1
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O'Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. J Immunother Cancer 2023; 11:e006889. [PMID: 37775115 PMCID: PMC10546156 DOI: 10.1136/jitc-2023-006889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Certain phosphorylated peptides are differentially presented by major histocompatibility complex (MHC) molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their non-phosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, HLA-A*11:01, HLA-C*07:01, and HLA-C*07:02. METHODS We isolated peptide-MHC complexes by immunoprecipitation from 11 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics data sets to assemble a curated set of phosphopeptides presented by 96 samples spanning 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. RESULTS We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their non-phosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B-pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and HLA-A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the non-phosphorylated peptide was co-presented, HLA-A*03:01 or HLA-C*07:01 phosphopeptides were repeatedly non-immunogenic, requiring use of allogeneic T cells to induce phosphopeptide-specific T cells. CONCLUSIONS Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Martin G Klatt
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Berlin Institute of Health at Charité -Universitätsmedizin Berlin, BIH Biomedical 13 Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David A Scheinberg
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Manning-Geist BL, Gnjatic S, Aghajanian C, Konner J, Kim SH, Sarasohn D, Soldan K, Tew WP, Sarlis NJ, Zamarin D, Kravetz S, Laface I, Rasalan-Ho T, Qi J, Wong P, Sabbatini PJ, O’Cearbhaill RE. Phase I Study of a Multivalent WT1 Peptide Vaccine (Galinpepimut-S) in Combination with Nivolumab in Patients with WT1-Expressing Ovarian Cancer in Second or Third Remission. Cancers (Basel) 2023; 15:1458. [PMID: 36900251 PMCID: PMC10001251 DOI: 10.3390/cancers15051458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
We examined the safety and immunogenicity of sequential administration of a tetravalent, non-HLA (human leukocyte antigen) restricted, heteroclitic Wilms' Tumor 1 (WT1) peptide vaccine (galinpepimut-S) with anti-PD-1 (programmed cell death protein 1) nivolumab. This open-label, non-randomized phase I study enrolled patients with WT1-expressing ovarian cancer in second or third remission from June 2016 to July 2017. Therapy included six (every two weeks) subcutaneous inoculations of galinpepimut-S vaccine adjuvanted with Montanide, low-dose subcutaneous sargramostim at the injection site, with intravenous nivolumab over 12 weeks, and up to six additional doses until disease progression or toxicity. One-year progression-free survival (PFS) was correlated to T-cell responses and WT1-specific immunoglobulin (Ig)G levels. Eleven patients were enrolled; seven experienced a grade 1 adverse event, and one experienced a grade ≥3 adverse event considered a dose-limiting toxicity. Ten (91%) of eleven patients had T-cell responses to WT1 peptides. Seven (88%) of eight evaluable patients had IgG against WT1 antigen and full-length protein. In evaluable patients who received >2 treatments of galinpepimut-S and nivolumab, the 1-year PFS rate was 70%. Coadministration of galinpepimut-S and nivolumab demonstrated a tolerable toxicity profile and induced immune responses, as indicated by immunophenotyping and WT1-specific IgG production. Exploratory analysis for efficacy yielded a promising 1-year PFS rate.
Collapse
Affiliation(s)
- Beryl L. Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sacha Gnjatic
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tisch Cancer Institute, Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Aghajanian
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Konner
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah H. Kim
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Debra Sarasohn
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Krysten Soldan
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William P. Tew
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Dmitriy Zamarin
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Kravetz
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ilaria Laface
- Tisch Cancer Institute, Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Teresa Rasalan-Ho
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jingjing Qi
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Tisch Cancer Institute, Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Phillip Wong
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul J. Sabbatini
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roisin E. O’Cearbhaill
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, University of Galway, H91 YR71 Galway, Ireland
| |
Collapse
|
3
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O’Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527552. [PMID: 36798179 PMCID: PMC9934604 DOI: 10.1101/2023.02.08.527552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Certain phosphorylated peptides are differentially presented by MHC molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their nonphosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, -A*11:01, -C*07:01, and - C*07:02. Methods We isolated peptide-MHC complexes by immunoprecipitation from 10 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics datasets to assemble a curated set of phosphopeptides presented by 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. Results We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their nonphosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B- pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and -A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the nonphosphorylated peptide was co-presented, HLA-A*03:01 or -C*07:01 phosphopeptides were repeatedly nonimmunogenic, requiring use of allogeneic T cells to induce phosphopeptide- specific T cells. Conclusions Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences. What is already known on this topic - Phosphorylated peptides presented by the common HLA alleles A*02:01 and B*07:02 are differentially expressed by multiple tumor types, exhibit structural fitness due to phosphorylation, and are targets of healthy donor T cell surveillance, but it is not clear, however, whether such features apply to phosphopeptides presented by other common HLA alleles. What this study adds - We investigated the tumor presentation, binding, structural features, and immunogenicity of phosphopeptides to the prevalent alleles A*03:01, A*11:01, C*07:01, and C*07:02, selected on the basis of their presentation by malignant cells but not normal cells. We found tumor antigens derived from genetic dependencies in lymphomas and leukemias that bind HLA-A3, -A11, -C7 molecules. While we could detect circulating T cell responses in healthy individuals to A*02:01 and A*11:01 phosphopeptides, we did not find such responses to A*03:01 or C*07:01 phosphopeptides, except when utilizing allogeneic donor T cells, indicating that these phosphopeptides may not be immunogenic in an autologous setting but can still be targeted by other means. How this study might affect research, practice or policy - An expanded patient population expressing alleles other than A*02:01 can be addressed through the development of immunotherapies specific for phosphopeptides profiled in the present work, provided the nuances we describe between alleles are taken into consideration.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité- University Medicine Berlin, Berlin, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
| | - Richard J. O’Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4 T1 murine breast cancer model. Int Immunopharmacol 2022; 112:109237. [PMID: 36152535 DOI: 10.1016/j.intimp.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety. However, epitope-based FAPα vaccines are rarely reported. To break tolerance against self-antigens, analogue epitopes with modified peptides at the anchor residues are typically used to improve epitope immunogenicity. To investigate the feasibility of a FAPα epitope-based vaccine for cancer immunotherapy in vivo, we conducted a preclinical study to identify a homologous CTL epitope of human and mouse FAPα and obtained its analogue epitope in BALB/c mice, and explored the anti-tumor activity of their minigene vaccines in 4 T1 tumor-bearing mice. By using in silico epitope prediction tools and immunogenicity assays, immunodominant epitope FAP.291 (YYFSWLTWV) and its analogue epitope FAP.291I9 (YYFSWLTWI) were identified. The FAP.291-based epitope minigene vaccine successfully stimulated CTLs targeting CAFs and exhibited anti-tumor activity in a 4 T1 murine breast cancer model. Furthermore, although the analogue epitope FAP.291I9 enhanced FAP.291-specific immune responses, improvement of anti-tumor immunity effects was not observed. Check of immunosuppressive factors revealed that the high levels of IL-10, IL-13, myeloid-derived suppressor cells and iNOS induced by FAP.291I9 increased, which considered the main cause of the failure of the analogue epitope-based vaccine. Thus, we demonstrated for the first time that the FAP.291 minigene vaccine could induce mouse CTLs and also function as a tumor regression antigen, providing the basis for future studies of FAPα epitope-based vaccines. This study may also be valuable for further improvement of the immunogenicity of analogue epitope vaccines.
Collapse
|
5
|
van Amerongen RA, Hagedoorn RS, Remst DFG, Assendelft DC, van der Steen DM, Wouters AK, van de Meent M, Kester MGD, de Ru AH, Griffioen M, van Veelen PA, Falkenburg JHF, Heemskerk MHM. WT1-specific TCRs directed against newly identified peptides install antitumor reactivity against acute myeloid leukemia and ovarian carcinoma. J Immunother Cancer 2022; 10:jitc-2021-004409. [PMID: 35728869 PMCID: PMC9214430 DOI: 10.1136/jitc-2021-004409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Transcription factor Wilms’ tumor gene 1 (WT1) is an ideal tumor target based on its expression in a wide range of tumors, low-level expression in normal tissues and promoting role in cancer progression. In clinical trials, WT1 is targeted using peptide-based or dendritic cell-based vaccines and T-cell receptor (TCR)-based therapies. Antitumor reactivities were reported, but T-cell reactivity is hampered by self-tolerance to WT1 and limited number of WT1 peptides, which were thus far selected based on HLA peptide binding algorithms. Methods In this study, we have overcome both limitations by searching in the allogeneic T-cell repertoire of healthy donors for high-avidity WT1-specific T cells, specific for WT1 peptides derived from the HLA class I associated ligandome of primary leukemia and ovarian carcinoma samples. Results Using broad panels of malignant cells and healthy cell subsets, T-cell clones were selected that demonstrated potent and specific anti-WT1 T-cell reactivity against five of the eight newly identified WT1 peptides. Notably, T-cell clones for WT1 peptides previously used in clinical trials lacked reactivity against tumor cells, suggesting limited processing and presentation of these peptides. The TCR sequences of four T-cell clones were analyzed and TCR gene transfer into CD8+ T cells installed antitumor reactivity against WT1-expressing solid tumor cell lines, primary acute myeloid leukemia (AML) blasts, and ovarian carcinoma patient samples. Conclusions Our approach resulted in a set of naturally expressed WT1 peptides and four TCRs that are promising candidates for TCR gene transfer strategies in patients with WT1-expressing tumors, including AML and ovarian carcinoma.
