1
|
Oved JH, Russell A, DeZern A, Prockop SE, Bonfim C, Sharma A, Purtill D, Lakkaraja M, Bidgoli A, Bhoopalan SV, Soni S, Boelens JJ, Abraham A. The role of the conditioning regimen for autologous and ex vivo genetically modified hematopoietic stem cell-based therapies: recommendations from the ISCT stem cell engineering committee. Cytotherapy 2024:S1465-3249(24)00838-7. [PMID: 39320295 DOI: 10.1016/j.jcyt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The advent of autologous gene modified cell therapies to treat monogenic disorders has been a major step forward for the field of hematopoietic stem cell transplantation (HCT) and cellular therapies. The need for disease-specific conditioning to enable these products to provide a potential cure has required extrapolation from experience in myeloablative and non-myeloablative HCT for these disorders. METHODS In this manuscript, we review the current datasets and clinical experience using different conditioning regimens for autologous gene therapies in hemoglobinopathies, metabolic and lysosomal disorders, inborn errors of immunity (IEI) and bone marrow failure (BMF) syndromes. RESULTS The disease specific and unique conditioning requirements of each disorder are considered in order to achieve maximal benefit while minimizing associated toxicities. CONCLUSIONS Standardized recommendations based on these data are made for each set of disorders to harmonize treatment. Future directions and the possibility of non-genotoxic conditioning regimens for autologous gene therapies are also discussed. Ethical Statement: The authors followed all relevant ethical considerations in writing this manuscript.
Collapse
Affiliation(s)
- Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA.
| | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Susan E Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital and PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Madhavi Lakkaraja
- Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sandeep Soni
- Pediatrics, University of California, San Francisco, California, USA; Crispr Therapeutics AG, Boston, Massachusetts, USA; ISCT Immune-Gene Therapy Committee, ISCT, Vancouver, California, USA
| | - Jaap Jan Boelens
- Transplant and Cellular Therapies, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
3
|
Blanco E, Izotova N, Booth C, Thrasher AJ. Immune Reconstitution After Gene Therapy Approaches in Patients With X-Linked Severe Combined Immunodeficiency Disease. Front Immunol 2020; 11:608653. [PMID: 33329605 PMCID: PMC7729079 DOI: 10.3389/fimmu.2020.608653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
X-linked severe immunodeficiency disease (SCID-X1) is an inherited, rare, and life-threating disease. The genetic origin is a defect in the interleukin 2 receptor γ chain (IL2RG) gene and patients are classically characterized by absence of T and NK cells, as well as presence of partially-functional B cells. Without any treatment the disease is usually lethal during the first year of life. The treatment of choice for these patients is hematopoietic stem cell transplantation, with an excellent survival rate (>90%) if an HLA-matched sibling donor is available. However, when alternative donors are used, the success and survival rates are often lower. Gene therapy has been developed as an alternative treatment initially using γ-retroviral vectors to correct the defective γ chain in the absence of pre-conditioning treatment. The results were highly promising in SCID-X1 infants, showing long-term T-cell recovery and clinical benefit, although NK and B cell recovery was less robust. However, some infants developed T-cell acute lymphoblastic leukemia after the gene therapy, due to vector-mediated insertional mutagenesis. Consequently, considerable efforts have been made to develop safer vectors. The most recent clinical trials using lentiviral vectors together with a low-dose pre-conditioning regimen have demonstrated excellent sustained T cell recovery, but also B and NK cells, in both children and adults. This review provides an overview about the different gene therapy approaches used over the last 20 years to treat SCID-X1 patients, particularly focusing on lymphoid immune reconstitution, as well as the developments that have improved the process and outcomes.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalia Izotova
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adrian James Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Garcia-Perez L, van Eggermond M, van Roon L, Vloemans SA, Cordes M, Schambach A, Rothe M, Berghuis D, Lagresle-Peyrou C, Cavazzana M, Zhang F, Thrasher AJ, Salvatori D, Meij P, Villa A, Van Dongen JJ, Zwaginga JJ, van der Burg M, Gaspar HB, Lankester A, Staal FJ, Pike-Overzet K. Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Mol Ther Methods Clin Dev 2020; 17:666-682. [PMID: 32322605 PMCID: PMC7163047 DOI: 10.1016/j.omtm.2020.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Recombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We designed lentiviral vectors with different internal promoters driving codon-optimized RAG1 to ensure optimal expression. We used Rag1 -/- mice as a preclinical model for RAG1-SCID to assess the efficacy of the various vectors. We observed that B and T cell reconstitution directly correlated with RAG1 expression. Mice with low RAG1 expression showed poor immune reconstitution; however, higher expression resulted in phenotypic and functional lymphocyte reconstitution comparable to mice receiving wild-type stem cells. No signs of genotoxicity were found. Additionally, RAG1-SCID patient CD34+ cells transduced with our clinical RAG1 vector and transplanted into NSG mice led to improved human B and T cell development. Considering this efficacy outcome, together with favorable safety data, these results substantiate the need for a clinical trial for RAG1-SCID.
