1
|
Chen B, Sun X, Huang H, Feng C, Chen W, Wu D. An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes. J Affect Disord 2024; 359:22-32. [PMID: 38754597 DOI: 10.1016/j.jad.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and interstitial cystitis (IC) are two highly debilitating conditions that often coexist with reciprocal effect, significantly exacerbating patients' suffering. However, the molecular underpinnings linking these disorders remain poorly understood. METHODS Transcriptomic data from GEO datasets including those of MDD and IC patients was systematically analyzed to develop and validate our model. Following removal of batch effect, differentially expressed genes (DEGs) between respective disease and control groups were identified. Shared DEGs of the conditions then underwent functional enrichment analyses. Additionally, immune infiltration analysis was quantified through ssGSEA. A diagnostic model for MDD was constructed by exploring 113 combinations of 12 machine learning algorithms with 10-fold cross-validation on the training sets following by external validation on test sets. Finally, the "Enrichr" platform was utilized to identify potential drugs for MDD. RESULTS Totally, 21 key genes closely associated with both MDD and IC were identified, predominantly involved in immune processes based on enrichment analyses. Immune infiltration analysis revealed distinct profiles of immune cell infiltration in MDD and IC compared to healthy controls. From these genes, a robust 11-gene (ABCD2, ATP8B4, TNNT1, AKR1C3, SLC26A8, S100A12, PTX3, FAM3B, ITGA2B, OLFM4, BCL7A) diagnostic signature was constructed, which exhibited superior performance over existing MDD diagnostic models both in training and testing cohorts. Additionally, epigallocatechin gallate and 10 other drugs emerged as potential targets for MDD. CONCLUSION Our work developed a diagnostic model for MDD employing a combination of bioinformatic techniques and machine learning methods, focusing on shared genes between MDD and IC.
Collapse
Affiliation(s)
- Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Xinyue Sun
- Department of neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Cong Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
De Lorenzo R, Mazza MG, Sciorati C, Leone R, Scavello F, Palladini M, Merolla A, Ciceri F, Bottazzi B, Garlanda C, Benedetti F, Rovere-Querini P, Manfredi AA. Post-COVID Trajectory of Pentraxin 3 Plasma Levels Over 6 Months and Their Association with the Risk of Developing Post-Acute Depression and Anxiety. CNS Drugs 2024; 38:459-472. [PMID: 38658499 DOI: 10.1007/s40263-024-01081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Clinical manifestations of coronavirus disease 2019 (COVID-19) often persist after acute disease resolution. Underlying molecular mechanisms are unclear. The objective of this original article was to longitudinally measure plasma levels of markers of the innate immune response to investigate whether they associate with and predict post-COVID symptomatology. METHODS Adult patients with previous severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection during the first pandemic wave who underwent the 6-month multidisciplinary follow-up were included. Plasma levels of pentraxin 3 (PTX3), the complement components C3a and C5a, and chitinase-3 like-protein-1 (CHI3L1) were measured at hospital admission during acute disease (baseline) and at 1 and 6 months after hospital discharge. Associations with post-COVID-19 sequelae at 6 months were investigated using descriptive statistic and multiple regression models. RESULTS Ninety-four COVID-19 patients were included. Baseline PTX3, C5a, C3a, and CHI3L1 did not predict post-COVID-19 sequelae. The extent of the reduction of PTX3 over time (delta PTX3) was associated with lower depressive and anxiety symptoms at 6 months (both p < 0.05). When entering sex, age, need for intensive care unit or non-invasive ventilation during hospital stay, psychiatric history, and baseline PTX3 as nuisance covariates into a generalized linear model (GLM), the difference between baseline and 6-month PTX3 levels (delta PTX3) significantly predicted depression (χ2 = 4.66, p = 0.031) and anxiety (χ2 = 4.68, p = 0.031) at 6 months. No differences in PTX3 levels or PTX3 delta were found in patients with or without persistent or new-onset other COVID-19 symptoms or signs at 6 months. Plasma levels of C3a, C5a, and CHI3L1 did not correlate with PTX3 levels at either time point and failed to associate with residual or de novo respiratory or systemic clinical manifestations of the disease at 6 months. CONCLUSIONS A lower reduction of plasma PTX3 after acute COVID-19 associates with the presence of depression and anxiety, suggesting an involvement of inflammation in post-COVID-19 psychopathology and a potential role of PTX3 as a biomarker.