Collapse
Affiliation(s)
- Rosa A van Amerongen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique C Assendelft
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marian van de Meent
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. JCI Insight 2022; 7:151624. [PMID: 35260532 PMCID: PMC8983142 DOI: 10.1172/jci.insight.151624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed “public” cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope’s presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01–restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zaki Molvi
- Immunology Program, Weill Cornell Medicine, New York, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | | | - Mary Ann Pohl
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Thomas E White
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Paul J Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Weill Cornell Medicine, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, Chen S, Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther 2022; 7:39. [PMID: 35132063 PMCID: PMC8821599 DOI: 10.1038/s41392-021-00868-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies constitute a promising class of targeted anticancer agents that enhance natural immune system functions to suppress cancer cell activity and eliminate cancer cells. The successful application of IgG monoclonal antibodies has inspired the development of various types of therapeutic antibodies, such as antibody fragments, bispecific antibodies, and antibody derivatives (e.g., antibody-drug conjugates and immunocytokines). The miniaturization and multifunctionalization of antibodies are flexible and viable strategies for diagnosing or treating malignant tumors in a complex tumor environment. In this review, we summarize antibodies of various molecular types, antibody applications in cancer therapy, and details of clinical study advances. We also discuss the rationale and mechanism of action of various antibody formats, including antibody-drug conjugates, antibody-oligonucleotide conjugates, bispecific/multispecific antibodies, immunocytokines, antibody fragments, and scaffold proteins. With advances in modern biotechnology, well-designed novel antibodies are finally paving the way for successful treatments of various cancers, including precise tumor immunotherapy, in the clinic.
Collapse
Affiliation(s)
- Shijie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanping Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Liang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Gu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiangtao Ning
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Key Laboratory of Pancreatic Disease of Zhejiang Province, 310003, Hangzhou, China.
| |
Collapse
|
8
|
Kyi C, Doubrovina E, Zhou Q, Kravetz S, Iasonos A, Aghajanian C, Sabbatini P, Spriggs D, O'Reilly RJ, O'Cearbhaill RE. Phase I dose escalation safety and feasibility study of autologous WT1-sensitized T cells for the treatment of patients with recurrent ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002752. [PMID: 34433633 PMCID: PMC8388302 DOI: 10.1136/jitc-2021-002752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background This phase I dose escalation trial evaluated the feasibility of production, safety, maximum tolerated dose, and preliminary efficacy of autologous T cells sensitized with peptides encoding Wilms’ tumor protein 1 (WT1) administered alone or following lymphodepleting chemotherapy, in the treatment of patients with recurrent WT1+ ovarian, primary peritoneal, or fallopian tube carcinomas. Methods A 3+3 dose escalation design was used to determine dose-limiting toxicity (DLT). In cohort I, patients received WT1-sensitized T cells dosed at 5×106/m2 (level I) without cyclophosphamide lymphodepletion. In cohorts II–IV, patients received lymphodepleting chemotherapy (a single intravenous dose of cyclophosphamide 750 mg/m2), 2 days prior to the first intravenous infusion of WT1-sensitized T cells administered at escalating doses (2×107/m2 (level II), 5×107/m2 (level III), and 1×108/m2 (level IV)). Results Twelve patients aged 23–72 years, with a median of 7 prior therapies (range 4–14), were treated on the study. No DLT was observed, even at the highest dose level of 1×108/m2 WT1-sensitized T cells tested. Common adverse events reported were grade 1–2 fatigue, fever, nausea, and headache. Median progression-free survival (PFS) was 1.8 months (95% CI, 0.8 to 2.6); 1 year PFS rate 8.3% (95% CI, 0.5 to 31.1). Median overall survival (OS) was 11.0 months (95% CI, 1.1 to 22.6); OS at 1 year was 41.7% (95% CI, 15.2% to 66.5%). Best response was stable disease in one patient (n=1) and progressive disease in the others (n=11). We observed a transient increase in the frequencies of WT1-specific cytotoxic T lymphocyte precursors (CTLp) in the peripheral blood of 9 of the 12 patients following WT1-sensitized T-cell infusion. Conclusion We demonstrated the safety of administration of WT1-sensitized T cells and the short-term increase in the WT1 CTLp. However, at the low doses evaluated we did not observe therapeutic activity in recurrent ovarian cancer. In this heavily pretreated population, we encountered challenges in generating sufficient numbers of WT1-reactive cytotoxic T cells. Future studies employing WT1-specific T cells generated from lymphocytes are warranted but should be done earlier in the disease course and prior to intensive myelosuppressive therapy. Trial registration number NCT00562640. One-sentence summary The authors describe the first human application of autologous WT1-sensitized T cells in the treatment of patients with recurrent ovarian, primary peritoneal, and fallopian tube carcinomas.
Collapse
Affiliation(s)
- Chrisann Kyi
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Qin Zhou
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Kravetz
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul Sabbatini
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | - Roisin E O'Cearbhaill
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA .,Medicine, Weill Cornell Medical College, New York, New York, USA.,National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
9
|
Linder K, Lulla P. Myelodysplastic syndrome and immunotherapy novel to next in-line treatments. Hum Vaccin Immunother 2021; 17:2602-2616. [PMID: 33941042 PMCID: PMC8475606 DOI: 10.1080/21645515.2021.1898307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 01/28/2023] Open
Abstract
Patients with Myelodysplastic syndromes (MDS) have few therapy options for sustainable responses in the frontline setting, and even less after hypomethylating agent (HMA) failure in relapsed and refractory setting. The only potential cure is an allogeneic hematopoietic stem cell transplant which is an unrealistic option for the majority of MDS patients. Immunotherapy with checkpoint inhibition, CAR-T cells, and vaccine therapy few have shown promise in a variety cancer and have now been tested in patients with MDS. Most trials have focused on AML patients and included small numbers of MDS patients. Until now, a dedicated review of immunotherapy outcomes in MDS patients has been lacking. Thus, herein we review outcomes of MDS patients after immunotherapies on a variety of clinical trials reported to date.
Collapse
Affiliation(s)
- Katherine Linder
- Baylor College of Medicine, Section of Hematology & Oncology, Houston, TX, USA
| | - Premal Lulla
- Baylor College of Medicine, Center for Cell and Gene Therapy, Hematology-Oncology, Houston, TX, USA
| |
Collapse
|
10
|
Spira A, Hansen AR, Harb WA, Curtis KK, Koga-Yamakawa E, Origuchi M, Li Z, Ertik B, Shaib WL. Multicenter, Open-Label, Phase I Study of DSP-7888 Dosing Emulsion in Patients with Advanced Malignancies. Target Oncol 2021; 16:461-469. [PMID: 33939067 PMCID: PMC8266707 DOI: 10.1007/s11523-021-00813-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Wilms' tumor 1 (WT1) is overexpressed in various malignancies. DSP-7888 Dosing Emulsion, also known as ombipepimut-S (United States Adopted Name; International Nonproprietary Name: adegramotide/nelatimotide), is an investigational therapeutic cancer vaccine comprising two synthetic peptides derived from WT1 to promote both cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte-mediated immune responses against WT1-expressing tumors. OBJECTIVE The aim of this study was to report the results from a phase I dose-escalation study (NCT02498665) that evaluated DSP-7888, administered either intradermally (ID) or subcutaneously (SC), in patients with recurrent or advanced malignancies associated with overexpression of WT1. PATIENTS AND METHODS In this phase I dose-escalation study, patients with recurrent or advanced malignancies associated with overexpression of WT1 who progressed on, were intolerant to, or not a candidate for standard therapy or who presented with a malignancy that had no definite standard therapy received escalating doses of ID or SC DSP-7888 in a rolling-six study design. DSP-7888 3.5, 10.5, or 17.5 (ID only) mg was administered until disease progression or other discontinuation event. Primary objectives were safety, tolerability, and identification of the recommended phase II dose (RP2D). Overall survival (OS) and WT1-specific CTL induction were included as secondary and exploratory objectives, respectively. RESULTS Twenty-four patients received either ID (3.5 mg, n = 4; 10.5 mg, n = 3; 17.5 mg, n = 3) or SC DSP-7888 (3.5 mg, n = 9; 10.5 mg, n = 5). No dose-limiting toxicity was observed. The most frequent treatment-emergent adverse event was injection site reactions (ID, 100% [10/10]; SC, 35.7% [5/14]); all were grade 1 or 2. Four patients (ID 17.5 mg, n = 1; SC 3.5 mg, n = 1; SC 10.5 mg, n = 2) had stable disease, 16 had progressive disease, and four were not evaluable. Median (95% confidence interval) OS duration was 180.0 (136.0-494.0) days. Among evaluable patients, WT1-specific CTL induction was observed in 66.7% (6/9) and 41.7% (5/12) of those administered ID and SC DSP-7888, respectively. CONCLUSIONS DSP-7888 Dosing Emulsion was well tolerated, with no dose-limiting toxicities, in patients with recurrent or advanced malignancies. Higher WT1-specific CTL induction activity was noted with ID compared with SC administration; because of this, the ID route was selected for further evaluation in the clinical program. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02498665.
