1
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Modak RV, de Oliveira Rebola KG, McClatchy J, Mohammadhosseini M, Damnernsawad A, Kurtz SE, Eide CA, Wu G, Laderas T, Nechiporuk T, Gritsenko MA, Hansen JR, Hutchinson C, Gosline SJ, Piehowski P, Bottomly D, Short N, Rodland K, McWeeney SK, Tyner JW, Agarwal A. Targeting CCL2/CCR2 Signaling Overcomes MEK Inhibitor Resistance in Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:2245-2259. [PMID: 38451486 PMCID: PMC11094423 DOI: 10.1158/1078-0432.ccr-23-2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Emerging evidence underscores the critical role of extrinsic factors within the microenvironment in protecting leukemia cells from therapeutic interventions, driving disease progression, and promoting drug resistance in acute myeloid leukemia (AML). This finding emphasizes the need for the identification of targeted therapies that inhibit intrinsic and extrinsic signaling to overcome drug resistance in AML. EXPERIMENTAL DESIGN We performed a comprehensive analysis utilizing a cohort of ∼300 AML patient samples. This analysis encompassed the evaluation of secreted cytokines/growth factors, gene expression, and ex vivo drug sensitivity to small molecules. Our investigation pinpointed a notable association between elevated levels of CCL2 and diminished sensitivity to the MEK inhibitors (MEKi). We validated this association through loss-of-function and pharmacologic inhibition studies. Further, we deployed global phosphoproteomics and CRISPR/Cas9 screening to identify the mechanism of CCR2-mediated MEKi resistance in AML. RESULTS Our multifaceted analysis unveiled that CCL2 activates multiple prosurvival pathways, including MAPK and cell-cycle regulation in MEKi-resistant cells. Employing combination strategies to simultaneously target these pathways heightened growth inhibition in AML cells. Both genetic and pharmacologic inhibition of CCR2 sensitized AML cells to trametinib, suppressing proliferation while enhancing apoptosis. These findings underscore a new role for CCL2 in MEKi resistance, offering combination therapies as an avenue to circumvent this resistance. CONCLUSIONS Our study demonstrates a compelling rationale for translating CCL2/CCR2 axis inhibitors in combination with MEK pathway-targeting therapies, as a potent strategy for combating drug resistance in AML. This approach has the potential to enhance the efficacy of treatments to improve AML patient outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Receptors, CCR2/metabolism
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Drug Resistance, Neoplasm/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Animals
- Pyridones/pharmacology
- Pyridones/therapeutic use
- Mice
Collapse
Affiliation(s)
- Rucha V. Modak
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Katia G. de Oliveira Rebola
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - John McClatchy
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Mona Mohammadhosseini
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alisa Damnernsawad
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Stephen E. Kurtz
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Christopher A. Eide
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Guanming Wu
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Ted Laderas
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | | | | | | | - Sara J.C. Gosline
- Pacific Northwest National Laboratory, Richland, Washington
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington
| | - Daniel Bottomly
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Nicholas Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Karin Rodland
- Pacific Northwest National Laboratory, Richland, Washington
| | - Shannon K. McWeeney
- Division of Bioinformatics & Computational Biology, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Anupriya Agarwal
- Division of Oncological Sciences, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
3
|
Kotsiafti A, Giannakas K, Christoforou P, Liapis K. Progress toward Better Treatment of Therapy-Related AML. Cancers (Basel) 2023; 15:cancers15061658. [PMID: 36980546 PMCID: PMC10046015 DOI: 10.3390/cancers15061658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) comprises 10-20% of all newly diagnosed cases of AML and is related to previous use of chemotherapy or ionizing radiotherapy for an unrelated malignant non-myeloid disorder or autoimmune disease. Classic examples include alkylating agents and topoisomerase II inhibitors, whereas newer targeted therapies such as poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors have emerged as causative agents. Typically, t-AML is characterized by adverse karyotypic abnormalities and molecular lesions that confer a poor prognosis. Nevertheless, there are also cases of t-AML without poor-risk features. The management of these patients remains controversial. We describe the causes and pathophysiology of t-AML, putting emphasis on its mutational heterogeneity, and present recent advances in its treatment including CPX-351, hypomethylating agent plus venetoclax combination, and novel, molecularly targeted agents that promise to improve the cure rates. Evidence supporting personalized medicine for patients with t-AML is presented, as well as the authors' clinical recommendations.
Collapse
Affiliation(s)
| | | | - Panagiotis Christoforou
- Pathophysiology Department, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Konstantinos Liapis
- Dragana Campus, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece
| |
Collapse
|
4
|
Caiado F, Kovtonyuk LV, Gonullu NG, Fullin J, Boettcher S, Manz MG. Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling. Blood 2023; 141:886-903. [PMID: 36379023 PMCID: PMC10651783 DOI: 10.1182/blood.2022016835] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), also referred to as aging-related clonal hematopoiesis, is defined as an asymptomatic clonal expansion of mutant mature hematopoietic cells in ≥4% of blood leukocytes. CHIP associates with advanced age and increased risk for hematological malignancy, cardiovascular disease, and all-cause mortality. Loss-of-function somatic mutations in TET2 are frequent drivers of CHIP. However, the contribution of aging-associated cooperating cell-extrinsic drivers, like inflammation, remains underexplored. Using bone marrow (BM) transplantation and newly developed genetic mosaicism (HSC-SCL-Cre-ERT; Tet2+/flox; R26+/tm6[CAG-ZsGreen1]Hze) mouse models of Tet2+/-driven CHIP, we observed an association between increased Tet2+/- clonal expansion and higher BM levels of the inflammatory cytokine interleukin-1 (IL-1) upon aging. Administration of IL-1 to mice carrying CHIP led to an IL-1 receptor 1 (IL-1R1)-dependent expansion of Tet2+/- hematopoietic stem and progenitor cells (HSPCs) and mature blood cells. This expansion was caused by increased Tet2+/- HSPC cell cycle progression, increased multilineage differentiation, and higher repopulation capacity compared with their wild-type counterparts. In agreement, IL-1α-treated Tet2+/- hematopoietic stem cells showed increased DNA replication and repair transcriptomic signatures and reduced susceptibility to IL-1α-mediated downregulation of self-renewal genes. More important, genetic deletion of IL-1R1 in Tet2+/- HPSCs or pharmacologic inhibition of IL-1 signaling impaired Tet2+/- clonal expansion, establishing the IL-1 pathway as a relevant and therapeutically targetable driver of Tet2+/- CHIP progression during aging.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Larisa V. Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Nagihan G. Gonullu
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Jonas Fullin
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Mezzasoma L, Bellezza I, Romani R, Talesa VN. Extracellular Vesicles and the Inflammasome: An Intricate Network Sustaining Chemoresistance. Front Oncol 2022; 12:888135. [PMID: 35530309 PMCID: PMC9072732 DOI: 10.3389/fonc.2022.888135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1β (IL-1β) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1β production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1β production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.
