1
|
Keen R, Hardy D, Jose B, Erturk HN. Effects of caffeine on temporal perception in Rattus norvegicus. PLoS One 2024; 19:e0304608. [PMID: 38820365 PMCID: PMC11142558 DOI: 10.1371/journal.pone.0304608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
We report two studies that tested the effects of caffeine, the world's most widely used psychoactive drug, on temporal perception. We trained Wistar rats using the Bisection Procedure (Experiment 1) or the Stubbs' Procedure (Experiment 2) to discriminate between short and long light stimuli. Once training finished, we administered caffeine orally (0, 9.6, and 96.0 mg/kg for Experiment 1 and 0, 9.6, 19.2, and 38.4 mg/kg for Experiment 2) 15 minutes prior to testing. Relative to the control condition, the 9.6 mg/kg condition (Experiments 1 and 2) and the 19.2 mg/kg condition (Experiment 2) resulted in an increase in proportion of choosing the long response. Meanwhile, overall accuracy was not affected by any condition in both experiments. Taken together, these results are consistent with the notion that caffeine, at some doses, speeds up temporal perception. However, it is not clear why the effect disappears at higher doses.
Collapse
Affiliation(s)
- Richard Keen
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
| | - Dalene Hardy
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| | - Belda Jose
- Department of Psychology, Converse University, Spartanburg, South Carolina, United States of America
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| | - H. Neval Erturk
- Department of Biology, Chemistry, and Physics, Converse University, Spartanburg, South Carolina, United States of America
| |
Collapse
|
2
|
Kurauchi Y, Devkota HP, Hori K, Nishihara Y, Hisatsune A, Seki T, Katsuki H. Anxiolytic activities of Matcha tea powder, extracts, and fractions in mice: Contribution of dopamine D1 receptor- and serotonin 5-HT1A receptor-mediated mechanisms. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
3
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
4
|
The role of dopamine in the pathophysiology and treatment of apathy. PROGRESS IN BRAIN RESEARCH 2016; 229:389-426. [DOI: 10.1016/bs.pbr.2016.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Carnicella S, Drui G, Boulet S, Carcenac C, Favier M, Duran T, Savasta M. Implication of dopamine D3 receptor activation in the reversion of Parkinson's disease-related motivational deficits. Transl Psychiatry 2014; 4:e401. [PMID: 24937095 PMCID: PMC4080324 DOI: 10.1038/tp.2014.43] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023] Open
Abstract
In addition to the classical motor symptoms, motivational and affective deficits are core impairments of Parkinson's disease (PD). We recently demonstrated, by lesional approaches in rats, that degeneration of the substantia nigra pars compacta (SNc) dopaminergic (DA) neurons is likely to have a crucial role in the development of these neuropsychiatry symptoms. We have also shown that, as in clinical investigations, chronic treatment with levodopa or the DA D2/D3 receptor (D2/D3R) agonist ropinirole specifically reverses these PD-related motivational deficits. The roles of specific DA receptor subtypes in such reversal effects remain, however, unknown. We therefore investigated here the precise involvement of D1, D2 and D3R in the reversal of the motivational and affective deficits related to SNc DA neuronal loss. Three weeks after bilateral and partial 6-hydroxydopamine (6-OHDA) SNc lesions, rats received 14 daily intraperitoneal administrations of the selective D1R agonist SKF-38393 (2.5 or 3.5 mg kg(-1)), the selective D2R agonist sumanirole (0.1 or 0.15 mg kg(-1)), or the preferring D3R gonist PD-128907 (0.1 or 0.15 mg kg(-1)). Anxiety-, depressive-like and motivated behaviors were assessed in an elevated-plus maze, a forced-swim test, and an operant sucrose self-administration procedure, respectively. All DA agonists attenuated anxiety- and depressive-like behaviors. However, only PD-128907 reversed the motivational deficits induced by 6-OHDA SNc lesions. This effect was blocked by a selective D3R (SB-277011A, 10 mg kg(-1)), but not D2R (L-741,626, 1.5 mg kg(-1)), antagonist. These data provide strong evidence for the role of D3R in motivational processes and identify this receptor as a potentially valuable target for the treatment of PD-related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- S Carnicella
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - G Drui
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - S Boulet
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - C Carcenac
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - M Favier
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - T Duran
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
| | - M Savasta
- Institut National de la Santé et de la Recherche Médicale, Unité 836, Grenoble Institut des Neurosciences, Equipe 10, Dynamique et Physiopathologie des Ganglions de la Base, Grenoble, France
- Grenoble University, Grenoble, France
- Department of Neurology and Psychiatry, Centre Hospitalier Universitaire de Grenoble, BP217, Grenoble, France
| |
Collapse
|
6
|
Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA, Bader M, Cunha RA, do Couto FS, Lopes LV. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Front Psychiatry 2014; 5:67. [PMID: 24982640 PMCID: PMC4055866 DOI: 10.3389/fpsyt.2014.00067] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/24/2014] [Indexed: 11/25/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.
