1
|
Zhang QB, Wang H, Xu F, Song Y, Jiang RD, Li Q, Liu EY. TLR3 activation enhances antitumor effects of sorafenib in hepatocellular carcinoma by activating NK cell functions through ERK and NF-κB pathways. Sci Rep 2024; 14:26422. [PMID: 39488569 PMCID: PMC11531577 DOI: 10.1038/s41598-024-78316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
Background Sorafenib is a standard therapeutic agent for advanced hepatocellular carcinoma (HCC). However, its efficacy is moderate, as the survival of patients is prolonged for only a few months, and the response rate is low. The mechanism of low efficacy remains unclear. In this study, we investigated the effect of Toll-like receptor 3 (TLR3) on the effects of sorafenib on HCC. Methods Polyinosinic-polycytidylic acid [poly(I: C)] was used as a double-stranded RNA analog and TLR3 agonist in subsequent experiments. After orthotopic implantation of HCC tumors in BALBc nu/nu or C57BL/6 mice, survival time, tumor growth, and metastasis in the abdomen and lungs were analyzed. Flow cytometry and cytotoxicity assays were used to analyze NK cells isolated from the spleen or peripheral blood. ELISA was used to detect the expression of plasma interferon (IFN)-γ and monocyte chemoattractant protein (MCP)-1. In addition, the expression of phosphorylated-extracellular regulated kinase 1/2 (pERK1/2), phosphorylated-protein kinase B (pAKT), ERK1/2 and AKT was analyzed by Western blotting. Results Sorafenib reduced the number and activity of NK cells in tumor-bearing mice and simultaneously decreased the levels of MCP-1 and IFN-γ in the plasma. The combination of sorafenib and poly(I: C) synergistically inhibited tumor growth and metastasis in tumor xenograft mice and prolonged survival. Poly(I: C) not only exerts a direct inhibitory effect on tumor growth and metastasis by targeting the TLR3 receptor on tumor cells but also facilitates the proliferation and activation of NK cells, indirectly impeding tumor progression. Mechanistically, poly(I: C) decreased the sorafenib-induced inhibition of ERK phosphorylation and increased the phosphorylation of IκB in NK cells, thereby enhancing NK cell function. Conclusion Activation of TLR3 can enhance the antitumor effect of sorafenib on HCC. The combination of a TLR3 activator and sorafenib may be a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Qiang-Bo Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong Province, China
| | - Fei Xu
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong Province, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Run-de Jiang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Qi Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - En-Yu Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China.
- General Surgery Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China.
| |
Collapse
|
2
|
Cheng T, Huang X, Yang H, Gu J, Lu C, Zhan C, Xu F, Ge D. Development of a TLR-Based Model That Can Predict Prognosis, Tumor Microenvironment, and Drug Response for Esophageal Squamous Cell Carcinoma. Biochem Genet 2024; 62:3740-3760. [PMID: 38206423 DOI: 10.1007/s10528-023-10629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The toll-like receptor (TLR) family is an important class of proteins involved in the immune response. However, little is known about the association between TLRs and Esophageal squamous cell cancer (ESCC). We explored differentially expressed genes (DEGs) between ESCC and esophagus tissues in TCGA and GTEx database. By taking the intersection with TLR gene set and using univariate Cox analysis and multivariate Cox regression analysis to discriminate the hub genes, we created a TLR-prognostic model. Our model separated patients with ESCC into high- and low-risk score (RS) groups. Prognostic analysis was performed with Kaplan-Meier curves. The two groups were also compared regarding tumor immune microenvironment and drug sensitivity. Six hub genes (including CD36, LGR4, MAP2K3, NINJ1, PIK3R1, and TRAF3) were screened to construct a TLR-prognostic model. High-RS group had a worse survival (p < 0.01), lower immune checkpoint expression (p < 0.05), immune cell abundance (p < 0.05) and decreased sensitivity to Epirubicin (p < 0.001), 5-fluorouracil (p < 0.0001), Sorafenib (p < 0.01) and Oxaliplatin (p < 0.05). We constructed a TLR-based model, which could be used to assess the prognosis of patients with ESCC, provide new insights into drug treatment for ESCC patients and investigate the TME and drug response.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xiaolong Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Huiqin Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Tryggestad SS, Roseth IA, Aass KR, Ørning NEH, Mjelle R, Hella H, Standal T. Toll-like receptor signaling in multiple myeloma cells promotes the expression of pro-survival genes B-cell lymphoma 2 and MYC and modulates the expression of B-cell maturation antigen. Front Immunol 2024; 15:1393906. [PMID: 38911853 PMCID: PMC11190062 DOI: 10.3389/fimmu.2024.1393906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Infections are common in plasma cell cancer multiple myeloma (MM) due to disease-related immune deficiencies and cancer treatment. Myeloma cells express Toll-like receptors (TLRs), and TLR activation has been shown to induce proliferative and pro-survival signals in cancer cells. MM is a complex and heterogeneous disease, and expression levels of TLRs as well as downstream signaling components are likely to differ between patients. Here, we show that in a large cohort of patients, TLR1, TLR4, TLR6, TLR9, and TLR10 are the most highly expressed in primary CD138+ cells. Using an MM cell line expressing TLR4 and TLR9 as a model, we demonstrate that TLR4 and TLR9 activation promoted the expression of well-established pro-survival and oncogenes in MM such as MYC, IRF4, NFKB, and BCL2. TLR4 and TLR9 activation inhibited the efficacy of proteasome inhibitors bortezomib and carfilzomib, drugs used in the treatment of MM. Inhibiting the autophagosome-lysosome protein degradation pathway by hydroxychloroquine (HCQ) diminished the protective effect of TLR activation on proteasome inhibitor-induced cytotoxicity. We also found that TLR signaling downregulated the expression of TNFRSF17, the gene encoding for B-cell maturation antigen (BCMA). MYC, BCL2, and BCL2L1 were upregulated in approximately 50% of primary cells, while the response to TLR signaling in terms of TNFRSF17 expression was dichotomous, as an equal fraction of patients showed upregulation and downregulation of the gene. While proteasome inhibitors are part of first-line MM treatment, several of the new anti-MM immune therapeutic drugs target BCMA. Thus, TLR activation may render MM cells less responsive to commonly used anti-myeloma drugs.
Collapse
Affiliation(s)
- Synne Stokke Tryggestad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Aass Roseth
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nadia Elise Helene Ørning
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Liu J, Wang W, Kong N, Yu S, Dong M, Yang W, Li Y, Zhou X, Wang L, Song L. A pattern recognition receptor CgTLR3 involves in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104762. [PMID: 37353060 DOI: 10.1016/j.dci.2023.104762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity, and they also play significant roles in regulating cell proliferation and differentiation. In the present study, the binding activity of CgTLR3 to PAMPs and CgMyD88-2, and its role in mediating the proliferation of haemocytes was investigated. The recombinant proteins of the extracellular six LRR domains (rCgTLR3-LRR) and intracellular TIR domain (rCgTLR3-TIR) of CgTLR3 were obtained respectively. rCgTLR3-LRR exhibited binding activity to lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C), with the highest affinity for LPS. While rCgTLR3-TIR displayed binding activity to the recombinant protein of rCgMyD88-2, with KD value of 7.22 × 10-7 M. The CgTLR3 mRNA and protein were detected in three subpopulations of oyster haemocytes, and they were mainly concentrated in granulocytes, which was 7.27-fold (p < 0.05) of that in semi-granulocytes and 8.51-fold (p < 0.01) of that in agranulocytes. The percentage of CgTLR3 positive cells (FITC+ haemocytes) in granulocytes was 4.45-fold (p < 0.01) and 2.57-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. After Vibrio splendidus stimulation, the mRNA expression level of CgTLR3 in haemocytes significantly upregulated at 6 h and 12 h, which was 2.93-fold (p < 0.05) and 4.15-fold (p < 0.05) of that in the control group. After the expression of CgTLR3 was inhibited by the injection of si-CgTLR3, the expression levels of transcription factors associated with hematopoiesis (CgGATA, CgRunx), cell cycle-related genes (CgPCNA, CgCDC-45, CgCDK-2), the agranulocyte marker CgCD-9, the granulocyte marker CgAATase, and the inflammatory factor CgIL17-1 significantly decreased (p < 0.05) after the V. splendidus stimulation, which were 0.43-fold, 0.83-fold, 0.48-fold, 0.44-fold, 0.53-fold, 0.7-fold, 0.62-fold, and 0.47-fold of that in NC + V. s group in vivo, respectively. Meanwhile, the percentage of EdU+ haemocytes in si-CgTLR3+V. s group was significantly reduced by 0.54-fold (p < 0.05) compared to the control group (2.7%). These results collectively indicated that CgTLR3 was involved in modulating the proliferation of haemocytes by regulating the expression of proliferation-related genes and inflammatory factor in oyster C. gigas.