Collapse
|
6
|
Associating Drug Sensitivity with Differentiation Status Identifies Effective Combinations for Acute Myeloid Leukemia. Blood Adv 2022; 6:3062-3067. [PMID: 35078224 PMCID: PMC9131911 DOI: 10.1182/bloodadvances.2021006307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Combined targeting of AML patient cells with p38 MAPK and BCL2 inhibitors overcomes monocytic-associated resistance to VEN. Exploiting complementary drug sensitivity profiles with respect to leukemic differentiation state affords enhanced efficacy in AML.
Using ex vivo drug screening of primary patient specimens, we identified the combination of the p38 MAPK inhibitor doramapimod (DORA) with the BCL2 inhibitor venetoclax (VEN) as demonstrating broad, enhanced efficacy compared with each single agent across 335 acute myeloid leukemia (AML) patient samples while sparing primary stromal cells. Single-agent DORA and VEN sensitivity was associated with distinct, nonoverlapping tumor cell differentiation states. In particular, increased monocytes, M4/M5 French-American-British classification, and CD14+ immunophenotype tracked with sensitivity to DORA and resistance to VEN but were mitigated with the combination. Increased expression of MAPK14 and BCL2, the respective primary targets of DORA and VEN, were observed in monocytic and undifferentiated leukemias, respectively. Enrichment for DORA and VEN sensitivities was observed in AML with monocyte-like and progenitor-like transcriptomic signatures, respectively, and these associations diminished with the combination. The mechanism underlying the combination’s enhanced efficacy may result from inhibition of p38 MAPK-mediated phosphorylation of BCL2, which in turn enhances sensitivity to VEN. These findings suggest exploiting complementary drug sensitivity profiles with respect to leukemic differentiation state, such as dual targeting of p38 MAPK and BCL2, offers opportunity for broad, enhanced efficacy across the clinically challenging heterogeneous landscape of AML.
Collapse
|
7
|
Camacho V, Kuznetsova V, Welner RS. Inflammatory Cytokines Shape an Altered Immune Response During Myeloid Malignancies. Front Immunol 2021; 12:772408. [PMID: 34804065 PMCID: PMC8595317 DOI: 10.3389/fimmu.2021.772408] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The immune microenvironment is a critical driver and regulator of leukemic progression and hematological disease. Recent investigations have demonstrated that multiple immune components play a central role in regulating hematopoiesis, and dysfunction at the immune cell level significantly contributes to neoplastic disease. Immune cells are acutely sensitive to remodeling by leukemic inflammatory cytokine exposure. Importantly, immune cells are the principal cytokine producers in the hematopoietic system, representing an untapped frontier for clinical interventions. Due to a proinflammatory cytokine environment, dysregulation of immune cell states is a hallmark of hematological disease and neoplasia. Malignant immune adaptations have profound effects on leukemic blast proliferation, disease propagation, and drug-resistance. Conversely, targeting the immune landscape to restore hematopoietic function and limit leukemic expansion may have significant therapeutic value. Despite the fundamental role of the immune microenvironment during the initiation, progression, and treatment response of hematological disease, a detailed examination of how leukemic cytokines alter immune cells to permit, promote, or inhibit leukemia growth is lacking. Here we outline an immune-based model of leukemic transformation and highlight how the profound effect of immune alterations on the trajectory of malignancy. The focus of this review is to summarize current knowledge about the impacts of pro- and anti-inflammatory cytokines on immune cells subsets, their modes of action, and immunotherapeutic approaches with the potential to improve clinical outcomes for patients suffering from hematological myeloid malignancies.
Collapse
Affiliation(s)
- Virginia Camacho
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert S Welner
- Department of Medicine, Division of Hematology/Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Grauers Wiktorin H, Aydin E, Christenson K, Issdisai N, Thorén FB, Hellstrand K, Martner A. Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance. Oncoimmunology 2021; 10:1944538. [PMID: 34367728 PMCID: PMC8317920 DOI: 10.1080/2162402x.2021.1944538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Interleukin-1 beta (IL-1β), a pro-inflammatory cytokine, has been ascribed a role in the expansion of myeloid progenitors in acute myeloid leukemia (AML) and in promoting myeloid cell-induced suppression of lymphocyte-mediated immunity against malignant cells. This study aimed at defining the potential impact of IL-1β in the post-remission phase of AML patients receiving immunotherapy for relapse prevention in an international phase IV trial of 84 patients (ClinicalTrials.gov; NCT01347996). Consecutive serum samples were collected from AML patients in first complete remission (CR) who received cycles of relapse-preventive immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2). Low IL-1β serum levels before and after the first HDC/IL-2 treatment cycle favorably prognosticated leukemia-free survival and overall survival. Serum levels of IL-1β were significantly reduced in patients receiving HDC/IL-2. HDC also reduced the formation of IL-1β from activated human PBMCs in vitro. Additionally, high serum levels of the IL-1 receptor antagonist IL-1RA were associated with favorable outcome, and AML patients with low IL-1β along with high IL-1RA levels were strikingly protected against leukemic relapse. Our results suggest that strategies to target IL-1β might impact on relapse risk and survival in AML.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Molecular Genetics, Germany Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Christenson
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden.,Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Nuttida Issdisai
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
9
|
Meta-analysis of gene signatures and key pathways indicates suppression of JNK pathway as a regulator of chemo-resistance in AML. Sci Rep 2021; 11:12485. [PMID: 34127725 PMCID: PMC8203646 DOI: 10.1038/s41598-021-91864-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
The pathways and robust deregulated gene signatures involved in AML chemo-resistance are not fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem to have similar regulatory gene(s) or pathway(s) related to their chemo-resistance phenotype. In this study using gene set enrichment approach, deregulated genes and pathways associated with relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from GEO and ArrayExpress repositories were used to identify significantly differentially expressed genes between chemo-resistance and chemo-sensitive groups. Functional and pathway enrichment analysis of differentially expressed genes was performed to assess molecular mechanisms related to AML chemotherapeutic resistance. A total of 34 genes selected to be differentially expressed in the chemo-resistance compared to the chemo-sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll-like receptor signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression of JNK pathway, which could induce pro-apoptotic gene expression as well as down regulation of survival factors, introducing this pathway as a key regulator of drug-resistance development in AML.
