1
|
Penke L, Denissen JJA, Miller GF. Evolution, genes, and inter‐disciplinary personality research. EUROPEAN JOURNAL OF PERSONALITY 2020. [DOI: 10.1002/per.657] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most commentaries welcomed an evolutionary genetic approach to personality, but several raised concerns about our integrative model. In response, we clarify the scientific status of evolutionary genetic theory and explain the plausibility and value of our evolutionary genetic model of personality, despite some shortcomings with the currently available theories and data. We also have a closer look at mate choice for personality traits, point to promising ways to assess evolutionarily relevant environmental factors and defend higher‐order personality domains and the g‐factor as the best units for evolutionary genetic analyses. Finally, we discuss which extensions of and alternatives to our model appear most fruitful, and end with a call for more inter‐disciplinary personality research grounded in evolutionary theory. Copyright © 2007 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lars Penke
- Humboldt University, Berlin, Germany
- International Max Planck Research School LIFE, Berlin, Germany
| | | | | |
Collapse
|
2
|
Singh PK, Khatri I, Jha A, Pretto CD, Spindler KR, Arumugaswami V, Giri S, Kumar A, Bhasin MK. Determination of system level alterations in host transcriptome due to Zika virus (ZIKV) Infection in retinal pigment epithelium. Sci Rep 2018; 8:11209. [PMID: 30046058 PMCID: PMC6060127 DOI: 10.1038/s41598-018-29329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Previously, we reported that Zika virus (ZIKV) causes ocular complications such as chorioretinal atrophy, by infecting cells lining the blood-retinal barrier, including the retinal pigment epithelium (RPE). To understand the molecular basis of ZIKV-induced retinal pathology, we performed a meta-analysis of transcriptome profiles of ZIKV-infected human primary RPE and other cell types infected with either ZIKV or other related flaviviruses (Japanese encephalitis, West Nile, and Dengue). This led to identification of a unique ZIKV infection signature comprising 43 genes (35 upregulated and 8 downregulated). The major biological processes perturbed include SH3/SH2 adaptor activity, lipid and ceramide metabolism, and embryonic organ development. Further, a comparative analysis of some differentially regulated genes (ABCG1, SH2B3, SIX4, and TNFSF13B) revealed that ZIKV induced their expression relatively more than dengue virus did in RPE. Importantly, the pharmacological inhibition of ABCG1, a membrane transporter of cholesterol, resulted in reduced ZIKV infectivity. Interestingly, the ZIKV infection signature revealed the downregulation of ALDH5A1 and CHML, genes implicated in neurological (cognitive impairment, expressive language deficit, and mild ataxia) and ophthalmic (choroideremia) disorders, respectively. Collectively, our study revealed that ZIKV induces differential gene expression in RPE cells, and the identified genes/pathways (e.g., ABCG1) could potentially contribute to ZIKV-associated ocular pathologies.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Indu Khatri
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alokkumar Jha
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carla D Pretto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | | | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Centre, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Menduti G, Biamino E, Vittorini R, Vesco S, Puccinelli MP, Porta F, Capo C, Leo S, Ciminelli BM, Iacovelli F, Spada M, Falconi M, Malaspina P, Rossi L. Succinic semialdehyde dehydrogenase deficiency: The combination of a novel ALDH5A1 gene mutation and a missense SNP strongly affects SSADH enzyme activity and stability. Mol Genet Metab 2018; 124:210-215. [PMID: 29895405 DOI: 10.1016/j.ymgme.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive metabolic disorder of GABA catabolism. SSADH is a mitochondrial homotetrameric enzyme encoded by ALDH5A1 gene. We report the molecular characterization of ALDH5A1 gene in an Italian SSADHD patient, showing heterozygosity for four missense mutations: c.526G>A (p.G176R), c.538C>T (p.H180Y), c.709G>T (p.A237S) and c.1267A>T (p.T423S), the latter never described so far. The patient inherited c.526A in cis with c.538T from the mother and c.709T in cis with c.1267T from the father. To explore the effects of the two allelic arrangements on SSADH activity and protein level, wild type, single or double mutated cDNA constructs were expressed in a cell system. The p.G176R change, alone or in combination with p.H180Y, causes the abolishment of enzyme activity. Western blot analysis showed a strongly reduced amount of the p.176R-p.180Y double mutant protein, suggesting increased degradation. Indeed, in silico analyses confirmed high instability of this mutant homotetramer. Enzyme activity relative to the other p.423S-p.237S double mutant is around 30% of wt. Further in silico analyses on all the possible combinations of mutant monomers suggest the lowest stability for the tetramer constituted by p.176R-p.180Y monomers and the highest stability for that constituted by p.237S-p.423S monomers. The present study shows that when a common SNP, associated with a slight reduction of SSADH activity, is inherited in cis with a mutation showing no consequences on the enzyme function, the activity is strongly affected. In conclusion, the peculiar arrangement of four missense mutations occurring in this patient is responsible for the SSADHD phenotype.
Collapse
Affiliation(s)
| | - Elisa Biamino
- Department of Pediatrics, University of Turin, Italy
| | - Roberta Vittorini
- Department of Pediatric Neurology, Regina Margherita Children Hospital, University of Turin, Italy
| | - Serena Vesco
- Department of Pediatric Neurology, Regina Margherita Children Hospital, University of Turin, Italy
| | - Maria Paola Puccinelli
- Department of Laboratory Medicine, Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy
| | | | - Concetta Capo
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Sara Leo
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | | | - Marco Spada
- Department of Pediatrics, University of Turin, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Italy.
| |
Collapse
|
4
|
Chen K, Kardys A, Chen Y, Flink S, Tabakoff B, Shih JC. Altered gene expression in early postnatal monoamine oxidase A knockout mice. Brain Res 2017; 1669:18-26. [PMID: 28535982 PMCID: PMC5531263 DOI: 10.1016/j.brainres.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
Abstract
We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors.