Collapse
Affiliation(s)
- Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxu Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
5
|
Guo Y, Zhang J, Li X, Wu J, Han J, Yang G, Zhang L. Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers. Br Poult Sci 2023; 64:36-46. [PMID: 36083210 DOI: 10.1080/00071668.2022.2122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Ammonia is one of major air pollutants in intensive poultry houses, where it causes immunosuppression in broilers. Although previous studies have focused on a particular organ, data on multiple organs have not been reported.2. In the following work, broilers were exposed to environmental ammonia (0, 10, 20, and 40 mg/m3 from 1-21 d old; and 0, 15, 30, and 60 mg/m3 from 22-42 d old).3. Ammonia exposure reduced bird spleen index at 42 d and thymus index at 14, 28, 35 and 42 d, meaning that ammonia caused immunosuppression in birds. Moreover, high ammonia exposure down-regulated the expression of toll-like receptor 4 (TLR4) in lung tissue at 21 d, as well as TLR4 in lung and tracheal mucosa at 42 d when analysed using qRT-PCR. It increased SIgA in saliva at 42 d when analysed by ELISA. Ammonia increased interleukin-6 (IL-6), IL-1β, interferon-α (IFN-α), and IFN-γ in serum at 28 d from the ELISA assay, which indicated that all of these factors took part in ammonia-immunosuppression in birds.4. Three antioxidants (CAT, SOD, T-AOC) decreased, and one oxidant MDA increased after ammonia exposure in the liver and blood, which indicated that ammonia caused oxidative stress via the imbalance of antioxidants/oxidants in birds.5. Correlation analysis showed that TLR4 and TLR15 in the tracheal mucosa were significantly positively related to IFN-γ and negatively related to IL-6. TLR2 in the lung was significantly positively related to IL-1β, and TLR2 in bird tracheal mucosa was negatively related to IL-6 in serum.6. The results suggested that oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers.
Collapse
Affiliation(s)
- Y Guo
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - J Zhang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - X Li
- Department of Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Han
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - G Yang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - L Zhang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| |
Collapse
|
6
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
7
|
Martín-Medina A, Cerón-Pisa N, Martinez-Font E, Shafiek H, Obrador-Hevia A, Sauleda J, Iglesias A. TLR/WNT: A Novel Relationship in Immunomodulation of Lung Cancer. Int J Mol Sci 2022; 23:6539. [PMID: 35742983 PMCID: PMC9224119 DOI: 10.3390/ijms23126539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
The most frequent cause of death by cancer worldwide is lung cancer, and the 5-year survival rate is still very poor for patients with advanced stage. Understanding the crosstalk between the signaling pathways that are involved in disease, especially in metastasis, is crucial to developing new targeted therapies. Toll-like receptors (TLRs) are master regulators of the immune responses, and their dysregulation in lung cancer is linked to immune escape and promotes tumor malignancy by facilitating angiogenesis and proliferation. On the other hand, over-activation of the WNT signaling pathway has been reported in lung cancer and is also associated with tumor metastasis via induction of Epithelial-to-mesenchymal-transition (EMT)-like processes. An interaction between both TLRs and the WNT pathway was discovered recently as it was found that the TLR pathway can be activated by WNT ligands in the tumor microenvironment; however, the implications of such interactions in the context of lung cancer have not been discussed yet. Here, we offer an overview of the interaction of TLR-WNT in the lung and its potential implications and role in the oncogenic process.
Collapse
Affiliation(s)
- Aina Martín-Medina
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
| | - Esther Martinez-Font
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Medical Oncology Department, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Antònia Obrador-Hevia
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Molecular Diagnosis Unit, Hospital Universitario Son Espases, 07120 Palma, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de les Illes Balears (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
8
|
Akesolo O, Buey B, Beltrán-Visiedo M, Giraldos D, Marzo I, Latorre E. Toll-like receptors: new targets for multiple myeloma treatment? Biochem Pharmacol 2022; 199:114992. [DOI: 10.1016/j.bcp.2022.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
|
9
|
Aly NAR, Rizk S, Aboul Enein A, El Desoukey N, Zawam H, Ahmed M, El Shikh ME, Pitzalis C. The role of lymphoid tissue SPARC in the pathogenesis and response to treatment of multiple myeloma. Front Oncol 2022; 12:1009993. [PMID: 36605435 PMCID: PMC9807864 DOI: 10.3389/fonc.2022.1009993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Despite the significant progress in the treatment of multiple myeloma (MM), the disease remains untreatable and its cure is still an unmet clinical need. Neoplastic transformation in MM is initiated in the germinal centers (GCs) of secondary lymphoid tissue (SLT) where B cells experience extensive somatic hypermutation induced by follicular dendritic cells (FDCs) and T-cell signals. Objective We reason that secreted protein acidic and rich in cysteine (SPARC), a common stromal motif expressed by FDCs at the origin (SLTs) and the destination (BM) of MM, plays a role in the pathogenesis of MM, and, here, we sought to investigate this role. Methods There were 107 BM biopsies from 57 MM patients (taken at different time points) together with 13 control specimens assessed for SPARC gene and protein expression and compared with tonsillar tissues. In addition, regulation of myeloma-promoting genes by SPARC-secreting FDCs was assessed in in vitro GC reactions (GCRs). Results SPARC gene expression was confirmed in both human primary (BM) and secondary (tonsils) lymphoid tissues, and the expression was significantly higher in the BM. Sparc was detectable in the BM and tonsillar lysates, co-localized with the FDC markers in both tissues, and stimulation of FDCs in vitro induced significantly higher levels of SPARC expression than unstimulated controls. In addition, SPARC inversely correlated with BM PC infiltration, ISS staging, and ECOG performance of the MM patients, and in vitro addition of FDCs to lymphocytes inhibited the expression of several oncogenes associated with malignant transformation of PCs. Conclusion FDC-SPARC inhibits several myelomagenic gene expression and inversely correlates with PC infiltration and MM progression. Therapeutic induction of SPARC expression through combinations of the current MM drugs, repositioning of non-MM drugs, or novel drug discovery could pave the way to better control MM in clinically severe and drug-resistant patients.
Collapse
Affiliation(s)
- Nesreen Amer Ramadan Aly
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Samia Rizk
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Aboul Enein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen El Desoukey
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hamdy Zawam
- Clinical Oncology and Nuclear Radiation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manzoor Ahmed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- *Correspondence: Mohey Eldin El Shikh,
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:738915. [PMID: 34759921 PMCID: PMC8573331 DOI: 10.3389/fimmu.2021.738915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion. However, these patients with increased risk of severe infectious diseases could be treated with adequate vaccination coverage, but the vaccines' administration can be associated with a decreased immune response and an augmented risk of adverse reactions. Probably, immunogenicity of the inactivated is analogous to that of healthy subjects at the moment of vaccination, but it undertakes a gradual weakening over time. However, the dispensation of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A particular immunization schedule should be employed according to the clinical and immunological condition of each of these patients to guarantee a constant immune response without any risks to the patients' health.