Collapse
|
10
|
Karimdadi Sariani O, Eghbalpour S, Kazemi E, Rafiei Buzhani K, Zaker F. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia. Cytokine 2021; 142:155508. [PMID: 33810945 DOI: 10.1016/j.cyto.2021.155508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with high mortality that accounts for the most common acute leukemia in adults. Despite all progress in the therapeutic strategies and increased rate of complete remission, many patients will eventually relapse and die from the disease. Cytokines as molecular messengers play a pivotal role in the immune system. The imbalance release of cytokine has been shown to exert a significant influence on the progression of hematopoietic malignancies including acute myeloid leukemia. This article aimed to summarize current knowledge about cytokines and their critical roles in the pathogenesis, treatment, and survival of AML patients.
Collapse
Affiliation(s)
- Omid Karimdadi Sariani
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Sara Eghbalpour
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Elahe Kazemi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Jamalpour M, Bergquist E, Welsh M. Absence of the Shb gene in mixed-lineage leukemia MLL-AF9 cells increases latency in mice despite higher proliferation rates in vitro. Exp Cell Res 2020; 397:112368. [PMID: 33220260 DOI: 10.1016/j.yexcr.2020.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 11/24/2022]
Abstract
Mixed lineage leukemia (MLL) arises from several KMT2A-gene chromosomal translocations. Shb gene deficiency has been found to exhibit pleiotropic effects in different models of leukemia, and consequently, this study aimed to investigate MLL-AF9-induced leukemia in Shb deficiency. Bone marrow cells from wild type and Shb knockout (KO) mice were transduced with the MLL-AF9 gene. Shb KO MLL-AF9 cells proliferated at an increased rate, exhibited altered expression of certain cytokine genes (Kitl, Csf3, IL6, IL1b) and higher expression of cell cycle genes (Ccnd2, Ccne1). Mice receiving Shb KO MLL-AF9 cells showed longer latency without displaying any difference in rates of leukemic cell proliferation, indicating a dichotomy between the in vitro and in vivo phenotypes. The mice with Shb deficient MLL-AF9 cells had a lower content of leukemic bone marrow cells allowing elevated normal hematopoiesis, explaining the longer latency. Finally, Shb knockout GFP-positive bone marrow cells showed a higher percentage of cells expressing myeloid markers. The result suggests a role of Shb in the progression of leukemia and that the relevance of the Shb gene is context-dependent as inferred from the differences between the in vivo and in vitro responses. These findings help to obtain an increased understanding of human MLL-AF9 leukemia.
Collapse
Affiliation(s)
- Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Eric Bergquist
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Yamamoto de Almeida L, Pereira-Martins DA, Lima ASG, Baggio MS, de Araujo Koury LC, Lange AP, Bassi SC, Scheucher PS, Rego EM. Interleukin-8 is not a predictive biomarker for the development of the acute promyelocytic leukemia differentiation syndrome. BMC Cancer 2020; 20:821. [PMID: 32859169 PMCID: PMC7456372 DOI: 10.1186/s12885-020-07330-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Differentiation syndrome (DS) is the main life-threatening adverse event that occurs in acute promyelocytic leukemia (APL) patients treated with all-trans retinoic acid (ATRA). Cytokine imbalances have been reported to play role during the developing of acute promyelocytic leukemia differentiation syndrome (APL-DS). However, the relationship between the plasma cytokine levels and their prognostic value for the prediction of DS developing in patients with APL during the treatment with ATRA and anthracyclines has not been previously reported. Methods In this study, we followed an APL cohort (n = 17) over 7 days of ATRA therapy in DS (n = 6) and non-DS groups (n = 11). Interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α were measured in the peripheral blood plasma from 17 patients with APL and 11 healthy adult controls by using the cytometric bead array method. Results In non-DS patients, IL-8 plasma levels were significantly reduced in the seventh day of ATRA treatment (34.16; 6.99 to 147.11 pg mL− 1 in D0 vs. 10.9; 0 to 26.81 pg mL− 1 in D7; p = 0.02) whereas their levels did not discriminate between DS and non-DS development during the entire induction period (all p > 0.05 in D0, D3, and D7). No significant differences were found in IL-6 levels between groups (p > 0.05 in D0-D7). Other cytokines tested were all undetectable in patients with APL or healthy controls. Conclusions We demonstrated that the modulation of IL-8 following ATRA treatment may occur regardless of the development of DS and, therefore, does not appear to be a predictive biomarker to monitor the APL-DS.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil.,Center for Cell Based Therapy, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Diego Antonio Pereira-Martins
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil.,Center for Cell Based Therapy, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Ana Sílvia Gouvêa Lima
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Márcia Sueli Baggio
- Hemostasis Laboratory, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luisa Corrêa de Araujo Koury
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Ana Paula Lange
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil.,Center for Cell Based Therapy, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Sarah Cristina Bassi
- Center for Cell Based Therapy, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Priscila Santos Scheucher
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil
| | - Eduardo Magalhães Rego
- Hematology Division, Department of Medical Images, Hematology, and Clinical Oncology, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil. .,Center for Cell Based Therapy, University of Sao Paulo at Ribeirao Preto Medical School, Ribeirao Preto, Brazil. .,Hematology Division, LIM31, Faculdade de Medicina, University of Sao Paulo, Av Dr Eneas Carvalho de Aguiar 155, 1st Floor, Hemocentro, São Paulo, SP, CEP05403-000, Brazil.
| |
Collapse
|
13
|
Guo HZ, Niu LT, Qiang WT, Chen J, Wang J, Yang H, Zhang W, Zhu J, Yu SH. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance. FASEB J 2019; 33:9565-9576. [PMID: 31136196 DOI: 10.1096/fj.201900099r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Secreted proteins provide crucial signals that have been implicated in the development of acute myeloid leukemia (AML) in the bone marrow microenvironment. Here we identify aberrant expressions of inflammatory IL-17B and its receptor (IL-17RB) in human and mouse mixed lineage leukemia-rearranged AML cells, which were further increased after exposure to chemotherapy. Interestingly, silencing of IL-17B or IL-17RB led to significant suppression of leukemic cell survival and disease progression in vivo. Moreover, the IL-17B-IL-17RB axis protected leukemic cells from chemotherapeutic agent-induced apoptotic effects. Mechanistic studies revealed that IL-17B promoted AML cell survival by enhancing ERK, NF-κB phosphorylation, and the expression of antiapoptotic protein B-cell lymphoma 2, which were reversed by small-molecule inhibitors. Thus, the inhibition of the IL-17B-IL-17RB axis may be a valid strategy to enhance sensitivity and therapeutic benefit of AML chemotherapy.-Guo, H.-Z., Niu, L.-T., Qiang, W.-T., Chen, J., Wang, J., Yang, H., Zhang, W., Zhu, J., Yu, S.-H. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance.