Collapse
Affiliation(s)
- Alexander Spira
- Virginia Cancer Specialists, 8503 Arlington Blvd., Suite 400, Fairfax, VA, 22031, USA.
- The US Oncology Network, The Woodlands, TX, USA.
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Wael A Harb
- Horizon Oncology Research, LLC, Lafayette, IN, USA
| | - Kelly K Curtis
- Medical Management and Scientific Services, Syneos Health, Phoenix, AZ, USA
| | | | - Makoto Origuchi
- Clinical Development, Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA, USA
| | - Zhonggai Li
- Biostatistics, Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA, USA
| | - Bella Ertik
- Pharmcovigilance, Former Employee of Boston Biomedical, Inc. (Now Sumitomo Dainippon Pharma Oncology, Inc.), Cambridge, MA, USA
| | - Walid L Shaib
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Almshayakhchi R, Nagarajan D, Vadakekolathu J, Guinn BA, Reeder S, Brentville V, Metheringham R, Pockley AG, Durrant L, McArdle S. A Novel HAGE/WT1-ImmunoBody ® Vaccine Combination Enhances Anti-Tumour Responses When Compared to Either Vaccine Alone. Front Oncol 2021; 11:636977. [PMID: 34262856 PMCID: PMC8273701 DOI: 10.3389/fonc.2021.636977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/14/2021] [Indexed: 02/02/2023] Open
Abstract
Many cancers, including myeloid leukaemia express the cancer testis antigen (CTA) DDX43 (HAGE) and/or the oncogene Wilms’ tumour (WT1). Here we demonstrate that HAGE/WT1-ImmunoBody® vaccines derived T-cells can kill ex-vivo human CML cell lines expressing these antigens and significantly delay B16/HHDII+/DR1+/HAGE+/WT1+ tumour growth in the HHDII/DR1 mice and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. We show that immunisation of HHDII/DR1 mice with HAGE- and WT1-ImmunoBody® DNA vaccines in a prime-boost regime in two different flanks induce significant IFN-γ release by splenocytes from treated mice, and a significant level of cytotoxicity against tumour targets expressing HAGE/WT1 in vitro. More importantly, the combined HAGE/WT1 ImmunoBody® vaccine significantly delayed tumour growth in the B16/HHDII+/DR1+/HAGE+/WT1+ tumour model and prolonged mouse survival in the prophylactic setting in comparison to non-immunised control mice. Overall, this work demonstrates that combining both HAGE- and WT1-ImmunoBody® into a single vaccine is better than either vaccine alone. This combination vaccine could be given to patients whose cancer expresses HAGE and WT1 in parallel with existing therapies in order to decrease the chance of disease progression and relapse.
Collapse
Affiliation(s)
- Rukaia Almshayakhchi
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Divya Nagarajan
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Barbara-Ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Stephen Reeder
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Victoria Brentville
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael Metheringham
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Ltd, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
12
|
Jain AG, Talati C, Pinilla-Ibarz J. Galinpepimut-S (GPS): an investigational agent for the treatment of acute myeloid leukemia. Expert Opin Investig Drugs 2021; 30:595-601. [PMID: 34053383 DOI: 10.1080/13543784.2021.1928635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Acute myeloid leukemia (AML) is a disorder wherein clonal expansion of undifferentiated myeloid precursors results in compromised hematopoiesis and bone marrow failure. Even though numerous AML patients respond to induction chemotherapy, relapse is common and hence new therapeutic approaches are needed. Wild-type Wilms tumor gene (WT1) is greatly expressed in numerous blood disorders and so this has led to development of galinpepimut-S, a WT1 vaccine as a modality to maintain remission in patients with AML.Areas covered: We summarize and examine the structure, key features, safety, and efficacy data of galinpepimut-S (GPS) for AML. GPS has been shown to be safe and tolerable in phase 1 and phase 2 studies and is now being evaluated in a phase 3 study.Expert opinion: Given the unmet need in the treatment of relapsed and refractory AML, especially among the elderly and patients with comorbidities who are not fit enough to undergo traditional salvage treatments, GPS could potentially fill the gap for this subset of patients. Future clinical trials utilizing GPS in second complete remission 2 (CR2) compared to best available therapy in AML and in combination with other immunotherapeutic agents (like pembrolizumab) for treatment for various malignancies are underway.
Collapse
Affiliation(s)
| | - Chetasi Talati
- Malignant Hematology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
13
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
14
|
Kurosawa N, Midorikawa A, Ida K, Fudaba YW, Isobe M. Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity. Cancer Sci 2020; 111:3516-3526. [PMID: 32770595 PMCID: PMC7540971 DOI: 10.1111/cas.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Wilms tumor 1 (WT1) is an intracellular tumor‐associated antigen that remains inaccessible to antibodies. Recently, T‐cell receptor (TCR) mimic antibodies (TCRm‐Abs), which recognize peptides loaded on human leukocyte antigen (HLA) with higher specificity and affinity than TCR, have been developed as a new antibody class that can target intracellular antigens. To expand the therapeutic targets in tumors with WT1, we developed TCRm‐Abs targeting a novel HLA‐A*02:01‐restricted peptide, WT1C (ALLPAVPSL), and validated their specificity using multiple techniques. Screening of these antibodies by ELISA with a panel of peptide/HLA complexes and by glycine scanning of peptide‐pulsed T2 cells identified one specific clone, #25‐8. Despite the low risk for eliciting broad cross–reactivity of this TCRm‐Ab, analysis of a panel of cell lines, in conjunction with exogenous expression of either or both the HLA‐A*02:01 and WT1 genes in HeLa cells, revealed that #25‐8 reacts with WT1C but also with unknown peptides in the context of HLA‐A*02:01. This potentially dangerous cross–reactivity was confirmed through analysis using chimeric antigen receptor T‐cells carrying the single‐chain variable fragment of #25‐8, which targets WT1‐negative HeLa/A02 cells. To determine the cross–reactive profiles of #25‐8, we applied the PresentER antigen presentation platform with the #25‐8‐recognition motif, which enables the identification of potential off–target peptides expressed in the human proteome. Our results demonstrate the potential of TCRm‐Abs to target a variety of peptides in the context of HLA but also depict the need for systematic validation to identify the cross–reactive peptides for the prediction of off–target toxicity in future clinical translation.
Collapse
Affiliation(s)
- Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Aki Midorikawa
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Kenta Ida
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Yuka Wakata Fudaba
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Xu Y, Salazar GT, Zhang N, An Z. T-cell receptor mimic (TCRm) antibody therapeutics against intracellular proteins. Antib Ther 2019; 2:22-32. [PMID: 33928218 PMCID: PMC7990144 DOI: 10.1093/abt/tbz001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
T-cell receptor mimic (TCRm) antibodies combine the capacity of a T cell to target intracellular antigens with other capacities unique to antibodies. Neoantigens are abnormal proteins that arise as a consequence of somatic mutations. Technological advances promote the development of neoantigen-targeting therapies including TCRm antibody therapies. This review summarizes key characteristics of TCRm antibodies, in particular those targeting neoantigens, and further introduces discussion of obstacles that must be overcome to advance TCRm therapeutics.
Collapse
Affiliation(s)
- Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Xiang SD, Wilson KL, Goubier A, Heyerick A, Plebanski M. Design of Peptide-Based Nanovaccines Targeting Leading Antigens From Gynecological Cancers to Induce HLA-A2.1 Restricted CD8 + T Cell Responses. Front Immunol 2018; 9:2968. [PMID: 30631324 PMCID: PMC6315164 DOI: 10.3389/fimmu.2018.02968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/03/2018] [Indexed: 01/02/2023] Open
Abstract
Gynecological cancers are a leading cause of mortality in women. CD8+ T cell immunity largely correlates with enhanced survival, whereas inflammation is associated with poor prognosis. Previous studies have shown polystyrene nanoparticles (PSNPs) are biocompatible, do not induce inflammation and when used as vaccine carriers for model peptides induce CD8+ T cell responses. Herein we test the immunogenicity of 24 different peptides, from three leading vaccine target proteins in gynecological cancers: the E7 protein of human papilloma virus (HPV); Wilms Tumor antigen 1 (WT1) and survivin (SV), in PSNP conjugate vaccines. Of relevance to vaccine development was the finding that a minimal CD8+ T cell peptide epitope from HPV was not able to induce HLA-A2.1 specific CD8+ T cell responses in transgenic humanized mice using conventional adjuvants such as CpG, but was nevertheless able to generate strong immunity when delivered as part of a specific longer peptide conjugated to PSNPs vaccines. Conversely, in most cases, when the minimal CD8+ T cell epitopes were able to induce immune responses (with WT1 or SV super agonists) in CpG, they also induced responses when conjugated to PSNPs. In this case, extending the sequence around the CD8+ T cell epitope, using the natural protein context, or engineering linker sequences proposed to enhance antigen processing, had minimal effects in enhancing or changing the cross-reactivity pattern induced by the super agonists. Nanoparticle approaches, such as PSNPs, therefore may offer an alternative vaccination strategy when conventional adjuvants are unable to elicit the desired CD8+ T cell specificity. The findings herein also offer sequence specific insights into peptide vaccine design for nanoparticle-based vaccine carriers.