Collapse
Affiliation(s)
- Kevin Chen
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Abbey Kardys
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA 90089, United States
| | - Stephen Flink
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Jean C Shih
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, CA 90089, United States; Dept. of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
5
|
Posthuma D, de Geus EJ. Progress in the Molecular-Genetic Study of Intelligence. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/j.1467-8721.2006.00426.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The past decade has seen a major shift in the genetic study of human intelligence; where classic studies aimed to quantify the heritability of intelligence, current studies aim to dissect this heritability into its molecular-genetic components. Five whole-genome linkage scans have been published in the past year, converging on several chromosomal (or genomic) regions important to intelligence. A handful of candidate genes, some of which lie in these genomic regions, have shown significant association to intelligence and the associations have been replicated in independent samples. Finding genes brings us closer to an understanding of the neurophysiological basis of human cognition. Furthermore, when genes are no longer latent factors in our models but can actually be measured, it becomes feasible to identify those environmental factors that interact and correlate with genetic makeup. This will supplant the long nature–nurture debate with actual understanding.
Collapse
Affiliation(s)
- Danielle Posthuma
- Department of Biological Psychology and Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| | - Eco J.C. de Geus
- Department of Biological Psychology and Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Malaspina P, Roullet JB, Pearl PL, Ainslie GR, Vogel KR, Gibson KM. Succinic semialdehyde dehydrogenase deficiency (SSADHD): Pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem Int 2016; 99:72-84. [PMID: 27311541 DOI: 10.1016/j.neuint.2016.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Discovered some 35 years ago, succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a rare, autosomal recessively-inherited defect in the second step of the GABA degradative pathway. Some 200 patients have been reported, with broad phenotypic and genotypic heterogeneity. SSADHD represents an unusual neurometabolic disorder in which two neuromodulatory agents, GABA (and the GABA analogue, 4-hydroxybutyrate), accumulate to supraphysiological levels. The unexpected occurrence of epilepsy in several patients is counterintuitive in view of the hyperGABAergic state, in which sedation might be expected. However, the epileptic status of some patients is most likely represented by broader imbalances of GABAergic and glutamatergic neurotransmission. Cumulative research encompassing decades of basic and clinical study of SSADHD reveal a monogenic disease with broad pathophysiological and clinical phenotypes. Numerous metabolic perturbations unmasked in SSADHD include alterations in oxidative stress parameters, dysregulation of autophagy and mitophagy, dysregulation of both inhibitory and excitatory neurotransmitters and gene expression, and unique subsets of SNP alterations of the SSADH gene (so-called ALDH5A1, or aldehyde dehydrogenase 5A1 gene) on the 6p22 chromosomal arm. While seemingly difficult to collate and interpret, these anomalies have continued to open novel pathways for pharmacotherapeutic considerations. Here, we present an update on selected aspects of SSADHD, the ALDH5A1 gene, and future avenues for research on this rare disorder of GABA metabolism.
Collapse
Affiliation(s)
- P Malaspina
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - J-B Roullet
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - P L Pearl
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - G R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K M Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
7
|
Eicher JD, Stein CM, Deng F, Ciesla AA, Powers NR, Boada R, Smith SD, Pennington BF, Iyengar SK, Lewis BA, Gruen JR. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. GENES BRAIN AND BEHAVIOR 2015; 14:377-85. [PMID: 25778907 PMCID: PMC4492462 DOI: 10.1111/gbb.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples - Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) - and then combined results by meta-analysis. DYX2 markers, specifically those in the 3' untranslated region of DCDC2 (P = 1.43 × 10(-4) ), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10(-2) ) and DRD2 (P = 9.22 × 10(-3) ) and nicotinic-related genes CHRNA3 (P = 2.51 × 10(-3) ) and BDNF (P = 8.14 × 10(-3) ) with case-control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated.
Collapse
Affiliation(s)
- J D Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Torrens M, Fonseca F. Role of ALDH5A1 in methadone treatment. Pharmacogenomics 2014; 15:573-6. [PMID: 24798712 DOI: 10.2217/pgs.14.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marta Torrens
- Institut de Neuropsiquiatria i Addicions, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain and Psychiatry Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
9
|
Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Hum Genet 2014; 133:869-81. [PMID: 24509779 PMCID: PMC4053598 DOI: 10.1007/s00439-014-1427-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023]
Abstract
Reading disability (RD) and language impairment (LI) are common neurodevelopmental disorders with moderately strong genetic components and lifelong implications. RD and LI are marked by unexpected difficulty acquiring and processing written and verbal language, respectively, despite adequate opportunity and instruction. RD and LI—and their associated deficits—are complex, multifactorial, and often comorbid. Genetic studies have repeatedly implicated the DYX2 locus, specifically the genes DCDC2 and KIAA0319, in RD, with recent studies suggesting they also influence LI, verbal language, and cognition. Here, we characterize the relationship of the DYX2 locus with RD, LI, and IQ. To accomplish this, we developed a marker panel densely covering the 1.4 Mb DYX2 locus and assessed association with reading, language, and IQ measures in subjects from the Avon Longitudinal Study of Parents and Children. We then replicated associations in three independent, disorder-selected cohorts. As expected, there were associations with known RD risk genes KIAA0319 and DCDC2. In addition, we implicated markers in or near other DYX2 genes, including TDP2, ACOT13, C6orf62, FAM65B, and CMAHP. However, the LD structure of the locus suggests that associations within TDP2, ACOT13, and C6orf62 are capturing a previously reported risk variant in KIAA0319. Our results further substantiate the candidacy of KIAA0319 and DCDC2 as major effector genes in DYX2, while proposing FAM65B and CMAHP as new DYX2 candidate genes. Association of DYX2 with multiple neurobehavioral traits suggests risk variants have functional consequences affecting multiple neurological processes. Future studies should dissect these functional, possibly interactive relationships of DYX2 candidate genes.
Collapse
|
10
|
Campbell D, Bick J, Yrigollen CM, Lee M, Joseph A, Chang JT, Grigorenko EL. Schooling and variation in the COMT gene: the devil is in the details. J Child Psychol Psychiatry 2013; 54:1056-65. [PMID: 23952646 PMCID: PMC3786416 DOI: 10.1111/jcpp.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Schooling is considered one of the major contributors to the development of intelligence within societies and individuals. Genetic variation might modulate the impact of schooling and explain, at least partially, the presence of individual differences in classrooms. METHOD We studied a sample of 1,502 children (mean age = 11.7 years) from Zambia. Approximately 57% of these children were enrolled in school, and the rest were not. To quantify genetic variation, we investigated a number of common polymorphisms in the catechol-O-methyltransferase (COMT) gene that controls the production of the protein thought to account for >60% of the dopamine degradation in the prefrontal cortex. RESULTS Haplotype analyses generated results ranging from the presence to absence of significant interactions between a number of COMT haplotypes and indicators of schooling (i.e., in- vs. out-of-school and grade completed) in the prediction of nonverbal intelligence, depending on the parameter specification. However, an investigation of the distribution of corresponding p-values suggested that these positive results were false. CONCLUSIONS Convincing evidence that the variation in the COMT gene is associated with individual differences in nonverbal intelligence either directly or through interactions with schooling was not found. p-values produced by the method of testing for haplotype effects employed here may be sensitive to parameter settings, invalid under default settings, and should be checked for validity through simulation.