Collapse
Affiliation(s)
- He-Zhou Guo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Li-Ting Niu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wan-Ting Qiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Wang
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hui Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Shan-He Yu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| |
Collapse
|
14
|
Myeloid disorders after autoimmune disease. Best Pract Res Clin Haematol 2019; 32:74-88. [PMID: 30927978 DOI: 10.1016/j.beha.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases (ADs) are associated with an increased risk not only of lymphoproliferative disorders but also of myeloid malignancies. The excess risk of myelodysplastic syndromes and/or acute myeloid leukemia is observed across several AD types, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disorders, multiple sclerosis, among others. The risk of developing myeloid neoplasms (MNs) is dependent on several variables, including the specific AD type, chronicity and severity of the AD, type and duration of exposure of disease modifying anti-rheumatic drugs or cytotoxics/immunosuppressives, and genetic predisposition risk. Putative triggering factors linking AD to elevated MN risk include AD-directed medications, shared genetic susceptibilities between the two disease entities, and chronic immune stimulation or bone marrow infiltration by the AD. Molecular mechanisms underpinning leukemogenesis remain largely speculative and warrant further investigation. Leukemias arising in patients with AD are not always 'therapy-related' in that MNs may develop in certain AD subtypes even among patients with no prior therapy exposure. Only a few studies have attempted to determine factors associated with MN development in AD but failed to demonstrate consistent characteristic clinical or paraclinical features. These reports have failed to demonstrate a clear correlation between individual agent exposure and subsequent leukemia development due to the low rates of therapy exposure compounded by the rarity of MN occurrence. Notwithstanding, the leukemogenic potential is best documented with agents such as azathioprine, cyclophosphamide, and mitoxantrone; this risk of MN development does not appear to be shared by biologic approaches such as anti-tumor necrosis factors-alpha inhibitors. In this article, we discuss plausible biologic mechanisms underlying MN pathogenesis in AD and review the data available on the development of MNs in patients with AD.
Collapse
|
15
|
Carter BZ, Mak PY, Wang X, Tao W, Ruvolo V, Mak D, Mu H, Burks JK, Andreeff M. An ARC-Regulated IL1β/Cox-2/PGE2/β-Catenin/ARC Circuit Controls Leukemia-Microenvironment Interactions and Confers Drug Resistance in AML. Cancer Res 2019; 79:1165-1177. [PMID: 30674535 DOI: 10.1158/0008-5472.can-18-0921] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022]
Abstract
The apoptosis repressor with caspase recruitment domain (ARC) protein is a strong independent adverse prognostic marker in acute myeloid leukemia (AML). We previously reported that ARC regulates leukemia-microenvironment interactions through the NFκB/IL1β signaling network. Malignant cells have been reported to release IL1β, which induces PGE2 synthesis in mesenchymal stromal cells (MSC), in turn activating β-catenin signaling and inducing the cancer stem cell phenotype. Although Cox-2 and its enzymatic product PGE2 play major roles in inflammation and cancer, the regulation and role of PGE2 in AML are largely unknown. Here, we report that AML-MSC cocultures greatly increase Cox-2 expression in MSC and PGE2 production in an ARC/IL1β-dependent manner. PGE2 induced the expression of β-catenin, which regulated ARC and augmented chemoresistance in AML cells; inhibition of β-catenin decreased ARC and sensitized AML cells to chemotherapy. NOD/SCIDIL2RγNull-3/GM/SF mice transplanted with ARC-knockdown AML cells had significantly lower leukemia burden, lower serum levels of IL1β/PGE2, and lower tissue human ARC and β-catenin levels, prolonged survival, and increased sensitivity to chemotherapy than controls. Collectively, we present a new mechanism of action of antiapoptotic ARC by which ARC regulates PGE2 production in the tumor microenvironment and microenvironment-mediated chemoresistance in AML.Significance: The antiapoptotic protein ARC promotes AML aggressiveness by enabling detrimental cross-talk with bone marrow mesenchymal stromal cells.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Stevens BM, Khan N, D'Alessandro A, Nemkov T, Winters A, Jones CL, Zhang W, Pollyea DA, Jordan CT. Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes. Nat Commun 2018; 9:3694. [PMID: 30209285 PMCID: PMC6135858 DOI: 10.1038/s41467-018-05984-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a chronic hematologic disorder that frequently evolves to more aggressive stages and in some cases leads to acute myeloid leukemia (AML). MDS arises from mutations in hematopoietic stem cells (HSCs). Thus, to define optimal therapies, it is essential to understand molecular events driving HSC pathogenesis. In this study, we report that during evolution of MDS, malignant HSCs activate distinct cellular programs that render such cells susceptible to therapeutic intervention. Specifically, metabolic analyses of the MDS stem cell compartment show a profound activation of protein synthesis machinery and increased oxidative phosphorylation. Pharmacological targeting of protein synthesis and oxidative phosphorylation demonstrated potent and selective eradication of MDS stem cells in primary human patient specimens. Taken together, our findings indicate that MDS stem cells are reliant on specific metabolic events and that such properties can be targeted prior to the onset of clinically significant AML, during antecedent MDS.
Collapse
Affiliation(s)
- Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nabilah Khan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Amanda Winters
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Courtney L Jones
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
17
|
Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev 2018; 43:8-15. [PMID: 30181021 DOI: 10.1016/j.cytogfr.2018.08.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022]
Abstract
Cytokines exert profound effects on the progression of hematopoietic malignancies such as acute myeloid leukemia (AML). Critical roles of cytokines in the context of inflammation have gained special interest. While pro-inflammatory mediators such as IL-1β, TNF-α and IL-6 tend to increase AML aggressiveness, anti-inflammatory mediators such as TGF-β and IL-10 appear to impede AML progression. Dysregulation of the complex interactions between pro- and anti-inflammatory cytokines in AML may create a pro-tumorigenic microenvironment with effects on leukemic cell proliferation, survival and drug-resistance. This article summarizes current knowledge about the functions of pro- and anti-inflammatory cytokines in AML, their modes of action, and therapeutic interventions with potential to improve clinical outcomes for AML patients.
