1
|
Jin F, Wang Z. Mapping the structure of biomarkers in autism spectrum disorder: a review of the most influential studies. Front Neurosci 2024; 18:1514678. [PMID: 39734494 PMCID: PMC11671500 DOI: 10.3389/fnins.2024.1514678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Autism spectrum disorder is a distinctive developmental condition which is caused by an interaction between genetic vulnerability and environmental factors. Biomarkers play a crucial role in understanding disease characteristics for diagnosis, prognosis, and treatment. This study employs bibliometric analysis to identify and review the 100 top-cited articles' characteristics, current research hotspots and future directions of autism biomarkers. METHODS A comprehensive search of autism biomarkers studies was retrieved from the Web of Science Core Collection database with a combined keyword search strategy. A comprehensive analysis of the top 100 articles was conducted with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, and keywords. RESULTS The top 100 cited studies were published between 1988 and 2021, with the United States led in productivity. Core biomarkers such as genetics, children, oxidative stress, and mitochondrial dysfunction are well-established. Potential trends for future research may include brain studies, metabolomics, and associations with other psychiatric disorders. CONCLUSION This pioneering bibliometric analysis provides a comprehensive compilation of the 100 most-cited studies on autism, which not only offers a valuable resource for doctors, and researchers but shedding insights into current shortcomings and future endeavors. Future research should prioritize the application of emerging technologies for biomarkers, longitudinal study of biomarkers, and specificity of autism biomarkers to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
2
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
3
|
Uusi-Oukari M, Korpi ER. GABAergic mechanisms in alcohol dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:75-123. [PMID: 38555121 DOI: 10.1016/bs.irn.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
5
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Babij R, Ferrer C, Donatelle A, Wacks S, Buch AM, Niemeyer JE, Ma H, Duan ZRS, Fetcho RN, Che A, Otsuka T, Schwartz TH, Huang BS, Liston C, De Marco García NV. Gabrb3 is required for the functional integration of pyramidal neuron subtypes in the somatosensory cortex. Neuron 2023; 111:256-274.e10. [PMID: 36446382 PMCID: PMC9852093 DOI: 10.1016/j.neuron.2022.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022]
Abstract
Dysfunction of gamma-aminobutyric acid (GABA)ergic circuits is strongly associated with neurodevelopmental disorders. However, it is unclear how genetic predispositions impact circuit assembly. Using in vivo two-photon and widefield calcium imaging in developing mice, we show that Gabrb3, a gene strongly associated with autism spectrum disorder (ASD) and Angelman syndrome (AS), is enriched in contralaterally projecting pyramidal neurons and is required for inhibitory function. We report that Gabrb3 ablation leads to a developmental decrease in GABAergic synapses, increased local network synchrony, and long-lasting enhancement in functional connectivity of contralateral-but not ipsilateral-pyramidal neuron subtypes. In addition, Gabrb3 deletion leads to increased cortical response to tactile stimulation at neonatal stages. Using human transcriptomics and neuroimaging datasets from ASD subjects, we show that the spatial distribution of GABRB3 expression correlates with atypical connectivity in these subjects. Our studies reveal a requirement for Gabrb3 during the emergence of interhemispheric circuits for sensory processing.
Collapse
Affiliation(s)
- Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Camilo Ferrer
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amanda M Buch
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - James E Niemeyer
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New-York Presbyterian Hospital, New York, NY 10021, USA
| | - Ben S Huang
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
7
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
9
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Wu K, Shepard RD, Castellano D, Han W, Tian Q, Dong L, Lu W. Shisa7 phosphorylation regulates GABAergic transmission and neurodevelopmental behaviors. Neuropsychopharmacology 2022; 47:2160-2170. [PMID: 35534528 PMCID: PMC9556544 DOI: 10.1038/s41386-022-01334-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
GABA-A receptors (GABAARs) are crucial for development and function of the brain. Altered GABAergic transmission is hypothesized to be involved in neurodevelopmental disorders. Recently, we identified Shisa7 as a GABAAR auxiliary subunit that modulates GABAAR trafficking and GABAergic transmission. However, the underlying molecular mechanisms remain elusive. Here we generated a knock-in (KI) mouse line that is phospho-deficient at a phosphorylation site in Shisa7 (S405) and combined with electrophysiology, imaging and behavioral assays to illustrate the role of this site in GABAergic transmission and plasticity as well as behaviors. We found that expression of phospho-deficient mutants diminished α2-GABAAR trafficking in heterologous cells. Additionally, α1/α2/α5-GABAAR surface expression and GABAergic inhibition were decreased in hippocampal neurons in KI mice. Moreover, chemically induced inhibitory long-term potentiation was abolished in KI mice. Lastly, KI mice exhibited hyperactivity, increased grooming and impaired sleep homeostasis. Collectively, our study reveals a phosphorylation site critical for Shisa7-dependent GABAARs trafficking which contributes to behavioral endophenotypes displayed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:10807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
12
|
Characterization of a mGluR5 Knockout Rat Model with Hallmarks of Fragile X Syndrome. Life (Basel) 2022; 12:life12091308. [PMID: 36143345 PMCID: PMC9504063 DOI: 10.3390/life12091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The number of reported cases of neurodevelopmental disorders has increased significantly in the last few decades, but the etiology of these diseases remains poorly understood. There is evidence of a fundamental link between genetic abnormalities and symptoms of autism spectrum disorders (ASDs), and the most common monogenetic inheritable form of ASDs is Fragile X Syndrome (FXS). Previous studies indicate that FXS is linked to glutamate signaling regulation by the G-protein-coupled metabotropic glutamate receptor 5 (mGluR5), which has been shown to have a regulatory role in neuroinflammation. We characterized the effect of knocking out mGluR5 in an organism known to have complex cognitive functions—the rat. The heterozygous phenotype is the most clinically relevant; therefore, we performed analysis in heterozygous pups. We showed developmental abnormalities in heterozygous mGluR5 knockout rats, as well as a significant increase in chemokine (C-X-C motif) ligand 1 (CXCL) expression, a hallmark indicator of early onset inflammation. We quantified an increase in microglial density in the knockout pups and quantified morphological phenotypes representative of greater reactivity in the male vs. female and postnatal day 28 heterozygous pups compared to postnatal day 14 heterozygous pups. In response to injury, reactive microglia release matrix metalloproteases, contribute to extracellular matrix (ECM) breakdown, and are responsible for eradicating cellular and molecular debris. In our study, the changes in microglial density and reactivity correlated with abnormalities in the mRNA expression levels of ECM proteins and with the density of perineuronal nets. We saw atypical neuropsychiatric behavior in open field and elevated plus tests in heterozygous pups compared to wild-type litter and age-matched controls. These results demonstrate the pathological potential of the mGluR5 knockout in rats and further support the presence of neuroinflammatory roots in ASDs.
