:e45765. [PMID: 37872917 PMCID: PMC10590537 DOI: 10.7759/cureus.45765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive form of blood cancer characterized by the uncontrolled proliferation of myeloid precursor cells in the bone marrow. It affects individuals of all ages, with incidence increasing notably in those over 65 years old. Despite advancements in treatment, overall survival rates remain unsatisfactory, underscoring the need for a deeper understanding of the disease. Among the various genetic alterations implicated in AML pathogenesis, mutations in the FLT3 (Fms-like tyrosine kinase 3) gene have emerged as significant contributors to leukemogenesis. The FLT3 gene encodes a type III receptor tyrosine kinase crucial in regulating normal hematopoiesis. Approximately one-third of AML patients carry FLT3 mutations, making it one of the most frequently mutated genes in the disease. FLT3 mutations can be classified into internal tandem duplications (ITDs) and point mutations in the tyrosine kinase domain (TKD). FLT3 mutations are associated with adverse clinical features and are independent prognostic factors for poor overall survival and decreased remission rates in AML patients. Understanding the molecular mechanisms underlying FLT3 mutations in AML is critical for improving risk stratification, prognosis assessment, and the development of targeted therapies. By reviewing the current literature, this study aims to elucidate the functional consequences of FLT3 mutations in AML pathogenesis, explore the interaction of FLT3 signaling with other oncogenic pathways, and assess the prognostic significance of FLT3 mutations in clinical practice, providing information that can guide future research directions and facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Meryem Jalte
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAH), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Meriame Abbassi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Hinde El Mouhi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy and Dental Medicine, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Hanae Daha Belghiti
- Laboratory of Medical Genetics and Oncogenetics, Hospital University Hassan II, Fez, MAR
| | - Mohamed Ahakoud
- Laboratory of Medical Genetics and Oncogenetics, Hospital University Hassan II, Fez, MAR
| | - Hicham Bekkari
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAH), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, MAR
| |
Collapse
|
4
|
Bhattacharjee R, Ghosh S, Nath A, Basu A, Biswas O, Patil CR, Kundu CN. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol 2022; 177:103753. [PMID: 35803452 DOI: 10.1016/j.critrevonc.2022.103753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sharad Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Arijit Nath
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Asmita Basu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ojaswi Biswas
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Chandragauda R Patil
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia 2022; 36:403-415. [PMID: 34381181 DOI: 10.1038/s41375-021-01375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) could maintain the characteristics of stem cells and inhibit the differentiation of normal hematopoietic stem/progenitor cells. Recent studies have shown that Tregs, as an important component of acute myeloid leukemia (AML) microenvironments, can help AML cells to evade immune surveillance. However, their function in directly regulating the stemness of AML cells remains elusive. In this study, the increased stemness of AML cells promoted by Tregs was verified in vitro and in vivo. The cytokines released by Tregs were explored, the highly expressed anti-inflammatory cytokine IL10 was found, which could promote the stemness of AML cells through the activation of PI3K/AKT signal pathway. Moreover, disrupting the IL10/IL10R/PI3K/AKT signal in AML/ETO c-kitmut (A/Ec) leukemia mice could prolong the mice survival and reduce the stemness of A/Ec leukemia cells. Finally, it was confirmed in patient samples that the proportion of Tregs to leukemia stem cells (LSCs) was positively correlated, and in CD34+ primary AML cells, the activation of PI3K/AKT was stronger in patients with high Tregs' infiltration. After rhIL10 treatment, primary AML cells showed increased activation of PI3K/AKT signaling. Therefore, blocking the interaction between Tregs and AML cells may be a new approach to target LSCs in AML treatment.
Collapse
|
6
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
7
|
Alsagaby SA, Vijayakumar R, Premanathan M, Mickymaray S, Alturaiki W, Al-Baradie RS, AlGhamdi S, Aziz MA, Alhumaydhi FA, Alzahrani FA, Alwashmi AS, Al Abdulmonem W, Alharbi NK, Pepper C. Transcriptomics-Based Characterization of the Toxicity of ZnO Nanoparticles Against Chronic Myeloid Leukemia Cells. Int J Nanomedicine 2020; 15:7901-7921. [PMID: 33116508 PMCID: PMC7568638 DOI: 10.2147/ijn.s261636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Zinc oxide nanoparticles (ZnO NPs) have recently attracted attention as potential anti-cancer agents. To the best of our knowledge, the toxicity of ZnO NPs against human chronic myeloid leukemia cells (K562 cell line) has not been studied using transcriptomics approach. OBJECTIVE The goals of this study were to evaluate the capability of ZnO NPs to induce apoptosis in human chronic myeloid leukemia cells (K562 cells) and to investigate the putative mechanisms of action. METHODS We used viability assay and flowcytometry coupled with Annexin V-FITC and propidium iodide to investigate the toxicity of ZnO NPs on K562 cells and normal peripheral blood mononuclear cells. Next we utilized a DNA microarray-based transcriptomics approach to characterize the ZnO NPs-induced changes in the transcriptome of K562 cells. RESULTS ZnO NPs exerted a selective toxicity (mainly by apoptosis) on the leukemic cells (p≤0.005) and altered their transcriptome; 429 differentially expressed genes (DEGs) with fold change (FC)≥4 and p≤0.008 with corrected p≤0.05 were identified in K562 cells post treatment with ZnO NPs. The over-expressed genes were implicated in "response to zinc", "response to toxic substance" and "negative regulation of growth" (corrected p≤0.05). In contrast, the repressed genes positively regulated "cell proliferation", "cell migration", "cell adhesion", "receptor signaling pathway via JAK-STAT" and "phosphatidylinositol 3-kinase signaling" (corrected p≤0.05). Lowering the FC to ≥1.5 with p≤0.05 and corrected p≤0.1 showed that ZnO NPs over-expressed the anti-oxidant defense system, drove K562 cells to undergo mitochondrial-dependent apoptosis, and targeted NF-κB pathway. CONCLUSION Taken together, our findings support the earlier studies that reported anti-cancer activity of ZnO NPs and revealed possible molecular mechanisms employed by ZnO NPs to induce apoptosis in K562 cells.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Raid S Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Saleh AlGhamdi
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
| | - Mohammad A Aziz
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Ameen S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
8
|
Rodrigues Alves APN, Fernandes JC, Fenerich BA, Coelho-Silva JL, Scheucher PS, Simões BP, Rego EM, Ridley AJ, Machado-Neto JA, Traina F. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett 2019; 456:59-68. [PMID: 31042587 DOI: 10.1016/j.canlet.2019.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
The IGF1R/IRS1 signaling is activated in acute lymphoblastic leukemia (ALL) and can be targeted by the pharmacological inhibitors NT157 (IGF1R-IRS1/2 inhibitor) and OSI-906 (IGF1R/IR inhibitor). Here we investigate the cellular and molecular effects of NT157 and OSI-906 in ALL cells. NT157 and OSI-906 treatment reduced viability, proliferation and cell cycle progression in ALL cell lines. Similarly, in primary samples of patients with ALL, both OSI-906 and NT157 reduced viability, but only NT157 induced apoptosis. NT157 and OSI-906 did not show cytotoxicity in primary samples from healthy donor. NT157 and OSI-906 significantly decreased Jurkat cell migration, but did not modulate Namalwa migration. Consistent with the more potent effect of NT157 on cells, NT157 significantly modulated expression of 25 genes related to the MAPK signaling pathway in Jurkat cells, including oncogenes and tumor suppressor genes. Both compounds inhibited mTOR and p70S6K activity, but only NT157 inhibited AKT and 4-EBP1 activation. In summary, in ALL cells, NT157 has cytotoxic activity, whereas OSI-906 is cytostatic. NT157 has a stronger effect on ALL cells, and thus the direct inhibition of IRS1 may be a potential therapeutic target in ALL.