Collapse
Affiliation(s)
- Stephanie Binder
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria
| | - Michela Luciano
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria.
| |
Collapse
|
18
|
Carter BZ, Mak PY, Chen Y, Mak DH, Mu H, Jacamo R, Ruvolo V, Arold ST, Ladbury JE, Burks JK, Kornblau S, Andreeff M. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network. Oncotarget 2018; 7:20054-67. [PMID: 26956049 PMCID: PMC4991438 DOI: 10.18632/oncotarget.7911] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 12/03/2022] Open
Abstract
To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Chen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, Saudi Arabia
| | - John E Ladbury
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study. Oncotarget 2018; 7:43974-43988. [PMID: 27304059 PMCID: PMC5190072 DOI: 10.18632/oncotarget.9949] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/20/2016] [Indexed: 01/19/2023] Open
Abstract
Along with molecular abnormalities (mutations in JAK2, Calreticulin (CALR) and MPL genes), chronic inflammation is the major hallmark of Myelofibrosis (MF). Here, we investigated the in vitro effects of crucial factors of the inflammatory microenvironment (Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, Tissue Inhibitor of Metalloproteinases (TIMP)-1 and ATP) on the functional behaviour of MF-derived circulating CD34+ cells. We found that, regardless mutation status, IL-1β or TNF-α increases the survival of MF-derived CD34+ cells. In addition, along with stimulation of cell cycle progression to the S-phase, IL-1β or TNF-α ± TIMP-1 significantly stimulate(s) the in vitro clonogenic ability of CD34+ cells from JAK2V617 mutated patients. Whereas in the JAK2V617F mutated group, the addition of IL-1β or TNF-α + TIMP-1 decreased the erythroid compartment of the CALR mutated patients. Megakaryocyte progenitors were stimulated by IL-1β (JAK2V617F mutated patients only) and inhibited by TNF-α. IL-1β + TNF-α + C-X-C motif chemokine 12 (CXCL12) ± TIMP-1 highly stimulates the in vitro migration of MF-derived CD34+ cells. Interestingly, after migration toward IL-1β + TNF-α + CXCL12 ± TIMP-1, CD34+ cells from JAK2V617F mutated patients show increased clonogenic ability. Here we demonstrate that the interplay of these inflammatory factors promotes and selects the circulating MF-derived CD34+ cells with higher proliferative activity, clonogenic potential and migration ability. Targeting these micro-environmental interactions may be a clinically relevant approach.
Collapse
|
20
|
Butera G, Pacchiana R, Donadelli M. Autocrine mechanisms of cancer chemoresistance. Semin Cell Dev Biol 2017; 78:3-12. [PMID: 28751251 DOI: 10.1016/j.semcdb.2017.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
An ever-increasing number of studies highlight the role of cancer secretome in the modification of tumour microenvironment and in the acquisition of cancer cell resistance to therapeutic drugs. The knowledge of the mechanisms underlying the relationship between cancer cell-secreted factors and chemoresistance is becoming fundamental for the identification of novel anticancer therapeutic strategies overcoming drug resistance and novel prognostic secreted biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells compromising drug sensitivity. In particular, we highlight data from available literature describing the involvement of cancer cell-secreted molecules determining chemoresistance in an autocrine manner, including: i) growth factors; ii) glycoproteins; iii) inflammatory cytokines; iv) enzymes and chaperones; and v) tumor-derived exosomes.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Targeting the interleukin-1 pathway in patients with hematological disorders. Blood 2017; 129:3155-3164. [PMID: 28483765 DOI: 10.1182/blood-2016-12-754994] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin-1α (IL-1α) and IL-1β are potent inflammatory cytokines that activate local and systemic inflammatory processes and are involved in protective immune responses against infections. However, their dysregulated production and signaling can aggravate tissue damage during infection, inflammatory diseases, and chemotherapy-induced intestinal mucositis. Additionally, cytokines of the IL-1 family play an important role in homeostatic as well as "emergency" hematopoiesis and are involved in the pathogenesis of several myeloid and lymphoid hematological malignancies. In the pathogenesis of intestinal mucositis and graft-versus-host disease (GVHD), these cytokines are considered pivotal during the initiation as well as propagation phase, and insights from animal studies suggest that targeting the IL-1 pathway can significantly ameliorate mucositis and GVHD. Moreover, IL-1α and IL-1β might prove to be valuable targets for both prevention and treatment of cancer and cancer therapy-related complications, and the first clinical studies have already been performed in the setting of hematological malignancies. In this review, we will discuss the role of cytokines of the IL-1 family in hematological malignancies, chemotherapy-induced intestinal mucositis, and GVHD, and speculate on possibilities of therapeutically targeting the IL-1 pathway in hematological patients.
Collapse
|
22
|
Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev 2017; 31:306-317. [PMID: 28495184 DOI: 10.1016/j.blre.2017.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a pleiotropic cytokine that exerts multiple roles in both physiological and pathological conditions. It is produced by different cell subsets, and drives a wide range of inflammatory responses in numerous target cells. Enhanced IL-1β signaling is a common event in patients of hematological malignancies. Recent body of evidence obtained in preclinical models shows the pathogenic role of these alterations, and the promising therapeutic value of IL-1 targeting. In this review, we further highlight a potential contribution of IL-1β linking to complications and autoimmune disease that should be investigated in future studies. Hence, drugs that target IL-1 may be helpful to improve outcome or reduce morbidity in patients. Some of them are FDA-approved, and used efficiently against autoimmune diseases, like IL-1 receptor antagonist. In the clinic, however, this agent seems to have limited properties. Current improved drugs will allow to determine the true potential of IL-1 and IL-1β targeting as therapy in hematological malignancies and their related complications.
Collapse
|
23
|
Carey A, Edwards DK, Eide CA, Newell L, Traer E, Medeiros BC, Pollyea DA, Deininger MW, Collins RH, Tyner JW, Druker BJ, Bagby GC, McWeeney SK, Agarwal A. Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep 2017; 18:3204-3218. [PMID: 28355571 PMCID: PMC5437102 DOI: 10.1016/j.celrep.2017.03.018] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Secreted proteins in the bone marrow microenvironment play critical roles in acute myeloid leukemia (AML). Through an ex vivo functional screen of 94 cytokines, we identified that the pro-inflammatory cytokine interleukin-1 (IL-1) elicited profound expansion of myeloid progenitors in ∼67% of AML patients while suppressing the growth of normal progenitors. Levels of IL-1β and IL-1 receptors were increased in AML patients, and silencing of the IL-1 receptor led to significant suppression of clonogenicity and in vivo disease progression. IL-1 promoted AML cell growth by enhancing p38MAPK phosphorylation and promoting secretion of various other growth factors and inflammatory cytokines. Treatment with p38MAPK inhibitors reversed these effects and recovered normal CD34+ cells from IL-1-mediated growth suppression. These results highlight the importance of ex vivo functional screening to identify common and actionable extrinsic pathways in genetically heterogeneous malignancies and provide impetus for clinical development of IL-1/IL1R1/p38MAPK pathway-targeted therapies in AML.