Collapse
Affiliation(s)
- Daniel Campbell
- Child Study Center, Yale University, New Haven, CT, United States
| | - Johanna Bick
- Child Study Center, Yale University, New Haven, CT, United States
| | | | - Maria Lee
- Child Study Center, Yale University, New Haven, CT, United States
| | | | | | - Elena L. Grigorenko
- Child Study Center, Yale University, New Haven, CT, United States,Columbia University, New York, NY, USA,Moscow State University for Psychology and Education, Russia
| | | |
Collapse
|
11
|
Chabris CF, Lee JJ, Benjamin DJ, Beauchamp JP, Glaeser EL, Borst G, Pinker S, Laibson DI. Why it is hard to find genes associated with social science traits: theoretical and empirical considerations. Am J Public Health 2013; 103 Suppl 1:S152-66. [PMID: 23927501 DOI: 10.2105/ajph.2013.301327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES We explain why traits of interest to behavioral scientists may have a genetic architecture featuring hundreds or thousands of loci with tiny individual effects rather than a few with large effects and why such an architecture makes it difficult to find robust associations between traits and genes. METHODS We conducted a genome-wide association study at 2 sites, Harvard University and Union College, measuring more than 100 physical and behavioral traits with a sample size typical of candidate gene studies. We evaluated predictions that alleles with large effect sizes would be rare and most traits of interest to social science are likely characterized by a lack of strong directional selection. We also carried out a theoretical analysis of the genetic architecture of traits based on R.A. Fisher's geometric model of natural selection and empirical analyses of the effects of selection bias and phenotype measurement stability on the results of genetic association studies. RESULTS Although we replicated several known genetic associations with physical traits, we found only 2 associations with behavioral traits that met the nominal genome-wide significance threshold, indicating that physical and behavioral traits are mainly affected by numerous genes with small effects. CONCLUSIONS The challenge for social science genomics is the likelihood that genes are connected to behavioral variation by lengthy, nonlinear, interactive causal chains, and unraveling these chains requires allying with personal genomics to take advantage of the potential for large sample sizes as well as continuing with traditional epidemiological studies.
Collapse
Affiliation(s)
- Christopher F Chabris
- Christopher F. Chabris is with the Department of Psychology, Union College, Schenectady, NY. James J. Lee, Gregoire Borst, and Steven Pinker are with the Department of Psychology, Harvard University, Cambridge, MA. Daniel J. Benjamin is with the Department of Economics, Cornell University, Ithaca, NY. Jonathan P. Beauchamp, Edward L. Glaeser, and David I. Laibson are with the Department of Economics, Harvard University
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chabris CF, Hebert BM, Benjamin DJ, Beauchamp J, Cesarini D, van der Loos M, Johannesson M, Magnusson PKE, Lichtenstein P, Atwood CS, Freese J, Hauser TS, Hauser RM, Christakis N, Laibson D. Most reported genetic associations with general intelligence are probably false positives. Psychol Sci 2012; 23:1314-23. [PMID: 23012269 PMCID: PMC3498585 DOI: 10.1177/0956797611435528] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
General intelligence (g) and virtually all other behavioral traits are heritable. Associations between g and specific single-nucleotide polymorphisms (SNPs) in several candidate genes involved in brain function have been reported. We sought to replicate published associations between g and 12 specific genetic variants (in the genes DTNBP1, CTSD, DRD2, ANKK1, CHRM2, SSADH, COMT, BDNF, CHRNA4, DISC1, APOE, and SNAP25) using data sets from three independent, well-characterized longitudinal studies with samples of 5,571, 1,759, and 2,441 individuals. Of 32 independent tests across all three data sets, only 1 was nominally significant. By contrast, power analyses showed that we should have expected 10 to 15 significant associations, given reasonable assumptions for genotype effect sizes. For positive controls, we confirmed accepted genetic associations for Alzheimer's disease and body mass index, and we used SNP-based calculations of genetic relatedness to replicate previous estimates that about half of the variance in g is accounted for by common genetic variation among individuals. We conclude that the molecular genetics of psychology and social science requires approaches that go beyond the examination of candidate genes.
Collapse
|
13
|
Benjamin DJ, Cesarini D, Chabris CF, Glaeser EL, Laibson DI, Guðnason V, Harris TB, Launer LJ, Purcell S, Smith AV, Johannesson M, Magnusson PKE, Beauchamp JP, Christakis NA, Atwood CS, Hebert B, Freese J, Hauser RM, Hauser TS, Grankvist A, Hultman CM, Lichtenstein P. The Promises and Pitfalls of Genoeconomics*. ANNUAL REVIEW OF ECONOMICS 2012; 4:627-662. [PMID: 23482589 PMCID: PMC3592970 DOI: 10.1146/annurev-economics-080511-110939] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This article reviews existing research at the intersection of genetics and economics, presents some new findings that illustrate the state of genoeconomics research, and surveys the prospects of this emerging field. Twin studies suggest that economic outcomes and preferences, once corrected for measurement error, appear to be about as heritable as many medical conditions and personality traits. Consistent with this pattern, we present new evidence on the heritability of permanent income and wealth. Turning to genetic association studies, we survey the main ways that the direct measurement of genetic variation across individuals is likely to contribute to economics, and we outline the challenges that have slowed progress in making these contributions. The most urgent problem facing researchers in this field is that most existing efforts to find associations between genetic variation and economic behavior are based on samples that are too small to ensure adequate statistical power. This has led to many false positives in the literature. We suggest a number of possible strategies to improve and remedy this problem: (a) pooling data sets, (b) using statistical techniques that exploit the greater information content of many genes considered jointly, and (c) focusing on economically relevant traits that are most proximate to known biological mechanisms.