Collapse
Affiliation(s)
- Sue D Xiang
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia.,Ovarian Cancer Biomarker Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kirsty L Wilson
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anne Goubier
- PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia
| | - Arne Heyerick
- PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,PX Biosolutions Pty Ltd., South Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
18
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
19
|
Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, Rosenblat T, Jurcic JG, Brentjens RJ, Arcila ME, Rampal R, Park JH, Douer D, Katz L, Sarlis N, Tallman MS, Scheinberg DA. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2018; 2:224-234. [PMID: 29386195 PMCID: PMC5812332 DOI: 10.1182/bloodadvances.2017014175] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
A National Cancer Institute consensus study on prioritization of cancer antigens ranked the Wilms tumor 1 (WT1) protein as the top immunotherapy target in cancer. We previously reported a pilot study of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia (AML) patients. We have now conducted a phase 2 study investigating this vaccine in adults with AML in first complete remission (CR1). Patients received 6 vaccinations administered over 10 weeks with the potential to receive 6 additional monthly doses if they remained in CR1. Immune responses (IRs) were evaluated after the 6th and 12th vaccinations by CD4+ T-cell proliferation, CD8+ T-cell interferon-γ secretion (enzyme-linked immunospot), or the CD8-relevant WT1 peptide major histocompatibility complex tetramer assay (HLA-A*02 patients only). Twenty-two patients (7 males; median age, 64 years) were treated. Fourteen patients (64%) completed ≥6 vaccinations, and 9 (41%) received all 12 vaccine doses. Fifteen patients (68%) relapsed, and 10 (46%) died. The vaccine was well tolerated, with the most common toxicities being grade 1/2 injection site reactions (46%), fatigue (32%), and skin induration (32%). Median disease-free survival from CR1 was 16.9 months, whereas the overall survival from diagnosis has not yet been reached but is estimated to be ≥67.6 months. Nine of 14 tested patients (64%) had an IR in ≥1 assay (CD4 or CD8). These results indicated that the WT1 vaccine was well tolerated, stimulated a specific IR, and was associated with survival in excess of 5 years in this cohort of patients. This trial was registered at www.clinicaltrials.gov as #NCT01266083.
Collapse
Affiliation(s)
- Peter G Maslak
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Yvette Bernal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Suzanne M Chanel
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rong Zhang
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Frattini
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Todd Rosenblat
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph G Jurcic
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Maria E Arcila
- Weill Cornell Medical College, New York, NY
- Molecular Diagnostic Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Raajit Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jae H Park
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Dan Douer
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - David A Scheinberg
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
20
|
Acheampong DO, Adokoh CK, Asante DB, Asiamah EA, Barnie PA, Bonsu DOM, Kyei F. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy. Biomed Pharmacother 2017; 97:225-232. [PMID: 29091870 DOI: 10.1016/j.biopha.2017.10.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 12/20/2022] Open
Abstract
The standard therapy of AML for many years has been chemotherapy with or without stem transplantation. However, there has not been any tangible improvement in this treatment beyond induction through chemotherapy and consolidation with allogeneic stem cell transplantation or chemotherapy. Residual AML cells which later cause relapse mostly persist even after rigorous standard therapy. It is imperative therefore to find an alternative therapy that can take care of the residual AML cells. With a better understanding of how the immune system works to destroy tumor cells and inhibit their growth, another therapeutic option immunotherapy has emerged to address the difficulties associated with the standard therapy. Identification of leukemia-associated antigens (LAA) and the fact that T and NK cells can be activated to exert cytotoxicity on AML cells have further introduced diverse immunotherapeutic development strategies. This review discusses the merits of current immunotherapeutic strategies such as the use of antibodies, adoptive T cells and alloreactive NK cell, and vaccination as against the standard therapy of AML.
Collapse
Affiliation(s)
| | - Christian K Adokoh
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Du-Bois Asante
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest A Asiamah
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince A Barnie
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dan O M Bonsu
- Department of Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Foster Kyei
- Department of Molecular Biology and Biotechnology, University of Cape Coast, Ghana
| |
Collapse
|
21
|
|
22
|
Sobhani N, Corona SP, Bonazza D, Ianza A, Pivetta T, Roviello G, Cortale M, Guglielmi A, Zanconati F, Generali D. Advances in systemic therapy for malignant mesothelioma: future perspectives. Future Oncol 2017; 13:2083-2101. [PMID: 28984470 DOI: 10.2217/fon-2017-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Malignant mesothelioma is a rare and aggressive form of cancer affecting the mesothelium. This mainly occupational disease is becoming more common in those countries where asbestos has been used for industrial applications. Notwithstanding the progress made in the field, patients do not survive more than 12 months on average with standard treatment. With the advent of next generation sequencing, it is now possible to study the mutational landscape of each tumor with the aim of identifying the genetic aberrations driving tumorigenesis. This review encompasses the latest research in the field, with particular attention to new chemotherapy combinatorial regimens, molecular targets and immunotherapies, providing a comprehensive picture of the current and future treatment options for malignant mesothelioma patients.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale 1 34129 Trieste, Italy.,Department of Medical, Surgical, & Health Sciences, Teaching Hospital of Cattinara, University of Trieste, Via Fiume 447, 34129 Trieste, Italy
| | - Silvia Paola Corona
- Department of Radiation Oncology, Peter MacCallum Cancer Center, Moorabbin Campus, 823-865 Centre Rd, Bentleigh East VIC 3165, Australia
| | - Deborah Bonazza
- Department of Medical, Surgical, & Health Sciences, Teaching Hospital of Cattinara, University of Trieste, Via Fiume 447, 34129 Trieste, Italy
| | - Anna Ianza
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale 1 34129 Trieste, Italy
| | - Tania Pivetta
- Department of Medical, Surgical, & Health Sciences, Teaching Hospital of Cattinara, University of Trieste, Via Fiume 447, 34129 Trieste, Italy
| | | | - Maurizio Cortale
- Department of Medical, Surgical, & Health Sciences, Teaching Hospital of Cattinara, University of Trieste, Via Fiume 447, 34129 Trieste, Italy
| | - Alessandra Guglielmi
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale 1 34129 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical, & Health Sciences, Teaching Hospital of Cattinara, University of Trieste, Via Fiume 447, 34129 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical, & Health Sciences, University of Trieste, Piazza Ospitale 1 34129 Trieste, Italy.,Breast Cancer Unit, ASST Cremona, Viale Concordia 1, 26100, Cremona, Italy
| |
Collapse
|
23
|
Zauderer MG, Tsao AS, Dao T, Panageas K, Lai WV, Rimner A, Rusch VW, Adusumilli PS, Ginsberg MS, Gomez D, Rice D, Mehran R, Scheinberg DA, Krug LM. A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After Multimodality Therapy for Patients with Malignant Pleural Mesothelioma. Clin Cancer Res 2017; 23:7483-7489. [PMID: 28972039 DOI: 10.1158/1078-0432.ccr-17-2169] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/09/2017] [Accepted: 09/22/2017] [Indexed: 12/29/2022]
Abstract
Purpose: Determine the 1-year progression-free survival (PFS) rate among patients with malignant pleural mesothelioma (MPM) receiving the WT1 peptide vaccine galinpepimut-S after multimodality therapy versus those receiving control adjuvants.Experimental Design: This double-blind, controlled, two center phase II trial randomized MPM patients after surgery and another treatment modality to galinpepimut-S with GM-CSF and Montanide or GM-CSF and Montanide alone. An improvement in 1-year PFS from 50% to 70% was the predefined efficacy threshold, and 78 patients total were planned. The study was not powered for comparison between the two arms.Results: Forty-one patients were randomized. Treatment-related adverse events were mild, self-limited, and not clinically significant. On the basis of a stringent prespecified futility analysis (futility = ≥10 of 20 patients on one arm experiencing progression < 1 year), the control arm closed early. The treatment arm was subsequently closed because of the resultant unblinding. The PFS rate at 1 year from beginning study treatment was 33% and 45% in the control and vaccine arms, respectively. Median PFS was 7.4 months versus 10.1 months and median OS was 18.3 months versus 22.8 months in the control and vaccine arms, respectively.Conclusions: The favorable safety profile was confirmed. PFS and OS were greater in those who received vaccine, but the trial was neither designed nor powered for comparison between the arms. On the basis of these promising results, the investigators are planning a larger randomized trial with greater statistical power to define the optimal use and benefit of galinpepimut-S in the treatment of MPM. Clin Cancer Res; 23(24); 7483-9. ©2017 AACR.