Collapse
Affiliation(s)
- Joana E Coelho
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Pedro Alves
- Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Paula M Canas
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra , Portugal ; Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Jorge S Valadas
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Tatiana Shmidt
- Max-Delbrück-Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Vânia L Batalha
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Diana G Ferreira
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Joaquim A Ribeiro
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal ; Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra , Portugal ; Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Frederico Simões do Couto
- Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Luísa V Lopes
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
7
|
Bennett L, Kersaitis C, Macaulay SL, Münch G, Niedermayer G, Nigro J, Payne M, Sheean P, Vallotton P, Zabaras D, Bird M. Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS One 2013; 8:e76362. [PMID: 24204618 PMCID: PMC3799746 DOI: 10.1371/journal.pone.0076362] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/26/2013] [Indexed: 12/30/2022] Open
Abstract
Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups including the elderly (age>65). The role for Vitamin D in development of the central nervous system is supported by the association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer's disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9) mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 1±0.2 µg/kg (∼54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding. Brain sections were evaluated for amyloid β (Aβ) plaque loads and inflammation biomarkers using immuno-histochemical methods. Plasma vitamin D metabolites, Aβ40, Aβ42, calcium, protein and cholesterol were measured using biochemical assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not VDM consumption can benefit cognitive performance in the wider population.
Collapse
Affiliation(s)
- Louise Bennett
- Commonwealth Scientific and Industrial Research Organisation Preventative Health Flagship, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - Cindy Kersaitis
- University of Western Sydney, School of Medicine, Campbelltown, New South Wales, Australia
| | - Stuart Lance Macaulay
- Commonwealth Scientific and Industrial Research Organisation Preventative Health Flagship, Materials Science and Engineering, Parkville, Victoria, Australia
| | - Gerald Münch
- University of Western Sydney, School of Medicine, Campbelltown, New South Wales, Australia
- Molecular Medicine Research Group, University of Western Sydney, Campbelltown, New South Wales, Australia
- Centre for Complementary Medicine Research, University of Western Sydney, Campbelltown, New South Wales, Australia
| | - Garry Niedermayer
- University of Western Sydney, School of Medicine, Campbelltown, New South Wales, Australia
| | - Julie Nigro
- Commonwealth Scientific and Industrial Research Organisation Preventative Health Flagship, Materials Science and Engineering, Parkville, Victoria, Australia
| | - Matthew Payne
- Commonwealth Scientific and Industrial Research Organisation Mathematics and Information Sciences, North Ryde, New South Wales, Australia
| | - Paul Sheean
- Commonwealth Scientific and Industrial Research Organisation Preventative Health Flagship, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - Pascal Vallotton
- Commonwealth Scientific and Industrial Research Organisation Mathematics and Information Sciences, North Ryde, New South Wales, Australia
| | - Dimitrios Zabaras
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Michael Bird
- University of Western Sydney, School of Medicine, Campbelltown, New South Wales, Australia
| |
Collapse
|
8
|
Franklin KM, Hauser SR, Bell RL, Engleman EA. Caffeinated Alcoholic Beverages - An Emerging Trend in Alcohol Abuse. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 4. [PMID: 25419478 PMCID: PMC4238293 DOI: 10.4172/2155-6105.s4-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol use disorders are pervasive in society and their impact affects quality of life, morbidity and mortality, as well as individual productivity. Alcohol has detrimental effects on an individual’s physiology and nervous system, and is associated with disorders of many organ and endocrine systems impacting an individual’s health, behavior, and ability to interact with others. Youth are particularly affected. Unfortunately, adolescent usage also increases the probability for a progression to dependence. Several areas of research indicate that the deleterious effects of alcohol abuse may be exacerbated by mixing caffeine with alcohol. Some behavioral evidence suggests