Collapse
Affiliation(s)
| | - Jaqueline Cristina Fernandes
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Bruna Alves Fenerich
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Priscila Santos Scheucher
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Belinda Pinto Simões
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Eduardo Magalhães Rego
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Anne J Ridley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - João Agostinho Machado-Neto
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil.
| |
Collapse
|
9
|
Xia YQ, Ning JZ, Cheng F, Yu WM, Rao T, Ruan Y, Yuan R, Du Y. GYY4137 a H 2S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/Akt pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:729-735. [PMID: 32373293 PMCID: PMC7196355 DOI: 10.22038/ijbms.2019.30588.7372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The current study was aimed to investigate the effect of morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) on ipsilateral epididymis injury in a rat model of experimental varicocele (VC). MATERIALS AND METHODS Sixty Wistar rats were randomly assigned to sham, sham plus GYY4137, VC and VC plus GYY4137 groups. Sperm quality parameters, including sperm count, motility and viability were evaluated after 4 weeks. Histological changes were measured by hematoxylin and eosin staining between the groups. The oxidative stress levels were estimated by determining epididymal superoxide dismutase (SOD) and malondialdehyde (MDA). The apoptosis status and the expression of phosphatidylinositol 3'-OH kinase (PI3K)/Akt were analyzed by immunohistochemical analysis, western blot and RT-qPCR. RESULTS VC resulted in the decrease of sperm parameters, significant histological damage and higher levels of oxidative stress and apoptosis. Compared to the VC group, GYY4137 markedly ameliorated these observed changes. In addition, treatment with GYY4137 obviously reduced the levels of caspase-3 and Bax and increased the levels of the phosphorylation of PI3K p85 and Akt. CONCLUSION Our data demonstrated that GYY4137 may alleviate the sperm damage and epididymis injury in experimentally VC-induced rats by activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yu-Qi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
10
|
Ragon BK, Odenike O, Baer MR, Stock W, Borthakur G, Patel K, Han L, Chen H, Ma H, Joseph L, Zhao Y, Baggerly K, Konopleva M, Jain N. Oral MEK 1/2 Inhibitor Trametinib in Combination With AKT Inhibitor GSK2141795 in Patients With Acute Myeloid Leukemia With RAS Mutations: A Phase II Study. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:431-440.e13. [PMID: 31056348 DOI: 10.1016/j.clml.2019.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND With proven single-agent activity and favorable toxicity profile of MEK-1/2 inhibition in advanced leukemia, investigation into combination strategies to overcome proposed resistance pathways is warranted. Resistance to MEK inhibition is secondary to upstream hyperactivation of RAS/RAF or activation of the PI3K/PTEN/AKT/mTOR pathway. This phase II multi-institution Cancer Therapy Evaluation Program-sponsored study was conducted to determine efficacy and safety of the combination of the ATP-competitive pan-AKT inhibitor GSK2141795, targeting the PI3K/AKT pathway, and the MEK inhibitor trametinib in RAS-mutated relapsed/refractory acute myeloid leukemia (AML). PATIENTS AND METHODS The primary objective was to determine the proportion of patients achieving a complete remission. Secondary objectives included assessment of toxicity profile and biologic effects of this combination. Twenty-three patients with RAS-mutated AML received the combination. Two dose levels were explored (dose level 1: 2 mg trametinib, 25 mg GSK2141795 and dose level 2: 1.5 mg trametinib, 50 mg GSK2141795). RESULTS Dose level 1 was identified as the recommended phase II dose. No complete remissions were identified in either cohort. Minor responses were recognized in 5 (22%) patients. The most common drug-related toxicities included rash and diarrhea, with dose-limiting toxicities of mucositis and colitis. Longitudinal correlative assessment of the modulation of MEK and AKT pathways using reverse phase protein array and phospho-flow analysis revealed significant and near significant down-modulation of pERK and pS6, respectively. Combined MEK and AKT inhibition had no clinical activity in patients with RAS-mutated AML. CONCLUSION Further investigation is required to explore the discrepancy between the activity of this combination on leukemia cells and the lack of clinical efficacy.
Collapse
Affiliation(s)
- Brittany Knick Ragon
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Olatoyosi Odenike
- Department of Medicine, University of Chicago Medical Center, Chicago, IL
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Wendy Stock
- Department of Medicine, University of Chicago Medical Center, Chicago, IL
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keyur Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Chen
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loren Joseph
- Division of Clinical Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
11
|
Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 2017; 415:177-186. [PMID: 29175460 DOI: 10.1016/j.canlet.2017.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer.
Collapse
|
12
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
13
|
Yang H, Huang Y, Zou Y, Ma X. Synergistic effects of phenylhexyl isothiocyanate and LY294002 on the PI3K/Akt signaling pathway in HL-60 cells. Oncol Lett 2017; 14:3043-3050. [PMID: 28927052 DOI: 10.3892/ol.2017.6556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/17/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate the synergistic effect of phenylhexyl isothiocyanate (PHI) and LY294002 [an inhibitor of phosphoinositide 3-kinase (PI3K)] on the PI3K/protein kinase B (Akt) signaling pathway, modulating histone acetylation, inhibiting cell viability and inducing apoptosis in HL-60 cells. The inhibition of HL-60 cell viability was monitored using an MTT assay. Cell apoptosis was measured using flow cytometry. Expression of acetylated histone H3 and histone H4, and the Akt signaling pathway proteins phosphorylated Akt (p-Akt), phosphorylated mammalian target of rapamycin (p-mTOR) and phosphorylated ribosomal protein S6 kinase (p-p70S6K) was detected using western blotting. The results of the present study identified that PHI and LY294002 were able to inhibit cell viability and induce cell apoptosis in HL-60 cells. The combination exhibited a synergistic effect on cell viability and apoptosis. PHI treatment led to an accumulation of acetylated histone H3 and histone H4, but LY294002 treatment had no effect on histone acetylation. However, LY294002 was identified to enhance the effect of PHI on histone acetylation in HL-60 cells. PHI and/or LY294002 were identified to dephosphorylate proteins in the PI3K/Akt signaling pathway, with a synergistic effect observed when used in combination. The results of the present study indicated that the combination of PHI and LY294002 may offer a novel therapeutic strategy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Huicong Yang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
14
|