Collapse
MESH Headings
- Animals
- Humans
- Immunocompromised Host
- Immunogenicity, Vaccine
- Immunologic Deficiency Syndromes/epidemiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/therapy
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Multiple Myeloma/epidemiology
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Opportunistic Infections/epidemiology
- Opportunistic Infections/immunology
- Opportunistic Infections/prevention & control
- Risk Factors
- Vaccination
- Vaccine Efficacy
- Vaccines/administration & dosage
- Vaccines/adverse effects
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Jasiński M, Biliński J, Basak GW. The Role of the Gut Microbiome in Pathogenesis, Biology, and Treatment of Plasma Cell Dyscrasias. Front Oncol 2021; 11:741376. [PMID: 34660303 PMCID: PMC8517391 DOI: 10.3389/fonc.2021.741376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
In response to emerging discoveries, questions are mounting as to what factors are responsible for the progression of plasma cell dyscrasias and what determines responsiveness to treatment in individual patients. Recent findings have shown close interaction between the gut microbiota and multiple myeloma cells. For instance, that malignant cells shape the composition of the gut microbiota. We discuss the role of the gut microbiota in (i) the development and progression of plasma cell dyscrasias, and (ii) the response to treatment of multiple myeloma and highlight faecal microbiota transplantation as a procedure that could modify the risk of progression or sensitize refractory malignancy to immunotherapy.
Collapse
Affiliation(s)
- Marcin Jasiński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdansk, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdansk, Poland
| |
Collapse
|
12
|
Quirino MG, Macedo LC, Pagnano KBB, Pagliarini-E-Silva S, Sell AM, Visentainer JEL. Toll-like receptor gene polymorphisms in patients with myeloproliferative neoplasms. Mol Biol Rep 2021; 48:4995-5001. [PMID: 34191235 DOI: 10.1007/s11033-021-06238-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors whose signaling control cellular processes of cell proliferation, survival, apoptosis, angiogenesis, remodeling, and repair of tissues. Polymorphisms in TLR genes can change the balance between pro and anti-inflammatory cytokines, modulating the risk of infection, chronic inflammation, and cancer. Although many studies have demonstrated the direct involvement of TLR signaling in the benefit of tumor cells in certain cancers, little is known about the influence of these gene polymorphisms on myeloproliferative neoplasms (MPNs). In this context, the objective of the study was to investigate a possible association between the TLR polymorphisms and the development of MPNs. 167 patients diagnosed with MPN and 222 healthy controls from the same region were evaluated. Genomic DNA was extracted and the TLR2 (rs5743708), TLR4 (rs4986790, rs4986791), TLR9 (rs5743836, rs187084) and JAK2V617F polymorphisms were genotyped by PCR-RFLP. The statistical analysis was performed by OpenEpi and SNPstat software. The JAK2V617F mutation was found in 68.32% of patients. TLR9-1486C/T CT genotype was less frequent in patients with polycythemia vera (PV) (OR 0.39, 95% CI 0.20-0.78, P = 0.025). When haplotype frequencies were analyzed, -1237T/-1486C (TLR9) was also less frequent in men (OR 0.58, 95% CI 0.36-0.94) and JAK negative men patients (OR 0.43, 95% CI 0.21-0.88). We can infer that the TLR9-1486 CT genotype could be associated with protection for PV and the TLR9-1237T/-1486C haplotype, protection for men, as well as for JAK negative men patients with MPN. There were no associations between TLR2 and TLR4 gene polymorphisms and MPN.
Collapse
Affiliation(s)
- Marília Gonçalves Quirino
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | - Luciana Conci Macedo
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | | | | | - Ana Maria Sell
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil
| | - Jeane Eliete Laguila Visentainer
- Graduate Program in Biosciences and Physiopathology of the State University of Maringá, Av. Colombo 5790, bloco T20, sala 109, Maringá, PR, CEP: 87020-900, Brazil.
| |
Collapse
|
13
|
Zheng X, Li S, Yang H. Roles of Toll-Like Receptor 3 in Human Tumors. Front Immunol 2021; 12:667454. [PMID: 33986756 PMCID: PMC8111175 DOI: 10.3389/fimmu.2021.667454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Mokhtari Y, Pourbagheri‐Sigaroodi A, Zafari P, Bagheri N, Ghaffari SH, Bashash D. Toll-like receptors (TLRs): An old family of immune receptors with a new face in cancer pathogenesis. J Cell Mol Med 2021; 25:639-651. [PMID: 33336901 PMCID: PMC7812258 DOI: 10.1111/jcmm.16214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
In the dark path of tumorigenesis, the more carefully the cancer biology is studied, the more brilliant answers could be given to the countless questions about its orchestrating derivers. The identification of the correlation between Toll-like receptors (TLRs) and different processes involved in carcinogenesis was one of the single points of blinding light highlighting the interconnection between the immune system and cancer. TLRs are a wide family of single-pass membrane-spanning receptors that have developed through the evolution to recognize the structurally conserved molecules derived from microorganisms or damaged cells. But this is not everything about these receptors as they could orchestrate several downstream signalling pathways leading to the formation or suppression of cancer cells. The present review is tempted to provide a concise schematic about the biology and the characters of TLRs and also summarize the major findings of the regulatory role of TLRs and their associated signalling in the pathogenesis of human cancers.
Collapse
Affiliation(s)
- Yazdan Mokhtari
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Atieh Pourbagheri‐Sigaroodi
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Zafari
- Department of ImmunologyFaculty of MedicineMazandaran University of Medical SciencesSariIran
- Student Research CommitteeFaculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Nader Bagheri
- Cellular and Molecular Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Seyed H. Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research CenterShariati HospitalSchool of MedicineTehran University of Medical SciencesTehranIran
| | - Davood Bashash
- Department of Hematology and Blood BankingSchool of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020; 52:1926-1935. [PMID: 33299138 PMCID: PMC8080774 DOI: 10.1038/s12276-020-00540-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment. Tumor cells killed by radiotherapy or chemotherapy release signaling molecules that stimulate both immune response and tumor aggressiveness; regulating these molecules could improve treatment efficacy. Tae Heung Kang, Yeong-Min Park, and co-workers at Konkuk University, Seoul, South Korea, have reviewed the role of damage-associated molecular patterns (DAMPs) in immunity and cancer. These signaling molecules act as danger signals, activating immune cells by binding to specific receptors. However, tumor cells have the same receptors, and DAMPs binding triggers chemoresistance and increases invasiveness. The researchers report that although DAMPs can trigger a helpful immune response, they can also cause chronic inflammation, which in turn promotes an immune suppression response, allowing tumors to escape immune detection. Improving our understanding of the functions of different DAMPs could improve our ability to boost the immune response and decrease tumor aggressiveness.