Collapse
Affiliation(s)
- Daniel J Benjamin
- Department of Economics, Cornell University, Ithaca, New York 14853; National Bureau of Economic Research, Cambridge, Massachusetts 02138;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Genome-wide association study of intelligence: additive effects of novel brain expressed genes. J Am Acad Child Adolesc Psychiatry 2012; 51:432-440.e2. [PMID: 22449649 DOI: 10.1016/j.jaac.2012.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. METHOD We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally homogeneous family sample of 656 individuals with at least one child affected by attention-deficit/hyperactivity disorder (ADHD). RESULTS Haplotype trend regression analysis with sliding four-SNP windows identified haplotypes of genome-wide significance in genes involved in synaptic signaling (KIF16B; p = 1.27E-08) and neurodevelopment (PAX5; p = 3.58E-08), and highlight findings from a recent genetic study of cognitive ability (RXRA; p = 7.7E-08; GYPC; p = 2.5E-07). Further interrogation of SNPs within top haplotypes reveals that the minor alleles are associated with higher intelligence, whereas others are associated with relatively lower (but still average range) intelligence. Effects of the eight genes are additive, as a greater number of the associated genotypes in a given individual predict higher intelligence (p = 5.36E-08) and account for 8% of variance in intelligence. CONCLUSIONS Analyses that examine additive genetic effects may be useful in identifying regions where the additive effects of SNPs have a significant effect on phenotype. These results describe novel variants and additive effects of genes involved in brain development on variability in intelligence within an ADHD sample. The precise mechanisms of these loci in relation to determining individual differences in general cognitive ability require further investigation.
Collapse
|
15
|
Gene-based analysis of regionally enriched cortical genes in GWAS data sets of cognitive traits and psychiatric disorders. PLoS One 2012; 7:e31687. [PMID: 22384057 PMCID: PMC3285182 DOI: 10.1371/journal.pone.0031687] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/10/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked. PRINCIPAL FINDINGS At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample. CONCLUSION Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits.
Collapse
|
16
|
Rizzi TS, Arias-Vasquez A, Rommelse N, Kuntsi J, Anney R, Asherson P, Buitelaar J, Banaschewski T, Ebstein R, Ruano D, Van der Sluis S, Markunas CA, Garrett ME, Ashley-Koch AE, Kollins SH, Anastopoulos AD, Hansell NK, Wright MJ, Montgomery GW, Martin NG, Harris SE, Davies G, Tenesa A, Porteous DJ, Starr JM, Deary IJ, St Pourcain B, Davey Smith G, Timpson NJ, Evans DM, Gill M, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Sonuga-Barke E, Steinhausen HC, Taylor E, Faraone SV, Franke B, Posthuma D. The ATXN1 and TRIM31 genes are related to intelligence in an ADHD background: evidence from a large collaborative study totaling 4,963 subjects. Am J Med Genet B Neuropsychiatr Genet 2011; 156:145-57. [PMID: 21302343 PMCID: PMC3085124 DOI: 10.1002/ajmg.b.31149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 10/26/2010] [Indexed: 11/30/2022]
Abstract
Intelligence is a highly heritable trait for which it has proven difficult to identify the actual genes. In the past decade, five whole-genome linkage scans have suggested genomic regions important to human intelligence; however, so far none of the responsible genes or variants in those regions have been identified. Apart from these regions, a handful of candidate genes have been identified, although most of these are in need of replication. The recent growth in publicly available data sets that contain both whole genome association data and a wealth of phenotypic data, serves as an excellent resource for fine mapping and candidate gene replication. We used the publicly available data of 947 families participating in the International Multi-Centre ADHD Genetics (IMAGE) study to conduct an in silico fine mapping study of previously associated genomic locations, and to attempt replication of previously reported candidate genes for intelligence. Although this sample was ascertained for attention deficit/hyperactivity disorder (ADHD), intelligence quotient (IQ) scores were distributed normally. We tested 667 single nucleotide polymorphisms (SNPs) within 15 previously reported candidate genes for intelligence and 29451 SNPs in five genomic loci previously identified through whole genome linkage and association analyses. Significant SNPs were tested in four independent samples (4,357 subjects), one ascertained for ADHD, and three population-based samples. Associations between intelligence and SNPs in the ATXN1 and TRIM31 genes and in three genomic locations showed replicated association, but only in the samples ascertained for ADHD, suggesting that these genetic variants become particularly relevant to IQ on the background of a psychiatric disorder.
Collapse
Affiliation(s)
- Thais S Rizzi
- Department of Functional Genomics, CNCR, Neuroscience Campus Amsterdam, VU University and VU Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Patterns and risks of human disease have evolved. In this article, I review evidence regarding the importance of recent adaptive evolution, positive selection, and genomic conflicts in shaping the genetic and phenotypic architectures of polygenic human diseases. Strong recent selection in human populations can create and maintain genetically based disease risk primarily through three processes: increased scope for dysregulation from recent human adaptations, divergent optima generated by intraspecific genomic conflicts, and transient or stable deleterious by-products of positive selection caused by antagonistic pleiotropy, ultimately due to trade-offs at the levels of molecular genetics, development, and physiology. Human disease due to these processes appears to be concentrated in three sets of phenotypes: cognition and emotion, reproductive traits, and life-history traits related to long life-span. Diverse, convergent lines of evidence suggest that a small set of tissues whose pleiotropic patterns of gene function and expression are under especially strong selection-brain, placenta, testis, prostate, breast, and ovary-has mediated a considerable proportion of disease risk in modern humans.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University, Burnaby, B. C., Canada V5A 1S6.
| |
Collapse
|
18
|
Abstract
How genes contribute to cognition is a perennial question for psychologists and geneticists. In the early 21st century, familial studies, including twin studies, supported the theory that genetic variations contribute to differences in cognition, but have been of little practical use to clinical and educational practitioners as no individual predictions can be made using such data; heritability cannot predict the impact of environmental factors or intervention programs. With the sequencing of animal genomes and the development of molecular genetics, new methodologies have been developed: gene targeting (replacing a functional gene with a neutral gene by homologous recombination), transgenesis (overexpressing one gene or a set of genes from one species in another species), and genome-wide scans and quantitative trait loci mapping (a strategy for identifying chromosomal regions involved in complex traits). Association studies can be performed to find associations between allelic forms and variations in IQ. Genes linked to “normal” variations in cognition have been detected but for the moment such discoveries have had no direct applications in a clinical setting; the number of genes identified as being linked to intellectual impairment has increased rapidly. Links have been reported between chromosomal deletions and triplications and behavioral phenotypes. The identification of mechanisms involved in genetic diseases should have long-term consequences on educational and/or psychological support programs as well as on health care. Psychologists need to keep up to date on advances in research establishing relationships between genetics and intellectual disability and will thus be able to refer children with cognitive impairments to specialized care services.