Xu Y, Deng N, Wang X, Chen Y, Li G, Fan H. RKTG overexpression inhibits proliferation and induces apoptosis of human leukemia cells via suppression of the ERK and PI3K/AKT signaling pathways. Oncol Lett 2017; 14:965-970. [PMID: 28693259 DOI: 10.3892/ol.2017.6182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Raf kinase trapping to Golgi (RKTG) is reported to be a tumor suppressor in a number of solid tumors due to its negative modulation of the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) pathways. However, the role of RKTG in the progression of leukemia remains unknown. In the present study, a human leukemia U937 cell line overexpressing RKTG was established, and the effect of RKTG on proliferation, cell cycle and apoptosis of human leukemia cells was analyzed. The results of the present study demonstrated that exogenous overexpression of RKTG significantly inhibited cell proliferation, which was accompanied by cell cycle arrest. Apoptosis assay and Hoechst staining demonstrated that the percentage of apoptotic cells in RKTG overexpressing cells was markedly increased. Furthermore, western blotting showed that RKTG overexpression significantly increased the level of cleaved caspase 3, B-cell lymphoma 2 (Bcl2)-associated X apoptosis regulator and reduced the level of Bcl-2. In addition, the activation of ERK and phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase 1 signaling pathways in human leukemia cells was also suppressed by RKTG overexpression. In conclusion, the present study demonstrated the tumor-suppressive effect of RKTG on human leukemia cells, which seem to be partially dependent on the suppression of ERK and PI3K/AKT signaling. Overexpression of RKTG may be a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Yingdong Xu
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Na Deng
- Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xiaoou Wang
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yinghui Chen
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Guiji Li
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
15
|
Desplat V, Vincenzi M, Lucas R, Moreau S, Savrimoutou S, Rubio S, Pinaud N, Bigat D, Enriquez E, Marchivie M, Routier S, Sonnet P, Rossi F, Ronga L, Guillon J. Synthesis and Antiproliferative Effect of Ethyl 4-[4-(4-Substituted Piperidin-1-yl)]benzylpyrrolo[1,2-a
]quinoxalinecarboxylate Derivatives on Human Leukemia Cells. ChemMedChem 2017; 12:940-953. [DOI: 10.1002/cmdc.201700049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vanessa Desplat
- UFR des Sciences Pharmaceutiques; Univ. Bordeaux; 33076 Bordeaux cedex France
- INSERM U1035, Cellules souches hématopoïétiques normales et leucémiques; 33000 Bordeaux France
| | - Marian Vincenzi
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
- Department of Pharmacy and CIRPeB; University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Romain Lucas
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Stéphane Moreau
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Solène Savrimoutou
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Sandra Rubio
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Noël Pinaud
- ISM-CNRS UMR 5255; Univ. Bordeaux; 351 cours de la Libération 33405 Talence cedex France
| | - David Bigat
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Elodie Enriquez
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Mathieu Marchivie
- ICMCB CNRS-UPR 9048; Univ. Bordeaux; 87 Avenue du Docteur Schweitzer 33608 Pessac cedex France
| | - Sylvain Routier
- Institut de Chimie Organique et analytique; Univ. Orleans, CNRS UMR 7311, ICOA; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| | - Pascal Sonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie; Université de Picardie Jules Verne; 1 rue des Louvels 80037 Amiens cedex 01 France
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB; University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Luisa Ronga
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Jean Guillon
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| |
Collapse
|
16
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
17
|
Ragon BK, Kantarjian H, Jabbour E, Ravandi F, Cortes J, Borthakur G, DeBose L, Zeng Z, Schneider H, Pemmaraju N, Garcia-Manero G, Kornblau S, Wierda W, Burger J, DiNardo CD, Andreeff M, Konopleva M, Daver N. Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. Am J Hematol 2017; 92:7-11. [PMID: 27673440 DOI: 10.1002/ajh.24568] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023]
Abstract
Phosphatidylinositol-3-kinase (PI3K) signaling plays a crucial role in oncogene-mediated tumor growth and proliferation. Buparlisib (BKM120) is an oral pan-class I PI3K inhibitor. This phase I study was conducted to determine the dose limiting toxicity (DLT) and maximum tolerated dose (MTD) of BKM120 in patients (pts) with relapsed/refractory acute leukemias. Fourteen pts (12 acute myeloid leukemia, 1 acute lymphoblastic leukemia, and 1 mixed phenotype leukemia) were enrolled. Twelve pts received BKM-120 80 mg/day and two 100 mg/day. The MTD was 80 mg/day. Of the 14 patients treated, the best response was stable disease in one patient that lasted 82 days. The median survival for all patients was 75 days (range 10-568). Three patients with a 3q26 chromosome abnormality had a significantly improved median survival of 360 days (range 278-568) as compared to a median survival of 57 days (range, 10-125) among the 11 other patients. The most frequent drug-related toxicities included confusion, mucositis, dysphagia, and fatigue. Western blot profiling revealed a decrease in p-pS6K/total pS6K in 5/7 (71%) available patient samples with a mean quantitative inhibition of 65% (range, 32-100%) and a decrease in p-FOXO3/total FOXO3 in 4/6 (67%) samples with a mean quantitative inhibition of 93% (range, 89-100%). BKM120 administered at 80 mg/day showed modest efficacy and was tolerable in advanced acute leukemias. Am. J. Hematol. 92:7-11, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brittany Knick Ragon
- Hematology/Oncology Fellowship, Division of Cancer Medicine; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Hagop Kantarjian
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Elias Jabbour
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Farhad Ravandi
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jorge Cortes
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Gautam Borthakur
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - LaKiesha DeBose
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Zhihong Zeng
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Heather Schneider
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | | | - Steven Kornblau
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - William Wierda
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Jan Burger
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Courtney D DiNardo
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Michael Andreeff
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Marina Konopleva
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Naval Daver
- Department of Leukemia; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
18
|
Lin Z, Jiang J, Liu XS. Ursolic acid-mediated apoptosis of K562 cells involves Stat5/Akt pathway inhibition through the induction of Gfi-1. Sci Rep 2016; 6:33358. [PMID: 27634378 PMCID: PMC5025887 DOI: 10.1038/srep33358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/25/2016] [Indexed: 02/05/2023] Open
Abstract
Ursolic acid (UA) is a promising natural compound for cancer prevention and therapy. We previously reported that UA induced apoptosis in CML-derived K562 cells. Here we show that the apoptotic process is accompanied by down-regulation of Bcl-xL and Mcl-1 expression and dephosphorylation of Bad. These events are associated with Stat5 inhibition, which is partially mediated through elevated expression of transcriptional repressor Gfi-1. Gfi-1 knockdown using siRNA abrogates the ability of UA to decrease Stat5b expression and attenuates apoptosis induction by UA. We also demonstrate that UA suppresses the Akt kinase activity by inhibiting Akt1/2 expression, which correlates with Stat5 inhibition. Stat5 activity inhibited by a chemical inhibitor or siRNA, Akt1/2 mRNA expression is suppressed. Moreover, we show that UA exerts growth-inhibition in Imatinib-resistant K562/G01. UA has synergistic effects when used in combination with Imatinib in both K562 and K562/G01. Altogether, the data provide evidence that UA's pro-apoptotic effect in K562 cells is associated with the Gfi-1/Stat5/Akt pathway. The findings indicate that UA could potentially be a useful agent in the treatment of CML.