Collapse
|
13
|
Nunes C, Gorczyca G, Mendoza-deGyves E, Ponti J, Bogni A, Carpi D, Bal-Price A, Pistollato F. Upscaling biological complexity to boost neuronal and oligodendroglia maturation and improve in vitro developmental neurotoxicity (DNT) evaluation. Reprod Toxicol 2022; 110:124-140. [PMID: 35378221 DOI: 10.1016/j.reprotox.2022.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes, neurite outgrowth, synapse formation and neuronal network formation and function, which are crucial for brain development. While monolayer, two-dimensional (2D) cultures of human iPSC-neuronal or glial derivatives are generally suited for high-throughput testing, they also show some limitations. In particular, differentiation towards myelinating oligodendrocytes can only be achieved after extended periods in differentiation. In recent years, the implementation of three-dimensional (3D) neuronal and glial models obtained from human iPSCs has been shown to compensate for such limitations, enabling robust differentiation towards both neuronal and glial cell populations, myelination and formation of more mature neuronal network activity. Here we compared the differentiation capacity of human iPSC-derived neural stem cells cultured either as 2D monolayer or as 3D neurospheres, and assessed chlorpyrifos (CPF) effects. Data indicate that 3D neurospheres differentiate towards neurons and oligodendroglia more rapidly than 2D cultures; however, the 2D model is more suitable to assess neuronal functionality by analysis of spontaneous electrical activity using multielectrode array. Moreover, 2D and 3D test systems are diversely susceptible to CPF treatment. In conclusion, the selection of the most suitable in vitro test system (either 2D or 3D) should take into account the context of use and intended research goals ('fit for purpose' principle).
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Gabriela Gorczyca
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Kraków, Poland
| | | | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Alessia Bogni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
14
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|
15
|
Zhao H, Mao X, Zhu C, Zou X, Peng F, Yang W, Li B, Li G, Ge T, Cui R. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol 2022; 9:781327. [PMID: 35198562 PMCID: PMC8858939 DOI: 10.3389/fcell.2021.781327] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a series of neurodevelopmental diseases characterized by two hallmark symptoms, social communication deficits and repetitive behaviors. Gamma-aminobutyric acid (GABA) is one of the most important inhibitory neurotransmitters in the central nervous system (CNS). GABAergic inhibitory neurotransmission is critical for the regulation of brain rhythm and spontaneous neuronal activities during neurodevelopment. Genetic evidence has identified some variations of genes associated with the GABA system, indicating an abnormal excitatory/inhibitory (E/I) neurotransmission ratio implicated in the pathogenesis of ASD. However, the specific molecular mechanism by which GABA and GABAergic synaptic transmission affect ASD remains unclear. Transgenic technology enables translating genetic variations into rodent models to further investigate the structural and functional synaptic dysregulation related to ASD. In this review, we summarized evidence from human neuroimaging, postmortem, and genetic and pharmacological studies, and put emphasis on the GABAergic synaptic dysregulation and consequent E/I imbalance. We attempt to illuminate the pathophysiological role of structural and functional synaptic dysregulation in ASD and provide insights for future investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ranji Cui
- *Correspondence: Tongtong Ge, ; Ranji Cui,
| |
Collapse
|
16
|
Mpoulimari I, Zintzaras E. Identification of Chromosomal Regions Linked to Autism-Spectrum Disorders: A Meta-Analysis of Genome-Wide Linkage Scans. Genet Test Mol Biomarkers 2022; 26:59-69. [PMID: 35225680 DOI: 10.1089/gtmb.2021.0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a clinically and genetically heterogeneous group of pervasive neurodevelopmental disorders with a strong hereditary component. Although, genome-wide linkage scans (GWLS) and association studies (GWAS) have previously identified hundreds of ASD risk gene loci, the results remain inconclusive. Method: We performed a heterogeneity-based genome search meta-analysis (HEGESMA) of 15 genome scans of autism and ASD. Results: For strictly defined autism, data were analyzed across six separate genome scans. Region 7q22-q34 reached statistical significance in both weighted and unweighted analyses, with evidence of significantly low between-scan heterogeneity. For ASDs (data from 12 separate scans), chromosomal regions 5p15.33-5p15.1 and 15q22.32-15q26.1 reached significance in both weighted and unweighted analyses but did not reach significance for either low or high heterogeneity. Region 1q23.2-1q31.1 was significant in unweighted analyses with low between-scan heterogeneity. Finally, region 8p21.1-8q13.2 reached significant linkage peak in all our meta-analyses. When we combined all available genome scans (15), the same results were produced. Conclusions: This meta-analysis suggests that these regions should be further investigated for autism susceptibility genes, with the caveat that autism spectrum disorders have different linkage signals across genome scans, possibly because of the high genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Ioanna Mpoulimari
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Özaslan A, Kayhan G, İşeri E, Ergün MA, Güney E, Perçin FE. Identification of copy number variants in children and adolescents with autism spectrum disorder: a study from Turkey. Mol Biol Rep 2021; 48:7371-7378. [PMID: 34637094 DOI: 10.1007/s11033-021-06745-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Copy number variants (CNVs) play a key role in the etiology of autism spectrum disorder (ASD). Therefore, recent guidelines recommend chromosomal microarrays (CMAs) as first-tier genetic tests. This study's first aim was to determine the clinical usefulness of CMAs in children diagnosed with ASD in a Turkish population. The second aim was to describe the CNVs and clinical phenotypes of children with ASD. METHODS AND RESULTS This was a single-center retrospective cross-sectional study. Data were obtained from the medical records of children with ASD followed at Gazi University Hospital, (Ankara, Turkey). The sample consisted of 47 ASD cases (mean age: 60.34 ± 25.60 months; 82.9% boys). The diagnostic yield of the CMAs was 8.5%. Four pathogenic CNVs were identified: 9p24.3p24.2 deletion, 15q11-q13 duplication, 16p11.2 deletion, and 22q13.3 deletion. Also, four variants were found at 2q36.3, 10p11.21, 15q11.2, and Xp11.22, which were classified as variants of uncertain significance (VUS). CONCLUSIONS The TRAP12 and PARD3 genes in CNVs classified as VUS may be worth investigating for autism. The initial identification of both clinical and biological markers can facilitate monitoring, early intervention, or prevention and advance our understanding of the neurobiology underlying ASD.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey.
| | - Gülsüm Kayhan
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan İşeri
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey
| | - Mehmet Ali Ergün
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey
| | - Ferda Emriye Perçin
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
18
|
Rodriguez-Gomez DA, Garcia-Guaqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Velez-van-Meerbeke A, Talero-Gutiérrez C. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22:60. [PMID: 34627165 PMCID: PMC8501721 DOI: 10.1186/s12868-021-00662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social communication and interaction. Common genetic variation appears to play a key role in the development of this condition. In this systematic review, we describe the relationship between genetic variations and autism. We created a gene dataset of the genes involved in the pathogenesis of autism and performed an over-representation analysis to evaluate the biological functions and molecular pathways that may explain the associations between these variants and the development of ASD. Results 177 studies and a gene set composed of 139 were included in this qualitative systematic review. Enriched pathways in the over-representation analysis using the KEGG pathway database were mostly associated with neurotransmitter receptors and their subunits. Major over-represented biological processes were social behavior, vocalization behavior, learning and memory. The enriched cellular component of the proteins encoded by the genes identified in this systematic review were the postsynaptic membrane and the cell junction. Conclusions Among the biological processes that were examined, genes involved in synaptic integrity, neurotransmitter metabolism, and cell adhesion molecules were significantly involved in the development of autism. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00662-z.