Collapse
Affiliation(s)
- Laura Garcia-Perez
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Marja van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Lieke van Roon
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Sandra A. Vloemans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Martijn Cordes
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Dagmar Berghuis
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France
- Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France
- Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Daniela Salvatori
- Central Laboratory Animal Facility, Pathology Unit, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Department of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
- Pathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Anatomy and Physiology Division, Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan1, 3584CL Utrecht, the Netherlands
| | - Pauline Meij
- Department of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Anna Villa
- Pathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jacques J.M. Van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Jaap-Jan Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Mirjam van der Burg
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - H. Bobby Gaspar
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
| | - Arjan Lankester
- Willem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Frank J.T. Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| |
Collapse
|
5
|
Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases 2018; 6:diseases6030074. [PMID: 30110885 PMCID: PMC6164475 DOI: 10.3390/diseases6030074] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) have a profound impact on human health worldwide and their incidence is predicted to increase as the population ages. ND severely limits the quality of life and leads to early death. Aside from treatments that may reduce symptoms, NDs are almost completely without means of therapeutic intervention. The genetic and biochemical basis of many NDs is beginning to emerge although most have complex etiologies for which common themes remain poorly resolved. Largely relying on progress in vector design, gene therapy is gaining increasing support as a strategy for genetic treatment of diseases. Here we describe recent developments in the engineering of highly defective herpes simplex virus (HSV) vectors suitable for transfer and long-term expression of large and/or multiple therapeutic genes in brain neurons in the complete absence of viral gene expression. These advanced vector platforms are safe, non-inflammatory, and persist in the nerve cell nucleus for life. In the near term, it is likely that HSV can be used to treat certain NDs that have a well-defined genetic cause. As further information on disease etiology becomes available, these vectors may take on an expanded role in ND therapies, including gene editing and repair.
Collapse
|
6
|
García-Ramírez I, Bhatia S, Rodríguez-Hernández G, González-Herrero I, Walter C, González de Tena-Dávila S, Parvin S, Haas O, Woessmann W, Stanulla M, Schrappe M, Dugas M, Natkunam Y, Orfao A, Domínguez V, Pintado B, Blanco O, Alonso-López D, De Las Rivas J, Martín-Lorenzo A, Jiménez R, García Criado FJ, García Cenador MB, Lossos IS, Vicente-Dueñas C, Borkhardt A, Hauer J, Sánchez-García I. Lmo2 expression defines tumor cell identity during T-cell leukemogenesis. EMBO J 2018; 37:embj.201798783. [PMID: 29880602 PMCID: PMC6043907 DOI: 10.15252/embj.201798783] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
The impact of LMO2 expression on cell lineage decisions during T‐cell leukemogenesis remains largely elusive. Using genetic lineage tracing, we have explored the potential of LMO2 in dictating a T‐cell malignant phenotype. We first initiated LMO2 expression in hematopoietic stem/progenitor cells and maintained its expression in all hematopoietic cells. These mice develop exclusively aggressive human‐like T‐ALL. In order to uncover a potential exclusive reprogramming effect of LMO2 in murine hematopoietic stem/progenitor cells, we next showed that transient LMO2 expression is sufficient for oncogenic function and induction of T‐ALL. The resulting T‐ALLs lacked LMO2 and its target‐gene expression, and histologically, transcriptionally, and genetically similar to human LMO2‐driven T‐ALL. We next found that during T‐ALL development, secondary genomic alterations take place within the thymus. However, the permissiveness for development of T‐ALL seems to be associated with wider windows of differentiation than previously appreciated. Restricted Cre‐mediated activation of Lmo2 at different stages of B‐cell development induces systematically and unexpectedly T‐ALL that closely resembled those of their natural counterparts. Together, these results provide a novel paradigm for the generation of tumor T cells through reprogramming in vivo and could be relevant to improve the response of T‐ALL to current therapies.
Collapse
Affiliation(s)
- Idoia García-Ramírez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Dusseldorf, Germany
| | - Guillermo Rodríguez-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Inés González-Herrero
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Sara González de Tena-Dávila
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Salma Parvin
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Oskar Haas
- Children's Cancer Research Institute, St Anna Children's Hospital, Vienna, Austria
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alberto Orfao
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Servicio de Citometría and Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | | | - Belén Pintado
- Transgenesis Facility CNB-CBMSO, CSIC-UAM, Madrid, Spain
| | - Oscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Bioinformatics and Functional Genomics Research Group, Cancer Research Center (CSIC-USAL), Salamanca, Spain
| | - Alberto Martín-Lorenzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Rafael Jiménez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Fisiología y Farmacología, Edificio Departamental, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Javier García Criado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - María Begoña García Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Izidore S Lossos
- Division of Hematology-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | | | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Dusseldorf, Germany
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Dusseldorf, Germany
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Salamanca, Spain .,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
The development of T cells from stem cells in mice and humans. Future Sci OA 2017; 3:FSO186. [PMID: 28883990 PMCID: PMC5583695 DOI: 10.4155/fsoa-2016-0095] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
T cells develop from hematopoietic stem cells in the specialized microenvironment of the thymus. The main transcriptional players of T-cell differentiation such as Notch, Tcf-1, Gata3 and Bcl11b have been identified, but their role and regulation are not yet completely understood. In humans, functional experiments on T-cell development have traditionally been rather difficult to perform, but novel in vitro culture systems and in vivo xenograft models have allowed detailed studies on human T-cell development. Recent work has allowed the use of human severe combined immunodeficiency stem cells to unravel developmental checkpoints for human thymocyte development.
Collapse
|
8
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
9
|
Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene 2016; 36:1169-1175. [PMID: 27721401 PMCID: PMC5340798 DOI: 10.1038/onc.2016.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023]
Abstract
Extensive research has been performed regarding the integration sites of murine leukemia retrovirus (MLV) for the identification of proto-oncogenes. To date, the overlap of mutations within specific oligonucleotides across different tumor genomes has been regarded as a rare event; however, a recent study of MLV integration into the oncogene Zfp521 suggested the existence of a hotspot oligonucleotide for MLV integration. In the current review, we discuss the hotspots of MLV integration into several genes: c-Myc, Stat5a and N-myc, as well as ZFP521, as examined in tumor genomes. From this, MLV integration convergence within specific oligonucleotides is not necessarily a rare event. This short review aims to promote re-consideration of MLV integration within the tumor genome, which involves both well-known and potentially newly identified and novel mechanisms and specifications.