Collapse
Affiliation(s)
- Ze Lin
- Department of Biochemistry, Shantou University Medical College, No. 22 Xinlin Road, Jinping District, Shantou, 510451, China
| | - Jikai Jiang
- Department of Biochemistry, Shantou University Medical College, No. 22 Xinlin Road, Jinping District, Shantou, 510451, China
| | - Xiao-Shan Liu
- Department of Biochemistry, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| |
Collapse
|
19
|
Chen Q, Yao YT, Xu H, Chen YB, Gu M, Cai ZK, Wang Z. SPOCK1 promotes tumor growth and metastasis in human prostate cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2311-21. [PMID: 27486308 PMCID: PMC4958368 DOI: 10.2147/dddt.s91321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer is the most diagnosed noncutaneous cancer and ranks as the second leading cause of cancer-related deaths in American males. Metastasis is the primary cause of prostate cancer mortality. Survival rate is only 28% for metastatic patients, but is nearly 100% for patients with localized prostate cancers. Molecular mechanisms that underlie this malignancy remain obscure, and this study investigated the role of SPARC/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) in prostate cancer progression. Initially, we found that SPOCK1 expression was significantly higher in prostate cancer tissues relative to noncancerous tissues. In particular, SPOCK1 expression was also markedly high in metastatic tissues compared with nonmetastatic cancerous tissues. SPOCK1 expression knockdown by specific short hairpin RNA in PC3 cells was significantly inhibited, whereas SPOCK1 overexpression in RWPE-1 cells promoted cell viability, colony formation in vitro, and tumor growth in vivo. Moreover, the SPOCK1 knockdown in PC3 cells was associated with cell cycle arrest in G0/G1 phase, while the SPOCK1 overexpression in RWPE-1 cells induced cell cycle arrest in S phase. The SPOCK1 knockdown in PC3 cells even increased cell apoptosis. SPOCK1 modulation was also observed to affect cancerous cell proliferation and apoptotic processes in the mouse model of prostate cancer. Additionally, the SPOCK1 knockdown decreased, whereas the SPOCK1 overexpression increased cell migration and invasion abilities in vitro. Injection of SPOCK1-depleted PC3 cells significantly decreased metastatic nodules in mouse lungs. These findings suggest that SPOCK1 is a critical mediator of tumor growth and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuan-Ting Yao
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Huan Xu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yan-Bo Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Meng Gu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhi-Kang Cai
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhong Wang
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
20
|
Yee KWL, Chen HWT, Hedley DW, Chow S, Brandwein J, Schuh AC, Schimmer AD, Gupta V, Sanfelice D, Johnson T, Le LW, Arnott J, Bray MR, Sidor C, Minden MD. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia. Invest New Drugs 2016; 34:614-24. [PMID: 27406088 DOI: 10.1007/s10637-016-0375-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023]
Abstract
ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11-65 %). The RP2D in this patient population is 225 mg orally once daily.
Collapse
Affiliation(s)
- Karen W L Yee
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| | - Hsiao-Wei T Chen
- Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - David W Hedley
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Sue Chow
- Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Joseph Brandwein
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Division of Clinical Hematology, University of Alberta, Edmonton, AB, Canada
| | - Andre C Schuh
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Aaron D Schimmer
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Vikas Gupta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Deborah Sanfelice
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Tara Johnson
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Lisa W Le
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | | | | | | | - Mark D Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
21
|
Desplat V, Vincenzi M, Lucas R, Moreau S, Savrimoutou S, Pinaud N, Lesbordes J, Peyrilles E, Marchivie M, Routier S, Sonnet P, Rossi F, Ronga L, Guillon J. Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines. Eur J Med Chem 2016; 113:214-27. [DOI: 10.1016/j.ejmech.2016.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
|
22
|
Mohan CD, Srinivasa V, Rangappa S, Mervin L, Mohan S, Paricharak S, Baday S, Li F, Shanmugam MK, Chinnathambi A, Zayed ME, Alharbi SA, Bender A, Sethi G, Basappa, Rangappa KS. Trisubstituted-Imidazoles Induce Apoptosis in Human Breast Cancer Cells by Targeting the Oncogenic PI3K/Akt/mTOR Signaling Pathway. PLoS One 2016; 11:e0153155. [PMID: 27097161 PMCID: PMC4838272 DOI: 10.1371/journal.pone.0153155] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
| | - V Srinivasa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | - Shobith Rangappa
- Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 060-0808, Japan
| | - Lewis Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shardul Paricharak
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom.,Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sefer Baday
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom.,Applied Informatics Department, Informatics Institute, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Kingdom of Saudi Arabia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Central College Campus, Palace Road, Bangalore 560001, India
| | | |
Collapse
|
23
|
MA MUYUAN, BAI JIE, LING YE, CHANG WEILONG, XIE GENGCHEN, LI RUIDONG, WANG GUOBIN, TAO KAIXIONG. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep 2016; 13:2850-6. [DOI: 10.3892/mmr.2016.4829] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
|
24
|
Jude JG, Spencer GJ, Huang X, Somerville TDD, Jones DR, Divecha N, Somervaille TCP. A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene 2015; 34:1253-1262. [PMID: 24681948 PMCID: PMC4130659 DOI: 10.1038/onc.2014.77] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023]
Abstract
Given the importance of deregulated phosphoinositide (PI) signaling in leukemic hematopoiesis, genes coding for proteins that regulate PI metabolism may have significant and as yet unappreciated roles in leukemia. We performed a targeted knockdown (KD) screen of PI modulator genes in human acute myeloid leukemia (AML) cells and identified candidates required to sustain proliferation or prevent apoptosis. One of these, the lipid kinase phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A) regulates cellular levels of phosphatidylinositol-5-phosphate (PtsIns5P) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P₂). We found PIP4K2A to be essential for the clonogenic and leukemia-initiating potential of human AML cells, and for the clonogenic potential of murine MLL-AF9 AML cells. Importantly, PIP4K2A is also required for the clonogenic potential of primary human AML cells. Its KD results in accumulation of the cyclin-dependent kinase inhibitors CDKN1A and CDKN1B, G₁ cell cycle arrest and apoptosis. Both CDKN1A accumulation and apoptosis were partially dependent on activation of the mTOR pathway. Critically, however, PIP4K2A KD in normal hematopoietic stem and progenitor cells, both murine and human, did not adversely impact either clonogenic or multilineage differentiation potential, indicating a selective dependency that we suggest may be the consequence of the regulation of different transcriptional programs in normal versus malignant cells. Thus, PIP4K2A is a novel candidate therapeutic target in myeloid malignancy.