Collapse
Affiliation(s)
- Diego Alejandro Rodriguez-Gomez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Danna Paola Garcia-Guaqueta
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Jesús David Charry-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Elias Sarquis-Buitrago
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Mariana Blanco
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia. .,NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, 111221, Bogotá D.C., Colombia.
| |
Collapse
|
19
|
Zhang J, Feng T, Zhang J, Liang N, Zhao L. Fluorescence assay for the sensitive detection of fipronil based on an "on-off" oxidized SWCNH/aptamer sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3282-3291. [PMID: 34226905 DOI: 10.1039/d1ay00769f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A simple, quick, effective turn-on fluorescence assay for the determination of fipronil (FIP) was built based on the yellow fluorescence of FAM-aptamer and excellent quenching capability of the oxidized single-walled carbon nanohorns (The oxidized SWCNHs). Oxidized SWCNHs with the great advantage of good dispersibility in solution were generated by link to carboxyl group and were added to a specific FAM-aptamer at an optimal concentration to form an "on-off" oxidized SWCNH/FAM-aptamer fluorescent sensor. The structures of the oxidized SWCNHs were verified, and the comprehensive properties were evaluated by characterization techniques. This paper has exploited oxidized SWCNHs as a quenching agent to detect fipronil for the first time. Under the optimized conditions, the limit of detection (LOD) for fipronil was 3 nM, and the recovery of fipronil varied from 88.6% to 112.7% in different real samples with relative standard deviations (RSDs) not more than 5%. The developed method could be successfully applied for the determination of fipronil in tap water, honey and corn samples.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| | - Tingting Feng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province 030619, China
| | - Jiayu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
20
|
Nelson AD, Bender KJ. Dendritic Integration Dysfunction in Neurodevelopmental Disorders. Dev Neurosci 2021; 43:201-221. [PMID: 34139699 PMCID: PMC8440332 DOI: 10.1159/000516657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) that affect cognition, social interaction, and learning, including autism spectrum disorder (ASD) and intellectual disability (ID), have a strong genetic component. Our current understanding of risk genes highlights two main groups of dysfunction: those in genes that act as chromatin modifiers and those in genes that encode for proteins localized at or near synapses. Understanding how dysfunction in these genes contributes to phenotypes observed in ASD and ID remains a major question in neuroscience. In this review, we highlight emerging evidence suggesting that dysfunction in dendrites - regions of neurons that receive synaptic input - may be key to understanding features of neuronal processing affected in these disorders. Dendritic integration plays a fundamental role in sensory processing, cognition, and conscious perception, processes hypothesized to be impaired in NDDs. Many high-confidence ASD genes function within dendrites where they control synaptic integration and dendritic excitability. Further, increasing evidence demonstrates that several ASD/ID genes, including chromatin modifiers and transcription factors, regulate the expression or scaffolding of dendritic ion channels, receptors, and synaptic proteins. Therefore, we discuss how dysfunction of subsets of NDD-associated genes in dendrites leads to defects in dendritic integration and excitability and may be one core phenotype in ASD and ID.
Collapse
Affiliation(s)
- Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Lin Y, Yerukala Sathipati S, Ho SY. Predicting the Risk Genes of Autism Spectrum Disorders. Front Genet 2021; 12:665469. [PMID: 34194469 PMCID: PMC8236850 DOI: 10.3389/fgene.2021.665469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a wide spectrum of neurodevelopmental disorders that emerge during infancy and continue throughout a lifespan. Although substantial efforts have been made to develop therapeutic approaches, core symptoms persist lifelong in ASD patients. Identifying the brain temporospatial regions where the risk genes are expressed in ASD patients may help to improve the therapeutic strategies. Accordingly, this work aims to predict the risk genes of ASD and identify the temporospatial regions of the brain structures at different developmental time points for exploring the specificity of ASD gene expression in the brain that would help in possible ASD detection in the future. A dataset consisting of 13 developmental stages ranging from 8 weeks post-conception to 8 years from 26 brain structures was retrieved from the BrainSpan atlas. This work proposes a support vector machine–based risk gene prediction method ASD-Risk to distinguish the risk genes of ASD and non-ASD genes. ASD-Risk used an optimal feature selection algorithm called inheritable bi-objective combinatorial genetic algorithm to identify the brain temporospatial regions for prediction of the risk genes of ASD. ASD-Risk achieved a 10-fold cross-validation accuracy, sensitivity, specificity, area under a receiver operating characteristic curve, and a test accuracy of 81.83%, 0.84, 0.79, 0.84, and 72.27%, respectively. We prioritized the temporospatial features according to their contribution to the prediction accuracy. The top identified temporospatial regions of the brain for risk gene prediction included the posteroventral parietal cortex at 13 post-conception weeks feature. The identified temporospatial features would help to explore the risk genes that are specifically expressed in different brain regions of ASD patients.
Collapse
Affiliation(s)
- Yenching Lin
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan
| | - Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shinn-Ying Ho
- Interdisciplinary Neuroscience Ph.D. Program, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
22
|
Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Rep 2021; 31:107521. [PMID: 32320667 DOI: 10.1016/j.celrep.2020.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.
Collapse
|
23
|
Advances in autism research, 2021: continuing to decipher the secrets of autism. Mol Psychiatry 2021; 26:1426-1428. [PMID: 34045682 DOI: 10.1038/s41380-021-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
|
24
|
Adak P, Sinha S, Banerjee N. An Association Study of Gamma-Aminobutyric Acid Type A Receptor Variants and Susceptibility to Autism Spectrum Disorders. J Autism Dev Disord 2021; 51:4043-4053. [PMID: 33442857 DOI: 10.1007/s10803-020-04865-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In this pilot study, we aim to identify the role of few genetic variants of GABA-receptor type A subunits GABRB3 (rs4906902, rs7171660), GABRG3 (rs208129, rs140679), GABRA5 (rs 140681) in the aetiology of autism spectrum disorders in a population of West Bengal. 192 ASD probands, their parents and 184 ethnically-matched healthy controls were recruited for the study. The rs4906902G and the rs140679T conferred significant risk towards ASD. rs7171660 and rs140679 had transmission bias in the family. Neither alleles of rs 208129 and rs 140681 showed significant over-representation in either groups. All these variants were associated with at least one deficit in ASD-associated phenotypes like 'relating to people', 'Imitation', 'emotional response', 'body use', 'taste, smell, touch response' and 'activity levels'.