Collapse
Affiliation(s)
- Alyssa Carey
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - David K Edwards
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Laura Newell
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Daniel A Pollyea
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Robert H Collins
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Grover C Bagby
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
24
|
Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep 2016; 16:2428-41. [PMID: 27545880 DOI: 10.1016/j.celrep.2016.07.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 01/09/2023] Open
Abstract
The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.
Collapse
Affiliation(s)
- Koichi R Katsumura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Andrew W DeVilbiss
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
25
|
Yang J, Ikezoe T, Nishioka C, Nobumoto A, Yokoyama A. IL-1β inhibits self-renewal capacity of dormant CD34⁺/CD38⁻ acute myelogenous leukemia cells in vitro and in vivo. Int J Cancer 2013; 133:1967-81. [PMID: 23564444 DOI: 10.1002/ijc.28198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/28/2013] [Indexed: 12/27/2022]
Abstract
We previously showed that CD34⁺/CD38⁻ acute myelogenous leukemia (AML) cells, which contain leukemia stem cells, expressed a greater amount of the phosphorylated forms of JAK2 and STAT5 (p-JAK2 and p-STAT5) than their CD34⁺/CD38⁺ counterparts. To identify candidate cytokines that are involved in the activation of JAK2/STAT5 in CD34⁺/CD38⁻ AML cells, we compared the cytokine expression profiles of CD34⁺/CD38⁻ AML cells and their CD34⁺/CD38⁺ counterparts. Interestingly, freshly isolated CD34⁺/CD38⁻ AML cells from patients (n = 17) expressed less interleukin-1β (IL-1β) than their CD34⁺/CD38⁺ counterparts and CD34⁺ normal hematopoietic stem/progenitor cells from healthy volunteers (n = 6), as measured by real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Methylation-specific PCR found that IL-1B gene expression was silenced by methylation of the promoter region. Importantly, exposure of CD34⁺/CD38⁻ AML cells to IL-1β (100 ng/ml) stimulated cell-cycle progression, induced apoptosis and sensitized these cells to growth inhibition by antileukemia agents. These changes occurred in conjunction with the downregulation of cyclin-dependent kinase inhibitor p21waf1, antiapoptotic proteins and p-STAT5. Forced expression of IL-1β in CD34⁺/CD38⁻ AML cells by lentiviral transduction significantly impaired the self-renewal capacity of the cells and induced apoptosis. Additionally, when these CD34⁺/CD38⁻ AML cells with forced expression of IL-1β were transplanted into severely immunocompromised mice, the engraftment of the cells and reconstitution of AML were significantly impaired. Taken together, our results indicate that the inhibition of STAT5 by IL-1β may be a promising treatment strategy to eradicate leukemia stem cells in AML.
Collapse
Affiliation(s)
- Jing Yang
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | |
Collapse
|
26
|
Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 2012; 120:1290-8. [PMID: 22723552 DOI: 10.1182/blood-2012-01-404699] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (-7/7q-) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the -7/7q- anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10(-7)). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in -7/7q- AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.
Collapse
|
27
|
The Role of BCL2 Family of Apoptosis Regulator Proteins in Acute and Chronic Leukemias. Adv Hematol 2011; 2012:524308. [PMID: 21941553 PMCID: PMC3173728 DOI: 10.1155/2012/524308] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/22/2011] [Accepted: 06/27/2011] [Indexed: 12/03/2022] Open
Abstract
The disturbance of apoptosis molecular signaling pathways is involved in carcinogenesis. BCL2 family of proteins is the hallmark of apoptosis regulation. In the last decade, new members of BCL2 gene family were discovered and cloned and were found to be differentially expressed in many types of cancer. BCL2 protein family, through its role in regulation of apoptotic pathways, is possibly related to cancer pathophysiology and resistance to conventional chemotherapy. It is well known that leukemias are haematopoietic malignancies characterized by biological diversity, varied cytogenetics, different immunophenotype profiles, and diverse outcome. Current research focuses on the prognostic impact and specific role of these proteins in the pathogenesis of leukemias. The understanding of the molecular pathways that participate in the biology of leukemias may lead to the design of new therapies which may improve patients' survival. In the present paper, we describe current knowledge on the role of BCL2 apoptosis regulator proteins in acute and chronic leukemias.
Collapse
|
28
|
Lilly AJ, Khanim FL, Hayden RE, Luong QT, Drayson MT, Bunce CM. Nm23-h1 indirectly promotes the survival of acute myeloid leukemia blast cells by binding to more mature components of the leukemic clone. Cancer Res 2010; 71:1177-86. [PMID: 21169412 DOI: 10.1158/0008-5472.can-10-1704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nm23-H1 plays complex roles in the development of diverse cancers including breast carcinoma, high-grade lymphomas, and acute myeloid leukemia (AML). In the case of AML and lymphomas, serum Nm23-H1 protein is elevated with the highest levels correlating with poorest prognosis. A recent study identified that this association is most likely causal in AML and that Nm23-H1 acts as an AML cell survival factor. In this study, we report heterogeneity in the ability of AML samples to bind and respond to Nm23-H1, and we offer evidence that binding is essential for improved survival. Further, we show that the subset of AMLs that bind Nm23-H1 do not do so through the putative Nm23-H1 receptor MUC1*. Although rNm23-H1 promoted the survival of the most primitive blasts within responding AMLs, it was not these cells that actually bound the protein. Instead, rNm23-H1 bound to more mature CD34(lo)/CD34(-) and CD11b(+) cells, revealing an indirect survival benefit of Nm23-H1 on primitive blasts. In support of this finding, the survival of purified blast cells was enhanced by medium conditioned by more mature cells from the clone that had been stimulated by rNm23-H1. Levels of interleukin 1β (IL1β) and IL6 in rNm23-H1 conditioned medium mirrored the potency of the conditioned media to promote blast cell survival. Furthermore, Nm23-H1 expression was significantly associated with IL1β and IL6 expression in primary uncultured AML samples. These findings have implications for the role of Nm23-H1 in AML and its use as a prognostic marker. Additionally, they offer the first evidence of novel cross-talk between cell populations within the tumor clone.