Collapse
Affiliation(s)
- Marjorie G Zauderer
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Anne S Tsao
- Division of Cancer Medicine, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - W Victoria Lai
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle S Ginsberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.,Deparment of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lee M Krug
- Division of Solid Tumor Oncology, Department of Medicine, Thoracic Oncology Service Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
24
|
Understanding CD8 + T-cell responses toward the native and alternate HLA-A*02:01-restricted WT1 epitope. Clin Transl Immunology 2017; 6:e134. [PMID: 28435676 PMCID: PMC5382434 DOI: 10.1038/cti.2017.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 01/09/2023] Open
Abstract
The Wilms' tumor 1 (WT1) antigen is expressed in solid and hematological malignancies, but not healthy tissues, making it a promising target for cancer immunotherapies. Immunodominant WT1 epitopes, the native HLA-A2/WT1126-134 (RMFPNAPYL) (HLA-A2/RMFPNAPYL epitope (WT1A)) and its modified variant YMFPNAPYL (HLA-A2/YMFPNAPYL epitope (WT1B)), can induce WT1-specific CD8+ T cells, although WT1B is more stably bound to HLA-A*02:01. Here, to further determine the benefits of those two targets, we assessed the naive precursor frequencies; immunogenicity and cross-reactivity of CD8+ T cells directed toward these two WT1 epitopes. Ex vivo naive WT1A- and WT1B-specific CD8+ T cells were detected in healthy HLA-A*02:01+ individuals with comparable precursor frequencies (1 in 105–106) to other naive CD8+ T-cell pools (for example, A2/HIV-Gag77-85), but as expected, ~100 × lower than those found in memory populations (influenza, A2/M158-66; EBV, A2/BMLF1280-288). Importantly, only WT1A-specific naive precursors were detected in HLA-A2.1 mice. To further assess the immunogenicity and recruitment of CD8+ T cells responding to WT1A and WT1B, we immunized HLA-A2.1 mice with either peptide. WT1A immunization elicited numerically higher CD8+ T-cell responses to the native tumor epitope following re-stimulation, although both regimens produced functionally similar responses toward WT1A via cytokine analysis and CD107a expression. Interestingly, however, WT1B immunization generated cross-reactive CD8+ T-cell responses to WT1A and could be further expanded by WT1A peptide revealing two distinct populations of single- and cross-reactive WT1A+CD8+ T cells with unique T-cell receptor-αβ gene signatures. Therefore, although both epitopes are immunogenic, the clinical benefits of WT1B vaccination remains debatable and perhaps both peptides may have separate clinical benefits as treatment targets.
Collapse
|
25
|
Dao T, Korontsvit T, Zakhaleva V, Jarvis C, Mondello P, Oh C, Scheinberg DA. An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A*02:01 and HLA-A*24:02 molecules. Oncoimmunology 2016; 6:e1252895. [PMID: 28344864 DOI: 10.1080/2162402x.2016.1252895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Wilms' tumor oncogene protein (WT1) is a highly validated tumor antigen for immunotherapy. WT1-targeted immunotherapy has been extensively explored in multiple human trials in various cancers. However, clinical investigations using WT1 epitopes have generally focused on two peptides, HLA-restricted to HLA-A*02:01 or HLA-A*24:02. The goal of this study was to identify new epitopes derived from WT1, to expand the potential use of WT1 as a target of immunotherapy. Using computer-based MHC-binding algorithms and in vitro validation of the T cell responses specific for the identified peptides, we found that a recently identified HLA-A*24:02-binding epitope (239-247), NQMNLGATL (NQM), was also a strong CD8+ T cell epitope for HLA-A*02:01 molecule. A peptide second position Q240L substitution (NLM) or Q240Y substitution (NYM), further enhanced the T cell responses in both HLA-A*02:01 positive and HLA-A*24:02 positive healthy donors. Importantly, T cells stimulated with the new analog peptides displayed heteroclitic cross-reactivity with the native NQM sequence and were able to kill HLA-matched WT1-positive tumor cell lines and primary leukemia blasts. In addition, longer native and heteroclitic HLA-DR.B1-binding peptides, comprising the nine amino acid NQM or NLM sequences, could induce T cell response that recognized the CD8+ epitope NQM, suggesting the processing and the presentation by HLA-A*02:01 molecules of the CD8+ T cell epitope embedded within it. Our studies suggest that the analog peptides NLM and NYM could be potential candidates for future immunotherapy targeting WT1 positive cancers in the context of HLA-A*02:01 and A*24:02 positive populations.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Victoria Zakhaleva
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Casey Jarvis
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Claire Oh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Hofmann S, Mead A, Malinovskis A, Hardwick NR, Guinn BA. Analogue peptides for the immunotherapy of human acute myeloid leukemia. Cancer Immunol Immunother 2015; 64:1357-67. [PMID: 26438084 PMCID: PMC11029593 DOI: 10.1007/s00262-015-1762-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 09/27/2015] [Indexed: 12/14/2022]
Abstract
The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.
Collapse
Affiliation(s)
- Susanne Hofmann
- Third Clinic for Internal Medicine, University of Ulm, Ulm, Germany
| | - Andrew Mead
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Aleksandrs Malinovskis
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Nicola R Hardwick
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK
| | - Barbara-Ann Guinn
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK.
- Cancer Sciences Unit, Southampton University Hospitals Trust, University of Southampton, Southampton, UK.
| |
Collapse
|
27
|
Targeting cryptic epitope with modified antigen coupled to the surface of liposomes induces strong antitumor CD8 T-cell immune responses in vivo. Oncol Rep 2015; 34:2827-36. [PMID: 26398429 PMCID: PMC4722887 DOI: 10.3892/or.2015.4299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023] Open
Abstract
Active cancer immunotherapy, such as cancer vaccine, is based on the fundamental knowledge that tumor-associated antigens (TAAs) are presented on MHC molecules for recognition by specific T cells. However, most TAAs are self-antigens and are also expressed on normal tissues, including the thymus. This fact raises the issue of the tolerance of the TAA-specific T-cell repertoire and consequently the inability to trigger a strong and efficient antitumor immune response. In the present study, we used antigens chemically coupled to the surface of liposomes to target telomerase reverse transcriptase (TERT), a widely expressed self/tumor antigen. Taking advantage of the high homology between mouse and human TERT, we investigated immunogenicity and antitumor efficiency of the liposomal TERT peptides in HLA-A*0201 transgenic HHD mice. Using the heteroclitical peptide-modifying approach with antigen-coupled liposomes, we identified a novel cryptic epitope with low affinity for HLA*0201 molecules derived from TERT. The heteroclitical variant derived from this novel low affinity peptide exhibited strong affinity for HLA*0201 molecules. However, it induced only weak CD8 T-cell immune responses in HHD mice when emulsified in IFA. By contrast, when coupled to the surface of the liposomes, it induced powerful CD8 T-cell immune responses which cross-reacted against the original cryptic epitope. The induced CD8 T cells also recognized endogenously TERT-expressing tumor cells and inhibited their growth in HHD mice. These data suggest that heteroclitical antigen derived from low affinity epitope of tumor antigens coupled to the surface of liposome may have a role as an effective cancer vaccine candidate.
Collapse
|
28
|
Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides. Am J Hematol 2015; 90:602-7. [PMID: 25802083 DOI: 10.1002/ajh.24014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/31/2023]
Abstract
Peptide vaccines are capable of eliciting immune responses targeting tumor-associated antigens such as the Wilms' Tumor 1 (WT1) antigen, often overexpressed in myeloid malignancies. Here, we assessed the safety, tolerability, and immunogenicity of a polyvalent WT1 peptide vaccine. Individuals with WT1-positive acute myeloid leukemia (AML) in first (CR1) or second (CR2) remission or with higher-risk myelodysplastic syndrome (MDS) following at least 1 prior line of therapy were vaccinated with a mixture of peptides derived from the WT1 protein, with sargramostim injections before vaccination to amplify immunogenicity. Six vaccinations were delivered biweekly, continuing then monthly until patients received 12 vaccinations or showed disease relapse or progression. Therapeutic efficacy was evaluated by progression-free and overall survival. Immune responses were evaluated by delayed-type hypersensitivity testing and T-cell IFNγ ELISPOT at specified intervals. In 16 patients who received at least one vaccination, 10 completed the planned course of six vaccinations and six continued for up to six additional monthly vaccinations. Vaccinations were well tolerated, with no patients discontinuing due to toxicity. One of two patients with high-risk MDS experienced a prolonged decrease in transfusion dependence. Two of 14 AML patients demonstrated relapse-free survival >1 year. Both patients were in CR2 at time of vaccination, with duration of their remission exceeding duration of their first remission, suggesting a potential benefit. Our WT1 vaccine was well-tolerated. The clinical benefit that we observed in several patients suggests engagement of a protective immune response, indicating a need for further trials.