Collapse
Affiliation(s)
- Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario G Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy.
| | - Clara Sciorati
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Mariagrazia Palladini
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Innate Immunity and Tissue Remodeling, Department of Internal Medicine, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Autoimmunity and Vascular Inflammation, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023; 12:1767. [PMID: 37443801 PMCID: PMC10340315 DOI: 10.3390/cells12131767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Depression is a common neuropsychiatric disorder with long-term recurrent depressed mood, pain and despair, pessimism and anxiety, and even suicidal tendencies as the main symptoms. Depression usually induces or aggravates the development of other related diseases, such as sleep disorders and endocrine disorders. In today's society, the incidence of depression is increasing worldwide, and its pathogenesis is complex and generally believed to be related to genetic, psychological, environmental, and biological factors. Current studies have shown the key role of glial cells in the development of depression, and it is noteworthy that some recent evidence suggests that the development of depression may be closely related to viral infections, such as SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which infect the organism and cause some degree of glial cells, such as astrocytes, oligodendrocytes, and microglia. This can affect the transmission of related proteins, neurotransmitters, and cytokines, which in turn leads to neuroinflammation and depression. Based on the close relationship between viruses and depression, this paper provides an in-depth analysis of the new mechanism of virus-induced depression, which is expected to provide a new perspective on the mechanism of depression and a new idea for the diagnosis of depression in the future.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Wenzheng Wu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| | - Hongyuan Chang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Pufan Shan
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lin Yang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Wenjie Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (S.W.); (H.C.); (W.Z.)
| | - Xiaoyu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (X.Y.); (W.W.)
| |
Collapse
|
4
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
5
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
6
|
Fan Y, Chen P, Raza MU, Szebeni A, Szebeni K, Ordway GA, Stockmeier CA, Zhu MY. Altered Expression of Phox2 Transcription Factors in the Locus Coeruleus in Major Depressive Disorder Mimicked by Chronic Stress and Corticosterone Treatment In Vivo and In Vitro. Neuroscience 2018; 393:123-137. [PMID: 30315878 DOI: 10.1016/j.neuroscience.2018.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Phox2a and Phox2b are two homeodomain transcription factors playing a pivotal role in the development of noradrenergic neurons during the embryonic period. However, their expression and function in adulthood remain to be elucidated. Using human postmortem brain tissues, rat stress models and cultured cells, this study aimed to examine the alteration of Phox2a and Phox2b expression. The results show that Phox2a and Phox2b are normally expressed in the human locus coeruleus (LC) in adulthood. Furthermore, the levels of Phox2a protein and mRNA and protein levels of Phox2b were significantly elevated in the LC of brain donors that suffered from the major depressive disorder, as compared to age-matched and psychiatrically normal control donors. Fischer 344 rats subjected to chronic social defeat showed higher mRNA and protein levels of Phox2a and Phox2b in the LC, as compared to non-stressed control rats. In rats chronically administered oral corticosterone, mRNA and protein levels of Phox2b, but not Phox2a, in the LC were significantly increased. In addition, the corticosterone-induced increase in Phox2b protein was reversed by simultaneous treatment with either mifepristone or spironolactone. Exposing SH-SY5Y cells to corticosterone significantly increased expression of Phox2a and Phox2b, which was blocked by corticosteroid receptor antagonists. Taken together, these experiments reveal that Phox2 genes are expressed throughout the lifetime in the LC of humans and Fischer 344 rats. Alterations in their expression may play a role in major depressive disorder and possibly other stress-related disorders through their modulatory effects on the noradrenergic phenotype.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Ping Chen
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Attila Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katalin Szebeni
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Gregory A Ordway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
7
|
Antidepressant Mechanism Research of Acupuncture: Insights from a Genome-Wide Transcriptome Analysis of Frontal Cortex in Rats with Chronic Restraint Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1676808. [PMID: 29098013 PMCID: PMC5634580 DOI: 10.1155/2017/1676808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023]
Abstract
Major depressive disorder (MDD) is a chronic disease that adversely affects mood and cognition. In this study, we randomly divided the rats into control group (C), model group (M), fluoxetine group (F), and acupuncture group (A), used open-field test to ascertain whether acupuncture affects chronic restraint stress (CRS) induced depression-like behaviors of rats, and explored the antidepressant mechanism of acupuncture at the molecular level of transcriptome in the frontal cortex of CRS rats by RNA-sequencing (RNA-seq). According to differentially expressed genes (DEG) analysis, we identified 134, 46, and 89 response genes differentially expressed in C versus M, F versus M, and A versus M, respectively. Through Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we identified the gene sets involved in extracellular space, inflammatory response, Toll-like receptor signaling pathway, chemokine signaling pathway, and TNF signaling pathway. In this study, RNA-seq technology was used to investigate the frontal cortex genome-wide transcriptomes in depression rats under CRS, which suggested that the antidepressant effect of acupuncture is effective and has a multitarget characteristic, which may be related to amino acid metabolism and inflammatory pathways, especially the Toll-like receptor signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway.