Collapse
|
10
|
Vu BT, Tan Le D, Van Pham P. Synergistic effect of chimeric antigen receptors and cytokineinduced killer cells: An innovative combination for cancer therapy. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0025-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings.
Collapse
|
12
|
Adams C, Israel LL, Ostrovsky S, Taylor A, Poptani H, Lellouche JP, Chari D. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells. Adv Healthc Mater 2016; 5:841-9. [PMID: 26867130 DOI: 10.1002/adhm.201500885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/11/2015] [Indexed: 11/11/2022]
Abstract
Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking).
Collapse
Affiliation(s)
- Christopher Adams
- Institute for Science and Technology in Medicine; Keele University; Staffordshire ST55BG United Kingdom
| | - Liron Limor Israel
- Department of Chemistry; Building 211 (the Gradel Centre); Room 303 (3rd floor); Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Stella Ostrovsky
- Department of Chemistry; Building 211 (the Gradel Centre); Room 303 (3rd floor); Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Arthur Taylor
- Centre for Pre-Clinical Imaging; Institute for Translational Medicine; Crown Street; University of Liverpool; Liverpool L69 3BX United Kingdom
| | - Harish Poptani
- Centre for Pre-Clinical Imaging; Institute for Translational Medicine; Crown Street; University of Liverpool; Liverpool L69 3BX United Kingdom
| | - Jean-Paul Lellouche
- Department of Chemistry; Building 211 (the Gradel Centre); Room 303 (3rd floor); Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Divya Chari
- Institute for Science and Technology in Medicine; Keele University; Staffordshire ST55BG United Kingdom
| |
Collapse
|
13
|
Abstract
LMO2 was first discovered through proximity to frequently occurring chromosomal translocations in T cell acute lymphoblastic leukaemia (T-ALL). Subsequent studies on its role in tumours and in normal settings have highlighted LMO2 as an archetypical chromosomal translocation oncogene, activated by association with antigen receptor gene loci and a paradigm for translocation gene activation in T-ALL. The normal function of LMO2 in haematopoietic cell fate and angiogenesis suggests it is a master gene regulator exerting a dysfunctional control on differentiation following chromosomal translocations. Its importance in T cell neoplasia has been further emphasized by the recurrent findings of interstitial deletions of chromosome 11 near LMO2 and of LMO2 as a target of retroviral insertion gene activation during gene therapy trials for X chromosome-linked severe combined immuno-deficiency syndrome, both types of event leading to similar T cell leukaemia. The discovery of LMO2 in some B cell neoplasias and in some epithelial cancers suggests a more ubiquitous function as an oncogenic protein, and that the current development of novel inhibitors will be of great value in future cancer treatment. Further, the role of LMO2 in angiogenesis and in haematopoietic stem cells (HSCs) bodes well for targeting LMO2 in angiogenic disorders and in generating autologous induced HSCs for application in various clinical indications.
Collapse
Affiliation(s)
- Jennifer Chambers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
14
|
Staal FJT, Wiekmeijer AS, Brugman MH, Pike-Overzet K. The functional relationship between hematopoietic stem cells and developing T lymphocytes. Ann N Y Acad Sci 2016; 1370:36-44. [PMID: 26773328 DOI: 10.1111/nyas.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In contrast to all other blood and immune cells, T lymphocytes do not develop in the bone marrow (BM), but in the specialized microenvironment provided by the thymus. Similar to the other lineages, however, all T cells arise from multipotent hematopoietic stem cells (HSCs) that reside in the BM. Not all HSCs give rise to T cells; but how many and what kind of developmental checkpoints are located along this intricate differentiation path is the subject of intense research. Traditionally, this process has been studied almost exclusively using mouse cells, but recent advances in immunodeficient mouse models, high-speed cell sorting, lentiviral transduction protocols, and deep sequencing techniques have allowed these questions to be addressed using human cells. Here we review the process of thymic seeding by BM-derived cells and T cell commitment in humans, discussing recent insights into the clonal composition of the thymus and the definition of developmental checkpoints, on the basis of insights from human severe combined immunodeficiency patients.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Wiekmeijer AS, Pike-Overzet K, IJspeert H, Brugman MH, Wolvers-Tettero ILM, Lankester AC, Bredius RGM, van Dongen JJM, Fibbe WE, Langerak AW, van der Burg M, Staal FJT. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol 2015; 137:517-526.e3. [PMID: 26441229 DOI: 10.1016/j.jaci.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome. Viruses 2015; 7:3241-60. [PMID: 26102582 PMCID: PMC4488736 DOI: 10.3390/v7062769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.
Collapse
|
17
|
Mesenchymal stem cells as cellular vehicles for prodrug gene therapy against tumors. Biochimie 2014; 105:4-11. [DOI: 10.1016/j.biochi.2014.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
|
18
|
Wagemaker G. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum Gene Ther 2014; 25:862-5. [PMID: 25184354 DOI: 10.1089/hum.2014.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease.