that caffeine increases alcohol drinking and binge drinking episodes, which in turn can foster the development of alcohol dependence. As a relatively new public health concern, the epidemiological focus has been to establish a need for investigating the effects of caffeinated alcohol. While the trend of co-consuming these substances is growing, knowledge of the central mechanisms associated with caffeinated ethanol has been lacking. Research suggests that caffeine and ethanol can have additive or synergistic pharmacological actions and neuroadaptations, with the adenosine and dopamine systems in particular implicated. However, the limited literature on the central effects of caffeinated ethanol provides an impetus to increase our knowledge of the neuroadaptive effects of this combination and their impact on cognition and behavior. Research from our laboratories indicates that an established rodent animal model of alcoholism can be extended to investigate the acute and chronic effects of caffeinated ethanol.
Collapse
Affiliation(s)
- Kelle M Franklin
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A Engleman
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Pang TY, Du X, Catchlove WA, Renoir T, Lawrence AJ, Hannan AJ. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption. Front Pharmacol 2013; 4:93. [PMID: 23898297 PMCID: PMC3722512 DOI: 10.3389/fphar.2013.00093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/03/2013] [Indexed: 11/13/2022] Open
Abstract
Depression is a commonly reported co-morbidity during rehabilitation from alcohol use disorders and its presence is associated with an increased likelihood of relapse. Interventions which impede the development of depression could be of potential benefit if incorporated into treatment programs. We previously demonstrated an ameliorative effect of physical exercise on depressive behaviors in a mouse model of alcohol abstinence. Here, we show that environmental enrichment (cognitive and social stimulation) has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA) axis is a key physiological system regulating stress responses and its dysregulation has been separably implicated in the pathophysiology of depression and addiction disorders. We performed a series of dexamethasone challenges and found that mice undergoing 2 weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels following a DEX-CRH challenge compared to water controls. Environmental enrichment during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response despite a further elevation of ACTH levels. Examination of gene expression revealed abstinence-associated alterations in glucocorticoid receptor (Gr), corticotrophin releasing hormone (Crh) and pro-opiomelanocortin (Pomc1) mRNA levels which were differentially modulated by environmental enrichment. Overall, our study demonstrates a benefit of environmental enrichment on alcohol abstinence-associated depressive behaviors and HPA axis dysregulation.
Collapse
Affiliation(s)
- Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Heyser CJ, Vishnevetsky D, Berten S. The effect of cocaine on rotarod performance in male C57BL/6J mice. Physiol Behav 2013; 118:208-11. [PMID: 23688950 DOI: 10.1016/j.physbeh.2013.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/04/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
Abstract
There is surprisingly little research examining the effect of cocaine on motor learning. Given that changes in motor activity can confound behavioral assays of learning and memory a direct assessment of cocaine on motor learning seems warranted. The present study was conducted to examine the effect of cocaine on motor learning using an accelerating rotarod test in adult male C57BL/6J mice. Mice were given an injection of either saline or cocaine (10mg/kg, i.p.) for 6 consecutive days prior to rotarod training (Pre-exposure). In the first phase of training (Phase I), mice were given an injection of either saline or cocaine 10min prior to the start of each day's training on the rotarod for 6 consecutive days. In the second phase (Phase II), half the animals continued to receive the same drug during training, while the other half were switched from saline to cocaine or from cocaine to saline. All mice exhibited motor learning as evidenced by an increased latency to fall across days. Animals that received cocaine injections exhibited significantly longer latencies to fall on days 3-6 compared to those mice receiving saline. This enhanced performance was lost when cocaine-injected animals were switched to saline on day 7. It is hypothesized that the performance enhancing effects of cocaine are due to the increased stamina and/or psychomotor stimulation and not the result of enhanced motor learning as the increment in performance was lost when the drug was discontinued.