Collapse
Affiliation(s)
- Julian G Jude
- Inositide Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - David R Jones
- Inositide Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Nullin Divecha
- Inositide Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
25
|
Daver N, Boumber Y, Kantarjian H, Ravandi F, Cortes J, Rytting ME, Kawedia JD, Basnett J, Culotta KS, Zeng Z, Lu H, Richie MA, Garris R, Xiao L, Liu W, Baggerly KA, Jabbour E, O'Brien S, Burger J, Bendall LJ, Thomas D, Konopleva M. A Phase I/II Study of the mTOR Inhibitor Everolimus in Combination with HyperCVAD Chemotherapy in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia. Clin Cancer Res 2015; 21:2704-14. [PMID: 25724525 DOI: 10.1158/1078-0432.ccr-14-2888] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/17/2015] [Indexed: 02/01/2023]
Abstract
PURPOSE Previous studies suggest a potential therapeutic role for mTOR inhibition in lymphoid malignancies. This single-center phase I/II study was designed to test the safety and efficacy of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in relapsed/refractory acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN Twenty-four patients were treated; 15 received everolimus 5 mg/day and 9 received 10 mg/day with HyperCVAD. RESULTS The median age of patients was 25 years (range, 11-64) and median number of prior treatments was 2 (range, 1-7). Grade 3 mucositis was the dose-limiting toxicity and the maximum tolerated everolimus dose was 5 mg/day. Responses included complete remission (CR) in 6 patients (25%), CR without platelet recovery (CRp) in 1 (4%), and CR without recovery of counts (CRi) in 1 (4%), for an overall response rate of 33%. In addition, partial response (PR) was noted in 2 patients (8%). Seven of 11 patients treated in first salvage achieved CR/CRp (64%). The median OS was 29 weeks for patients in first salvage versus 15 weeks for patients in second salvage and beyond (P ≤ 0.001). A response was noted in 5 of 10 (50%) heavily pretreated T-ALL patients (median of 4 prior salvage regimens). Everolimus significantly inhibited phosphorylation of S6RP, but this did not correlate with response. No significant decreases in p4EBP1 and pAkt levels were noted. Responders had higher everolimus dose-adjusted area under the curve (P = 0.025) and lower clearance (P = 0.025) than nonresponders. CONCLUSIONS The combination of HyperCVAD and everolimus is well tolerated and moderately effective in relapsed ALL, specifically T-ALL.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanis Boumber
- Hematology/Oncology Fellowship Program, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael E Rytting
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jitesh D Kawedia
- Department of Pharmacy Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordan Basnett
- Center for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Kirk S Culotta
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongbo Lu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Ann Richie
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca Garris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenbin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linda J Bendall
- Center for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Deborah Thomas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
Meja K, Stengel C, Sellar R, Huszar D, Davies BR, Gale RE, Linch DC, Khwaja A. PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br J Haematol 2014; 167:69-79. [PMID: 24975213 DOI: 10.1111/bjh.13013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 01/20/2023]
Abstract
PIM kinases (PIM1, 2 and 3) are involved in cell proliferation and survival signalling and are emerging targets for the therapy of various malignancies. We found that a significant proportion of primary acute myeloid leukaemia (AML) samples showed PIM1 and PIM2 expression by quantitative reverse transcription polymerase chain reaction. Therefore, we investigated the effects of a novel ATP-competitive pan-PIM inhibitor, AZD1897, on AML cell growth and survival. PIM inhibition showed limited single agent activity in AML cell lines and primary AML cells, including those with or without FLT3-internal tandem duplication (ITD) mutation. However, significant synergy was seen when AZD1897 was combined with the Akt inhibitor AZD5363, a compound that is in early-phase clinical trials. AML cells from putative leukaemia stem cell subsets, including CD34+38- and CD34+38+ fractions, were equivalently affected by dual PIM/Akt inhibition when compared with bulk tumour cells. Analysis of downstream signalling pathways showed that combined PIM/Akt inhibition downregulated mTOR outputs (phosphorylation of 4EBP1 and S6) and markedly reduced levels of the anti-apoptotic protein MCL1. The combination of PIM and Akt inhibition holds promise for the treatment of AML.
Collapse
Affiliation(s)
- Koremu Meja
- Department of Haematology, University College London Cancer Institute, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhi D, Liu S, Lin L, Wang L, Wang J, Ma J, Wang S, Zhao H, Ho CT, Wang Y, Liu Q. 5-Acetyl-6,7,8,4′-tetramethylnortangeretin induces apoptosis in multiple myeloma U266 cells. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Nguyen LXT, Sesay A, Mitchell BS. Effect of CAL-101, a PI3Kδ inhibitor, on ribosomal rna synthesis and cell proliferation in acute myeloid leukemia cells. Blood Cancer J 2014; 4:e228. [PMID: 25014775 PMCID: PMC4219447 DOI: 10.1038/bcj.2014.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- L X T Nguyen
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - A Sesay
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - B S Mitchell
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Zhang H, Fang H, Wang K. Reactive oxygen species in eradicating acute myeloid leukemic stem cells. Stem Cell Investig 2014; 1:13. [PMID: 27358859 DOI: 10.3978/j.issn.2306-9759.2014.04.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy.
Collapse
Affiliation(s)
- Hui Zhang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hai Fang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Kankan Wang
- 1 State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China ; 2 Pediatric department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
30
|
Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G, Huang X, Kadia TM, Ruvolo PP, Feliu JB, Lu H, Debose L, Burger JA, Andreeff M, Liu W, Baggerly KA, Kornblau SM, Doyle LA, Estey EH, Kantarjian HM. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res 2014; 20:2226-35. [PMID: 24583795 PMCID: PMC3989412 DOI: 10.1158/1078-0432.ccr-13-1978] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Recent studies suggested that AKT activation might confer poor prognosis in acute myelogenous leukemia (AML), providing the rationale for therapeutic targeting of this signaling pathway. We, therefore, explored the preclinical and clinical anti-AML activity of an oral AKT inhibitor, MK-2206. Experimental Methods: We first studied the effects of MK-2206 in human AML cell lines and primary AML specimens in vitro. Subsequently, we conducted a phase II trial of MK-2206 (200 mg weekly) in adults requiring second salvage therapy for relapsed/refractory AML, and assessed target inhibition via reverse phase protein array (RPPA). RESULTS In preclinical studies, MK-2206 dose-dependently inhibited growth and induced apoptosis in AML cell lines and primary AML blasts. We then treated 19 patients with MK-2206 but, among 18 evaluable participants, observed only 1 (95% confidence interval, 0%-17%) response (complete remission with incomplete platelet count recovery), leading to early study termination. The most common grade 3/4 drug-related toxicity was a pruritic rash in 6 of 18 patients. Nevertheless, despite the use of MK-2206 at maximum tolerated doses, RPPA analyses indicated only modest decreases in Ser473 AKT (median 28%; range, 12%-45%) and limited inhibition of downstream targets. CONCLUSIONS Although preclinical activity of MK-2206 can be demonstrated, this inhibitor has insufficient clinical antileukemia activity when given alone at tolerated doses, and alternative approaches to block AKT signaling should be explored.