Collapse
Affiliation(s)
- Michèle Carlier
- Aix Marseille University, France
- CNRS and Institut Universitaire de France, France
| | | |
Collapse
|
19
|
Crespi B, Summers K, Dorus S. Evolutionary genomics of human intellectual disability. Evol Appl 2010; 3:52-63. [PMID: 25567903 PMCID: PMC3352458 DOI: 10.1111/j.1752-4571.2009.00098.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/28/2009] [Indexed: 01/28/2023] Open
Abstract
Previous studies have postulated that X-linked and autosomal genes underlying human intellectual disability may have also mediated the evolution of human cognition. We have conducted the first comprehensive assessment of the extent and patterns of positive Darwinian selection on intellectual disability genes in humans. We report three main findings. First, as noted in some previous reports, intellectual disability genes with primary functions in the central nervous system exhibit a significant concentration to the X chromosome. Second, there was no evidence for a higher incidence of recent positive selection on X-linked than autosomal intellectual disability genes, nor was there a higher incidence of selection on such genes overall, compared to sets of control genes. However, the X-linked intellectual disability genes inferred to be subject to recent positive selection were concentrated in the Rho GTP-ase pathway, a key signaling pathway in neural development and function. Third, among all intellectual disability genes, there was evidence for a higher incidence of recent positive selection on genes involved in DNA repair, but not for genes involved in other functions. These results provide evidence that alterations to genes in the Rho GTP-ase and DNA-repair pathways may play especially-important roles in the evolution of human cognition and vulnerability to genetically-based intellectual disability.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina UniversityGreenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
20
|
Payton A. The Impact of Genetic Research on our Understanding of Normal Cognitive Ageing: 1995 to 2009. Neuropsychol Rev 2009; 19:451-77. [DOI: 10.1007/s11065-009-9116-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
|
21
|
Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of gamma-hydroxybutyrate associated with its deficiency. Hum Genomics 2009; 3:106-20. [PMID: 19164088 PMCID: PMC2657722 DOI: 10.1186/1479-7364-3-2-106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22) occupies a central position in central nervous system (CNS) neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA) recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2), represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH) or γ-hydroxybutyrate (GHB; AKR7A2). A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE), an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE). Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.
Collapse
|
22
|
Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet 2009; 126:215-32. [DOI: 10.1007/s00439-009-0655-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/08/2009] [Indexed: 02/07/2023]
|
23
|
De Rango F, Leone O, Dato S, Novelletto A, Bruni AC, Berardelli M, Mari V, Feraco E, Passarino G, De Benedictis G. Cognitive functioning and survival in the elderly: the SSADH C538T polymorphism. Ann Hum Genet 2008; 72:630-5. [PMID: 18505418 DOI: 10.1111/j.1469-1809.2008.00450.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The variability of the Succinic Semialdehyde Dehydrogenase (SSADH, or ALDH5A1) gene affects both pathological and normal phenotypes correlated to cognitive function. We tested the association between the C538T polymorphism of the SSADH gene and preservation of cognitive function in the elderly, and its possible effects on survival. A sample from southern Italy (514 subjects; 18-107 years) was screened for C538T variability. We found that, within the 65-85 years age range, the T/T genotype is overrepresented in subjects with impaired cognitive function (MMSE < or = 23) compared to those with conserved cognitive function (MMSE > 23). Furthermore, we found that the T/T genotype affects survival after 65 years of age. In fact, after this age, the survival function of T/T homozygous subjects is lower than that of the others. Given that the enzymatic activity of the protein encoded by allele T is 82.5% of the activity of the protein encoded by allele C, our results suggest that the efficiency of the SSADH enzyme is important for the preservation of cognitive function and survival in the elderly.
Collapse
Affiliation(s)
- F De Rango
- Department of Cell Biology, University of Calabria, 87036 Rende, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Testing replication of a 5-SNP set for general cognitive ability in six population samples. Eur J Hum Genet 2008; 16:1388-95. [PMID: 18493267 DOI: 10.1038/ejhg.2008.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A 5-single nucleotide polymorphism (SNP) set has been associated with general cognitive ability in 5000 7-year-old children from the Twins Early Development Study (TEDS). Four of these SNPs were identified through a 10 K microarray analysis and one was identified through a targeted analysis of brain-expressed genes. The present study tested this association with general cognitive ability in six population samples of varying size and age from Australia, the UK (Scotland and England) and the Netherlands. Results from the largest sample (N=1310) approached significance (P=0.06) in the direction of the original finding, but results from the other samples (N=205-758) were mixed. A meta-analysis of the results--allowing for effect size heterogeneity between samples--yielded a non-significant correlation (r=-0.01, P=0.57), indicating that this SNP set was not associated with general cognitive ability in the populations studied.