Collapse
Affiliation(s)
- Pallabi Adak
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Out Patient Department, Manovikas Kendra, Kolkata, West Bengal, 700107, India
| | - Nilanjana Banerjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
25
|
Milovanovic M, Grujicic R. Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Front Psychiatry 2021; 12:686021. [PMID: 34658944 PMCID: PMC8511396 DOI: 10.3389/fpsyt.2021.686021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Electroencephalography (EEG) can further out our understanding of autistic spectrum disorders (ASD) neurophysiology. Epilepsy and ASD comorbidity range between 5 and 46%, but its temporal relationship, causal mechanisms and interplay with intellectual disability are still unknown. Epileptiform discharges with or without seizures go as high as 60%, and associate with epileptic encephalopathies, conceptual term suggesting that epileptic activity can lead to cognitive and behavioral impairment beyond the underlying pathology. Seizures and ASD may be the result of similar mechanisms, such as abnormalities in GABAergic fibers or GABA receptor function. Epilepsy and ASD are caused by a number of genetic disorders and variations that induce such dysregulation. Similarly, initial epilepsy may influence synaptic plasticity and cortical connection, predisposing a growing brain to cognitive delays and behavioral abnormalities. The quantitative EEG techniques could be a useful tool in detecting and possibly measuring dysfunctions in specific brain regions and neuronal regulation in ASD. Power spectra analysis reveals a U-shaped pattern of power abnormalities, with excess power in the low and high frequency bands. These might be the consequence of a complicated network of neurochemical changes affecting the inhibitory GABAergic interneurons and their regulation of excitatory activity in pyramidal cells. EEG coherence studies of functional connectivity found general local over-connectivity and long-range under-connectivity between different brain areas. GABAergic interneuron growth and connections are presumably impaired in the prefrontal and temporal cortices in ASD, which is important for excitatory/inhibitory balance. Recent advances in quantitative EEG data analysis and well-known epilepsy ASD co-morbidity consistently indicate a role of aberrant GABAergic transmission that has consequences on neuronal organization and connectivity especially in the frontal cortex.
Collapse
Affiliation(s)
- Maja Milovanovic
- Department for Epilepsy and Clinical Neurophysiology, Institute of Mental Health, Belgrade, Serbia.,Faculty for Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | - Roberto Grujicic
- Clinical Department for Children and Adolescents, Institute of Mental Health, Belgrade, Serbia
| |
Collapse
|
26
|
Uddin MG, Siddiqui SA, Uddin MS, Aziz MA, Hussain MS, Furhatun-Noor, Millat MS, Sen N, Muhuri B, Islam MS. Genetic variants of ZNF385B and COMT are associated with autism spectrum disorder in the Bangladeshi children. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Saravanapandian V, Frohlich J, Hipp JF, Hyde C, Scheffler AW, Golshani P, Cook EH, Reiter LT, Senturk D, Jeste SS. Properties of beta oscillations in Dup15q syndrome. J Neurodev Disord 2020; 12:22. [PMID: 32791992 PMCID: PMC7425173 DOI: 10.1186/s11689-020-09326-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Background Duplications of 15q11.2-q13.1 (Dup15q syndrome) are highly penetrant for autism, intellectual disability, hypotonia, and epilepsy. The 15q region harbors genes critical for brain development, particularly UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We recently described an electrophysiological biomarker of the syndrome, characterized by excessive beta oscillations (12–30 Hz), resembling electroencephalogram (EEG) changes induced by allosteric modulation of GABAARs. In this follow-up study, we tested a larger cohort of children with Dup15q syndrome to comprehensively examine properties of this EEG biomarker that would inform its use in future clinical trials, specifically, its (1) relation to basic clinical features, such as age, duplication type, and epilepsy; (2) relation to behavioral characteristics, such as cognition and adaptive function; (3) stability over time; and (4) reproducibility of the signal in clinical EEG recordings. Methods We computed EEG power and beta peak frequency (BPF) in a cohort of children with Dup15q syndrome (N = 41, age range 9–189 months). To relate EEG parameters to clinical (study 1) and behavioral features (study 2), we examined age, duplication type, epilepsy, cognition, and daily living skills (DLS) as predictors of beta power and BPF. To evaluate stability over time (study 3), we derived the intraclass correlation coefficients (ICC) from beta power and BPF computed from children with multiple EEG recordings (N = 10, age range 18–161 months). To evaluate reproducibility in a clinical setting (study 4), we derived ICCs from beta power computed from children (N = 8, age range 19–96 months), who had undergone both research EEG and clinical EEG. Results The most promising relationships between EEG and clinical traits were found using BPF. BPF was predicted both by epilepsy status (R2 = 0.11, p = 0.038) and the DLS component of the Vineland Adaptive Behavior Scale (R2 = 0.17, p = 0.01). Beta power and peak frequency showed high stability across repeated visits (beta power ICC = 0.93, BPF ICC = 0.92). A reproducibility analysis revealed that beta power estimates are comparable between research and clinical EEG (ICC = 0.94). Conclusions In this era of precision health, with pharmacological and neuromodulatory therapies being developed and tested for specific genetic etiologies of neurodevelopmental disorders, quantification and examination of mechanistic biomarkers can greatly improve clinical trials. To this end, the robust beta oscillations evident in Dup15q syndrome are clinically reproducible and stable over time. With future preclinical and computational studies that will help disentangle the underlying mechanism, it is possible that this biomarker could serve as a robust measure of drug target engagement or a proximal outcome measure in future disease modifying intervention trials.
Collapse
Affiliation(s)
- Vidya Saravanapandian
- Center for Autism Research and Treatment, Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Center for Autism Research and Treatment, Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, 90024, USA.,Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland.,Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA, 90095, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Carly Hyde
- Center for Autism Research and Treatment, Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Aaron W Scheffler
- Department of Biostatistics, University of California Los Angeles School of Public Health, Room 21-254C CHS, Los Angeles, CA, 90095, USA
| | - Peyman Golshani
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.,West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois at Chicago, 1747 W Roosevelt Road, Chicago, IL, 60608, USA
| | - Lawrence T Reiter
- Department of Neurology, Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link, Memphis, TN, 415, USA
| | - Damla Senturk
- Department of Biostatistics, University of California Los Angeles School of Public Health, Room 21-254C CHS, Los Angeles, CA, 90095, USA
| | - Shafali S Jeste
- Center for Autism Research and Treatment, Semel Institute for Neuroscience, University of California Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
28
|
Pangrazzi L, Balasco L, Bozzi Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21093293. [PMID: 32384730 PMCID: PMC7247582 DOI: 10.3390/ijms21093293] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.
Collapse
|
29
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
30
|
Salmon CK, Pribiag H, Gizowski C, Farmer WT, Cameron S, Jones EV, Mahadevan V, Bourque CW, Stellwagen D, Woodin MA, Murai KK. Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Front Cell Neurosci 2020; 14:36. [PMID: 32161521 PMCID: PMC7053538 DOI: 10.3389/fncel.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+−Cl− co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Horia Pribiag
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Scott Cameron
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
31
|
Hui KK, Chen YK, Endo R, Tanaka M. Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules 2019; 9:E680. [PMID: 31683805 PMCID: PMC6920867 DOI: 10.3390/biom9110680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
De novo protein synthesis by the ribosome and its multitude of co-factors must occur in a tightly regulated manner to ensure that the correct proteins are produced accurately at the right time and, in some cases, also in the proper location. With novel techniques such as ribosome profiling and cryogenic electron microscopy, our understanding of this basic biological process is better than ever and continues to grow. Concurrently, increasing attention is focused on how translational regulation in the brain may be disrupted during the progression of various neurological disorders. In fact, translational dysregulation is now recognized as the de facto pathogenic cause for some disorders. Novel mechanisms including ribosome stalling, ribosome-associated quality control, and liquid-liquid phase separation are closely linked to translational regulation, and may thus be involved in the pathogenic process. The relationships between translational dysregulation and neurological disorders, as well as the ways through which we may be able to reverse those detrimental effects, will be examined in this review.