Collapse
|
8
|
Money KM, Olah Z, Korade Z, Garbett KA, Shelton RC, Mirnics K. An altered peripheral IL6 response in major depressive disorder. Neurobiol Dis 2016; 89:46-54. [PMID: 26804030 DOI: 10.1016/j.nbd.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients.
Collapse
Affiliation(s)
- Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Zita Olah
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt International Scholar Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Zeljka Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, AL 35294, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Rajkovic I, Denes A, Allan SM, Pinteaux E. Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. J Neuroimmunol 2016; 292:27-33. [PMID: 26943955 DOI: 10.1016/j.jneuroim.2015.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Pentraxin-3 (PTX3) is an acute phase protein (APP) and a member of the long pentraxin family that is recognised for its role in peripheral immunity and vascular inflammation in response to injury, infection and diseases such as atherosclerosis, cancer and respiratory disease. Systemic levels of PTX3 are highly elevated in these conditions, and PTX3 is now recognised as a new biomarker of disease risk and progression. There is extensive evidence demonstrating that central nervous system (CNS) disorders are primarily characterised by central activation of innate immunity, as well as activation of a potent peripheral acute phase response (APR) that influences central inflammation and contributes to poor outcome. PTX3 has been recently recognised to play important roles in CNS disorders, having both detrimental and neuroprotective effects. The present review aims to give an up-to-date account of the emerging roles of PTX3 in CNS disorders, and to provide a critical comparison between peripheral and central actions of PTX3 in inflammatory diseases.
Collapse
Affiliation(s)
- Ivana Rajkovic
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adam Denes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1450, Hungary
| | - Stuart M Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
10
|
Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 2012; 7:e34965. [PMID: 22529962 PMCID: PMC3329534 DOI: 10.1371/journal.pone.0034965] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/08/2012] [Indexed: 12/24/2022] Open
Abstract
Background Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma. Objectives and Methods We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using 3H-thymidine incorporation, cell count and Boyden chamber assays. Results PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity. Conclusions Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.
Collapse
|
11
|
Shelton RC, Miller AH. Eating ourselves to death (and despair): the contribution of adiposity and inflammation to depression. Prog Neurobiol 2010; 91:275-99. [PMID: 20417247 PMCID: PMC2929810 DOI: 10.1016/j.pneurobio.2010.04.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/07/2010] [Accepted: 04/16/2010] [Indexed: 01/18/2023]
Abstract
Obesity and related metabolic conditions are of epidemic proportions in most of the world, affecting both adults and children. The accumulation of lipids in the body in the form of white adipose tissue in the abdomen is now known to activate innate immune mechanisms. Lipid accumulation causes adipocytes to directly secrete the cytokines interleukin (IL) 6 and tumor necrosis factor alpha (TNFalpha), but also monocyte chemoattractant protein 1 (MCP-1), which results in the accumulation of leukocytes in fat tissue. This sets up a chronic inflammatory state which is known to mediate the association between obesity and conditions such as cardiovascular disease, type 2 diabetes, and cancer. There is also a substantial literature linking inflammation with risk for depression. This includes the observations that: (1) people with inflammatory diseases such as multiple sclerosis, cardiovascular disease, and psoriasis have elevated rates of depression; (2) many people administered inflammatory cytokines such as interferon alpha develop depression that is indistinguishable from depression in non-medically ill populations; (3) a significant proportion of depressed persons show upregulation of inflammatory factors such as IL-6, C-reactive protein, and TNFalpha; (4) inflammatory cytokines can interact with virtually every pathophysiologic domain relevant to depression, including neurotransmitter metabolism, neuroendocrine function, and synaptic plasticity. While many factors may contribute to the association between inflammatory mediators and depression, we hypothesize that increased adiposity may be one causal pathway. Mediational analysis suggests a bi-directional association between adiposity and depression, with inflammation possibly playing an intermediary role.