Collapse
|
25
|
QTLs identified for P3 amplitude in a non-clinical sample: importance of neurodevelopmental and neurotransmitter genes. Biol Psychiatry 2008; 63:864-73. [PMID: 17949694 DOI: 10.1016/j.biopsych.2007.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/26/2007] [Accepted: 09/07/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND The P3(00) event-related potential is an index of processing capacity (P3 amplitude) and stimulus evaluation (P3 latency) as well as a phenotypic marker of various forms of psychopathology where P3 abnormalities have been reported. METHODS A genome-wide linkage scan of 400-761 autosomal markers, at an average spacing of 5-10 centimorgans (cM), was completed in 647 twins/siblings (306 families mostly comprising dizygotic twins), mean age 16.3, range 15.4-20.1 years, for whom P3 amplitude and latency data were available. RESULTS Significant linkage for P3 amplitude was observed on chromosome 7q for the central recording site (logarithm-of-odds [LOD] = 3.88, p = .00002) and in the same region for both frontal (LOD = 2.19, p = .0015) and parietal (LOD = 1.67, p = .0053) sites, with multivariate analysis also identifying linkage in this region (LOD = 2.14, p = .0017). Suggestive linkage was also identified on 6p (LOD(max) = 2.49) and 12q (LOD(max) = 2.24), with other promising regions identified on 9q (LOD(max) = 2.14) and 10p (LOD(max) = 2.18). Less striking were the results for P3 latency; LOD > 1.5 were found on chromosomes 1q, 9q, 10q, 12q, and 19p. CONCLUSIONS This is a first step in the identification of genes for normal variation in the P3. Loci identified here for P3 amplitude suggest the possible importance of neurodevelopmental genes in addition to those influencing neurotransmitters, fitting with the evidence that P3 amplitude is sensitive to diverse types of brain abnormalities.
Collapse
|
26
|
Gosso FM, de Geus EJC, Polderman TJC, Boomsma DI, Posthuma D, Heutink P. Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC MEDICAL GENETICS 2007; 8:66. [PMID: 17996044 PMCID: PMC2198911 DOI: 10.1186/1471-2350-8-66] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/08/2007] [Indexed: 02/02/2023]
Abstract
BACKGROUND The CHRM2 gene, located on the long arm of chromosome 7 (7q31-35), is involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release, and has been implicated in higher cognitive processing. The aim of this study is the identification of functional (non)coding variants underlying cognitive phenotypic variation. METHODS We previously reported an association between polymorphisms in the 5'UTR regions of the CHRM2 gene and intelligence.. However, no functional variants within this area have currently been identified. In order to identify the relevant functional variant(s), we conducted a denser coverage of SNPs, using two independent Dutch cohorts, consisting of a children's sample (N = 371 ss; mean age 12.4) and an adult sample (N= 391 ss; mean age 37.6). For all individuals standardized intelligence measures were available. Subsequently, we investigated genotype-dependent CHRM2 gene expression levels in the brain, to explore putative enhancer/inhibition activity exerted by variants within the muscarinic acetylcholinergic receptor. RESULTS Using a test of within-family association two of the previously reported variants - rs2061174, and rs324650 - were again strongly associated with intelligence (P < 0.01). A new SNP (rs2350780) showed a trend towards significance. SNP rs324650, is located within a short interspersed repeat (SINE). Although the function of short interspersed repeats remains contentious, recent research revealed potential functionality of SINE repeats in a gene-regulatory context. Gene-expression levels in post-mortem brain material, however were not dependent on rs324650 genotype. CONCLUSION Using a denser coverage of SNPs in the CHRM2 gene, we confirmed the 5'UTR regions to be most interesting in the context of intelligence, and ruled out other regions of this gene. Although no correlation between genomic variants and gene expression was found, it would be interesting to examine allele-specific effects on CHRM2 transcripts expression in much more detail, for example in relation to transcripts specific halve-life and their relation to LTP and memory.
Collapse
Affiliation(s)
- Florencia M Gosso
- Dept of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Canli T. The emergence of genomic psychology. Insights from genomic analyses might allow psychologists to understand, predict and modify human behaviour. EMBO Rep 2007; 8 Spec No:S30-4. [PMID: 17726440 PMCID: PMC3327528 DOI: 10.1038/sj.embor.7400938] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Turhan Canli
- Psychology Department, Stony Brook University, New York, NY, USA.
| |
Collapse
|
28
|
|
29
|
Leone O, Blasi P, Palmerio F, Kozlov AI, Malaspina P, Novelletto A. A human derived SSADH coding variant is replacing the ancestral allele shared with primates. Ann Hum Biol 2007; 33:593-603. [PMID: 17381057 DOI: 10.1080/03014460601035748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A growing number of reports describe markers with high frequencies of the ancestral alleles in Africa, contrasting with high frequencies and possibly fixation of derived variants out of Africa. Such a pattern can be explained by either neutral or non-neutral processes. AIM The study examined worldwide frequencies of two non-synonymous variants in NAD(+)-dependent succinic semialdehyde dehydrogenase (SSADH), in a search for possible signatures of natural selection favouring the derived alleles. SUBJECTS AND METHODS The typing of 1574 subjects were compiled, representing 60 populations from all continents. SSADH haplotype frequencies were correlated across 52 populations to those of 260 single nucleotide polymorphism (SNP) markers deposited in the CEPH database and of markers reported to be under positive Darwinian selection. RESULTS In the world population, the c.538C variant is proceeding to replace the ancestral c.538T, shared with primates. The overall population differentiation is within the normal range. A significant correlation was also found between the frequencies of the derived alleles in SSADH and Microcephalin (MCPH1), which showed concerted changes worldwide and, at least in Asian populations, also on a restricted geographical scale. CONCLUSION The analysis of robust correlations based on a large panel of populations is potentially able to identify clusters of genomic regions or genes showing co-evolution of the frequencies of derived alleles.
Collapse
Affiliation(s)
- Ofelia Leone
- Department of Cell Biology, University of Calabria, Rende, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Luciano M, Hine E, Wright MJ, Duffy DL, MacMillan J, Martin NG. Effects of SCA1, MJD, and DPRLA triplet repeat polymorphisms on cognitive phenotypes in a normal population of adolescent twins. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:95-100. [PMID: 16967484 DOI: 10.1002/ajmg.b.30413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The expansion of unstable trinucleotide CAG repeat polymorphisms of a number of genes causes several neurodegenerative disorders with decreased cognitive function, the severity of the disorder being related to allele length at the triplet repeat locus. While the effects of repeat length have been well studied in clinical samples, there has been little investigation of the effects of triplet repeat variation in the normal range for these genes. We have, therefore, examined linkage and association for three CAG triplet repeat markers (Spinocerebellar Ataxia Type 1, SCA1; Machado-Joseph Disease, MJD; Dentatorubro-pallidoluysian Atrophy, DRPLA) to assess their contribution to variation in cognitive ability (IQ, reading ability, processing speed) in a normal, unselected sample of adolescent twins (248 dizygotic (DZ) sibling pairs, aged 16 years). Association tests, performed in Mx and QTDT, showed a consistent positive association of SCA1 with Arithmetic (P = 0.04). While association was supported between SCA1 and Cambridge reading scores and between DRPLA and inspection time, results were inconsistent across software packages. Given the number of statistical tests performed, it is unlikely that trinucleotide repeat variation in the normal range for these genes influences variation in normal cognition.