Collapse
Affiliation(s)
- Gerard Wagemaker
- Erasmus University Rotterdam, 3005 LA Rotterdam, The Netherlands
| |
Collapse
|
19
|
The case for transmissible antivirals to control population-wide infectious disease. Trends Biotechnol 2014; 32:400-5. [PMID: 25017994 DOI: 10.1016/j.tibtech.2014.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/08/2023]
Abstract
Infectious disease control faces significant challenges including: how to therapeutically target the highest-risk populations, circumvent behavioral barriers, and overcome pathogen persistence and resistance mechanisms. We review a recently proposed solution to overcome these challenges: antivirals that transmit by 'piggybacking' on viral replication. These proposed antivirals, termed 'therapeutic interfering particles' (TIPs), are engineered molecular parasites of viruses that are designed to steal replication resources from the wild type virus. Depriving viruses of crucial replication machinery, TIPs would reduce viral loads. As obligate parasites, TIPs would transmit via the same risk factors and transmission routes as wild type viruses, automatically reaching high-risk populations, and thereby substantially limiting viral transmission even in resource-poor settings. Design issues and ethical/safety considerations of this proposed intervention are discussed.
Collapse
|
20
|
Successful RAG1-SCID gene therapy depends on the level of RAG1 expression. J Allergy Clin Immunol 2014; 134:242-3. [DOI: 10.1016/j.jaci.2014.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/01/2014] [Indexed: 11/23/2022]
|
21
|
Kuroda M, Bujo H, Aso M, Saito Y. Adipocytes as a vehicle for ex vivo gene therapy: Novel replacement therapy for diabetes and other metabolic diseases. J Diabetes Investig 2014; 2:333-40. [PMID: 24843509 PMCID: PMC4019298 DOI: 10.1111/j.2040-1124.2011.00133.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Because of its availability and recent advances in cell biology, adipose tissue is now considered an ideal target site for the preparation of recipient cells and for the transplantation of gene‐transduced cells for supplementation of therapeutic proteins. Inherited or acquired serum protein deficiencies are the ideal targets for gene therapy. However, to develop an effective ex vivo gene therapy‐based protein replacement treatment, the requirements for the recipient cells are different from those for standard gene therapy that is intended to correct the function of the recipient cells themselves. To meet the requirements for such a therapeutic strategy, recent in vitro and animal model studies have developed new methods for the preparation, culture, expansion and manipulation of adipose cells using advanced gene transduction methods and transplantation scaffolds. In this short review, we introduce the progress made in novel adipose tissue‐based therapeutic strategies for the treatment of protein deficiencies by our group and other investigators, and describe their future applications for diabetes and other metabolic diseases. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00133.x, 2011)
Collapse
Affiliation(s)
| | - Hideaki Bujo
- Department of Genome Research and Clinical Application, Graduate School of Medicine
| | | | | |
Collapse
|
22
|
Yao NW, Chen CCV, Yen CT, Chang C. Promoted Growth of Brain Tumor by the Transplantation of Neural Stem/Progenitor Cells Facilitated by CXCL12. Transl Oncol 2014; 7:S1936-5233(14)00042-4. [PMID: 24862537 PMCID: PMC4145393 DOI: 10.1016/j.tranon.2014.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022] Open
Abstract
The targeted migration of neural stem/progenitor cells (NSPCs) is a prerequisite for the use of stem cell therapy in the treatment of pathologies. This migration is regulated mainly by C-X-C motif chemokine 12 (CXCL12). Therefore, promotion of the migratory responses of grafted cells by upregulating CXCL12 signaling has been proposed as a strategy for improving the efficacy of such cell therapies. However, the effects of this strategy on brain tumors have not yet been examined in vivo. The aim of the present study was thus to elucidate the effects of grafted rat green fluorescent protein (GFP)-labeled NSPCs (GFP-NSPCs) with CXCL12 enhancement on a model of spontaneous rat brain tumor induced by N-ethyl-N-nitrosourea. T2-weighted magnetic resonance imaging was applied to determine the changes in tumor volume and morphology over time. Postmortem histology was performed to confirm the tumor pathology, expression levels of CXCL12 and C-X-C chemokine receptor type 4, and the fate of GFP-NSPCs. The results showed that the tumor volume and hypointense areas of T2-weighted images were both significantly increased in animals treated with combined NSPC transplantation and CXCL12 induction, but not in control animals or in those with tumors that received only one of the treatments. GFP-NSPCs appear to migrate toward tumors with CXCL12 enhancement and differentiate uniquely into a neuronal lineage. These findings suggest that CXCL12 is an effective chemoattractant that facilitates exogenous NSPC migration toward brain tumors and that CXCL12 and NSPC can act synergistically to promote tumor progression with severe hemorrhage.
Collapse
Affiliation(s)
- Nai-Wei Yao
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chiao-Chi V Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| |
Collapse
|
23
|
Drake CR, Aissaoui A, Argyros O, Thanou M, Steinke JH, Miller AD. Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors. J Control Release 2013; 171:81-90. [DOI: 10.1016/j.jconrel.2013.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/31/2022]
|
24
|
Millard SM, Fisk NM. Mesenchymal stem cells for systemic therapy: Shotgun approach or magic bullets? Bioessays 2012. [DOI: 10.1002/bies.201200087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Romano G. Development of safer gene delivery systems to minimize the risk of insertional mutagenesis-related malignancies: a critical issue for the field of gene therapy. ISRN ONCOLOGY 2012; 2012:616310. [PMID: 23209944 PMCID: PMC3512301 DOI: 10.5402/2012/616310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
Integrating gene delivery systems allow for a more stable transgene expression in mammalian cells than the episomal ones. However, the integration of the shuttle vector within the cellular chromosomal DNA is associated with the risk of insertional mutagenesis, which, in turn, may cause malignant cell transformation. The use of a retroviral-derived vector system was responsible for the development of leukemia in five children, who participated in various clinical trials for the treatment of severe combined immunodeficiency (SCID-X1) in France and in the United Kingdom. Unfortunately, the hematological malignancy claimed the life of one patient in 2004, who was enrolled in the French clinical trial. In addition, adeno-associated-viral-(AAV-) mediated gene transfer induced tumors in animal models, whereas the Sleeping Beauty (SB) DNA transposon system was associated with insertional mutagenesis events in cell culture systems. On these grounds, it is necessary to develop safer gene delivery systems for the genetic manipulation of mammalian cells. This paper discusses the latest achievements that have been reported in the field of vector design.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio-Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
26
|
Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48:179-88. [PMID: 22001604 PMCID: PMC3293995 DOI: 10.1016/j.nbd.2011.09.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
The potential benefits of gene therapy for neurological diseases such as Parkinson's, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer's are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features.