Collapse
Affiliation(s)
- Kelvin K Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Yi-Kai Chen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
32
|
Frohlich J, Reiter LT, Saravanapandian V, DiStefano C, Huberty S, Hyde C, Chamberlain S, Bearden CE, Golshani P, Irimia A, Olsen RW, Hipp JF, Jeste SS. Mechanisms underlying the EEG biomarker in Dup15q syndrome. Mol Autism 2019; 10:29. [PMID: 31312421 PMCID: PMC6609401 DOI: 10.1186/s13229-019-0280-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Duplications of 15q11.2-q13.1 (Dup15q syndrome), including the paternally imprinted gene UBE3A and three nonimprinted gamma-aminobutyric acid type-A (GABAA) receptor genes, are highly penetrant for neurodevelopmental disorders such as autism spectrum disorder (ASD). To guide targeted treatments of Dup15q syndrome and other forms of ASD, biomarkers are needed that reflect molecular mechanisms of pathology. We recently described a beta EEG phenotype of Dup15q syndrome, but it remains unknown which specific genes drive this phenotype. Methods To test the hypothesis that UBE3A overexpression is not necessary for the beta EEG phenotype, we compared EEG from a reference cohort of children with Dup15q syndrome (n = 27) to (1) the pharmacological effects of the GABAA modulator midazolam (n = 12) on EEG from healthy adults, (2) EEG from typically developing (TD) children (n = 14), and (3) EEG from two children with duplications of paternal 15q (i.e., the UBE3A-silenced allele). Results Peak beta power was significantly increased in the reference cohort relative to TD controls. Midazolam administration recapitulated the beta EEG phenotype in healthy adults with a similar peak frequency in central channels (f = 23.0 Hz) as Dup15q syndrome (f = 23.1 Hz). Both paternal Dup15q syndrome cases displayed beta power comparable to the reference cohort. Conclusions Our results suggest a critical role for GABAergic transmission in the Dup15q syndrome beta EEG phenotype, which cannot be explained by UBE3A dysfunction alone. If this mechanism is confirmed, the phenotype may be used as a marker of GABAergic pathology in clinical trials for Dup15q syndrome.
Collapse
Affiliation(s)
- Joel Frohlich
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, CA 90095 USA
| | - Lawrence T. Reiter
- Departments of Neurology, Pediatrics and Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link, Memphis, TN 415 USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Charlotte DiStefano
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Scott Huberty
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
- McGill University, MUHC Research Institute, 5252, boul. de Maisonneuve Ouest, 3E.19, Montreal, QC H4A 3S5 Canada
| | - Carly Hyde
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| | - Stormy Chamberlain
- Genetics and Genome Sciences, UConn Health, 400 Farmington Avenue, Farmington, CT 06030-6403 USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California Los Angeles, Suite A7-460, 760 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Peyman Golshani
- Department of Neurology and Psychiatry, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Suite 228C, California, Los Angeles 90089 USA
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, California, Los Angeles 90095 USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S. Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA 90024 USA
| |
Collapse
|
33
|
Pretzsch CM, Freyberg J, Voinescu B, Lythgoe D, Horder J, Mendez MA, Wichers R, Ajram L, Ivin G, Heasman M, Edden RAE, Williams S, Murphy DGM, Daly E, McAlonan GM. Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder. Neuropsychopharmacology 2019; 44:1398-1405. [PMID: 30758329 PMCID: PMC6784992 DOI: 10.1038/s41386-019-0333-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 01/20/2023]
Abstract
There is increasing interest in the use of cannabis and its major non-intoxicating component cannabidiol (CBD) as a treatment for mental health and neurodevelopmental disorders, such as autism spectrum disorder (ASD). However, before launching large-scale clinical trials, a better understanding of the effects of CBD on brain would be desirable. Preclinical evidence suggests that one aspect of the polypharmacy of CBD is that it modulates brain excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) levels, including in brain regions linked to ASD, such as the basal ganglia (BG) and the dorsomedial prefrontal cortex (DMPFC). However, differences in glutamate and GABA pathways in ASD mean that the response to CBD in people with and without ASD may be not be the same. To test whether CBD 'shifts' glutamate and GABA levels; and to examine potential differences in this response in ASD, we used magnetic resonance spectroscopy (MRS) to measure glutamate (Glx = glutamate + glutamine) and GABA+ (GABA + macromolecules) levels in 34 healthy men (17 neurotypicals, 17 ASD). Data acquisition commenced 2 h (peak plasma levels) after a single oral dose of 600 mg CBD or placebo. Test sessions were at least 13 days apart. Across groups, CBD increased subcortical, but decreased cortical, Glx. Across regions, CBD increased GABA+ in controls, but decreased GABA+ in ASD; the group difference in change in GABA + in the DMPFC was significant. Thus, CBD modulates glutamate-GABA systems, but prefrontal-GABA systems respond differently in ASD. Our results do not speak to the efficacy of CBD. Future studies should examine the effects of chronic administration on brain and behaviour, and whether acute brain changes predict longer-term response.
Collapse
Grants
- MR/N026063/1 Medical Research Council
- R01 MH106564 NIMH NIH HHS
- U54 HD079123 NICHD NIH HHS
- Infrastructure and training support from the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust and King's College London https://www.nihr.ac.uk/about-us/how-we-are-managed/our-structure/infrastructure/biomedical-research-centres.htm Sackler Institute for Translational Neurodevelopment at King’s College London https://www.kcl.ac.uk/ioppn/depts/fans/sackler-group/index.aspx Autistica St Saviours House, 39-41 Union St, London SE1 1SD, UK
- NIH R01 MH106564 and U54 HD079123
- EU-AIMS (European Autism Interventions)/EU AIMS-2-TRIALS, a European Innovative Medicines Initiative Joint Undertaking under Grant Agreements No. 115300 and 777394, the resources of which are composed of financial contributions from the European Union’s Seventh Framework Programme (Grant FP7/2007–2013).