Collapse
Affiliation(s)
- Jason Brayer
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| | - Jeffrey E. Lancet
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - John Powers
- Department of Immunology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| | - Alan List
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Lodovico Balducci
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Rami Komrokji
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
- Department of Immunology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| |
Collapse
|
29
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
30
|
Li Y, Zhou W, Du J, Jiang C, Xie X, Xue T, He Y. Generation of cytotoxic T lymphocytes specific for native or modified peptides derived from the epidermal growth factor receptor pathway substrate 8 antigen. Cancer Immunol Immunother 2015; 64:259-69. [PMID: 25376540 PMCID: PMC11028780 DOI: 10.1007/s00262-014-1631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
The ideal tumor antigen for the development of a cancer immunotherapy is one that is expressed only in tumor cells. The epidermal growth factor receptor pathway substrate 8 gene (Eps8) might be an effective antigen for cancer immunotherapy as it is overexpressed in a variety of cancer cells but not in normal tissues. In this study, the potential utility of an Eps8-derived immunotherapy was tested in vitro and in vivo. Three computer-based algorithms were used to design eight Eps8 native epitopes with potentially high binding affinity to the HLA-A2.1 molecule, which is found at a high frequency in the Chinese population. Of these eight, three peptides with a moderate affinity to the HLA-A2.1 molecule were modified at anchor residue positions to achieve stronger immunogenicity. These four modified peptides displayed stronger binding affinity to HLA-A2.1 molecules on T2 cells and a lower dissociation rate. In functional assays with human PBMCs in vitro and in HLA-A2.1/K(b) transgenic mice in vivo, CTLs primed by each native and modified peptide secreted IFN-γ and were toxic to cancer cells from a variety of tissue types in an HLA-A2.1-restricted and Eps8-specific manner. p101-109-2L and p276-284-1Y9V were superior to other modified and native epitopes both in vitro and in vivo. These results indicate that employing the native and modified epitopes identified here in Eps8-based immunotherapy for HLA-A2.1 positive cancer patients may result in efficient anticancer immune responses for diverse tumor types.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/immunology
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Mice
- Mice, Transgenic
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Stability
- T-Cell Antigen Receptor Specificity/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Chunjun Jiang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Tongyuan Xue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong People’s Republic of China
| |
Collapse
|
31
|
Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, Kohanbash G, Drappatz J, Engh J, Amankulor N, Lively MO, Chan MD, Salazar AM, Shaw EG, Potter DM, Lieberman FS. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 2014; 21:286-94. [PMID: 25424847 DOI: 10.1158/1078-0432.ccr-14-1790] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE WHO grade 2 low-grade gliomas (LGG) with high risk factors for recurrence are mostly lethal despite current treatments. We conducted a phase I study to evaluate the safety and immunogenicity of subcutaneous vaccinations with synthetic peptides for glioma-associated antigen (GAA) epitopes in HLA-A2(+) adults with high-risk LGGs in the following three cohorts: (i) patients without prior progression, chemotherapy, or radiotherapy (RT); (ii) patients without prior progression or chemotherapy but with prior RT; and (iii) recurrent patients. EXPERIMENTAL DESIGN GAAs were IL13Rα2, EphA2, WT1, and Survivin. Synthetic peptides were emulsified in Montanide-ISA-51 and given every 3 weeks for eight courses with intramuscular injections of poly-ICLC, followed by q12 week booster vaccines. RESULTS Cohorts 1, 2, and 3 enrolled 12, 1, and 10 patients, respectively. No regimen-limiting toxicity was encountered except for one case with grade 3 fever, fatigue, and mood disturbance (cohort 1). ELISPOT assays demonstrated robust IFNγ responses against at least three of the four GAA epitopes in 10 and 4 cases of cohorts 1 and 3, respectively. Cohort 1 patients demonstrated significantly higher IFNγ responses than cohort 3 patients. Median progression-free survival (PFS) periods since the first vaccine are 17 months in cohort 1 (range, 10-47+) and 12 months in cohort 3 (range, 3-41+). The only patient with large astrocytoma in cohort 2 has been progression-free for more than 67 months since diagnosis. CONCLUSION The current regimen is well tolerated and induces robust GAA-specific responses in WHO grade 2 glioma patients. These results warrant further evaluations of this approach. Clin Cancer Res; 21(2); 286-94. ©2014 AACR.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Surgical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Lisa H Butterfield
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ronald L Hamilton
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Masashi Sakaki
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian J Ahn
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gary Kohanbash
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jan Drappatz
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johnathan Engh
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nduka Amankulor
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mark O Lively
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Chan
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Edward G Shaw
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Douglas M Potter
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frank S Lieberman
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14:1427-42. [DOI: 10.1517/14712598.2014.927433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Aurisicchio L, Fridman A, Bagchi A, Scarselli E, La Monica N, Ciliberto G. A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology 2014; 3:e27529. [PMID: 24790791 PMCID: PMC4002591 DOI: 10.4161/onci.27529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/14/2022] Open
Abstract
Genetic vaccines are emerging as a powerful modality to induce T-cell responses to target tumor associated antigens (TAA). Viral or plasmid DNA or RNA vectors harbor an expression cassette encoding the antigen of choice delivered in vivo by vaccination. In this context, immunizations with minigenes containing selected, highly antigenic, T-cell epitopes of TAAs may have several advantages relative to full-length proteins. The objective of this study was to identify an optimal scaffold for minigene construction. We generated a number of minigenes containing epitopes from the carcinoembryonic antigen (CEA) model TAA and utilized muscle DNA electro-gene-transfer (DNA-EGT) to vaccinate HLA-A*0201 (HHD) and CEA/HHD double transgenic mice. The components utilized to construct the minigenes included CD8+ T cell epitopes and (or) anchor modified analogs that were selected on the basis of their predicted binding to HLA-*A0201, their uniqueness in the human proteome, and the likelihood of cancer cell natural processing and presentation via MHC-I. Other candidate components comparatively tested included: helper CD4+ T-cell epitopes, flanking regions for optimal epitope processing (including both proteasome-dependent and furin-dependent polypeptide processing mechanisms), and immunoenhancing moieties. Through a series of comparative studies and iterations we have identified an optimal minigene scaffold comprising the following elements: human tissue plasminogen activator (TPA) signal peptide, T-cell epitopes connected by furin sensitive linkers, and the E. Coli enterotoxin B subunit. The selected epitope modified minigenes (EMM) delivered by DNA-EGT were able to break immune tolerance in CEA/HHD mice and induce a strong immune response against all epitopes tested, independently of their relative positions within the scaffold. Furthermore, the optimized EMMs delivered via DNA-EGT were more immunogenic and exerted more powerful antitumor effects in a B16-CEA/HHD metastatic melanoma model than a DNA vector encoding the full-length protein or a mixture of the same peptides injected subcutaneously. Our data may shed light on the optimal design of a universal vehicle for epitope-targeted, genetic cancer vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Gennaro Ciliberto
- IRCCS, Istituto Nazionale Tumori Fondazione G. Pascale; Napoli, Italy
| |
Collapse
|
34
|
Abstract
Treatment of acute myeloid leukemia (AML) with current chemotherapy regimens is still disappointing, with overall survival rates of ≤40% at 5 years. It is now well established that AML cells can evade the immune system through multiple mechanisms, including the expression of the enzyme indoleamine 2,3 dioxygenase. Immunotherapeutic strategies, including both active, such as vaccination with leukemia-associated antigens, and passive, such as adoptive transfer of allogeneic natural killer cells, may overcome leukemia escape and lead to improved cure. Allogeneic hemopoeitic stem cell transplantation, the most effective treatment of AML, is the best known model of immunotherapy. Following transplant, recipient AML cells are eradicated by donor immune cells through the graft-versus-leukemia (GVL) effect. However, GVL is clinically associated with graft-versus-host disease, the major cause of mortality after transplant. GVL is mediated by donor T cells recognizing either leukemia-associated antigens or minor as well as major histocompatibility antigens. Several innovative strategies have been devised to generate leukemia reactive T cells so as to increase GVL responses with no or little graft-versus-host disease.