Collapse
Affiliation(s)
- Thomas B. Lentz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Kosaka H, Ichikawa T, Kurozumi K, Kambara H, Inoue S, Maruo T, Nakamura K, Hamada H, Date I. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther 2012; 19:572-8. [DOI: 10.1038/cgt.2012.35] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Mikkers H, Pike-Overzet K, Staal FJT. Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure? Pediatr Res 2012; 71:427-32. [PMID: 22430378 DOI: 10.1038/pr.2011.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For most, but not all, types of severe combined immunodeficiency (SCID) the underlying molecular defects are known, in principle allowing the cure of affected children via gene therapy. Typically such approaches have used autologous hematopoietic stem cells modified to express a therapeutic gene via γ-retroviral vectors. Insertional mutagenesis has emerged as a significant risk for successful application of this type of gene therapy. Therefore, lentiviral vectors with a self-inactivating design have been developed. Recent advances in stem cell technology using induced pluripotent stem cells (iPSCs) allow an entire different approach to gene therapy for SCID and other genetic disorders, namely by correction of the affected gene in patient-specific iPSCs followed by hematopoietic differentiation. Here, we review these recent advances in the field from an efficacy and safety point of view.
Collapse
Affiliation(s)
- Harald Mikkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
29
|
Abstract
γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis.
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy, Milan, Italy
| | | | | |
Collapse
|
30
|
Chicaybam L, Laino Sodré A, Bonamino M. Chimeric Antigen Receptors in Cancer Immuno-Gene Therapy: Current Status and Future Directions. Int Rev Immunol 2011; 30:294-311. [DOI: 10.3109/08830185.2011.595855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Octa-arginine mediated delivery of wild-type Lnk protein inhibits TPO-induced M-MOK megakaryoblastic leukemic cell growth by promoting apoptosis. PLoS One 2011; 6:e23640. [PMID: 21853157 PMCID: PMC3154509 DOI: 10.1371/journal.pone.0023640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Lnk plays a non-redundant role by negatively regulating cytokine signaling of TPO, SCF or EPO. Retroviral expression of Lnk has been shown to suppress hematopoietic leukemic cell proliferation indicating its therapeutic value in cancer therapy. However, retroviral gene delivery carries risks of insertional mutagenesis. To circumvent this undesired consequence, we fused a cell permeable peptide octa-arginine to Lnk and evaluated the efficacy of inhibition of leukemic cell proliferation in vitro. Methodology/Principal Findings In this study, proliferation assays, flow cytometry, Western Blot analyses were performed on wild-type (WT), mutant Lnk R8 or BSA treated M-MOK cells. We found that delivered WT, but not mutant Lnk R8 blocked TPO-induced M-MOK megakaryoblastic leukemic cell proliferation. In contrast, WT Lnk R8 showed no growth inhibitive effect on non-hematopoietic HELA or COS-7 cell. Moreover, we demonstrated that TPO-induced M-MOK cell growth inhibition by WT Lnk R8 was dose-dependent. Penetrated WT Lnk R8 induced cell cycle arrest and apoptosis. Immunoprecipitation and Western blots data indicated WT Lnk R8 interacted with endogeneous Jak2 and downregulated Jak-Stat and MAPK phosphorylation level in M-MOK cells after TPO stimulation. Treatment with specific inhibitors (TG101348 and PD98059) indicated Jak-Stat and MAPK pathways were crucial for TPO-induced proliferation of M-MOK cells. Further analyses using TF-1 and HEL leukemic cell-lines showed that WT Lnk R8 inhibited Jak2-dependent cell proliferation. Using cord blood-derived CD34+ stem cells, we found that delivered WT Lnk R8 blocked TPO-induced megakaryopoiesis in vitro. Conclusions/Significance Intracellular delivery of WT Lnk R8 fusion protein efficiently inhibited TPO-induced M-MOK leukemic cell growth by promoting apoptosis. WT Lnk R8 protein delivery may provide a safer and more practical approach to inhibit leukemic cell growth worthy of further development.