- RCUK | Medical Research Council (MRC)
- GW Pharmaceuticals, Sovereign House Vision Park Histon Cambridge CB24 9BZ United Kingdom Tel: +44 (0) 1223 266800 Autistica: St Saviours House, 39-41 Union St, London SE1 1SD, UK EU-AIMS (European Autism Interventions)/EU AIMS-2-TRIALS, a European Innovative Medicines Initiative Joint Undertaking under Grant Agreements No. 115300 and 777394, the resources of which are composed of financial contributions from the European Union’s Seventh Framework Programme (Grant FP7/2007–2013). https://ec.europa.eu/research/fp7/index_en.cfm
Collapse
Affiliation(s)
- Charlotte Marie Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Freyberg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bogdan Voinescu
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Andreina Mendez
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Laura Ajram
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Martin Heasman
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Richard A E Edden
- Russel H Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Steven Williams
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
34
|
|
35
|
Hannant P, Cassidy S, Renshaw D, Joyce A. A double-blind, placebo-controlled, randomised-designed GABA tea study in children diagnosed with autism spectrum conditions: a feasibility study clinical trial registration: ISRCTN 72571312. Nutr Neurosci 2019; 24:45-61. [PMID: 31060476 DOI: 10.1080/1028415x.2019.1588486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: The research has shown an association with sensorimotor integration and symptomology of Autism Spectrum Conditions (ASC). Specific areas of the brain that are involved in sensorimotor integration, such as the cerebellum and basal ganglia, are pathologically different in individuals with ASC in comparison to typically developing (TD) peers. These brain regions contain GABAergic inhibitory neurons that release an inhibitory neurotransmitter, γ-Aminobutyric acid (GABA). Brain GABA levels are decreased in ASC. This study explored the effect of introducing a non-invasive GABA substitute, in the form of GABA Oolong tea, on sensorimotor skills, ASC profiles, anxieties and sleep of children with ASC. Methods: Nine children took part: (5 male, 4 female). Each child participated in three tea conditions: high GABA, high L-Theanine (a compound that increases GABA), placebo with low GABA. A double-blind, repeated measures design was employed. Measures were taken after each tea condition. Sensory and ASC profiles were scored using parental questionnaires. Motor skills were assessed using a gold standard coordination assessment. Sleep was monitored using an actiwatch and anxiety measured through cortisol assays. Subjective views were sought from parents on 'best' tea. Results: The results showed significant improvement in manual dexterity and some large individual improvements in balance, sensory responsivity, DSM-5 criteria and cortisol levels with GABA tea. Improvements were also seen in the L-Theanine condition although they were more sporadic. Conclusions: These results suggest that sensorimotor abilities, anxiety levels and DSM-5 symptomology of children with ASC can benefit from the administration of GABA in the form of Oolong tea.
Collapse
Affiliation(s)
- Penelope Hannant
- Centre for Innovative Research Across the Life Course, Coventry University, Coventry, UK.,School of Education, University of Birmingham, Birmingham, UK
| | - Sarah Cassidy
- School of Psychology, University of Nottingham, Nottingham, UK.,Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Derek Renshaw
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Anna Joyce
- Centre for Innovative Research Across the Life Course, Coventry University, Coventry, UK
| |
Collapse
|
36
|
Array-CGH Analysis in a Cohort of Phenotypically Well-Characterized Individuals with "Essential" Autism Spectrum Disorders. J Autism Dev Disord 2019; 48:442-449. [PMID: 29027068 DOI: 10.1007/s10803-017-3329-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copy-number variants (CNVs) are associated with susceptibility to autism spectrum disorder (ASD). To detect the presence of CNVs, we conducted an array-comparative genomic hybridization (array-CGH) analysis in 133 children with "essential" ASD phenotype. Genetic analyses documented that 12 children had causative CNVs (C-CNVs), 29 children had non-causative CNVs (NC-CNVs) and 92 children without CNVs (W-CNVs). Results on clinical evaluation showed no differences in cognitive abilities among the three groups, and a higher number of ASD symptoms and of non-verbal children in the C-CNVs group compared to the W-CNVs and NC-CNVs groups. Our results highlighted the importance of the array-CGH analyses and showed that the presence of specific CNVs may differentiate clinical outputs in children with ASD.
Collapse
|
37
|
Liu Q, Chen MX, Sun L, Wallis CU, Zhou JS, Ao LJ, Li Q, Sham PC. Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells 2019; 11:55-72. [PMID: 30842805 PMCID: PMC6397804 DOI: 10.4252/wjsc.v11.i2.55] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism and autism spectrum disorders (ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD. Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review will focus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Chloe U Wallis
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jian-Song Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Center for Genomic Sciences, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Ward J. Individual differences in sensory sensitivity: A synthesizing framework and evidence from normal variation and developmental conditions. Cogn Neurosci 2018; 10:139-157. [PMID: 30526338 DOI: 10.1080/17588928.2018.1557131] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For some people, simple sensory stimuli (e.g., noises, patterns) may reliably evoke intense and aversive reactions. This is common in certain clinical groups (e.g., autism) and varies greatly in the neurotypical population. This paper critically evaluates the concept of individual differences in sensory sensitivity, explores its possible underlying neurobiological basis, and presents a roadmap for future research in this area. A distinction is made between subjective sensory sensitivity (self-reported symptoms); neural sensory sensitivity (the degree of neural activity induced by sensory stimuli); and behavioral sensory sensitivity (detection and discrimination of sensory stimuli). Whereas increased subjective and neural sensory sensitivity are assumed to increase together, the status of behavioral sensory sensitivity depends on the extent to which the increased neural activity is linked to signal or noise. A signal detection framework is presented that offers a unifying framework for exploring sensory sensitivity across different conditions. The framework is discussed, in more concrete terms, by linking it to four existing theoretical accounts of atypical sensory sensitivity (not necessarily mutually exclusive): increased excitation-to-inhibition ratio; predictive coding; increased neural noise; and atypical brain connectivity.
Collapse
Affiliation(s)
- Jamie Ward
- a School of Psychology , University of Sussex , Brighton , UK
| |
Collapse
|
39
|
Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet 2018; 51:106-116. [PMID: 30559488 PMCID: PMC6309590 DOI: 10.1038/s41588-018-0288-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
We combined de novo mutation (DNM) data from 10,927 individuals with developmental delay and autism to identify 253 candidate neurodevelopmental disease genes with an excess of missense and/or likely gene-disruptive (LGD) mutations. Of these genes, 124 reach exome-wide significance (P < 5 × 10-7) for DNM. Intersecting these results with copy number variation (CNV) morbidity data shows an enrichment for genomic disorder regions (30/253, likelihood ratio (LR) +1.85, P = 0.0017). We identify genes with an excess of missense DNMs overlapping deletion syndromes (for example, KIF1A and the 2q37 deletion) as well as duplication syndromes, such as recurrent MAPK3 missense mutations within the chromosome 16p11.2 duplication, recurrent CHD4 missense DNMs in the 12p13 duplication region, and recurrent WDFY4 missense DNMs in the 10q11.23 duplication region. Network analyses of genes showing an excess of DNMs highlights functional networks, including cell-specific enrichments in the D1+ and D2+ spiny neurons of the striatum.