Collapse
|
16
|
Baakhlagh S, Kashani B, Zandi Z, Bashash D, Moradkhani M, Nasrollahzadeh A, Yaghmaei M, Mousavi SA, Ghaffari SH. Toll-like receptor 4 signaling pathway is correlated with pathophysiological characteristics of AML patients and its inhibition using TAK-242 suppresses AML cell proliferation. Int Immunopharmacol 2020; 90:107202. [PMID: 33278749 DOI: 10.1016/j.intimp.2020.107202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Acute myeloid leukemia (AML) is one of the most severe blood cancers. Many studies have revealed that inflammation has an essential role in the progression of hematopoietic malignancies. Since the toll-like receptor 4 (TLR4) pathway, an important pathway involved in inflammation induction, has previously been associated with solid tumors, we hypothesized that it would be correlated with the pathophysiological characteristics of AML patients and could be considered as an anticancer target. METHOD We evaluated the mRNA expression of TLR4, MyD88, RelB, and NF-кB using qRT-PCR in bone-marrow samples of 40 AML patients categorized into four groups according to prognosis, cell type, age, and drug response. Next, we explored the expression of these genes in three AML cell lines (NB4, U937, and KG-1) and used TAK-242, a specific inhibitor of TLR4, to investigate whether this inhibition could suppress AML cell proliferation using cell-cycle analysis. The effect of TAK-242 on arsenic trioxide (ATO) cytotoxicity was also assessed. RESULT The results of qRT-PCR showed that most genes had higher expression in patients with poor prognosis or drug-resistant statues. They were also overexpressed in patients with less-differentiated cells. Moreover, TAK-242 inhibited cell proliferation of all the cell lines and altered their cell cycle distribution. It could also intensify the cytotoxicity of ATO in combination therapy. CONCLUSION In sum, the TLR4 pathway was related to pathophysiological characteristics of AML and its inhibition using TAK-242 could be considered as a promising treatment strategy in the TLR4 expressing AML cells, individually or in combination with ATO.
Collapse
Affiliation(s)
- Sedigheh Baakhlagh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Malihe Moradkhani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed A Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Tamura H, Ishibashi M, Sunakawa-Kii M, Inokuchi K. PD-L1-PD-1 Pathway in the Pathophysiology of Multiple Myeloma. Cancers (Basel) 2020; 12:E924. [PMID: 32290052 PMCID: PMC7226506 DOI: 10.3390/cancers12040924] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
PD-L1 expressed on tumor cells contributes to disease progression with evasion from tumor immunity. Plasma cells from multiple myeloma (MM) patients expressed higher levels of PD-L1 compared with healthy volunteers and monoclonal gammopathy of undetermined significance (MGUS) patients, and its expression is significantly upregulated in relapsed/refractory patients. Furthermore, high PD-L1 expression is induced by the myeloma microenvironment and PD-L1+ patients with MGUS and asymptomatic MM tend to show disease progression. PD-L1 expression on myeloma cells was associated with more proliferative potential and resistance to antimyeloma agents because of activation of the Akt pathway through PD-1-bound PD-L1 in MM cells. Those data suggest that PD-L1 plays a crucial role in the disease progression of MM.
Collapse
Affiliation(s)
- Hideto Tamura
- Division of Diabetes, Endocrinology and Hematology, Department of Internal Medicine, Dokkyo Medical University Saitama Medical Center, Saitama 343-8555, Japan
- Department of Hematology, Nippon Medical School, Tokyo 113-8603, Japan; (M.S.-K.); (K.I.)
| | - Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Mika Sunakawa-Kii
- Department of Hematology, Nippon Medical School, Tokyo 113-8603, Japan; (M.S.-K.); (K.I.)
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo 113-8603, Japan; (M.S.-K.); (K.I.)
| |
Collapse
|
18
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
19
|
Huang B, He A, Zhang P, Ma X, Yang Y, Wang J, Wang J, Zhang W. Targeted silencing of genes related to acute monocytic leukaemia by CpG(B)-MLAA-34 siRNA conjugates. J Drug Target 2019; 28:516-524. [PMID: 31718329 DOI: 10.1080/1061186x.2019.1689397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute monocytic leukaemia (AML-M5) associated antigen-34 (MLAA-34) is a novel antigen overexpressed in patients with acute monocytic leukaemia. RNA interference is a promising therapy in oncology, especially for refractory acute leukaemia. In this study, we delivered MLAA-34 siRNA into AML-M5 THP-1 cells using CpG(B)-MLAA-34 siRNA conjugates, in the absence of any other transfection reagent. The uptake efficiency and the rate of apoptosis were measured by using flow cytometry. The level of relevant mRNAs was measured by quantitative PCR. THP-1 cell invasion was assessed by transwell assay. Protein expression was analysed by western blotting. The spleen and liver of AML-M5 nude mice were measured and weighted after euthanisation. Spleen sections were analysed by immunohistochemistry. We found that MLAA-34 siRNA was successfully delivered into THP-1 cells and induced MLAA-34 gene silencing via the blockade of JAK2/STAT3 and Wnt/-catenin signalling pathways. In addition, CpG(B)-MLAA-34 siRNA upregulated Gsk3β protein expression, resulting in retraining of the JAK2/STAT3 and Wnt/β-catenin signalling pathways. Importantly, CpG(B)-MLAA-34 siRNA reduced the survival and invasiveness of THP-1 cells. We further demonstrated that CAB39L was effectively downregulated by CpG(B)-MLAA-34 siRNA in vivo. These findings suggested CpG(B)-MLAA-34 siRNA conjugates may provide a novel therapeutic strategy for acute monocytic leukaemia.
Collapse
Affiliation(s)
- Bingqiao Huang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengyu Zhang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaorong Ma
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Yang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianli Wang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanggang Zhang
- Department of Haematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Ohadian Moghadam S, Nowroozi MR. Toll‐like receptors: The role in bladder cancer development, progression and immunotherapy. Scand J Immunol 2019; 90:e12818. [DOI: 10.1111/sji.12818] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
21
|
Braunstein MJ, Kucharczyk J, Adams S. Targeting Toll-Like Receptors for Cancer Therapy. Target Oncol 2019; 13:583-598. [PMID: 30229471 DOI: 10.1007/s11523-018-0589-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.
Collapse
Affiliation(s)
- Marc J Braunstein
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - John Kucharczyk
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - Sylvia Adams
- Department of Medicine, NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street, 4th Floor, New York, 10016, NY, USA.
| |
Collapse
|
22
|
Patra MC, Shah M, Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Semin Cancer Biol 2019; 64:61-82. [PMID: 31054927 DOI: 10.1016/j.semcancer.2019.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Immune cells of the myeloid and lymphoid lineages express Toll-like receptors (TLRs) to recognize pathogenic components or cellular debris and activate the immune system through the secretion of cytokines. Cytokines are signaling molecules that are structurally and functionally distinct from one another, although their secretion profiles and signaling cascades often overlap. This situation gives rise to pleiotropic cell-to-cell communication pathways essential for protection from infections as well as cancers. Nonetheless, deregulated signaling can have detrimental effects on the host, in the form of inflammatory or autoimmune diseases. Because cytokines are associated with numerous autoimmune and cancerous conditions, therapeutic strategies to modulate these molecules or their biological responses have been immensely beneficial over the years. There are still challenges in the regulation of cytokine function in patients, even in those who take approved biological therapeutics. In this review, our purpose is to discuss the differential expression patterns of TLR-regulated cytokines and their cell type specificity that is associated with cancers and immune-system-related diseases. In addition, we highlight key structural features and molecular recognition of cytokines by receptors; these data have facilitated the development and approval of several biologics for the treatment of autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Mahesh Chandra Patra
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
23
|
Li L, Wang L. Multiple Myeloma: What Do We Do About Immunodeficiency? J Cancer 2019; 10:1675-1684. [PMID: 31205523 PMCID: PMC6548011 DOI: 10.7150/jca.29993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy. Immunodeficiency results in the incapability of immunity to eradicate both tumor cells and pathogens. Immunotherapies along with antibiotics and other anti-infectious agents are applied as substitutes for immunity in MM. Immunotherapies including monoclonal antibodies, immune checkpoints inhibitors, affinity- enhanced T cells, chimeric antigen receptor T cells and dendritic cell vaccines are revolutionizing MM treatment. By suppressing the pro-inflammatory milieu and pathogens, prophylactic and therapeutic antibiotics represent anti-tumor and anti-infection properties. It is expected that deeper understanding of infection, immunity and tumor physio-pathologies in MM will accelerate the optimization of combined therapies, thus improving prognosis in MM.