Collapse
Affiliation(s)
- Richard C Shelton
- Vanderbilt University, 1500 21st Avenue South, Suite 2200, Nashville, TN 37212, USA.
| | | |
Collapse
|
12
|
Cruciani L, Romero R, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Mazaki-Tovi S, Mittal P, Ogge G, Gotsch F, Erez O, Kim SK, Dong Z, Pacora P, Lamont RF, Yeo L, Hassan SS, Di Renzo GC. Pentraxin 3 in amniotic fluid: a novel association with intra-amniotic infection and inflammation. J Perinat Med 2010; 38:161-71. [PMID: 19792835 PMCID: PMC2963028 DOI: 10.1515/jpm.2009.141] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR) that has an important role in immunoregulation and vascular integrity. The aim of this study was to determine if PTX3 is present in amniotic fluid (AF) and whether its concentration changes with gestational age (GA), in the presence of preterm or term labor, and in cases of intra-amniotic infection/inflammation (IAI) associated with spontaneous preterm labor (PTL) or preterm prelabor rupture of membranes (PROM). STUDY DESIGN This cross-sectional study included the following groups: 1) mid-trimester (n=45); 2) uncomplicated pregnancies at term with (n=48) and without (n=40) spontaneous labor; 3) women with PTL and intact membranes who: a) delivered at term (n=44); b) delivered preterm without IAI (n=40); or c) delivered preterm with IAI (n=62); 4) women with preterm PROM with (n=63) and without (n=36) IAI. PTX3 concentration in AF was determined by ELISA. Non-parametric statistics were used for analyses. RESULTS 1) Among women with PTL and intact membranes, the median AF PTX3 concentration was significantly higher in women with IAI than in those without IAI (7.95 ng/mL vs. 0.38 ng/mL; P<0.001) and than in those who delivered at term (0.55 ng/mL; P<0.001); 2) women with preterm PROM and IAI had a higher median AF PTX3 concentration than those without IAI (9.12 ng/mL vs. 0.76 ng/mL; P<0.001); 3) the median AF PTX3 concentration did not change with GA (mid-trimester: 0.79 ng/mL vs. term not in labor: 0.58 ng/mL; P=0.09); and 4) labor at term was not associated with a significant change of AF PTX 3 concentration (in labor: 0.54 ng/mL vs. not in labor: 0.58 ng/mL, P=0.9). CONCLUSIONS PTX3 is a physiologic constituent of the AF, and its median concentration is elevated in the presence of IAI, suggesting that PTX3 may play a role in the innate immune response against IAI.
Collapse
Affiliation(s)
- Laura Cruciani
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Edi Vaisbuch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Giovanna Ogge
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Sun Kwon Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA
| | - Ronald F. Lamont
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, Michigan, USA,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, Santa Maria della Misericordia University Hospital, Perugia, Italy
| |
Collapse
|
13
|
Ortega-Hernandez OD, Bassi N, Shoenfeld Y, Anaya JM. The long pentraxin 3 and its role in autoimmunity. Semin Arthritis Rheum 2008; 39:38-54. [PMID: 18614204 DOI: 10.1016/j.semarthrit.2008.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/17/2008] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To review the physiological and physiopathological roles of pentraxin 3 (PTX3), focusing on autoimmunity and vascular pathology. METHODS A systematic literature review using the keywords "pentraxin 3," "innate immunity," "apoptosis," "autoimmunity," and "endothelial dysfunction" from 1990 to 2007 was performed. All relevant articles and pertinent secondary references in English were reviewed. RESULTS PTX3 has a large number of multiple functions in different contexts. PTX3 plays an important role in innate immunity, inflammation, vascular integrity, fertility, pregnancy, and also in the central nervous system. In innate immunity, its normal function is to increase the immune response to selected pathogens while also exerting control over potential autoimmune reactions. It maintains a tightly homeostatic equilibrium in the local immune microenvironment by avoiding an exaggerated immune response and controlling peripheral tolerance to self-antigens. In contrast, in some autoimmune diseases, PTX3 appears to be involved in the development of autoimmune phenomena. A possible explanation for these apparent paradoxical functions may be related to the highly polymorphic PTX3 gene. CONCLUSION PTX3 is physiologically a protective molecule. However, in several autoimmune diseases PTX3 appears to facilitate the development of autoimmunity. The PTX3 gene could influence the development of autoimmune reactions and vascular involvement in human pathology.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Cellular Biology and Immunogenetics Unit (CBIGU), Corporación para Investigaciones Biológicas (CIB), Cra. 72A-78B-141, Medellín, Colombia