Collapse
|
40
|
Haslinger D, Waltes R, Yousaf A, Lindlar S, Schneider I, Lim CK, Tsai MM, Garvalov BK, Acker-Palmer A, Krezdorn N, Rotter B, Acker T, Guillemin GJ, Fulda S, Freitag CM, Chiocchetti AG. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol Autism 2018; 9:56. [PMID: 30443311 PMCID: PMC6220561 DOI: 10.1186/s13229-018-0239-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
Collapse
Affiliation(s)
- Denise Haslinger
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Regina Waltes
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Afsheen Yousaf
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Silvia Lindlar
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ines Schneider
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - Chai K Lim
- 3Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Meng-Miao Tsai
- 4Neuropathology, University of Giessen, Giessen, Germany
| | - Boyan K Garvalov
- 4Neuropathology, University of Giessen, Giessen, Germany.,5Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Amparo Acker-Palmer
- 6Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), JW Goethe University of Frankfurt, Frankfurt am Main, Germany
| | | | | | - Till Acker
- 4Neuropathology, University of Giessen, Giessen, Germany
| | - Gilles J Guillemin
- 3Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Simone Fulda
- Institute of Experimental Cancer Research in Pediatrics, Frankfurt am Main, Germany
| | - Christine M Freitag
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- 1Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Wegiel J, Brown WT, La Fauci G, Adayev T, Kascsak R, Kascsak R, Flory M, Kaczmarski W, Kuchna I, Nowicki K, Martinez-Cerdeno V, Wisniewski T, Wegiel J. The role of reduced expression of fragile X mental retardation protein in neurons and increased expression in astrocytes in idiopathic and syndromic autism (duplications 15q11.2-q13). Autism Res 2018; 11:1316-1331. [PMID: 30107092 DOI: 10.1002/aur.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/23/2023]
Abstract
Fragile X syndrome (FXS), caused by lack of fragile X mental retardation protein (FMRP), is associated with a high prevalence of autism. The deficit of FMRP reported in idiopathic autism suggests a mechanistic overlap between FXS and autism. The overall goal of this study is to detect neuropathological commonalities of FMRP deficits in the brains of people with idiopathic autism and with syndromic autism caused by dup15q11.2-q13 (dup15). This study tests the hypothesis based on our preliminary data that both idiopathic and syndromic autism are associated with brain region-specific deficits of neuronal FMRP and structural changes of the affected neurons. This immunocytochemical study revealed neuronal FMRP deficits and shrinkage of deficient neurons in the cerebral cortex, subcortical structures, and cerebellum in subjects with idiopathic and dup(15)/autism. Neuronal FMRP deficit coexists with surprising infiltration of the brains of autistic children and adults with FMRP-positive astrocytes known to be typical only for the fetal and short postnatal periods. In the examined autistic subjects, these astrocytes selectively infiltrate the border between white and gray matter in the cerebral and cerebellar cortex, the molecular layer of the cortex, part of the amygdala and thalamus, central cerebellar white matter, and dentate nucleus. Astrocyte pathology results in an additional local loss of FMRP in neurons and their shrinkage. Neuronal deficit of FMRP and shrinkage of affected neurons in structures free of FMRP-positive astrocytes and regions infiltrated with FMRP-expressing astrocytes appear to reflect mechanistic, neuropathological, and functional commonalities of FMRP abnormalities in FXS and autism spectrum disorder. Autism Res 2018, 11: 1316-1331. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Immunocytochemistry reveals a deficit of fragile X mental retardation protein (FMRP) in neurons of cortical and subcortical brain structures but increased FMRP expression in astrocytes infiltrating gray and white matter. The detected shrinkage of FMRP-deficient neurons may provide a mechanistic explanation of reported neuronal structural and functional changes in autism. This study contributes to growing evidence of mechanistic commonalities between fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - W Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Giuseppe La Fauci
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Richard Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Regina Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Wojciech Kaczmarski
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Veronica Martinez-Cerdeno
- Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, MIND Institute, University of California, Davis, California
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, NYU Langone Medical Center, New York, New York
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| |
Collapse
|
42
|
Meta-analysis of GABRB3 Gene Polymorphisms and Susceptibility to Autism Spectrum Disorder. J Mol Neurosci 2018; 65:432-437. [PMID: 30074174 DOI: 10.1007/s12031-018-1114-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
Several lines of evidence have suggested that the GABA receptor subunit β3 (GABRB3) gene is a genetic contributor in the autism spectrum disorder (ASD). The aberrant expression of GABRB3 is reported in ASD patients which may be a consequence of the presence of certain genetic variants in the promoter region of the gene. The associations between single-nucleotide polymorphisms (SNPs) within this gene and ASD have been analyzed in previous studies. However, the results are conflicting. In the present study, we performed a meta-analysis on association between two SNPs located in the promoter region of GABRB3 gene (rs4906902 and rs20317) and ASD. The literature search was performed based on criteria provided by the meta-analysis of observational studies in epidemiology (MOOSE). The association between mentioned SNPs and ASD was calculated using pooled odd ratios (ORs) and 95% confidence intervals. The result of the present meta-analysis indicates that neither rs4906902 nor rs20317 are significantly associated with the risk of ASD. The underlying mechanism of the aberrant expression of GABRB3 gene in ASD patients should be investigated in other biological levels.
Collapse
|
43
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
44
|
Mahdavi M, Kheirollahi M, Riahi R, Khorvash F, Khorrami M, Mirsafaie M. Meta-Analysis of the Association between GABA Receptor Polymorphisms and Autism Spectrum Disorder (ASD). J Mol Neurosci 2018; 65:1-9. [PMID: 29725984 DOI: 10.1007/s12031-018-1073-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 01/15/2023]
Abstract
Previous studies have reported the association of GABA receptor subunits B3, A5, and G3 single-nucleotide polymorphisms (SNPs) in chromosome 15q11-q13 with autism spectrum disorders (ASDs). However, the currently available results are inconsistent. This study aimed to investigate the association between ASD and the GABA receptor SNPs in chromosomal region 15q11-q13. The association was calculated by the overall odds ratio (OR) with a 95% confidence interval (CI). We used sensitivity analyses and the assessment of publication bias in our meta-analysis. Eight independent case-control studies involving 1408 cases and 2846 healthy controls were analyzed, namely, 8 studies for GABRB3 SNPs as well as 4 studies for GABRA5 and GABRG3 polymorphisms. The meta-analysis showed that GABRB3 polymorphisms in general are not significantly associated with autism [OR = 0.846 (95% CI): 0.595-1.201, I2 = 79.1%]. Further analysis indicated that no associations were found between GABRB3 SNPs and autism on rs2081648 [OR = 0.84 (95% CI) = 0.41-1.72, I2 = 89.2%] and rs1426217 [OR = 1.13 (95% CI) = 0.64-2.0, I2 = 83%]. An OR of 0.95 (95% CI) = 0.77-1.17 was reported (I2 = 0.0%) for GABRA5 SNPs and an OR of 0.96 (95% CI) = 0.24-3.81 was obtained from GABRG3 SNPs (I2 = 97.8%). This meta-analysis provides strong evidence that different SNPs of GABA receptor B3, A5, and G3 subunit genes located on chromosome 15q11-q13 are not associated with the development of autism spectrum diseases in different ethnic populations. However, in future research, large-scale and high-quality studies are necessary to confirm the results.