Collapse
Affiliation(s)
- Mario Arpinati
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| | - Antonio Curti
- Department of Hematology & Oncological Sciences ‘Seragnoli’, University of Bologna, Italy
| |
Collapse
|
35
|
Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, Tan T, Liu H, Zakhaleva V, Curcio M, Doubrovina E, O'Reilly RJ, Liu C, Scheinberg DA. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5:176ra33. [PMID: 23486779 DOI: 10.1126/scitranslmed.3005661] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Wilms tumor 1 (WT1) oncoprotein is an intracellular, oncogenic transcription factor that is overexpressed in a wide range of leukemias and solid cancers. RMFPNAPYL (RMF), a WT1-derived CD8+ T cell human leukocyte antigen (HLA)-A0201 epitope, is a validated target for T cell-based immunotherapy. Using phage display technology, we discovered a fully human "T cell receptor-like" monoclonal antibody (mAb), ESK1, specific for the WT1 RMF peptide/HLA-A0201 complex. ESK1 bound to several leukemia and solid tumor cell lines and primary leukemia cells, in a WT1- and HLA-A0201-restricted manner, with high avidity [dissociation constant (Kd)=0.1 nM]. ESK1 mediated antibody-dependent human effector cell cytotoxicity in vitro. Low doses of naked ESK1 antibody cleared established, disseminated, human acute lymphocytic leukemia and Philadelphia chromosome-positive leukemia in nonobese diabetic/severe combined immunodeficient γc-/- (NSG) mouse models. At therapeutic doses, no toxicity was seen in HLA-A0201 transgenic mice. ESK1 is a potential therapeutic agent for a wide range of cancers overexpressing the WT1 oncoprotein. This finding also provides preclinical validation for the strategy of developing therapeutic mAbs targeting intracellular oncogenic proteins.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology and Chemistry Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol 2013; 4:244. [PMID: 23970885 PMCID: PMC3748443 DOI: 10.3389/fimmu.2013.00244] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional αβ T cell receptor (TCR) against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR) consisting of a single-chain antibody as an Fv fragment linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the αβ TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher-affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher-affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois , Urbana, IL , USA
| | | |
Collapse
|
37
|
Buhrman JD, Slansky JE. Improving T cell responses to modified peptides in tumor vaccines. Immunol Res 2013; 55:34-47. [PMID: 22936035 DOI: 10.1007/s12026-012-8348-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immune recognition and elimination of cancerous cells is the primary goal of cancer immunotherapy. However, obstacles including immune tolerance and tumor-induced immunosuppression often limit beneficial immune responses. Vaccination is one proposed intervention that may help to overcome these issues and is an active area of study in cancer immunotherapy. Immunizing with tumor antigenic peptides is a promising, straight-forward vaccine strategy hypothesized to boost preexisting antitumor immunity. However, tumor antigens are often weak T cell agonists, attributable to several mechanisms, including immune self-tolerance and poor immunogenicity of self-derived tumor peptides. One strategy for overcoming these mechanisms is vaccination with mimotopes, or peptide mimics of tumor antigens, which alter the antigen presentation and/or T cell activation to increase the expansion of tumor-specific T cells. Evaluation of mimotope vaccine strategies has revealed that even subtle alterations in peptide sequence can dramatically alter antigen presentation and T cell receptor recognition. Most of this research has been performed using T cell clones, which may not be accurate representations of the naturally occurring antitumor response. The relationship between clones generated after mimotope vaccination and the polyclonal T cell repertoire is unclear. Our work with mimotopes in a mouse model of colon carcinoma has revealed important insights into these issues. We propose that the identification of mimotopes based on stimulation of the naturally responding T cell repertoire will dramatically improve the efficacy of mimotope vaccination.
Collapse
Affiliation(s)
- Jonathan D Buhrman
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
38
|
Abstract
The Wilms tumor protein, WT-1, is a widely recognized tumor antigen that is aberrantly expressed in myeloid and lymphoid leukemia and in this issue of Blood, Doubrovina et al report the most extensive catalog heretofore of HLA-restricted immunogenic peptides derived from WT-1, which are recognized by CD8 and CD4T cells.
Collapse
|
39
|
Allerbring EB, Duru AD, Uchtenhagen H, Madhurantakam C, Tomek MB, Grimm S, Mazumdar PA, Friemann R, Uhlin M, Sandalova T, Nygren PÅ, Achour A. Unexpected T-cell recognition of an altered peptide ligand is driven by reversed thermodynamics. Eur J Immunol 2012; 42:2990-3000. [PMID: 22837158 DOI: 10.1002/eji.201242588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 11/07/2022]
Abstract
The molecular basis underlying T-cell recognition of MHC molecules presenting altered peptide ligands is still not well-established. A hierarchy of T-cell activation by MHC class I-restricted altered peptide ligands has been defined using the T-cell receptor P14 specific for H-2D(b) in complex with the immunodominant lymphocytic choriomeningitis virus peptide gp33 (KAVYNFATM). While substitution of tyrosine to phenylalanine (Y4F) or serine (Y4S) abolished recognition by P14, the TCR unexpectedly recognized H-2D(b) in complex with the alanine-substituted semiagonist Y4A, which displayed the most significant structural modification. The observed functional hierarchy gp33 > Y4A > Y4S = Y4F was neither due to higher stabilization capacity nor to differences in structural conformation. However, thermodynamic analysis demonstrated that while recognition of the full agonist H-2D(b) /gp33 was strictly enthalpy driven, recognition of the weak agonist H-2D(b) /Y4A was instead entropy driven with a large reduction in the favorable enthalpy term. The fourfold larger negative heat capacity derived for the interaction of P14 with H-2D(b) /gp33 compared with H-2D(b) /Y4A can possibly be explained by higher water entrapment at the TCR/MHC interface, which is also consistent with the measured opposite entropy contributions for the interactions of P14 with both MHCs. In conclusion, this study demonstrates that P14 makes use of different strategies to adapt to structural modifications in the MHC/peptide complex.
Collapse
Affiliation(s)
- Eva B Allerbring
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mapping of novel peptides of WT-1 and presenting HLA alleles that induce epitope-specific HLA-restricted T cells with cytotoxic activity against WT-1(+) leukemias. Blood 2012; 120:1633-46. [PMID: 22623625 DOI: 10.1182/blood-2011-11-394619] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wilms tumor protein (WT-1) is widely recognized as a tumor antigen that is expressed differentially by several malignancies. However, WT-1 peptides known to induce tumoricidal T cells are few. In the present study, we evaluated T-cell responses of 56 healthy donors to in vitro sensitization with autologous APCs loaded with a pool of overlapping 15-mer peptides spanning the sequence of WT-1. Thereafter, we mapped the WT-1 peptides eliciting responses in each individual, defined the immunogenic peptides, and identified their presenting HLA alleles. We report 41 previously unreported epitopes of WT-1: 5 presented by class II and 36 by class I alleles, including 10 that could be presented by more than 1 class I allele. IFNγ(+) T cells responding to 98% of the class I and 60% of the class II epitopes exhibited HLA-restricted cytotoxicity against peptide-loaded targets. T cells specific for 36 WT-1 peptides were evaluable for leukemocidal activity, of which 27 (75%) lysed WT-1(+) leukemic targets sharing their restricting HLA allele. Each epitope identified induced T-cell responses in most donors sharing the epitopes' presenting allele; these responses often exceeded responses to flanking peptides predicted to be more immunogenic. This series of immunogenic epitopes of WT-1 should prove useful for immunotherapies targeting WT-1(+) malignancies.
Collapse
|
41
|
Human Langerhans cells use an IL-15R-α/IL-15/pSTAT5-dependent mechanism to break T-cell tolerance against the self-differentiation tumor antigen WT1. Blood 2012; 119:5182-90. [PMID: 22510877 DOI: 10.1182/blood-2011-09-382200] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human CD34(+) progenitor-derived Langerhans-type dendritic cells (LCs) are more potent stimulators of T-cell immunity against tumor and viral antigens in vitro than are monocyte-derived DCs (moDCs). The exact mechanisms have remained elusive until now, however. LCs synthesize the highest amounts of IL-15R-α mRNA and protein, which binds IL-15 for presentation to responder lymphocytes, thereby signaling the phosphorylation of signal transducer and activator of transcription 5 (pSTAT5). LCs electroporated with Wilms tumor 1 (WT1) mRNA achieve sufficiently sustained presentation of antigenic peptides, which together with IL-15R-α/IL-15, break tolerance against WT1 by stimulating robust autologous, WT1-specific cytolytic T-lymphocytes (CTLs). These CTLs develop from healthy persons after only 7 days' stimulation without exogenous cytokines and lyse MHC-restricted tumor targets, which include primary WT1(+) leukemic blasts. In contrast, moDCs require exogenous rhuIL-15 to phosphorylate STAT5 and attain stimulatory capacity comparable to LCs. LCs therefore provide a more potent costimulatory cytokine milieu for T-cell activation than do moDCs, thus accounting for their superior stimulation of MHC-restricted Ag-specific CTLs without need for exogenous cytokines. These data support the use of mRNA-electroporated LCs, or moDCs supplemented with exogenous rhuIL-15, as vaccines for cancer immunotherapy to break tolerance against self-differentiation antigens shared by tumors.