Collapse
Affiliation(s)
- M Luciano
- Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Gosso MF, van Belzen M, de Geus EJC, Polderman JC, Heutink P, Boomsma DI, Posthuma D. Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families. GENES BRAIN AND BEHAVIOR 2006; 5:577-84. [PMID: 17081262 DOI: 10.1111/j.1601-183x.2006.00211.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CHRM2 gene is thought to be involved in neuronal excitability, synaptic plasticity and feedback regulation of acetylcholine release and has previously been implicated in higher cognitive processing. In a sample of 667 individuals from 304 families, we genotyped three single-nucleotide polymorphisms (SNPs) in the CHRM2 gene on 7q31-35. From all individuals, standardized intelligence measures were available. Using a test of within-family association, which controls for the possible effects of population stratification, a highly significant association was found between the CHRM2 gene and intelligence. The strongest association was between rs324650 and performance IQ (PIQ), where the T allele was associated with an increase of 4.6 PIQ points. In parallel with a large family-based association, we observed an attenuated - although still significant - population-based association, illustrating that population stratification may decrease our chances of detecting allele-trait associations. Such a mechanism has been predicted earlier, and this article is one of the first to empirically show that family-based association methods are not only needed to guard against false positives, but are also invaluable in guarding against false negatives.
Collapse
Affiliation(s)
- M F Gosso
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
This article provides an overview of the biometric and molecular genetic studies of human psychometric intelligence. In the biometric research, special attention is given to the environmental and genetic contributions to specific and general cognitive ability differences, and how these differ from early childhood to old age. Special mention is also made of multivariate studies that examine the genetic correlation between intelligence test scores and their correlates such as processing speed, birth weight and brain size. After an overview of candidate gene associations with intelligence test scores, there is a discussion of whole-genome linkage and association studies, the first of which have only recently appeared.
Collapse
Affiliation(s)
- Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
34
|
Blasi P, Palmerio F, Aiello A, Rocchi M, Malaspina P, Novelletto A. SSADH Variation in Primates: Intra- and Interspecific Data on a Gene with a Potential Role in Human Cognitive Functions. J Mol Evol 2006; 63:54-68. [PMID: 16786440 DOI: 10.1007/s00239-005-0154-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/22/2005] [Indexed: 10/24/2022]
Abstract
In the present study we focus on the nucleotide and the inferred amino acid variation occurring in humans and other primate species for mitochondrial NAD(+)-dependent succinic semialdehyde dehydrogenase, a gene recently supposed to contribute to cognitive performance in humans. We determined 2527 bp of coding, intronic, and flanking sequences from chimpanzee, bonobo, gorilla, orangutan, gibbon, and macaque. We also resequenced the entire coding sequence on 39 independent chromosomes from Italian families. Four variable coding sites were genotyped in additional populations from Europe, Africa, and Asia. A test for constancy of the nonsynonymous vs. synonymous rates of nucleotide changes revealed that primates are characterized by largely variable d(N)/d(S) ratios. On a background of strong conservation, probably controlled by selective constraints, the lineage leading to humans showed a ratio increased to 0.42. Human polymorphic levels fall in the range reported for other genes, with a pattern of frequency and haplotype structure strongly suggestive of nonneutrality. The comparison with the primate sequences allowed inferring the ancestral state at all variable positions, suggesting that the c.538(C) allele and the associated functional variant is indeed a derived state that is proceeding to fixation. The unexpected pattern of human polymorphism compared to interspecific findings outlines the possibility of a recent positive selection on some variants relevant to new cognitive capabilities unique to humans.
Collapse
Affiliation(s)
- Paola Blasi
- Department of Biology, University "Tor Vergata", via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Payton A. Investigating cognitive genetics and its implications for the treatment of cognitive deficit. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 1:44-53. [PMID: 16417617 DOI: 10.1111/j.1601-183x.2006.00194.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive impairment in the elderly, caused by either normal ageing process or dementia, is an increasing problem in developed countries that has enormous social and economic considerations. Research investigating the genetic basis of cognition is a new and rapidly developing field that may aid in the development of new treatments for age-related cognitive deficit. Over the past 6 years, a number of quantitative trait loci (QTLs) have been associated with cognitive functioning in humans including loci within the genes catechol-o-methyltransferase, brain-derived neurotrophic factor, muscle segment homeobox 1, serotonin transporter 2A (HTR2A), cholinergic muscarinic receptor 2, cathepsin D, metabotrophic glutamate receptor and most recently the class II human leukocyte antigens. Unfortunately, inconsistency within the literature, which is a hallmark of almost all association studies investigating complex diseases and traits, is casting doubt as to which genes are truly associated with cognition and which are a result of Type 2 error. This review will highlight implicated intelligence QTLs, examine the probable reasons for the current discrepancies between reports and discuss the potential advantages that may be procured from the study of cognitive genetics.
Collapse
Affiliation(s)
- A Payton
- Centre for Integrated Genomic Medical Research, Stopford building, University of Manchester, Oxford road, Manchester, UK.