Collapse
Affiliation(s)
- Charles J Heyser
- Franklin & Marshall College, Department of Psychology, Lancaster, PA 17604, United States.
| | | | | |
Collapse
|
11
|
Mizushige T, Kanegawa N, Yamada A, Ota A, Kanamoto R, Ohinata K. Aromatic amino acid-leucine dipeptides exhibit anxiolytic-like activity in young mice. Neurosci Lett 2013; 543:126-9. [DOI: 10.1016/j.neulet.2013.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 02/07/2023]
|
12
|
Mizushige T, Sawashi Y, Yamada A, Kanamoto R, Ohinata K. Characterization of Tyr‐Leu‐Gly, a novel anxiolytic‐like peptide released from bovine α
S
‐casein. FASEB J 2013; 27:2911-7. [DOI: 10.1096/fj.12-225474] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takafumi Mizushige
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
- Research Unit for Physiological ChemistryCenter for the Promotion of Interdisciplinary Education and Research (C‐PIER)Kyoto UniversityKyotoJapan
| | - Yurina Sawashi
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Ayako Yamada
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Ryuhei Kanamoto
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kousaku Ohinata
- Division of Food Science and BiotechnologyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
13
|
Pang TY, Renoir T, Du X, Lawrence AJ, Hannan AJ. Depression-related behaviours displayed by female C57BL/6J mice during abstinence from chronic ethanol consumption are rescued by wheel-running. Eur J Neurosci 2013; 37:1803-10. [PMID: 23551162 DOI: 10.1111/ejn.12195] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/31/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022]
Abstract
Withdrawal from a chronic period of alcohol consumption is commonly associated with the manifestation of depression, potentially exerting a significant influence on treatment prospects and increasing the likelihood of relapse. Better therapeutic strategies need to be developed to assist with rehabilitation. Here, we report the detection of depression-related behaviours in a mouse model of 6-week free-choice ethanol (10%, v/v) consumption followed by 2-week abstinence. Mice abstinent from alcohol showed increased immobility time on the forced-swim test, reduced saccharin consumption and increased latency to feed in the novelty-suppressed feeding test. By comparison, there was no significant effect on anxiety-related behaviours as determined by testing on the light-dark box and elevated plus maze. We found that the provision of running-wheels through the duration of abstinence attenuated depressive behaviour in the forced-swim and novelty-suppressed feeding tests, and increased saccharin consumption. Given the link between withdrawal from addictive substances and depression, this model will be useful for the study of the pathophysiology underlying alcohol-related depression. The findings of this study establish an interaction between physical activity and the development of behavioural changes following cessation of alcohol consumption that could have implications for the development of rehabilitative therapies.
Collapse
Affiliation(s)
- Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia.
| | | | | | | | | |
Collapse
|
14
|
Madsen HB, Navaratnarajah S, Farrugia J, Djouma E, Ehrlich M, Mantamadiotis T, Van Deursen J, Lawrence AJ. CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology (Berl) 2012; 219:699-713. [PMID: 21766169 DOI: 10.1007/s00213-011-2406-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/18/2011] [Indexed: 12/27/2022]
Abstract
RATIONALE The transcription factor cAMP responsive element-binding protein 1 (CREB1) has a complex influence on behavioural responses to drugs of abuse which varies depending on the brain region in which it is expressed. In response to drug exposure, CREB1 is phosphorylated in the striatum, a structure that is critically involved in reward-related learning. OBJECTIVE The present study assessed the role of striatal CREB1 and its coactivator CREB-binding protein (CBP) in behavioural responses to psychostimulants. METHODS Using the 'cre/lox' recombination system, we generated mice with a postnatal deletion of CREB1 or CBP directed to medium spiny neurons of the striatum. qRT-PCR and immunohistochemistry were used to confirm the deletion, and mice were assessed with respect to their locomotor response to acute cocaine (20 mg/kg), cocaine sensitization (10 mg/kg), amphetamine-induced stereotypies (10 mg/kg) and ethanol-induced hypnosis (3.5 g/kg). RESULTS Here we show that CREB1 mutant mice have increased sensitivity to psychostimulants, an effect that does not generalise to ethanol-induced hypnosis. Furthermore, in the absence of CREB1, there is rapid postnatal upregulation of the related transcription factor CREM, indicating possible redundancy amongst this family of transcription factors. Finally striatal deletion of CBP, a coactivator for the CREB1/CREM signalling pathway, results in an even more increased sensitivity to psychostimulants. CONCLUSIONS These data suggest that striatal CREB1 regulates sensitivity to psychostimulants and that CREM acting via CBP is able to partially compensate in the absence of CREB1 signalling.