Collapse
|
32
|
Silver JN, Elder M, Conlon T, Cruz P, Wright AJ, Srivastava A, Flotte TR. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency. Hum Gene Ther 2011; 22:935-49. [PMID: 21142972 PMCID: PMC6468955 DOI: 10.1089/hum.2010.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 12/12/2010] [Indexed: 12/18/2022] Open
Abstract
Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010 ). Currently, rAAV vectors are being utilized in phase I/II clinical trials for cystic fibrosis, α-1 antitrypsin deficiency, Canavan's disease, Parkinson's disease, hemophilia, limb-girdle muscular dystrophy, arthritis, Batten's disease, and Leber's congenital amaurosis (Flotte et al., 1996 , 2004 ; Kay et al., 2000 ; Aitken et al., 2001 ; Wagner et al., 2002 ; Manno et al., 2003 ; Snyder and Francis, 2005 ; Maguire et al., 2008 ; Cideciyan et al., 2009 ). In this study, we present preclinical data to support the viability of an rAAV-based gene transfer strategy for cure of ADA-SCID. We report efficient transduction of a variety of postmitotic target tissues in vivo, subsequent human ADA (hADA) expression, and enhanced hADA secretion in tissues and blood, with increasing peripheral lymphocyte populations over time.
Collapse
Affiliation(s)
- Jared N. Silver
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Melissa Elder
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Thomas Conlon
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Pedro Cruz
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Amy J. Wright
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Arun Srivastava
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610
| | - Terence R. Flotte
- Department of Pediatrics and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
33
|
Hendriks RW, Bredius RG, Pike-Overzet K, Staal FJ. Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man. Expert Opin Ther Targets 2011; 15:1003-21. [PMID: 21635151 DOI: 10.1517/14728222.2011.585971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. AREAS COVERED This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. EXPERT OPINION Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
34
|
Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia 2011; 25:1095-102. [DOI: 10.1038/leu.2011.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Nucleic acid delivery using magnetic nanoparticles: the Magnetofection™ technology. Ther Deliv 2011; 2:471-82. [DOI: 10.4155/tde.11.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, gene therapy has received considerable interest as a potential method for the treatment of numerous inherited and acquired diseases. However, successes have so far been hampered by several limitations, including safety issues of viral-based nucleic acid vectors and poor in vivo efficiency of nonviral vectors. Magnetofection™ has been introduced as a novel and powerful tool to deliver genetic material into cells. This technology is defined as the delivery of nucleic acids, either ‘naked’ or packaged (as complexes with lipids or polymers, and viruses) using magnetic nanoparticles under the guidance of an external magnetic field. This article first discusses the principles of the Magnetofection technology and its benefits as compared with standard transfection methods. A number of relevant examples of its use, both in vitro and in vivo, will then be highlighted. Future trends in the development of new magnetic nanoparticle formulations will also be outlined.
Collapse
|
36
|
Manfredsson FP, Mandel RJ. The development of flexible lentiviral vectors for gene transfer in the CNS. Exp Neurol 2011; 229:201-6. [PMID: 21459087 DOI: 10.1016/j.expneurol.2011.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
The use of recombinant lentiviral vectors (rLV) is emerging as a viable candidate for clinical gene therapy of the central nervous system. New generation vectors are being produced while addressing viral safety concerns as well as production capabilities. Furthermore, the ability to combine envelope proteins targeting specific cell types with specific promoters guiding the expression of the genetic payload will allow researchers and clinicians to precisely guide transgene expression to anatomically and phenotypically distinct populations of cells. In a recent issue of Experimental Neurology, Cannon and colleagues demonstrate the ability to transduce specific populations of cells in the rat midbrain by using differently pseudotyped lentiviral vectors which results in significant differences in transgene spread throughout the nigrostriatal tract. These results highlight the potential utility of rLV in clinical applications as well as in research involving neurodegenerative disease.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Division of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | |
Collapse
|
37
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
38
|
Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput Biol 2011; 7:e1002015. [PMID: 21483468 PMCID: PMC3060167 DOI: 10.1371/journal.pcbi.1002015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/17/2011] [Indexed: 12/15/2022] Open
Abstract
Infectious disease treatments, both pharmaceutical and vaccine, face three universal challenges: the difficulty of targeting treatments to high-risk ‘superspreader’ populations who drive the great majority of disease spread, behavioral barriers in the host population (such as poor compliance and risk disinhibition), and the evolution of pathogen resistance. Here, we describe a proposed intervention that would overcome these challenges by capitalizing upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate conditionally in the presence of the pathogen and spread between individuals — analogous to ‘transmissible immunization’ that occurs with live-attenuated vaccines (but without the potential for reversion to virulence). Building on analyses of HIV field data from sub-Saharan Africa, we construct a multi-scale model, beginning at the single-cell level, to predict the effect of TIPs on individual patient viral loads and ultimately population-level disease prevalence. Our results show that a TIP, engineered with properties based on a recent HIV gene-therapy trial, could stably lower HIV/AIDS prevalence by ∼30-fold within 50 years and could complement current therapies. In contrast, optimistic antiretroviral therapy or vaccination campaigns alone could only lower HIV/AIDS prevalence by <2-fold over 50 years. The TIP's efficacy arises from its exploitation of the same risk factors as the pathogen, allowing it to autonomously penetrate superspreader populations, maintain efficacy despite behavioral disinhibition, and limit viral resistance. While demonstrated here for HIV, the TIP concept could apply broadly to many viral infectious diseases and would represent a new paradigm for disease control, away from pathogen eradication but toward robust disease suppression. We introduce a proposed intervention against infectious diseases that extends and optimizes the recognized benefit of ‘transmissible immunization’ that occurs with live-attenuated vaccines such as Oral Polio Vaccine (OPV), the vaccine chosen for the worldwide polio eradication campaign. The intervention proposed here is based upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate only in the presence of the wildtype pathogen and act to inhibit the growth of the pathogen. Therefore TIPs ‘piggyback’ on the pathogen, leading to two important differences from live-attenuated vaccines: TIPs can only transmit from individuals already infected with wildtype pathogen, and TIPs could only revert to virulence in individuals already carrying the wild-type pathogen. Intriguingly, because TIPs spread between individuals using the same transmission routes as the pathogen, they automatically find their way to the populations at greatest risk of infection, thus circumventing the unsolved problem of how to identify superspreaders and target them for preventive measures. Based on clinical-trial data, we analyze the impact that TIP intervention would have on HIV/AIDS in sub-Saharan Africa and show that TIPs could lower HIV/AIDS prevalence more effectively than vaccines or drugs alone and, in fact, would effectively complement these other interventions.