Collapse
Affiliation(s)
- Linrong Li
- Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Hematology, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Toll-Like Receptor 4 Activation Promotes Multiple Myeloma Cell Growth and Survival Via Suppression of The Endoplasmic Reticulum Stress Factor Chop. Sci Rep 2019; 9:3245. [PMID: 30824741 PMCID: PMC6397208 DOI: 10.1038/s41598-019-39672-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023] Open
Abstract
Despite recent biomedical improvements in treating Multiple Myeloma (MM), the disease still remains incurable. Toll like receptors (TLRs) provide a link between innate and adaptive immune responses and hence potentially correlate inflammation to cancer. Although the regulatory role of TLRs in MM has been under investigation the underlying mechanisms remain unclear. In this study we assayed the function of TLR4 in MM cell lines and in MM patients' samples. We found that lipopolysaccharide-mediated TLR4 activation increased MM cells proliferation and decreased endoplasmic reticulum (ER) stress-induced apoptosis. Furthermore, we observed that either the endogenous CHOP expression or the ER stress-mediated CHOP induction, were suppressed by TLR4 activation or its overexpression in MM cell lines; TLR4 induction also suppressed ER stress-induced apoptotic signals. In support, TLR4 gene expression silencing in MM cell lines significantly decreased cell proliferation and promoted CHOP and ATF4 upregulation. TLR4 activation was also able to partially abrogate the effect of bortezomib in MM cell lines by suppressing PERK, ATF4 and phospho-eIF2A. We suggest that TLR4-mediated disruption of ER stress responses contributes to MM cells proliferation and suppresses ER-dependent death signals.
Collapse
|
25
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
26
|
Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE, Kepp O, Kroemer G, Alifano M, Damotte D, Cremer I. Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology 2018; 8:e1505174. [PMID: 30546943 PMCID: PMC6287801 DOI: 10.1080/2162402x.2018.1505174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
In non-small cell lung carcinoma (NSCLC), stimulation of toll-like receptor 7 (TLR7), a receptor for single stranded RNA, is linked to tumor progression and resistance to anticancer chemotherapy. However, the mechanism of this effect has been elusive. Here, using a murine model of lung adenocarcinoma, we demonstrate a key role for TLR7 expressed by malignant (rather than by stromal and immune) cells, in the recruitment of myeloid derived suppressor cells (MDSCs), induced after TLR7 stimulation, resulting in accelerated tumor growth and metastasis. In adenocarcinoma patients, high TLR7 expression on malignant cells was associated with poor clinical outcome, as well as with a gene expression signature linked to aggressiveness and metastastic dissemination with high abundance of mRNA encoding intercellular adhesion molecule 1 (ICAM-1), cytokeratins 7 and 19 (KRT-7 and 19), syndecan 4 (SDC4), and p53. In addition, lung tumors expressing high levels of TLR7 have a phenotype of epithelial mesenchymal transition with high expression of vimentin and low abundance of E-cadherin. These data reveal a crucial role for cancer cell-intrinsic TLR7 expression in lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florent Petitprez
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Solenne Marmier
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Lupo
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Mélanie Gillard
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hanane Ouakrim
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Navas Victor
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Di Bartolo Vincenzo
- Unité de de Biologie Cellulaire des Lymphocytes INSERM U1221, Institut Pasteur, Paris, France
| | - Pierre Emmanuel Joubert
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Oliver Kepp
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France
| | - Guido Kroemer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Cell Biology and Metabolomics Platforms, Villejuif, France.,Equipe 11 labellisee Ligue Nationale Contre le Cancer, Paris, France.,Pôle de Biologie, Hopital Europeen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Alifano
- Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Diane Damotte
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departments of Pathology and Thoracic Surgery, Hospital Cochin AP-HP, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Medicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
27
|
Rodić P, Lakočević M, Pavlović S, Đurašević TK, Kostić T, Vuković NS, Šumarac Z, Petakov M, Janić D. Immunoglobulin Heavy Chain Gene Rearrangements in Patients with Gaucher Disease. J Med Biochem 2018; 37:307-312. [PMID: 30598627 PMCID: PMC6298462 DOI: 10.1515/jomb-2017-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/18/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Several studies support the evidence of increased incidence of hematological complications in Gaucher disease including monoclonal and polyclonal gammopathies and blood malignancies, especially multiple myeloma. METHODS Serum concentrations of immunoglobulins and PCR analysis of the IGH gene rearrangements were performed. The clonal PCR products were directly sequenced and analyzed with the appropriate database and tools. Serum monoclonal proteins were detected and identified by electrophoresis. RESULTS Among 27 Gaucher patients, clonal IGH rearrangement was discovered in eight, with 5/8 having also serum monoclonal protein. Elevated immunoglobulins were detected in 9/27 patients. Follow-up data for 17 patients showed that the clonal rearrangement remained the same in four of them, however, in one patient it disappeared after the follow-up period. The remaining 12/17 patients were without previous IGH clonal rearrangement and remained so after the follow-up. CONCLUSIONS Although clonal expansion may occur relatively early in the disease course, at least judging by the IGH gene rearrangements in Gaucher patients, the detected clones may be transient. A careful clinical follow-up in these patients is mandatory, including monitoring for lymphoid neoplasms, especially multiple myeloma.
Collapse
Affiliation(s)
- Predrag Rodić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Hematology and Oncology, University Children's Hospital, Belgrade, Serbia
| | - Milan Lakočević
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | - Sonja Pavlović
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Teodora Karan Đurašević
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Tatjana Kostić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Nada Suvajdžić Vuković
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic of Hematology, Clinical Center of SerbiaBelgrade, Serbia
| | - Zorica Šumarac
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Center for Medical Biochemistry, Clinical Center of Serbia, Belgrade, Serbia
| | - Milan Petakov
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | - Dragana Janić
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Hematology and Oncology, University Children's Hospital, Belgrade, Serbia
| |
Collapse
|
28
|
Chikanza I, Akpenyi O. Association of Monoclonal Gammopathy of Undetermined Significance with Behcet's Disease: A Review of Shared Common Disease Pathogenetic Mechanisms. Mediterr J Rheumatol 2018; 29:80-85. [PMID: 32185304 PMCID: PMC7046073 DOI: 10.31138/mjr.29.2.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/30/2018] [Accepted: 04/15/2018] [Indexed: 12/05/2022] Open
Abstract
An association between a number of chronic inflammatory rheumatic diseases and Monoclonal Gammopathy of Undetermined Significance (MGUS) has been reported. To date no cases of Behcet’s disease (BD) and MGUS have been documented. BD sits at the interphase of auto-inflammatory and chronic auto-immune disease spectrums. Alterations in the cellular and cytokine microenvironments can promote a pro-inflammatory state in which persistent antigenic stimulation and cellular proliferation can progressively induce cytogenetic abnormalities which could perturbate plasma cell functions such as seen in MGUS. Herein, we present a rare case of a woman presenting with BD who subsequently developed MGUS. Pathogenetic mechanisms that could potentially contribute to development of both conditions, are reviewed and demonstrate that this disease association is not coincidental but is an evolutionary association driven by shared common disease pathogenetic mechanisms.