Collapse
Affiliation(s)
- Andrew J Lilly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Starczynowski DT, Karsan A. Innate immune signaling in the myelodysplastic syndromes. Hematol Oncol Clin North Am 2010; 24:343-59. [PMID: 20359630 DOI: 10.1016/j.hoc.2010.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous clonal hematologic malignancies characterized by cytopenias caused by ineffective hematopoiesis and propensity to progress to acute myeloid leukemia. Innate immunity provides immediate protection against pathogens by coordinating activation of signaling pathways in immune cells. Given the prominent role of the innate immune pathway in regulating hematopoiesis, it is not surprising that aberrant signaling of this pathway is associated with hematologic malignancies. Increased activation of the innate immune pathway may contribute to dysregulated hematopoiesis, dysplasia, and clonal expansion in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Daniel T Starczynowski
- Genome Sciences Centre, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is characterized by a high degree of heterogeneity with respect to chromosome abnormalities, gene mutations and changes in expression of multiple genes and microRNAs. In this article, we review the results of recent studies of AML that used microarray-based genome-wide gene-expression and microRNA-expression profiling. RECENT FINDINGS Genome-wide analyses of gene expression and microRNA expression have revealed AML signatures that are closely associated with some, but not all, cytogenetic and molecular genetic subsets, helped in identification of novel biologic subtypes and led to characterization of molecular pathways involved in leukemogenesis. For some AML categories, namely core-binding factor AML and/or cytogenetically normal AML, gene-expression and microRNA-expression profiling provided prognostic information additional to that obtained from cytogenetics and analyses of gene mutations and single gene expression changes. SUMMARY Gene-expression and microRNA-expression profiling not only has the potential to enhance our understanding of the disease biology, but also appears to constitute an applicable approach for outcome prediction and identification of novel therapeutic targets.
Collapse
|
31
|
Bellehumeur C, Blanchet J, Fontaine JY, Bourcier N, Akoum A. Interleukin 1 regulates its own receptors in human endometrial cells via distinct mechanisms. Hum Reprod 2009; 24:2193-204. [PMID: 19477877 DOI: 10.1093/humrep/dep192] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Interleukin 1 (IL1) plays an important role in the physiology of human endometrium and is recognized as a major and early embryonic signal. Tight control over the local endometrial action of this cytokine is critical for normal reproductive functions. The coordinated regulation of IL1 receptors types I and II (IL1R1 and IL1R2) and IL1 receptor antagonist (IL1RA) in endometrial cells may represent one of the principle mechanisms involved in the control of IL1 local effects. The objective of this study was to investigate the regulation of IL1Rs in human endometrial epithelial cells in response to IL1. METHODS Cultures of KLE endometrial epithelial cell line and primary human endometrial epithelial cells, immunofluorescent staining, enzyme-linked immunosorbent assay, western blotting, nuclear transcription (run-on) and real-time PCR were used to investigate the expression of IL1R1, IL1R2 and IL1RA. RESULTS Cells appeared to react to IL1 by up-regulating the expression of the signaling activating IL1R1 and to moderate in parallel IL1 effects by elevating the expression of the decoy inhibitory IL1R2 and the receptor antagonist IL1RA. Regulation of IL1R1 and IL1RA by IL1B involved gene transcription activation and that of IL1R2 involved mRNA stabilization. CONCLUSION Considering IL1's immunomodulatory, proangiogenic and tissue remodeling properties, and its role as an embryonic signal, modulation of endometrial cell responsiveness to IL1 via the concomitant regulation of its own activating and inhibitory receptors and receptor antagonist may represent an important regulatory mechanism of IL1-induced physiological changes occurring in the human endometrium during the normal menstrual cycle and embryo development.
Collapse
Affiliation(s)
- C Bellehumeur
- Unité d'Endocrinologie de la Reproduction, Centre de Recherche, Hôpital Saint-François d'Assise, Centre Hospitalier Universitaire de Québec, 10 rue de l'Espinay, Local D0-711, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
32
|
Richens JL, Urbanowicz RA, Lunt EAM, Metcalf R, Corne J, Fairclough L, O'Shea P. Systems biology coupled with label-free high-throughput detection as a novel approach for diagnosis of chronic obstructive pulmonary disease. Respir Res 2009; 10:29. [PMID: 19386108 PMCID: PMC2678087 DOI: 10.1186/1465-9921-10-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/22/2009] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a treatable and preventable disease state, characterised by progressive airflow limitation that is not fully reversible. Although COPD is primarily a disease of the lungs there is now an appreciation that many of the manifestations of disease are outside the lung, leading to the notion that COPD is a systemic disease. Currently, diagnosis of COPD relies on largely descriptive measures to enable classification, such as symptoms and lung function. Here the limitations of existing diagnostic strategies of COPD are discussed and systems biology approaches to diagnosis that build upon current molecular knowledge of the disease are described. These approaches rely on new 'label-free' sensing technologies, such as high-throughput surface plasmon resonance (SPR), that we also describe.
Collapse
Affiliation(s)
- Joanna L Richens
- Cell Biophysics Group, School of Biology, The University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 2009; 113:5575-82. [PMID: 19299336 DOI: 10.1182/blood-2008-10-183244] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) is a rare but fatal complication of cytotoxic therapy. Whereas sporadic cancer results from interactions between complex exposures and low-penetrance alleles, t-AML results from an acute exposure to a limited number of potent genotoxins. Consequently, we hypothesized that the effect sizes of variants associated with t-AML would be greater than in sporadic cancer, and, therefore, that these variants could be detected even in a modest-sized cohort. To test this, we undertook an association study in 80 cases and 150 controls using Affymetrix Mapping 10K arrays. Even at nominal significance thresholds, we found a significant excess of associations over chance; for example, although 6 associations were expected at P less than .001, we found 15 (P(enrich) = .002). To replicate our findings, we genotyped the 10 most significantly associated single nucleotide polymorphisms (SNPs) in an independent t-AML cohort (n = 70) and obtained evidence of association with t-AML for 3 SNPs in the subset of patients with loss of chromosomes 5 or 7 or both, acquired abnormalities associated with prior exposure to alkylator chemotherapy. Thus, we conclude that the effect of genetic factors contributing to cancer risk is potentiated and more readily discernable in t-AML compared with sporadic cancer.