Collapse
Affiliation(s)
- Manijeh Mahdavi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran. .,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Riahi
- Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khorrami
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box 81746-73461, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirsafaie
- Mohkam-kar Health Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Liu Z, Zhang J, Xie X, Rolls ET, Sun J, Zhang K, Jiao Z, Chen Q, Zhang J, Qiu J, Feng J. Neural and genetic determinants of creativity. Neuroimage 2018. [PMID: 29518564 DOI: 10.1016/j.neuroimage.2018.02.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Creative thinking plays a vital role in almost all aspects of human life. However, little is known about the neural and genetic mechanisms underlying creative thinking. Based on a cross-validation based predictive framework, we searched from the whole-brain connectome (34,716 functional connectivities) and whole genome data (309,996 SNPs) in two datasets (all collected by Southwest University, Chongqing) consisting of altogether 236 subjects, for a better understanding of the brain and genetic underpinning of creativity. Using the Torrance Tests of Creative Thinking score, we found that high figural creativity is mainly related to high functional connectivity between the executive control, attention, and memory retrieval networks (strong top-down effects); and to low functional connectivity between the default mode network, the ventral attention network, and the subcortical and primary sensory networks (weak bottom-up processing) in the first dataset (consisting of 138 subjects). High creativity also correlates significantly with mutations of genes coding for both excitatory and inhibitory neurotransmitters. Combining the brain connectome and the genomic data we can predict individuals' creativity scores with an accuracy of 78.4%, which is significantly better than prediction using single modality data (gene or functional connectivity), indicating the importance of combining multi-modality data. Our neuroimaging prediction model built upon the first dataset was cross-validated by a completely new dataset of 98 subjects (r = 0.267, p = 0.0078) with an accuracy of 64.6%. In addition, the creativity-related functional connectivity network we identified in the first dataset was still significantly correlated with the creativity score in the new dataset (p<10-3). In summary, our research demonstrates that strong top-down control versus weak bottom-up processes underlie creativity, which is modulated by competition between the glutamate and GABA neurotransmitter systems. Our work provides the first insights into both the neural and the genetic bases of creativity.
Collapse
Affiliation(s)
- Zhaowen Liu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, Shannxi, PR China
| | - Jie Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Xiaohua Xie
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Oxford Centre for Computational Neuroscience, Oxford UK
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, PR China; School of Psychology, Southwest University (SWU), Chongqing, PR China
| | - Kai Zhang
- Department of Computer and Information Sciences, Temple University, 1801 North Broad Street, Philadelphia, PA 19122, USA
| | - Zeyu Jiao
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China; Shanghai Center for Mathematical Sciences, Shanghai, 200433, PR China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, PR China; School of Psychology, Southwest University (SWU), Chongqing, PR China
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi'an 710071, Shannxi, PR China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, PR China; School of Psychology, Southwest University (SWU), Chongqing, PR China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100875, PR China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, PR China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, PR China; Shanghai Center for Mathematical Sciences, Shanghai, 200433, PR China; Zhongshan Hospital, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
46
|
Griswold AJ, Van Booven D, Cuccaro ML, Haines JL, Gilbert JR, Pericak-Vance MA. Identification of rare noncoding sequence variants in gamma-aminobutyric acid A receptor, alpha 4 subunit in autism spectrum disorder. Neurogenetics 2018; 19:17-26. [PMID: 29151244 PMCID: PMC5792317 DOI: 10.1007/s10048-017-0529-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
Alterations of the gamma-aminobutyric acid (GABA) signaling system has been strongly linked to the pathophysiology of autism spectrum disorder (ASD). Genetic associations of common variants in GABA receptor subunits, in particular GABRA4 on chromosome 4p12, with ASD have been replicated by several studies. Moreover, molecular investigations have identified altered transcriptional and translational levels of this gene and protein in brains of ASD individuals. Since the genotyped common variants are likely not the functional variants contributing to the molecular consequences or underlying ASD phenotype, this study aims to examine rare sequence variants in GABRA4, including those outside the protein coding regions of the gene. We comprehensively re-sequenced the entire protein coding and noncoding portions of the gene and putative regulatory sequences in 82 ASD individuals and 55 developmentally typical pediatric controls, all homozygous for the most significant previously associated ASD risk allele (G/G at rs1912960). We identified only a single common, coding variant, and no association of any single marker or set of variants with ASD. Functional annotation of noncoding variants identified several rare variants in putative regulatory sites. Finally, a rare variant unique to ASD cases, in an evolutionary conserved site of the 3'UTR, shows a trend toward decreasing gene expression. Hence, GABRA4 rare variants in noncoding DNA may be variants of modest physiological effects in ASD etiology.
Collapse
Affiliation(s)
- Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
47
|
Neural Hyperexcitability in Autism Spectrum Disorders. Brain Sci 2017; 7:brainsci7100129. [PMID: 29027913 PMCID: PMC5664056 DOI: 10.3390/brainsci7100129] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
Despite the progress that has been made in research on autism spectrum disorders (ASD), the understanding of the biological basis of ASD to identify targets for novel, effective treatment remains limited. One of the leading biological theories of autism is a model of cortical hyperexcitability. While numerous genetic and epigenetic studies support this model, how this particular biological alteration relates to known phenotypes in ASD is not well established. Using examples of sensory processing alterations, this review illustrates how cortical excitability may affect neural processes to result eventually in some core clinical phenotypes in ASD. Applications of the cortical excitability model for translational research and drug development are also discussed.
Collapse
|
48
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L. Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
49
|
Yang S, Guo X, Dong X, Han Y, Gao L, Su Y, Dai W, Zhang X. GABA A receptor subunit gene polymorphisms predict symptom-based and developmental deficits in Chinese Han children and adolescents with autistic spectrum disorders. Sci Rep 2017; 7:3290. [PMID: 28607477 PMCID: PMC5468250 DOI: 10.1038/s41598-017-03666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
GABAA receptor subunit genes GABRB3, GABRA5, and GABRG3 located on chromosome 15q11-q13 have been implicated in the etiology of autistic spectrum disorders (ASD). This study intended to investigate the possible role of single-nucleotide polymorphisms (SNPs) present in GABRB3 (rs2081648 and rs1426217), GABRA5 (rs35586628), and GABRG3 (rs208129) genes in ASD susceptibility and symptom-based and developmental phenotypes of ASD in Chinese Han children and adolescents. 99 ASD patients and 231 age- and gender- frequency-matched typical developing (TD) controls were tested by TaqMan® genotyping assay. Symptom-based phenotypes were evaluated by Childhood Autism Rating Scale (CARS) and Autism Behavior Checklist (ABC), and developmental phenotypes were assessed by Early Childhood Development Questionnaire (ECDQ) in ASD patients. Three haplotypes and global χ 2 test of all SNPs demonstrated significant associations between ASD and TD groups. Besides, GABRB3 rs2081648, GABRA5 rs35586628, and GABRG3 rs208129 polymorphisms were associated with symptom-based deficits in social interaction, sensorimotor and somatosensory coordination, visual response, imitation, activity level, language expression and adaptability. Developmental abnormalities in late emergences of social interaction and fine motor were detected in GABRB3 rs2081648 polymorphism. Overall results indicated that gene synergy may participate in ASD pathogenesis, and GABAA receptor gene polymorphisms can predict symptom-based and developmental deficits in ASD individuals.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaopeng Dong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
50
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|