Collapse
Affiliation(s)
- Ian Chikanza
- Department of Rheumatology, St Barts & The Royal London Hospital, London, United Kingdom
| | - Onyinye Akpenyi
- Department of Rheumatology, St Barts & The Royal London Hospital, London, United Kingdom
| |
Collapse
|
29
|
T V, V G, A ND. Multiple Myeloma Index for Risk of Infection. J Cancer 2018; 9:2211-2214. [PMID: 29937941 PMCID: PMC6010689 DOI: 10.7150/jca.24288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/10/2018] [Indexed: 12/11/2022] Open
Abstract
Based on our earlier research into the main characteristics and risk factors for infections in hospitalized patients with multiple myeloma, we created the numerical Multiple Myeloma Index for Risk of Infection (MMIRI) to predict infection in myeloma patients. The included factors that could influence the pathogenesis and incidence of infections were sex, performance status, Durie Salmon stage of disease, International Staging System, serum creatinine level, immune paresis, neutropenia, serum ferritin level, the presence of any catheters, disease duration, stable/progressive disease, and type of therapy. For each of these parameters, the strength of association with infection was statistically estimated and specific number of points was assigned to each of these parameters, proportional to the strength of the association. When designing the MMIRI, we included only those parameters that we determined were pathophysiologically associated with the infection. After further statistical analysis, we identified an optimal cutoff score of 6 or above as indicating a significant risk for infection, with a sensitivity of 93.2% and specificity of 80.2%. The scoring system in the retrospective receiver operating characteristic analysis showed an area under the curve of 0.918. The potential value of the MMIRI is the possibility of identifying those patients who would benefit from the prophylactic administration of antibiotics and other anti-infective measures while minimizing the contribution to antibiotic resistance related to the overuse of these drugs. As far as we know, this index represents the first attempt to create such an instrument for predicting the occurrence of infections in myeloma patients.
Collapse
Affiliation(s)
- Valkovic T
- Department of Hematology, Rheumatology and Clinical Immunology, University Hospital Center Rijeka and School of Medicine Rijeka, Croatia
| | - Gacic V
- Department of Hematology, University Hospital Center Mostar, Bosnia and Hercegovina
| | - Nacinovic-Duletic A
- Department of Hematology, Rheumatology and Clinical Immunology, University Hospital Center Rijeka and School of Medicine Rijeka, Croatia
| |
Collapse
|
30
|
Kikuchi J, Kuroda Y, Koyama D, Osada N, Izumi T, Yasui H, Kawase T, Ichinohe T, Furukawa Y. Myeloma Cells Are Activated in Bone Marrow Microenvironment by the CD180/MD-1 Complex, Which Senses Lipopolysaccharide. Cancer Res 2018; 78:1766-1778. [PMID: 29363546 DOI: 10.1158/0008-5472.can-17-2446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/03/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
Multiple myeloma (MM) cells acquire dormancy and drug resistance via interaction with bone marrow stroma cells (BMSC) in a hypoxic microenvironment. Elucidating the mechanisms underlying the regrowth of dormant clones may contribute to further improvement of the prognosis of MM patients. In this study, we find that the CD180/MD-1 complex, a noncanonical lipopolysaccharide (LPS) receptor, is expressed on MM cells but not on normal counterparts, and its abundance is markedly upregulated under adherent and hypoxic conditions. Bacterial LPS and anti-CD180 antibody, but not other Toll-like receptor ligands, enhanced the growth of MM cells via activation of MAP kinases ERK and JNK in positive correlation with expression levels of CD180. Administration of LPS significantly increased the number of CD180/CD138 double-positive cells in a murine xenograft model when MM cells were inoculated with direct attachment to BMSC. Knockdown of CD180 canceled the LPS response in vitro and in vivo Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the CD180 gene. Both cell adhesion and hypoxia activated transcription of the CD180 gene by increasing Ikaros expression and its binding to the promoter region. Pharmacological targeting of Ikaros by the immunomodulatory drug lenalidomide ameliorated the response of MM cells to LPS in a CD180-dependent manner in vitro and in vivo Thus, the CD180/MD-1 pathway may represent a novel mechanism of growth regulation of MM cells in a BM milieu and may be a therapeutic target of preventing the regrowth of dormant MM cells.Significance: This study describes a novel mechanism by which myeloma cells are regulated in the bone marrow, where drug resistance and dormancy can evolve after treatment, with potential therapeutic implications for treating this often untreatable blood cancer. Cancer Res; 78(7); 1766-78. ©2018 AACR.
Collapse
Affiliation(s)
- Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoki Osada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tohru Izumi
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
31
|
Shaalan A, Carpenter G, Proctor G. Caspases are key regulators of inflammatory and innate immune responses mediated by TLR3 in vivo. Mol Immunol 2018; 94:190-199. [PMID: 29331803 DOI: 10.1016/j.molimm.2017.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Understanding the key regulators which impact the innate immune response during initial phases of tissue injury, can advance the use of therapeutic approaches which aim at attenuating inflammation and organ damage. Recognition of microbial components by TLRs, initiates the transcription of innate immune signal pathways, that induce the expression of key inflammatory mediators: cytokines, chemokines and adhesion molecules. Beside regulating apoptotic cell death, recent studies have revealed distinct roles for caspases in the optimal production of inflammatory cytokines and host defense against injurious infections. Whether caspases can play an immune regulatory role in vivo has not been sufficiently investigated. This study aims to explore whether the pan caspase inhibitor z-VAD-fmk can control inflammation and cytokine production subsequent to challenging the innate immunity of the exocrine secretory tissues in vivo. Submandibular glands (SMGs) of the C57BL/6 mice were challenged with the TLR3 stimulant: polyinosinic-polycytidylic acid (poly (I:C)). Results obtained from the current study provide evidence that caspases can control immune responses downstream of TLR3 ligation. The present work proposes a novel mechanism that can prevent overactivation of the innate immunity, which typically leads to fatal immune disorders.
Collapse
Affiliation(s)
- Abeer Shaalan
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK.
| | - Guy Carpenter
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Gordon Proctor
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| |
Collapse
|
32
|
Paludo J, Ansell SM. Advances in the understanding of IgM monoclonal gammopathy of undetermined significance. F1000Res 2017; 6:2142. [PMID: 29399323 PMCID: PMC5785715 DOI: 10.12688/f1000research.12880.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Among monoclonal gammopathies of undetermined significance (MGUSs), the immunoglobulin M (IgM) MGUS subtype stands as a unique entity and plays a pivotal role as a pre-malignant condition for multiple B-cell non-Hodgkin lymphomas, most notably Waldenström macroglobulinemia (WM). A relationship between IgM MGUS and WM has been proposed for decades. However, insight regarding the pathobiology of these two conditions improved significantly in recent years, strengthening the hypothesis that WM and IgM MGUS are different stages of the same disease. Therefore, the understanding of IgM MGUS and that of WM are interconnected and advances in one will likely impact the other. Furthermore, IgM MGUS has been more commonly recognized as the underlying etiology of IgM-related disorders. In this review, we explore recent advances in the understanding of the pathobiology of IgM MGUS and WM and the treatment of common IgM-related disorders.
Collapse
Affiliation(s)
- Jonas Paludo
- Department of Medicine, Division of Hematology, Mayo Clinic , Rochester, USA
| | - Stephen M Ansell
- Department of Medicine, Division of Hematology, Mayo Clinic , Rochester, USA
| |
Collapse
|
33
|
Interleukin-32α promotes the proliferation of multiple myeloma cells by inducing production of IL-6 in bone marrow stromal cells. Oncotarget 2017; 8:92841-92854. [PMID: 29190960 PMCID: PMC5696226 DOI: 10.18632/oncotarget.21611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma disease closely associated with inflammation. In MM bone marrow microenvironment, bone marrow stromal cells (BMSCs) are the primary source of interleukin-6 (IL-6) secretion, which promotes the proliferation and progression of MM cells. However, it is still unknown how the microenvironment stimulates BMSCs to secrete IL-6. Interleukin-32 (IL-32) is a newly identified pro-inflammatory factor. It was reported that in solid tumors, IL-32 induces changes in other inflammatory factors including IL-6, IL-10, and TNF-α. The aim of this study was to investigate the expression of IL-32 and the role of IL-32 in the MM bone marrow microenvironment. Our data illustrate that MM patients have higher expression of IL-32 than healthy individuals in both bone marrow and peripheral blood. We used ELISA and qRT-PCR to find that malignant plasma cells are the primary source of IL-32 production in MM bone marrow. ELISA and Western blot analysis revealed that recombinant IL-32α induces production of IL-6 in BMSCs by activating NF-κB and STAT3 signaling pathways, konckdown of IL-32 receptor PR3 inhibit this process. Knockdown of IL-32 by shRNA decreased the proliferation in MM cells that induced by BMSCs. In conclusion, IL-32 secreted from MM cells has paracrine effect to induce production of IL-6 in BMSCs, thus feedback to promote MM cells growth.