Collapse
MESH Headings
- Acute Disease
- Administration, Oral
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Exanthema/chemically induced
- Female
- HL-60 Cells
- Heterocyclic Compounds, 3-Ring/administration & dosage
- Heterocyclic Compounds, 3-Ring/adverse effects
- Heterocyclic Compounds, 3-Ring/therapeutic use
- Humans
- Immunoblotting
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Male
- Middle Aged
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Pruritus/chemically induced
- Salvage Therapy/methods
- Treatment Outcome
- U937 Cells
Collapse
Affiliation(s)
- Marina Y. Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Stefan H. Faderl
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J. Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuelin Huang
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter P. Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennie B. Feliu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongbo Lu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - LaKiesha Debose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan A. Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenbin Liu
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A. Baggerly
- Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elihu H. Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Reactive oxygen species-regulated glycogen synthase kinase-3β activation contributes to all-trans retinoic acid-induced apoptosis in granulocyte-differentiated HL60 cells. Biochem Pharmacol 2014; 88:86-94. [DOI: 10.1016/j.bcp.2013.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/26/2022]
|
32
|
Ma H, Cheng L, Hao K, Li Y, Song X, Zhou H, Jia L. Reversal effect of ST6GAL 1 on multidrug resistance in human leukemia by regulating the PI3K/Akt pathway and the expression of P-gp and MRP1. PLoS One 2014; 9:e85113. [PMID: 24454800 PMCID: PMC3894187 DOI: 10.1371/journal.pone.0085113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/01/2013] [Indexed: 01/06/2023] Open
Abstract
β-galactoside α2, 6-sialyltransferse gene (ST6GAL) family has two members, which encode corresponding enzymes ST6Gal I and ST6Gal II. The present atudy was to investigate whether and how ST6GAL family involved in multidrug resistance (MDR) in human leukemia cell lines and bone marrow mononuclear cells (BMMC) of leukemia patients. Real-time PCR showed a high expression level of ST6GAL1 gene in both MDR cells and BMMCs (*P<0.05). Alternation of ST6GAL1 levels had a significant impact on drug-resistant phenotype changing of K562 and K562/ADR cells both in vitro and in vivo. However, no significant changes were observed of ST6GAL2 gene. Further data revealed that manipulation of ST6GAL1 modulated the activity of phosphoinositide 3 kinase (PI3K)/Akt signaling and consequently regulated the expression of P-glycoprotein (P-gp, *P<0.05) and multidrug resistance related protein 1 (MRP1, *P<0.05), which are both known to be associated with MDR. Therefore we postulate that ST6GAL1 is responsible for the development of MDR in human leukemia cells probably through medicating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adolescent
- Adult
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Child
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Female
- Gene Expression
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myeloid, Acute/enzymology
- Male
- Middle Aged
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- Sialyltransferases/genetics
- Sialyltransferases/metabolism
- Young Adult
Collapse
Affiliation(s)
- Hongye Ma
- College of Laboratory Medicine, Medical University, Dalian, Liaoning Province, China
| | - Lei Cheng
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Keji Hao
- Department of Nuclear Medicine, People's Hospital of Peking University, Beijing, China
| | - Yanping Li
- College of Laboratory Medicine, Medical University, Dalian, Liaoning Province, China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Medical University, Dalian, Liaoning Province, China
- * E-mail:
| |
Collapse
|
33
|
Xu SM, Tang K, Meng L, Tang Y. Suppression of amino acid transporter LAT3 expression on proliferation of K562 cells. ACTA ACUST UNITED AC 2013; 33:632-635. [PMID: 24142711 DOI: 10.1007/s11596-013-1171-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Indexed: 10/26/2022]
Abstract
The activity of the mTOR pathway is frequently increased in acute myeloid leukemia, and is tightly related with cellular proliferation. Leucine is tightly linked to the mTOR pathway and can activate it, thereby stimulating cellular proliferation. LAT3 is a major transporter for leucine, and suppression of its expression can reduce cell proliferation. Here, we show that suppression of LAT3 expression can reduce proliferation of the acute leukemia cell line, K562. We investigated the mRNA and protein expression of LAT3 in several leukemia cell lines and normal peripheral blood mononuclear cells (PBMNCs) using RT-PCR and Western blotting. We also evaluated cell viability using a methyl thiazolyl tetrazolium (MTT) assay after blocking LAT3 expression with either shRNA targeted to LAT3 or a small molecular inhibitor BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid). LAT3 mRNA and protein expression was detected in leukemia cell lines, but not in normal PBMNCs. Using K562 cells, it was found that cellular proliferation and mTOR pathway activity were significantly reduced when LAT3 was blocked with either shRNA or BCH. Our results suggest that leukemia cell proliferation can be significantly suppressed by blocking LAT3. This finding may lead to a new strategy to develop clinical therapy for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Si-Miao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Tang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Baba A, Shimizu M, Ohno T, Shirakami Y, Kubota M, Kochi T, Terakura D, Tsurumi H, Moriwaki H. Synergistic growth inhibition by acyclic retinoid and phosphatidylinositol 3-kinase inhibitor in human hepatoma cells. BMC Cancer 2013; 13:465. [PMID: 24103747 PMCID: PMC3852533 DOI: 10.1186/1471-2407-13-465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/03/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A malfunction of RXRα due to phosphorylation is associated with liver carcinogenesis, and acyclic retinoid (ACR), which targets RXRα, can prevent the development of hepatocellular carcinoma (HCC). Activation of PI3K/Akt signaling plays a critical role in the proliferation and survival of HCC cells. The present study examined the possible combined effects of ACR and LY294002, a PI3K inhibitor, on the growth of human HCC cells. METHODS This study examined the effects of the combination of ACR plus LY294002 on the growth of HLF human HCC cells. RESULTS ACR and LY294002 preferentially inhibited the growth of HLF cells in comparison with Hc normal hepatocytes. The combination of 1 μM ACR and 5 μM LY294002, in which the concentrations used are less than the IC₅₀ values of these agents, synergistically inhibited the growth of HLF, Hep3B, and Huh7 human HCC cells. These agents when administered in combination acted cooperatively to induce apoptosis in HLF cells. The phosphorylation of RXRα, Akt, and ERK proteins in HLF cells were markedly inhibited by treatment with ACR plus LY294002. Moreover, this combination also increased RXRE promoter activity and the cellular levels of RARβ and p21(CIP1), while decreasing the levels of cyclin D1. CONCLUSION ACR and LY294002 cooperatively increase the expression of RARβ, while inhibiting the phosphorylation of RXRα, and that these effects are associated with the induction of apoptosis and the inhibition of cell growth in human HCC cells. This combination might therefore be effective for the chemoprevention and chemotherapy of HCC.
Collapse
Affiliation(s)
- Atsushi Baba
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krawczyk J, Keane N, Swords R, O'Dwyer M, Freeman CL, Giles FJ. Perifosine--a new option in treatment of acute myeloid leukemia? Expert Opin Investig Drugs 2013; 22:1315-27. [PMID: 23931614 DOI: 10.1517/13543784.2013.826648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Perifosine is a novel targeted oral Akt inhibitor. In preclinical leukemia models, perifosine has an independent cytotoxic potential but also synergizes well with other rationally selected targeted agents. The evidence from clinical trials supporting the use of perifosine in the therapy of leukemias is limited. The optimal dose and schedule have yet to be defined. However, given its favorable toxicity profile and mechanism of action, the therapeutic potential of perifosine should be evaluated in well-designed clinical trials. AREAS COVERED The role of the phosphatidylinositol-3 kinase (PI3K)/Akt zpathway in normal cells, cancer and leukemias is discussed. The mechanism of action of perifosine and the basic information on the development and chemical properties are summarized. The evidence from in vivo and in vitro studies is presented. The efficacy and side effect profile are summarized. EXPERT OPINION The safety and tolerability profile of perifosine are satisfactory. The evidence from clinical trials in patients with leukemias is very limited. The preclinical data are encouraging. Perifosine has the potential to play a role in the treatment of leukemias in the future. Its role needs to be confirmed in clinical trials.