Collapse
|
39
|
Artemis splice defects cause atypical SCID and can be restored in vitro by an antisense oligonucleotide. Genes Immun 2011; 12:434-44. [PMID: 21390052 DOI: 10.1038/gene.2011.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artemis deficiency is known to result in classical T-B- severe combined immunodeficiency (SCID) in case of Artemis null mutations, or Omenn's syndrome in case of hypomorphic mutations in the Artemis gene. We describe two unrelated patients with a relatively mild clinical T-B- SCID phenotype, caused by different homozygous Artemis splice-site mutations. The splice-site mutations concern either dysfunction of a 5' splice-site or an intronic point mutation creating a novel 3' splice-site, resulting in mutated Artemis protein with residual activity or low levels of wild type (WT) Artemis transcripts. During the first 10 years of life, the patients suffered from recurrent infections necessitating antibiotic prophylaxis and intravenous immunoglobulins. Both mutations resulted in increased ionizing radiation sensitivity and insufficient variable, diversity and joining (V(D)J) recombination, causing B-lymphopenia and exhaustion of the naive T-cell compartment. The patient with the novel 3' splice-site had progressive granulomatous skin lesions, which disappeared after stem cell transplantation (SCT). We showed that an alternative approach to SCT can, in principle, be used in this case; an antisense oligonucleotide (AON) covering the intronic mutation restored WT Artemis transcript levels and non-homologous end-joining pathway activity in the patient fibroblasts.
Collapse
|
40
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
41
|
del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C, Parak WJ. Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. NANO LETTERS 2010; 10:3914-21. [PMID: 20836536 DOI: 10.1021/nl102485v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lipospheres made from soy bean oil and a combination of the cationic lipid Metafectene and the helper lipid dioleoylphosphatidyl-ethanolamine were functionalized with magnetic nanoparticles (NPs) and small interfering RNA (siRNA). The resulting magnetic lipospheres loaded with siRNA are proven here as efficient nonviral vectors for gene silencing. Embedding magnetic NPs in the shell of lipospheres allows for magnetic force-assisted transfection (magnetofection) as well as magnetic targeting in both static and fluidic conditions mimicking the bloodstream.
Collapse
Affiliation(s)
- Pablo del Pino
- Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Udyavar A, Geiger TL. Rebalancing immune specificity and function in cancer by T-cell receptor gene therapy. Arch Immunol Ther Exp (Warsz) 2010; 58:335-46. [PMID: 20680493 PMCID: PMC2928402 DOI: 10.1007/s00005-010-0090-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/16/2010] [Indexed: 01/08/2023]
Abstract
Adoptive immunotherapy with tumor-specific T lymphocytes has demonstrated clinical benefit in some cancers, particularly melanoma. Yet isolating and expanding tumor-specific cells from patients is challenging and there is limited ability to control T-cell affinity and response characteristics. T-cell receptor (TCR) gene therapy, in which T lymphocytes for immunotherapy are redirected using an introduced rearranged TCR, has emerged as an important alternative. Successful TCR gene therapy requires consideration of a number of issues, including TCR specificity and affinity, optimal gene therapy constructs, types of T cells administered, and the survival and activity of the modified cells. In this review we highlight the rationale for and experience with TCR gene therapy as well as new approaches to enhancing it.
Collapse
Affiliation(s)
- Akshata Udyavar
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Terrence L. Geiger
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
43
|
Ng YY, Baert MRM, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A, Baum C, Hendriks RW, van Dongen JJM, Staal FJT. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24:1617-30. [PMID: 20574453 DOI: 10.1038/leu.2010.140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency (PID) in man and caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA is characterized by a B-cell differentiation arrest in bone marrow, absence of mature B cells and immunoglobulins (Igs), and recurrent bacterial infections. We used self-inactivating lentiviral vectors expressing codon-optimized human BTK under the control of three different ubiquitous or B cell-specific promoters. Btk-/- mice engrafted with transduced cells showed correction of both precursor B-cell and peripheral B-cell development. Lentiviral vectors containing the wildtype BTK sequence did not correct the phenotype. All treated mice with codon-optimized BTK exhibited the recovery of B1 cells in the peritoneal cavity, and of serum IgM and IgG3 levels. Calcium mobilization responses upon B-cell receptor stimulation as well as in vivo responses to T cell-independent antigens were restored. Viral promoters overexpressing BTK >100-fold above normal resulted in erythro-myeloid proliferations independent of insertional mutagenesis. However, transplantation into secondary Btk-/- recipients using cellular promoters resulted in functional restoration of peripheral B cells and IgM levels, without any adverse effects. In conclusion, transduction of human BTK corrects B-cell development and antigen-specific antibody responses in Btk-/- mice, thus indicating the feasibility of lentiviral gene therapy for XLA, provided that BTK expression does not vastly exceed normal levels.