Collapse
|
34
|
Yeh YC, Chang CC, Lee PP, Cheng W. The transcription of atypical protein kinase C in hemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, during the molt stage and injection of pathogen-associated compounds. FISH & SHELLFISH IMMUNOLOGY 2017; 69:52-58. [PMID: 28818614 DOI: 10.1016/j.fsi.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Protein kinase C (PKC), which is involved in cell signaling pathways, comprises a family of serine/threonine kinases ubiquitously present in animals and its members are grouped on the basis of structural and activation characteristics into novel, classical, and atypical PKC forms. In this study, an atypical PKC of Macrobrachium rosenbergii, designated MraPKC, was successfully cloned, and its protein comprised structural domains similar to those of atypical PKC homologues, including the Phox and Bem1 (PB1) domain, a zinc finger phorbol-ester/DAG-type signature, protein kinase signatures, and a cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase C-terminal domain. Phylogenetic analyses revealed a close evolutionary relationship between MraPKC and aPKCs of insects. MraPKC transcripts were detected in all tissues examined through an RT-PCR, with the highest level detected in muscles. A quantitative real-time PCR was used to evaluate MraPKC expression in hemocytes of M. rosenbergii in various molt stages, and in prawn challenged with Vibrio alginolyticus, Lactococcus garvieae, and white spot syndrome virus (WSSV) as well as in prawns injected with pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PG), and polyinosinic:polycytidylic acid (Poly:IC). Results revealed that the expression pattern of MraPKC was distinctly modulated during molting, with significant enhancement in the C stage. MraPKC transcripts significantly increased in hemocytes of prawns infected with L. garvieae at 6-24 h and those injected with PG at 12-24 h. In contrast, significantly decreased expression of MraPKC was observed in hemocytes of prawns injected with V. alginolyticus and LPS for 3 and 12 h, respectively, and a similar phenomenon was observed in hemocytes of those injected with WSSV and Poly:IC for 12 h each. Therefore, MraPKC might play crucial roles in biological processes, and it may mediate the signaling pathway induced by varied pathogens for the potential regulation of host innate defense.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC; Eastern Marine Biology Research Center, Fisheries Research Institute, Taitung 96143, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Pai-Po Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
35
|
Han Z, Yang D, Trivett A, Oppenheim JJ. Therapeutic vaccine to cure large mouse hepatocellular carcinomas. Oncotarget 2017; 8:52061-52071. [PMID: 28881713 PMCID: PMC5581012 DOI: 10.18632/oncotarget.19367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. Here we report the development of a therapeutic vaccination regimen (shortened as ‘TheraVac’) consisting of intratumoral delivery of high-mobility group nucleosome-binding protein 1 (HMGN1), R848/resiquimod, and one of the checkpoint inhibitors (e.g. anti-CTLA4, anti-PD-L1, or low dose of Cytoxan). C57BL/6 mice harboring large (approximately 1 cm in diameter) established subcutaneous Hepa1-6 hepatomas were cured by intratumoral injections of TheraVac and became tumor-free long-term survivors. Importantly, the resultant tumor-free mice were resistant to re-challenge with Hepa1-6 hepatoma, not B16 melanoma, demonstrating the acquisition of hepatoma-specific immunity in the absence of any administered tumor antigen. Mechanistic studies showed that upon treatment with TheraVac, Hepa1-6-bearing mice generated increased Hepa1-6-specific CTLs in the draining lymph nodes and showed greatly upregulated expression of CXCL9, CXCL10, and IFN-γ and elevated infiltration of T lymphocytes in tumor tissues. Treatment of large Hepa1-6 hepatomas on one mouse flank also eliminated smaller (approximately 0.5 cm in diameter) hepatomas implanted on the other flank. Thus, TheraVac has potential as a curative immunotherapeutic regimen for the treatment of human HCC.
Collapse
Affiliation(s)
- Zhen Han
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Anna Trivett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
36
|
Ray-Coquard I, Lorusso D. Immunotherapy and epithelial ovarian cancer: a double-edged sword? Ann Oncol 2017; 28:909-910. [DOI: 10.1093/annonc/mdx102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
37
|
Regulation of B cell functions by Toll-like receptors and complement. Immunol Lett 2016; 178:37-44. [DOI: 10.1016/j.imlet.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
|
38
|
Monlish DA, Bhatt ST, Schuettpelz LG. The Role of Toll-Like Receptors in Hematopoietic Malignancies. Front Immunol 2016; 7:390. [PMID: 27733853 PMCID: PMC5039188 DOI: 10.3389/fimmu.2016.00390] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/02/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors that shape the innate immune system by identifying pathogen-associated molecular patterns and host-derived damage-associated molecular patterns. TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells, effector immune cell populations, and endothelial cells. In addition to their well-known role in the innate immune response to acute infection or injury, accumulating evidence supports a role for TLRs in the development of hematopoietic and other malignancies. Several hematopoietic disorders, including lymphoproliferative disorders and myelodysplastic syndromes, which possess a high risk of transformation to leukemia, have been linked to aberrant TLR signaling. Furthermore, activation of TLRs leads to the induction of a number of proinflammatory cytokines and chemokines, which can promote tumorigenesis by driving cell proliferation and migration and providing a favorable microenvironment for tumor cells. Beyond hematopoietic malignancies, the upregulation of a number of TLRs has been linked to promoting tumor cell survival, proliferation, and metastasis in a variety of cancers, including those of the colon, breast, and lung. This review focuses on the contribution of TLRs to hematopoietic malignancies, highlighting the known direct and indirect effects of TLR signaling on tumor cells and their microenvironment. In addition, the utility of TLR agonists and antagonists as potential therapeutics in the treatment of hematopoietic malignancies is discussed.
Collapse
Affiliation(s)
- Darlene A Monlish
- Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| | - Sima T Bhatt
- Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
39
|
Batool M, Anwar MA, Choi S. Toll-like receptors targeting technology for the treatment of lymphoma. Expert Opin Drug Discov 2016; 11:1047-1059. [PMID: 27602749 DOI: 10.1080/17460441.2016.1233964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The crucial role of Toll-like Receptors (TLRs) in innate and adaptive immune systems is well discussed in the literature. In cancer, TLRs act as a double-edged sword that can promote or suppress tumor growth. Areas covered: In this article, the authors uncover the potential role of TLRs in lymphomas, which are cancers related to the lymphatic system and blood cells. TLRs are de facto inflammation-inducing receptors that can either worsen disease or ameliorate lymphoma treatment. From this perspective, the usage of TLRs to modulate the immune system toward lymphoma regression is desirable. Various strategies have been used so far, and novel ways are being sought out to cure lymphoma. Expert opinion: TLR ligands have successfully been used to improve patient health; however, these receptors must be finely tuned to further optimize therapy. For a better outcome, novel specific ligands, improved pharmacodynamics, and unique targets should be discerned. Ligands with conjugated molecules, nanoparticles, and targeted drug delivery can highly optimize the therapy for lymphoma with various etiologies.