Collapse
|
36
|
Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opin Ther Targets 2013; 17:921-36. [DOI: 10.1517/14728222.2013.808333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
AEG-1 overexpression is essential for maintenance of malignant state in human AML cells via up-regulation of Akt1 mediated by AURKA activation. Cell Signal 2013; 25:1438-46. [PMID: 23499911 DOI: 10.1016/j.cellsig.2013.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/04/2013] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) remains highly fatal, highlighting the need for improved understanding of signal pathways that can lead to the development of new therapeutic regimens targeting common molecular pathways shared across different AML subtypes. Here we demonstrate that astrocyte elevated gene-1 (AEG-1) is one of such pathways, involving in cell cycle and apoptosis regulation and contributing to enhanced proliferation and chemoresistance in HL-60 and U937 AML cells. The pleiotropic effects of AEG-1 on AML were found to correlate with two novel target genes, Aurora kinase A (AURKA) and Akt1. Down-regulation of AEG-1 by short-hairpin RNA (shRNA) could not only decrease AURKA expression both on mRNA and protein levels but also decrease the levels of pAkt473 and pAkt308 (the active forms of phosphorylated Akt), similar effect as using AURKA inhibitor Tozasertib (VX680). Furthermore, the AEG-1 shRNA-induced malignant phenotype changes could be mitigated by forced overexpression of AURKA through increased Akt1 activation and phosphorylation in AML cells. On the other hand, although exogenous expression of AEG-1 could increase both AURKA and Akt expression levels the simultaneous use of AURKA inhibitor Tozasertib blocked AEG-1's role of up-regulation of Akt expression in ECV304 cells, suggesting that AURKA might be a key mediator of AEG-1 in regulating Akt activation, and a key effector of AEG-1 in maintaining the malignant state of AML. Moreover, knockdown AEG-1 expression also changed the expression levels of PTEN, survivin and stathmin, the genes that have been reported to be involved in the development of several other malignant tumors. Our results provide evidence for AEG-1's carcinogenesis role in AML and reveal a novel functional link between AEG-1 and AURKA on Akt1 activation. AEG-1 can be an important candidate as a drug design target within AURKA signal pathway for more specific killing of AML cells while sparing normal cells.
Collapse
|
38
|
Tzenaki N, Papakonstanti EA. p110δ PI3 kinase pathway: emerging roles in cancer. Front Oncol 2013; 3:40. [PMID: 23459844 PMCID: PMC3585436 DOI: 10.3389/fonc.2013.00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022] Open
Abstract
Class IA PI3Ks consists of three isoforms of the p110 catalytic subunit designated p110α, p110β, and p110δ which are encoded by three separate genes. Gain-of-function mutations on PIK3CA gene encoding for p110α isoform have been detected in a wide variety of human cancers whereas no somatic mutations of genes encoding for p110β or p110δ have been reported. Unlike p110α and p110β which are ubiquitously expressed, p110δ is highly enriched in leukocytes and thus the p110δ PI3K pathway has attracted more attention for its involvement in immune disorders. However, findings have been accumulated showing that the p110δ PI3K plays a seminal role in the development and progression of some hematologic malignancies. A wealth of knowledge has come from studies showing the central role of p110δ PI3K in B-cell functions and B-cell malignancies. Further data have documented that wild-type p110δ becomes oncogenic when overexpressed in cell culture models and that p110δ is the predominant isoform expressed in some human solid tumor cells playing a prominent role in these cells. Genetic inactivation of p110δ in mice models and highly-selective inhibitors of p110δ have demonstrated an important role of this isoform in differentiation, growth, survival, motility, and morphology with the inositol phosphatase PTEN to play a critical role in p110δ signaling. In this review, we summarize our understanding of the p110δ PI3K signaling pathway in hematopoietic cells and malignancies, we highlight the evidence showing the oncogenic potential of p110δ in cells of non-hematopoietic origin and we discuss perspectives for potential novel roles of p110δ PI3K in cancer.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete Heraklion, Greece
| | | |
Collapse
|
39
|
Piedfer M, Bouchet S, Tang R, Billard C, Dauzonne D, Bauvois B. p70S6 kinase is a target of the novel proteasome inhibitor 3,3'-diamino-4'-methoxyflavone during apoptosis in human myeloid tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1316-28. [PMID: 23481040 DOI: 10.1016/j.bbamcr.2013.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/17/2013] [Accepted: 02/15/2013] [Indexed: 12/01/2022]
Abstract
Acute myeloid leukemia (AML) is a deadly disease characterized by the clonal expansion and accumulation of hematopoietic stem cells arrested at various stages of development. Clinical research efforts are currently focusing on targeted therapies that induce apoptosis in AML cells. Herein, the effects and mechanisms of the novel flavone 3,3'-diamino-4'-methoxyflavone (DD1) on AML cell dysfunction were investigated in AML cells (monoblast U937, myelomonocyte OCI-AML3, promyelocyte NB4, myeloblast HL-60) and blood samples from patients with AML. The administration of DD1 inhibited proliferation and induced death of AML cell lines and reduced the clonogenic activity of AML, but not normal, blood cells. The flavone's apoptotic action in U937 cells was associated with recruitment of mitochondria, Bax activation, Bad dephosphorylation (at Ser(136)), activation of caspases -8, -9, and -3 and cleavage of the caspase substrate PARP-1. DD1 induced a marked decrease in (i) Thr(389)-phosphorylation and (ii) protein levels of the caspase-3 substrate P70 ribosomal S6 kinase (P70S6K, known for its ability to phosphorylate Bad). Caspase-dependent apoptosis and P70S6K degradation were simultaneously prevented by the caspase inhibitors. Importantly, DD1 was shown to directly inhibit the proteasome's chymotrypsin-like activity in U937 cells. Apoptotic activity of the proteasome inhibitor bortezomib was also related to Bax activation and P70S6K downregulation. Accordingly, DD1 failed to induce P70S6K cleavage, Bax stimulation and apoptosis in K562 cells resistant to bortezomib. These results indicate that DD1 has the potential to eradicate AML cells and support a critical role for Bax and P70S6K in DD1-mediated proteasome inhibition and apoptosis of leukemia cells.
Collapse
Affiliation(s)
- Marion Piedfer
- Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Weidenaar AC, ter Elst A, Kampen KR, Meeuwsen-de Boer T, Kamps WA, Schuringa JJ, de Bont ES. Impaired Long-Term Expansion and Self-Renewal Potential of Pediatric Acute Myeloid Leukemia–Initiating Cells By PTK787/ZK 222584. Mol Cancer Res 2013; 11:339-48. [DOI: 10.1158/1541-7786.mcr-12-0113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
PI-103 sensitizes acute myeloid leukemia stem cells to daunorubicin-induced cytotoxicity. Med Oncol 2013; 30:395. [DOI: 10.1007/s12032-012-0395-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
42
|
Wu B. On the geometric modeling approach to empirical null distribution estimation for empirical Bayes modeling of multiple hypothesis testing. Comput Biol Chem 2012; 43:17-22. [PMID: 23314152 DOI: 10.1016/j.compbiolchem.2012.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022]
Abstract
We study the geometric modeling approach to estimating the null distribution for the empirical Bayes modeling of multiple hypothesis testing. The commonly used method is a nonparametric approach based on the Poisson regression, which however could be unduly affected by the dependence among test statistics and perform very poorly under strong dependence. In this paper, we explore a finite mixture model based geometric modeling approach to empirical null distribution estimation and multiple hypothesis testing. Through simulations and applications to two public microarray data, we will illustrate its competitive performance.