| | | | | | | |
Collapse
|
14
|
Abstract
Depression is a condition with a complex biologic pattern in etiology. Environmental stressors modulate subsequent vulnerability to depression. In particular, early adversity seems to induce heightened reactivity to stress through several possible mechanisms, both biologic and psychologic. This increased reactivity results in an enhancement of biologic stress-response mechanisms, especially the HPA axis. Regulators of this system, particularly signal transduction pathways involving PKA and PKC, may be important in the regulation of key genes in this system including genes for GR, BDNF, and trk-b. This system potentially is vulnerable to ROS and therefore, indirectly, to the effects of cytokines. Finally, some of these effects may be controlled by chemical modification of DNA, specifically, methylation of promoters or other gene regions. This modification is a mechanism by which long-term biologic change can be induced by environmental stressors. The brain is homeostatic, and it is possible that alterations at multiple points in this system may induce dysregulation and, as a result, vulnerability to stress. Therefore, a person may be vulnerable to depression, which may be a final common "pathway" for this family of conditions. Individuals may very considerably with regard to the locus of the problem, however. For example, functional variants in a set of genes might predispose some people to depression; others may have epigenetic imprinting; and yet different causes may be at work in others. Although this mix is complicated, it can be unraveled. Doing so could lead to the development of novel interventions that could target specific points of vulnerability, allowing an improved matching of patient to treatment based on differential abnormalities at the cellular level.
Collapse
Affiliation(s)
- Richard C Shelton
- Department of Psychiatry, Vanderbilt University Medical Center, 1500 21st Avenue, South, Suite 2200, Nashville, TN 37212, USA.
| |
Collapse
|
15
|
Raymer KA, Waters RF, Price CR. Proposed multigenic Composite Inheritance in major depression. Med Hypotheses 2005; 65:158-72. [PMID: 15893135 DOI: 10.1016/j.mehy.2004.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
Various rationale have been considered in the familial inheritance pattern of major depression ranging from simple one-gene Mendelian inheritance to pseudo-additive gene action. We instead predict broad genetic expressivity patterns in the progeny of parents where at least one parent has recurrent major depression. In keeping with this idea, we feel that recurrent major depression could involve an expression imbalance of "normal" genes either exclusively or along with allelic variation(s). The patterns of pathology are theoretically conceptualized as qualitative and quantitative, meaning that expressivity of the genetic pattern in these children may range from minimal to complete even among siblings. Thus, prediction of the particular genetic pattern expressed by a particular child might prove difficult. The complex inheritance pattern that we propose is referred to as Composite Inheritance. Composite Inheritance considers that both the up- and down-regulation of luxury genes and housekeeping genes are involved in this dichotomous qualitative inheritance pattern and also the wide quantitative expressivity. The luxury genes include such genes as those coding for the neurotransmitter transporters and receptors. The housekeeping genes found to date include those that code for proteins involved in gene transcription, secondary signaling systems, fatty acid metabolism and transport, and intracellular calcium homeostasis. Other luxury and housekeeping genes no doubt remain to be discovered. Our current research utilizes an empirical approach involving advanced genomics and specialized pattern recognition mathematics in families having at least one parent with recurrent major depression. The goal of our research is to develop a pattern recognition system of genetic expressivity in major depression to which prevention and early intervention may be tailored.
Collapse
Affiliation(s)
- Katherine A Raymer
- Southwest College of Naturopathic Medicine and Health Sciences, Research Department, 2140 E. Broadway Road, Tempe, Arizona 85282, USA
| | | | | |
Collapse
|