| |
Collapse
|
36
|
Lorenz S, Heils A, Taylor KP, Gehrmann A, Muhle H, Gresch M, Becker T, Tauer U, Stephani U, Sander T. Candidate gene analysis of the succinic semialdehyde dehydrogenase gene (ALDH5A1) in patients with idiopathic generalized epilepsy and photosensitivity. Neurosci Lett 2006; 397:234-9. [PMID: 16406321 DOI: 10.1016/j.neulet.2005.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/28/2005] [Accepted: 12/09/2005] [Indexed: 11/30/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH) is involved in the degradation of the inhibitory neurotransmitter GABA and about 50% of patients with SSADH deficiency suffer from seizures. The gene encoding SSADH (gene symbol: ALDH5A1) maps in proximity to susceptibility loci for juvenile myoclonic epilepsy (JME) and photosensitivity on chromosome 6p22. The present study tested whether variation of the ALDH5A1 gene confers susceptibility to common syndromes of idiopathic generalized epilepsy (IGE) and an abnormal photoparoxysmal response (PPR). Mutation screening of the ALDH5A1 coding sequence of 35IGE/PPR patients and four healthy control subjects identified 17 sequence variants, of which three resulted in an exchange of amino acids (H180Y, P182L, A237S). Association analysis was carried out for six single nucleotide polymorphisms (SNPs) and one trinucleotide repeat polymorphism (TNR, intron 1), covering the genomic ALDH5A1 sequence. The study sample comprised 566 unrelated German IGE patients, including 218 JME and 95 photosensitive IGE patients, 78 PPR probands without IGE, and 662 German population controls. None of the investigated ALDH5H1 polymorphisms showed evidence for an allelic or genotypic association with either IGE, JME, or PPR, when corrected for multiple tests. A tentative haplotypic association of the two-marker haplotype (rs1883415-TNR) covering the 5'-regulatory region in IGE patients (chi2=11.65, d.f.=3, P=0.009) warrants further replication studies. The present results do not provide evidence that any ALDH5A1 missense variant itself contributes a common and substantial susceptibility effect (RR>2) to IGE syndromes or an increased liability to visually-induced cortical synchronization.
Collapse
Affiliation(s)
- Susanne Lorenz
- Gene Mapping Center, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burdick KE, Lencz T, Funke B, Finn CT, Szeszko PR, Kane JM, Kucherlapati R, Malhotra AK. Genetic variation in DTNBP1 influences general cognitive ability. Hum Mol Genet 2006; 15:1563-8. [PMID: 16415041 DOI: 10.1093/hmg/ddi481] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human intelligence is a trait that is known to be significantly influenced by genetic factors, and recent linkage data provide positional evidence to suggest that a region on chromosome 6p, previously associated with schizophrenia, may be linked to variation in intelligence. The gene for dysbindin-1 (DTNBP1) is located at 6p and has also been implicated in schizophrenia, a neuropsychiatric disorder characterized by cognitive dysfunction. We report an association between DTNBP1 genotype and general cognitive ability (g) in two independent cohorts, including 213 patients with schizophrenia or schizo-affective disorder and 126 healthy volunteers. These data suggest that DTNBP1 genetic variation influences human intelligence.
Collapse
Affiliation(s)
- Katherine E Burdick
- Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Albert Einstein College of Medicine, Glen Oaks, NY 11004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wainwright MA, Wright MJ, Luciano M, Montgomery GW, Geffen GM, Martin NG. A linkage study of academic skills defined by the Queensland core skills test. Behav Genet 2005; 36:56-64. [PMID: 16362232 DOI: 10.1007/s10519-005-9013-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 08/15/2005] [Indexed: 11/30/2022]
Abstract
This study used genome-wide linkage analysis to detect Quantitative Trait Loci (QTLs) implicated in variation in general academic achievement as measured by the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2004). Data from 210 families were analysed. While no empirically derived significant or suggestive peaks for general academic achievement were indicated a peak on chromosome 2 was observed in a region where Posthuma et al. (2005) reported significant linkage for Performance IQ (PIQ) and suggestive linkage for Full Scale IQ (FSIQ), and Luciano et al. (this issue) observed significant linkage for PIQ and word reading. A peak on chromosome 18 was also observed approximately 20 cM removed from a region recently implicated in reading achievement. In addition, on chromosomes 2 and 18 peaks for a number of specific academic skills, two of which were suggestive, coincided with the general academic achievement peaks. The findings suggest that variation in general academic achievement is influenced by genes on chromosome 2 which have broad influence on a variety of cognitive abilities.
Collapse
Affiliation(s)
- Mark A Wainwright
- Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Luciano M, Wright MJ, Duffy DL, Wainwright MA, Zhu G, Evans DM, Geffen GM, Montgomery GW, Martin NG. Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behav Genet 2005; 36:45-55. [PMID: 16341610 DOI: 10.1007/s10519-005-9003-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
A genome-wide linkage scan of 795 microsatellite markers (761 autosomal, 34 X chromosome) was performed on Multidimensional Aptitude Battery subtests and verbal, performance and full scale scores, the WAIS-R Digit Symbol subtest, and two word-recognition tests (Schonell Graded Word Reading Test, Cambridge Contextual Reading Test) highly predictive of IQ. The sample included 361 families comprising 2-5 siblings who ranged in age from 15.7 to 22.2 years; genotype, but not phenotype, data were available for 81% of parents. A variance components analysis which controlled for age and sex effects showed significant linkage for the Cambridge reading test and performance IQ to the same region on chromosome 2, with respective LOD scores of 4.15 and 3.68. Suggestive linkage (LOD score>2.2) for various measures was further supported on chromosomes 6, 7, 11, 14, 21 and 22. Where location of linkage peaks converged for IQ subtests within the same scale, the overall scale score provided increased evidence for linkage to that region over any individual subtest. Association studies of candidate genes, particularly those involved in neural transmission and development, will be directed to genes located under the linkage peaks identified in this study.
Collapse
Affiliation(s)
- M Luciano
- Queensland Institute of Medical Research, Herston, Brisbane, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Posthuma D, Luciano M, Geus EJCD, Wright MJ, Slagboom PE, Montgomery GW, Boomsma DI, Martin NG. A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet 2005; 77:318-26. [PMID: 16001363 PMCID: PMC1224534 DOI: 10.1086/432647] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/10/2005] [Indexed: 02/04/2023] Open
Abstract
Between 40% and 80% of the variation in human intelligence (IQ) is attributable to genetic factors. Except for many rare mutations resulting in severe cognitive dysfunction, attempts to identify these factors have not been successful. We report a genomewide linkage scan involving 634 sibling pairs designed to identify chromosomal regions that explain variation in IQ. Model-free multipoint linkage analysis revealed evidence of a significant quantitative-trait locus for performance IQ at 2q24.1-31.1 (LOD score 4.42), which overlaps the 2q21-33 region that has repeatedly shown linkage to autism. A second region revealed suggestive linkage for both full-scale and verbal IQs on 6p25.3-22.3 (LOD score 3.20 for full-scale IQ and 2.33 for verbal IQ), overlapping marginally with the 6p22.3-21.31 region implicated in reading disability and dyslexia.
Collapse
Affiliation(s)
- Danielle Posthuma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|