Collapse
|
42
|
Krishnadas DK, Stamer MM, Dunham K, Bao L, Lucas KG. Wilms' tumor 1-specific cytotoxic T lymphocytes can be expanded from adult donors and cord blood. Leuk Res 2011; 35:1520-6. [PMID: 21774984 DOI: 10.1016/j.leukres.2011.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/12/2011] [Accepted: 06/28/2011] [Indexed: 01/01/2023]
Abstract
The use of WT1-specific CTL is one potential strategy to treat leukemic relapse following allogeneic stem cell transplant (SCT). Previous studies have largely focused on generating WT1-CTL from adult donors by cloning. We demonstrate that WT1-CTL can be generated from healthy adult donors and from cord blood by stimulating with an overlapping pool of peptides derived from full length WT1 and selecting antigen-specific cells based on the expression of CD137. The rapid expansion with anti-CD3 and IL-2 resulted in a 100-200-fold expansion. These CTL lysed WT1 expressing targets, including leukemia lines, in a HLA restricted manner.
Collapse
Affiliation(s)
- Deepa K Krishnadas
- Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
43
|
Kim KS, Pham TNN, Jin CJ, Umeyama A, Shoji N, Hashimoto T, Lee JJ, Takei M. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling. Biomark Insights 2011; 6:27-38. [PMID: 21499439 PMCID: PMC3076018 DOI: 10.4137/bmi.s6441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Kyu Sik Kim
- Department of Pulmonary Medicine, Chonnam National University Medical School, Gwangiu
| | - Thanh Nhan Nguyen Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, 160 IIsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-809, South Korea
| | - Chun-Ji Jin
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, 160 IIsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-809, South Korea
- Department of Surgery, Chonnam National University Medical School, Gwangju
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Noboru Shoji
- Faculty of Pharmaceutical Sciences, Tokushima University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Toshihiro Hashimoto
- Faculty of Pharmaceutical Sciences, Tokushima University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, 160 IIsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-809, South Korea
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangiu
| | - Masao Takei
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, 160 IIsim-ri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-809, South Korea
| |
Collapse
|
44
|
Krug LM, Dao T, Brown AB, Maslak P, Travis W, Bekele S, Korontsvit T, Zakhaleva V, Wolchok J, Yuan J, Li H, Tyson L, Scheinberg DA. WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol Immunother 2010; 59:1467-79. [PMID: 20532500 PMCID: PMC4004362 DOI: 10.1007/s00262-010-0871-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/19/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND The transcription factor, WT1, is highly overexpressed in malignant pleural mesothelioma (MPM) and immunohistochemical stains for WT1 are used routinely to aid in its diagnosis. Using computer prediction analysis we designed analog peptides derived from WT1 sequences by substituting amino acids at key HLA-A0201 binding positions. We tested the safety and immunogenicity of a WT1 vaccine comprised of four class I and class II peptides in patients with thoracic neoplasms expressing WT1. METHODS Therapy consisted of six subcutaneous vaccinations administered with Montanide adjuvant on weeks 0, 4, 6, 8, 10, and 12, with 6 additional monthly injections for responding patients. Injection sites were pre-stimulated with GM-CSF (70 mcg). Immune responses were evaluated by DTH, CD4 T-cell proliferation, CD8 T-cell interferon gamma release, intracellular cytokine staining, WT1 peptide MHC-tetramer staining, and cytotoxicity against WT1 positive tumor cells. RESULTS Nine patients with MPM and 3 with NSCLC were vaccinated, with 8 patients receiving at least 6 vaccinations; in total, 10 patients were evaluable for immune response. Six out of nine patients tested demonstrated CD4 T-cell proliferation to WT1 specific peptides, and five of the six HLA-A0201 patients tested mounted a CD8 T-cell response. Stimulated T cells were capable of cytotoxicity against WT-1 positive cells. Vaccination also induced polyfunctional CD8 T cell responses. CONCLUSIONS This multivalent WT1 peptide analog vaccine induces immune responses in a high proportion of patients with thoracic malignancies with minimal toxicity. A randomized trial testing this vaccine as adjuvant therapy in MPM is planned.
Collapse
Affiliation(s)
- Lee M Krug
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, 1275 York Ave, New York, NY, 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Borbulevych OY, Do P, Baker BM. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Mol Immunol 2010; 47:2519-24. [PMID: 20619457 DOI: 10.1016/j.molimm.2010.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/09/2010] [Accepted: 06/12/2010] [Indexed: 01/28/2023]
Abstract
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex.
Collapse
Affiliation(s)
- Oleg Y Borbulevych
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
| | | | | |
Collapse
|
46
|
Zhou FL, Meng S, Zhang WG, Wei YC, Cao XM, Bai GG, Wang BY. Peptide-based immunotherapy for multiple myeloma: current approaches. Vaccine 2010; 28:5939-46. [PMID: 20619381 DOI: 10.1016/j.vaccine.2010.06.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/12/2010] [Accepted: 06/28/2010] [Indexed: 12/24/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy with many fatal clinical sequelae. Despite extensive therapeutic approaches, cures remain rare exceptions. A recent promising area of investigation is the development of immunotherapeutic approaches that target and eliminate myeloma cells more selectively. Because of its potential to promote the destruction of cancerous cells via cytotoxic T-cell responses, peptide-based immunotherapy is one of these strategies to have attracted considerable attention. Furthermore, many studies were carried out to identify the best epitope peptides, the optimal vaccine formulation and schedule, and the preferable clinical situation for vaccination. Based on these results, various epitope peptides have been identified that may be selectively targeted by host immunity, and various approaches have been used to enhance the immune responses of peptides. This chapter focuses on reviewing previous immunotherapy trials, describing the current strategies for peptide-based immunotherapy, and discussing the achievable prospects in MM.
Collapse
Affiliation(s)
- Fu-Ling Zhou
- Department of Clinical Hematology, The Affiliated No. 2 Hospital, Xi'an Jiaotong University, The West Five Road, No. 157, Xi'an 710004, PR China.
| | | | | | | | | | | | | |
Collapse
|
47
|
O'Reilly RJ, Dao T, Koehne G, Scheinberg D, Doubrovina E. Adoptive transfer of unselected or leukemia-reactive T-cells in the treatment of relapse following allogeneic hematopoietic cell transplantation. Semin Immunol 2010; 22:162-72. [PMID: 20537908 DOI: 10.1016/j.smim.2010.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Adoptive transfer of in vivo generated antigen-specific donor-derived T-cells is increasingly recognized as an effective approach for the treatment or prevention of EBV lymphomas and cytomegalovirus infections complicating allogeneic hematopoietic cell transplants. This review examines evidence from preclinical experiments and initial clinical trials to critically assess both the potential and current limitations of adoptive transfer of donor T-cells sensitized to selected minor alloantigens of the host or to peptide epitopes of proteins, differentially expressed by clonogenic leukemia cells, such as the Wilms tumor protein, WT-1, as a strategy to treat or prevent recurrence of leukemia in the post-transplant period.
Collapse
Affiliation(s)
- Richard J O'Reilly
- The Transplantation and Leukemia Service of the Department of Medicine and the Immunology and Molecular Pharmacology Programs at Memorial Sloan Kettering Cancer Center, United States.
| | | | | | | | | |
Collapse
|
48
|
Sugiyama H. WT1 (Wilms' Tumor Gene 1): Biology and Cancer Immunotherapy. Jpn J Clin Oncol 2010; 40:377-87. [DOI: 10.1093/jjco/hyp194] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
49
|
Clarke JM, Morse MA, Lyerly HK, Clay T, Osada T. Adenovirus vaccine immunotherapy targeting WT1-expressing tumors. Expert Opin Biol Ther 2010; 10:875-83. [DOI: 10.1517/14712591003798278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Pinilla-Ibarz J, Shah B, Dubovsky JA. The biological basis for immunotherapy in patients with chronic myelogenous leukemia. Cancer Control 2009; 16:141-52. [PMID: 19337200 DOI: 10.1177/107327480901600206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) has long been recognized as an entity responsive to immunotherapeutic interventions. Despite the success of the tyrosine kinase inhibitors (TKIs) in this disease, CML remains incurable. Only allogeneic bone marrow transplantation can provide long-term eradication of CML. METHODS This review summarizes the recent advances in the field of immunology in CML, specifically in tumor antigen discovery, that have been incorporated into the design of new clinical trials. RESULTS Multiple vaccine approaches are currently under clinical investigation. Recent laboratory and clinical data also point to a unique interaction of TKIs with the immune system. CONCLUSIONS A better understanding of these interactions combined with advances in the field of immunotherapy will likely lead to incorporation of TKIs in future therapeutic interventions to develop a cure for this disease.
Collapse
Affiliation(s)
- Javier Pinilla-Ibarz
- Department of Malignant Hematology at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|