Collapse
Affiliation(s)
- Maria Batool
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Muhammad Ayaz Anwar
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Sangdun Choi
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| |
Collapse
|
40
|
Toll-like receptors signaling: A complex network for NF-κB activation in B-cell lymphoid malignancies. Semin Cancer Biol 2016; 39:15-25. [DOI: 10.1016/j.semcancer.2016.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|
41
|
Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2016; 222:89-100. [PMID: 27349597 DOI: 10.1016/j.imbio.2016.06.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 02/09/2023]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane receptors that recognize various pathogen- and damage-associated molecular pattern molecules playing an important role in inflammation by activating NF-кB. TLRs, mainly expressed by innate immune cells, are involved in inducing and regulating adaptive immune responses. However, the expression of TLRs has also been observed in many tumors, and their stimulation results in tumor progression or regression, depending on the TLR and tumor type. Here we review the role of TLRs in conferring anti- or pro-tumoral effects. The anti-tumoral effects can result from direct induction of tumor cell death and/or activation of efficient anti-tumoral immune responses, and the pro-tumoral effects may be due to inducing tumor cell survival and proliferation or by acting on suppressive or inflammatory immune cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Marion Dajon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Kristina Iribarren
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris F-75006, France; Université Pierre et Marie Curie-Paris 6, UMRS1138, Paris F-75006, France; Université Paris Descartes, UMRS1138, Paris F-75006, France.
| |
Collapse
|
42
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Dowling JK, Dellacasagrande J. Toll-Like Receptors: Ligands, Cell-Based Models, and Readouts for Receptor Action. Methods Mol Biol 2016; 1390:3-27. [PMID: 26803619 DOI: 10.1007/978-1-4939-3335-8_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This chapter details Toll-like receptors (TLRs) and the tools available to study their biology in vitro. Key parameters to consider before exploring TLR action such as receptor localization, signaling pathways, nature of ligands and cellular expression are introduced. Cellular models (i.e., host cells and readouts) based on the use of cell lines, primary cells, or whole blood are presented. The use of modified TLRs to circumvent some technical problems is also discussed.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Hudson Institute of Medical Research, Monash University, 27-31 Wright St., Clayton, Melbourne, VIC, 3168, Australia.
| | | |
Collapse
|
44
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
45
|
Bagratuni T, Terpos E, Eleutherakis-Papaiakovou E, Kalapanida D, Gavriatopoulou M, Migkou M, Liacos CI, Tasidou A, Matsouka C, Mparmparousi D, Dimopoulos MA, Kastritis E. TLR4/TIRAP polymorphisms are associated with progression and survival of patients with symptomatic myeloma. Br J Haematol 2015; 172:44-7. [PMID: 26564000 DOI: 10.1111/bjh.13786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/03/2015] [Indexed: 12/01/2022]
Abstract
Myeloma cells thrive in an environment of sustained inflammation, which impacts the development and evolution of the disease, as well as drug resistance. We evaluated the impact of genetic polymorphisms in the Toll-like receptor 4 (TLR4) pathway, which have been implicated in different inflammatory responses in the outcomes of patients with symptomatic multiple myeloma (MM) who have received contemporary therapies. We found that the presence of single nucleotide polymorphisms (SNPs) in both the TLR4 and toll/interleukin-1 receptor (TIR)-associated protein (TIRAP) genes was associated with lower response to primary therapy mainly for patients who received immunomodulatory drugs but not in patients treated with bortezomib-based therapies. Furthermore, TIRAP SNP was associated with a significantly shorter progression-free survival and overall survival, independently of other prognostic factors, such as age, transplant, International Staging System stage, lactate dehydrogenase and cytogenetics. This is the first study to demonstrate the effect of SNPs in TLR4/TIRAP in MM. Our data indicate that genetic variability in the immune system may be associated with different responses to antimyeloma therapies and may be a critical component affecting the natural history of the disease, providing the basis for further investigation of the role of these pathways in myeloma.
Collapse
Affiliation(s)
- Tina Bagratuni
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despoina Kalapanida
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Tasidou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Charis Matsouka
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Mparmparousi
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Rajasekaran N, Chester C, Yonezawa A, Zhao X, Kohrt HE. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther 2015; 4:91-100. [PMID: 27471715 PMCID: PMC4918249 DOI: 10.2147/itt.s61292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.
Collapse
Affiliation(s)
- Narendiran Rajasekaran
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Cariad Chester
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Yonezawa
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Xing Zhao
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People’s Republic of China
| | - Holbrook E Kohrt
- Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Rossi AH, Farias A, Fernández JE, Bonomi HR, Goldbaum FA, Berguer PM. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice. PLoS One 2015; 10:e0126827. [PMID: 25973756 PMCID: PMC4431812 DOI: 10.1371/journal.pone.0126827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/07/2015] [Indexed: 02/03/2023] Open
Abstract
Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.
Collapse
Affiliation(s)
- Andrés H. Rossi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Farias
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier E. Fernández
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M. Berguer
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Abstract
Numerous reports have described Toll-like receptor (TLR) functions in myeloid cells such as dendritic cells (DCs) and macrophages, but relatively fewer studies have examined TLR responses in B lymphocytes. B cells express a wide variety of TLRs and are highly activated after TLR ligation, leading to enhancements in B cell survival, surface molecule expression, cytokine and antibody production, and antigen presentation. During an immune response, B cells can receive signals through TLRs as well as the B cell antigen receptor (BCR) and/or CD40. TLR ligation synergizes with signals through these receptors and augments both innate and adaptive immune functions of B lymphocytes. Additionally, targeting B cell TLRs may provide new therapies against certain types of cancer as well as autoimmune diseases. Here, we summarize TLR expression and contributions to both normal and pathogenic functions in mouse and human B cells.
Collapse
Affiliation(s)
- Claire M Buchta
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
49
|
Nowarski R, Gagliani N, Huber S, Flavell RA. Innate immune cells in inflammation and cancer. Cancer Immunol Res 2015; 1:77-84. [PMID: 24777498 DOI: 10.1158/2326-6066.cir-13-0081] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development.
Collapse
Affiliation(s)
- Roni Nowarski
- Authors' Affiliations: Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | | | | |
Collapse
|
50
|
Rybka J, Butrym A, Wróbel T, Jaźwiec B, Stefanko E, Dobrzyńska O, Poręba R, Kuliczkowski K. The expression of Toll-like receptors in patients with acute myeloid leukemia treated with induction chemotherapy. Leuk Res 2015; 39:318-22. [PMID: 25624047 DOI: 10.1016/j.leukres.2015.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors play an important role in the host defense against microorganisms. TLRs are mainly expressed in human immune-related cells, such as monocytes, neutrophils, macrophages, dendritic cells, T cells, B cells and NK cells. The expression or up-regulation of TLRs has been demonstrated in some tumors and tumor cell lines but the role of TLRs in pathogenesis and development of acute leukemias remains unclear. The aim of this study was to evaluate the expression of TLR2, TLR4 and TLR9 and their significance as prognostic factors in patients with acute leukemias treated with induction chemotherapy. 103 patients with newly diagnosed acute myeloid leukemia (AML) were evaluated (47 females and 56 males). The median age of patients was 51 years. Using quantitative reverse transcriptase PCR, the mRNA expression of genes TLR2, TLR4 and TLR9 was measured. The mRNA expression of TLR2 and TLR4 was significantly higher in patients with NR than in patients with CR and CRi. We especially observed that mRNA expression of TLR2 and TLR4 was significantly higher in patients with myelomonocytic and monoblastic acute leukemia than in patients with other types of AML. The mRNA expression of TLR2 and TLR4 was higher in AML patients than in healthy individuals, although there was no statistically significant difference. Patients with higher mRNA expression of TLR2 and TLR4 had significantly shorter OS than patients with lower mRNA expression of TLR2 and TLR4. Multivariate analysis showed that mRNA expression of TLR2 and the age of patients were independent factors associated with treatment response. Our results suggest that TLRs could be an independent prognostic factor for response rate after induction therapy in patients with acute myeloid leukemias.
Collapse
Affiliation(s)
- Justyna Rybka
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.
| | - Aleksandra Butrym
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Jaźwiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Stefanko
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Dobrzyńska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|