Collapse
Affiliation(s)
- Y Y Ng
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Momin EN, Vela G, Zaidi HA, Quiñones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. ACTA ACUST UNITED AC 2010; 6:137-148. [PMID: 20490366 DOI: 10.2174/157339510791111718] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a promising new approach to the treatment of several diseases that are associated with dismal outcomes. These include myocardial damage, graft versus host disease, and possibly cancer. Although the potential therapeutic aspects of MSCs continue to be well-researched, the possible hazards of MSCs, and in particular their oncogenic capacity are poorly understood. This review addresses the oncogenic and tumor-supporting potential of MSCs within the context of cancer treatment. The risk for malignant transformation is discussed for each stage of the clinical lifecycle of MSCs. This includes malignant transformation in vitro during production phases, during insertion of potentially therapeutic transgenes, and finally in vivo via interactions with tumor stroma. The immunosuppressive qualities of MSCs, which may facilitate evasion of the immune system by a tumor, are also addressed. Limitations of the methods employed in clinical trials to date are reviewed, including the absence of long term follow-up and lack of adequate screening methods to detect formation of new tumors. Through discussions of the possible oncogenic and tumor-supporting mechanisms of MSCs, directions for future research are identified which may eventually facilitate the future clinical translation of MSCs for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Eric N Momin
- Department of Neurosurgery and Oncology, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | |
Collapse
|
45
|
Ahamed JA, Madhivadhani P. Costimulatory Role of CXCR4 with Pre-TCR and Its Crosstalk with PI3K in -Selection of Thymocytes. Sci Signal 2010; 3:jc4. [DOI: 10.1126/scisignal.3119jc4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Abstract
In recent years, there has been an explosion of interest in stem cells, not just within the scientific and medical communities but also among politicians, religious groups and ethicists. Here, we summarize the different types of stem cells that have been described: their origins in embryonic and adult tissues and their differentiation potential in vivo and in culture. We review some current clinical applications of stem cells, highlighting the problems encountered when going from proof-of-principle in the laboratory to widespread clinical practice. While some of the key genetic and epigenetic factors that determine stem cell properties have been identified, there is still much to be learned about how these factors interact. There is a growing realization of the importance of environmental factors in regulating stem cell behaviour and this is being explored by imaging stem cells in vivo and recreating artificial niches in vitro. New therapies, based on stem cell transplantation or endogenous stem cells, are emerging areas, as is drug discovery based on patient-specific pluripotent cells and cancer stem cells. What makes stem cell research so exciting is its tremendous potential to benefit human health and the opportunities for interdisciplinary research that it presents.
Collapse
Affiliation(s)
- Fiona M Watt
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
47
|
Fratini P, Strauss BE. Serial bone marrow transplantation reveals in vivo expression of the pCLPG retroviral vector. Virol J 2010; 7:16. [PMID: 20096105 PMCID: PMC2845565 DOI: 10.1186/1743-422x-7-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/22/2010] [Indexed: 11/30/2022] Open
Abstract
Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.
Collapse
Affiliation(s)
- Paula Fratini
- Setor de Vetores Virais, Laboratório de Genética e Cardiologia Molecular/LIM 13, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, CEP 05403-900, Brasil
| | | |
Collapse
|
48
|
Retroviral integration site selection. Viruses 2010; 2:111-130. [PMID: 21994603 PMCID: PMC3185549 DOI: 10.3390/v2010111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 02/07/2023] Open
Abstract
The stable insertion of a copy of their genome into the host cell genome is an essential step of the life cycle of retroviruses. The site of viral DNA integration, mediated by the viral-encoded integrase enzyme, has important consequences for both the virus and the host cell. The analysis of retroviral integration site distribution was facilitated by the availability of the human genome sequence, revealing the non-random feature of integration site selection and identifying different favored and disfavored genomic locations for individual retroviruses. This review will summarize the current knowledge about retroviral differences in their integration site preferences as well as the mechanisms involved in this process.
Collapse
|
49
|
Gene therapy in thalassemia and hemoglobinopathies. Mediterr J Hematol Infect Dis 2009; 1:e2009008. [PMID: 21415990 PMCID: PMC3033156 DOI: 10.4084/mjhid.2009.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/12/2009] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
|
50
|
Meehan AM, Poeschla EM. Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:182-91. [PMID: 19836475 DOI: 10.1016/j.bbagrm.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/02/2009] [Indexed: 12/23/2022]
Abstract
Permanent integration of the viral genome into a host chromosome is an essential step in the life cycles of lentiviruses and other retroviruses. By archiving the viral genetic information in the genome of the host target cell and its progeny, integrated proviruses prevent curative therapy of HIV-1 and make the development of antiretroviral drug resistance irreversible. Although the integration reaction is known to be catalyzed by the viral integrase (IN), the manner in which retroviruses engage and attach to the chromatin target is only now becoming clear. Lens epithelium-derived growth factor (LEDGF/p75) is a ubiquitously expressed nuclear protein that binds to lentiviral IN protein dimers at its carboxyl terminus and to host chromatin at its amino terminus. LEDGF/p75 thus tethers ectopically expressed IN to chromatin. It also protects IN from proteosomal degradation and can stimulate IN catalysis in vitro. HIV-1 infection is inhibited at the integration step in LEDGF/p75-deficient cells, and the characteristic lentiviral preference for integration into active genes is also reduced. A model in which LEDGF/p75 acts to tether the viral preintegration complex to chromatin has emerged. Intriguingly, similar chromatin tethering mechanisms have been described for other retroelements and for large DNA viruses. Here we review the evidence supporting the LEDGF/p75 tethering model and consider parallels with these other viruses.
Collapse
Affiliation(s)
- Anne M Meehan
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|