Collapse
|
34
|
Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P, Vukosavljevic T, Whitman SP, Baldus CD, Langer C, Liu CG, Carroll AJ, Powell BL, Garzon R, Croce CM, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358:1919-28. [PMID: 18450603 DOI: 10.1056/nejmoa074256] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A role of microRNAs in cancer has recently been recognized. However, little is known about the role of microRNAs in acute myeloid leukemia (AML). METHODS Using microRNA expression profiling, we studied samples of leukemia cells from adults under the age of 60 years who had cytogenetically normal AML and high-risk molecular features--that is, an internal tandem duplication in the fms-related tyrosine kinase 3 gene (FLT3-ITD), a wild-type nucleophosmin (NPM1), or both. A microRNA signature that was associated with event-free survival was derived from a training group of 64 patients and tested in a validation group of 55 patients. For the latter, a microRNA compound covariate predictor (called a microRNA summary value) was computed on the basis of weighted levels of the microRNAs forming the outcome signature. RESULTS Of 305 microRNA probes, 12 (including 5 representing microRNA-181 family members) were associated with event-free survival in the training group (P<0.005). In the validation group, the microRNA summary value was inversely associated with event-free survival (P=0.03). In multivariable analysis, the microRNA summary value remained associated with event-free survival (P=0.04) after adjustment for the allelic ratio of FLT3-ITD to wild-type FLT3 and for the white-cell count. Using results of gene-expression microarray analysis, we found that expression levels of the microRNA-181 family were inversely correlated with expression levels of predicted target genes encoding proteins involved in pathways of innate immunity mediated by toll-like receptors and interleukin-1beta. CONCLUSIONS A microRNA signature in molecularly defined, high-risk, cytogenetically normal AML is associated with the clinical outcome and with target genes encoding proteins involved in specific innate-immunity pathways.
Collapse
Affiliation(s)
- Guido Marcucci
- Division of Hematology and Oncology, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bao F, Polk P, Nordberg ML, Veillon DM, Sun A, Deininger M, Murray D, Andersson BS, Munker R. Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk Res 2007; 31:1511-20. [PMID: 17403535 DOI: 10.1016/j.leukres.2007.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Acquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000-fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Fei Bao
- Department of Pathology, Louisiana State University, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1beta decreases the elastic modulus of human tenocytes. J Appl Physiol (1985) 2006; 101:189-95. [PMID: 16627678 DOI: 10.1152/japplphysiol.01128.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cellular responses to mechanical stimuli are regulated by interactions with the extracellular matrix, which, in turn, are strongly influenced by the degree of cell stiffness (Young's modulus). It was hypothesized that a more elastic cell could better withstand the rigors of remodeling and mechanical loading. It was further hypothesized that interleukin-1beta (IL-1beta) would modulate intracellular cytoskeleton polymerization and regulate cell stiffness. The purpose of this study was to investigate the utility of IL-1beta to alter the Young's modulus of human tenocytes. Young's modulus is the ratio of the stress to the strain, E = stress/strain = (F/A)/(deltaL/L0), where L0 is the equilibrium length, deltaL is the length change under the applied stress, F is the force applied, and A is the area over which the force is applied. Human tenocytes were incubated with 100 pM recombinant human IL-1beta for 5 days. The Young's modulus was reduced by 27-63%. Actin filaments were disrupted in >75% of IL-1beta-treated cells, resulting in a stellate shape. In contrast, immunostaining of alpha-tubulin showed increased intensity in IL-1beta-treated tenocytes. Human tenocytes in IL-1beta-treated bioartificial tendons were more tolerant to mechanical loading than were untreated counterparts. These results indicate that IL-1beta reduced the Young's modulus of human tenocytes by disrupting the cytoskeleton and/or downregulating the expression of actin and upregulating the expression of tubulins. The reduction in cell modulus may help cells to survive excessive mechanical loading that may occur in damaged or healing tendons.
Collapse
Affiliation(s)
- Jie Qi
- Flexcell International Corp., 437 Dimmocks Mill Rd., Suite 28, Hillsborough, North Carolina 27278, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Müerköster SS, Lust J, Arlt A, Häsler R, Witt M, Sebens T, Schreiber S, Fölsch UR, Schäfer H. Acquired chemoresistance in pancreatic carcinoma cells: induced secretion of IL-1beta and NO lead to inactivation of caspases. Oncogene 2006; 25:3973-81. [PMID: 16474845 DOI: 10.1038/sj.onc.1209423] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pancreatic cancer exhibits profound chemoresistance resulting either from pre-existing (intrinsic) mechanisms, or from anticancer drug treatment itself (acquired chemoresistance). To identify molecular alterations leading to acquired chemoresistance, the chemosensitive pancreatic carcinoma cell line PT45-P1 was exposed to low-dose treatment with etoposide for 6 weeks. Afterwards, these cells (PT45-P1res) were much more resistant to high-dose treatment with anticancer drugs than parental cells. Among several differentially expressed genes in PT45-P1res cells, IL-1beta was most significantly upregulated, a finding in line with our previous observation that IL-1beta accounts for intrinsic chemoresistance of pancreatic carcinoma cells. Elevated IL-1beta expression in PT45-P1res cells was confirmed by real-time PCR and ELISA, and treatment with the IL-1 receptor antagonist restored drug-induced apoptosis. The increased IL-1beta secretion was accompanied by an elevated formation of nitric oxide (NO) and a NO-dependent inhibition of the etoposide-induced caspase-3/-7/-8/-9 activity. Caspase activation was restored either by the iNOS inhibitor 1400W, the reducing agent dithiothreitol or the IL-1 receptor antagonist, resulting in greater sensitivity towards anticancer drug treatment. Conversely, IL-1beta or the NO-donor SNAP decreased caspase activation and apoptosis in etoposide-treated PT45-P1 cells. These data confirm IL-1beta and NO as determinants of chemoresistance in pancreatic cancer, and indicate that the intrinsic and acquired chemoresistance rely to some extent on common molecular targets beneficial for improved therapeutical strategies.
Collapse
Affiliation(s)
- S Sebens Müerköster
- Laboratory of Molecular Gastroenterology & Hepatology, 1st Department of Medicine, UKSH, Campus Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rowe JM. Is there a role for postremission therapy in older adults with acute myelogenous leukemia (AML)? Leukemia 2005; 19:1324-7. [PMID: 15944718 DOI: 10.1038/sj.leu.2403827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- J M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center and Technion, Israel Institute of Technology, Haifa, Israel. rowe.jimmy.harvard.edu
| |
Collapse
|