Collapse
Affiliation(s)
- Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fialin C, Larrue C, Vergez F, Sarry JE, Bertoli S, Mansat-De Mas V, Demur C, Delabesse E, Payrastre B, Manenti S, Roche S, Récher C. The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia 2012; 27:325-35. [PMID: 22902361 DOI: 10.1038/leu.2012.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several receptor tyrosine kinases (TKs) are involved in the pathogenesis of acute myeloid leukemia (AML). Here, we have assessed the expression of the Recepteur d'Origine Nantais (RON) in leukemic cell lines and samples from AML patients. In a series of 86 AML patients, we show that both the full length and/or the short form (sf) of RON are expressed in 51% and 43% of cases, respectively. Interestingly, sfRON is not expressed in normal CD34+ hematopoietic cells and induces part of its oncogenic signaling through interaction with the Src kinase Lyn. sfRON-mediated signaling in leukemic cells also involves mTORC1, the proapoptotic bcl2-family member, BAD, but not the phosphatidylinositol 3-kinase/Akt pathway. Furthermore, the expression of sfRON was specifically downregulated by 5-azacytidine (AZA). Conversely, AZA could induce the expression of sfRON in sfRON-negative leukemic cells suggesting that the activity of this drug in AML and myelodysplastic syndromes could involve modulation of TKs. cMET/RON inhibitors exhibited an antileukemic activity exclusively in AML samples and cell lines expressing sfRON. These results might support clinical trials evaluating cMET/RON inhibitors in AML patients expressing sfRON.
Collapse
Affiliation(s)
- C Fialin
- INSERM UMR1037-Cancer Research Center of Toulouse, CNRS ERL 5294, Pavillon Lefebvre BP3028, CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xing Y, Gerhard B, Hogge DE. Selective small molecule inhibitors of p110α and δ isoforms of phosphoinosityl-3-kinase are cytotoxic to human acute myeloid leukemia progenitors. Exp Hematol 2012; 40:922-33. [PMID: 22828407 DOI: 10.1016/j.exphem.2012.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/30/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
The phosphoinosityl-3-kinase (PI3K) pathway is frequently constitutively active in blast cells from acute myeloid leukemia (AML) patients. RNA and protein from all four catalytic isoforms of PI3K (p110α, β, γ, and δ) were expressed in 38 AML samples, which also showed expression of phosphorylated Akt Ser473, indicating PI3K activation. Initial treatment of 12 AML samples with inhibitors targeting each of the four isoforms demonstrated that p110α and δ inhibition are more effective in killing AML blast colony-forming cells (CFC) than p110β or γ inhibition. In subsequent experiments, AML CFC from 46 patient samples were treated with the p110α and δ selective inhibitors, PI3Kα inhibitor 2 or PCN5603, and dose-dependent progenitor kill and inhibition of phosphorylated Akt Ser473 expression was observed. AML samples were more sensitive to PI3Kα inhibitor 2 and PCN5603 killing than normal bone marrow or normal peripheral blood CFC (median IC(50) for AML and normal CFCs treated with PI3Kα inhibitor 2, 1.8 and 4.3 μM, respectively, and for PCN5603, 1.9 and 6.2 μM, respectively). Furthermore, treatment of AML cells with PCN5603 also decreased survival of more primitive leukemia progenitors identified in long-term culture (AML long-term culture initiating cells), while less toxicity toward normal bone marrow long-term culture initiating cells was observed. Selective inhibition of the p110α and δ isoforms of PI3K kills AML progenitors while causing relative sparing of analogous normal cells.
Collapse
Affiliation(s)
- Yan Xing
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | |
Collapse
|
46
|
Wu B, Wang X, Chi ZF, Hu R, Zhang R, Yang W, Liu ZG. Ursolic acid-induced apoptosis in K562 cells involving upregulation of PTEN gene expression and inactivation of the PI3K/Akt pathway. Arch Pharm Res 2012; 35:543-8. [PMID: 22477202 DOI: 10.1007/s12272-012-0318-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/13/2011] [Accepted: 06/22/2011] [Indexed: 01/23/2023]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid derived from a variety of medicinal plants, exhibits potent anticancer activity against many types of cancer cells. However, the anticancer mechanism of UA is not clearly understood. Suppression of phosphatase and a tensin homolog deleted on chromosome 10 (PTEN) gene expression leading to activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway has been observed in many cancers including leukemia, making the PTEN gene and PI3K/Akt pathway a central target for cancer therapy. Here, we demonstrated that UA was able to inhibit growth, induce apoptosis in a human chronic myelogenous leukemia cell line (K562 cells) via upregulation of PTEN gene expression, inhibit Akt kinase activity, change mitochondrial transmembrane potential and reduce the release of cytochrome c and the activity of caspases. These results suggest that UA may elicit its strong antitumor effects via upregulation of the PTEN gene and inhibition of the PI3K/Akt pathway.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cytochromes c/metabolism
- Dose-Response Relationship, Drug
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Potential, Mitochondrial/drug effects
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- Time Factors
- Triterpenes/pharmacology
- Up-Regulation
- Ursolic Acid
Collapse
Affiliation(s)
- Bin Wu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Xu HL, Yu XF, Qu SC, Qu XR, Jiang YF, Sui DY. Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism. Food Chem Toxicol 2012; 50:590-6. [DOI: 10.1016/j.fct.2012.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 01/06/2012] [Indexed: 01/05/2023]
|
48
|
The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 2012; 119:911-23. [PMID: 22065598 DOI: 10.1182/blood-2011-07-366203] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
An important mediator of cytokine signaling implicated in regulation of hematopoiesis is the PI3K/protein kinase B (PKB/c-Akt) signaling module. Constitutive activation of this signaling module has been observed in a large group of leukemias. Because activation of this signaling pathway has been demonstrated to be sufficient to induce hematologic malignancies and is thought to correlate with poor prognosis and enhanced drug resistance, it is considered to be a promising target for therapy. A high number of pharmacologic inhibitors directed against either individual or multiple components of this pathway have already been developed to improve therapy. In this review, the safety and efficacy of both single and dual-specificity inhibitors will be discussed as well as the potential of combination therapy with either inhibitors directed against other signal transduction molecules or classic chemotherapy.
Collapse
|
49
|
Merhi F, Tang R, Piedfer M, Mathieu J, Bombarda I, Zaher M, Kolb JP, Billard C, Bauvois B. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells. PLoS One 2011; 6:e25963. [PMID: 21998731 PMCID: PMC3188562 DOI: 10.1371/journal.pone.0025963] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/14/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. METHODOLOGY AND RESULTS HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473)) and Akt1 substrate Bad (at Ser(136)) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. SIGNIFICANCE Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.
Collapse
Affiliation(s)
- Faten Merhi
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | - Ruoping Tang
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
- AP-HP, Département d'Hématologie, Hôpital St Antoine, Paris, France
| | - Marion Piedfer
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | | | - Isabelle Bombarda
- ISM2-AD2M, UMR CNRS 6263, Université Paul Cézanne, Marseille, France
| | - Murhaf Zaher
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | - Jean-Pierre Kolb
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | - Christian Billard
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | - Brigitte Bauvois
- INSERM U872, Université Pierre et Marie Curie, Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
50
|
Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem Funct 2011; 29:468-80. [PMID: 21773978 DOI: 10.1002/cbf.1774] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/30/2011] [Accepted: 05/17/2011] [Indexed: 01/24/2023]
Abstract
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.
Collapse
Affiliation(s)
- Engin Ulukaya
- Medical School of Uludag University, Medical Biochemistry Department, Bursa, Turkey.
| | | | | |
Collapse
|