Collapse
|
15
|
Hou IC, Suzuki C, Kanegawa N, Oda A, Yamada A, Yoshikawa M, Yamada D, Sekiguchi M, Wada E, Wada K, Ohinata K. β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS2 receptor via activation of dopamine D1 receptor in mice. J Neurochem 2011; 119:785-90. [DOI: 10.1111/j.1471-4159.2011.07472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sadek AR, Knight GE, Burnstock G. Electroconvulsive therapy: a novel hypothesis for the involvement of purinergic signalling. Purinergic Signal 2011; 7:447-52. [PMID: 21695518 DOI: 10.1007/s11302-011-9242-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/02/2011] [Indexed: 01/16/2023] Open
Abstract
It is proposed that ATP is released from both neurons and glia during electroconvulsive therapy (ECT) and that this leads to reduction of depressive behaviour via complex stimulation of neurons and glia directly via P2X and P2Y receptors and also via P1 receptors after extracellular breakdown of ATP to adenosine. In particular, A(1) adenosine receptors inhibit release of excitatory transmitters, and A(2A) and P2Y receptors may modulate the release of dopamine. Sequential ECT may lead to changes in purinoceptor expression in mesolimbic and mesocortical regions of the brain implicated in depression and other mood disorders. In particular, increased expression of P2X7 receptors on glial cells would lead to increased release of cytokines, chemokines and neurotrophins. In summary, we suggest that ATP release following ECT involves neurons, glial cells and neuron-glial interactions acting via both P2 and after breakdown to adenosine via P1 receptors. We suggest that ecto-nucleotidase inhibitors (increasing available amounts of ATP) and purinoceptor agonists may enhance the anti-depressive effect of ECT.
Collapse
Affiliation(s)
- Ahmed-Ramadan Sadek
- Wessex Neurological Centre, Southampton University Hospitals NHS Trust, Tremona Road, Southampton, SO16 6YD, UK,
| | | | | |
Collapse
|
17
|
Suzuki C, Miyamoto C, Furuyashiki T, Narumiya S, Ohinata K. Central PGE2 exhibits anxiolytic-like activity via EP1 and EP4 receptors in a manner dependent on serotonin 5-HT1A, dopamine D1 and GABAA receptors. FEBS Lett 2011; 585:2357-62. [PMID: 21693121 DOI: 10.1016/j.febslet.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/16/2011] [Accepted: 06/05/2011] [Indexed: 11/20/2022]
Abstract
We found that centrally administered prostaglandin (PG) E(2) exhibited anxiolytic-like activity in the elevated plus-maze and open field test in mice. Agonists selective for EP(1) and EP(4) receptors, among four receptor subtypes for PGE(2), mimicked the anxiolytic-like activity of PGE(2). The anxiolytic-like activity of PGE(2) was blocked by an EP(1) or EP(4) antagonist, as well as in EP(4) but not EP(1) knockout mice. Central activation of either EP(1) or EP(4) receptors resulted in anxiolytic-like activity. The PGE(2)-induced anxiolytic-like activity was inhibited by antagonists for serotonin 5-HT(1A), dopamine D(1) and GABA(A) receptors. Taken together, PGE(2) exhibits anxiolytic-like activity via EP(1) and EP(4) receptors, with downstream involvement of 5-HT(1A), D(1) and GABA(A) receptor systems.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Behavior, Animal/drug effects
- Benzazepines/pharmacology
- Bicuculline/pharmacology
- Brain/drug effects
- Brain/physiology
- Dinoprostone/pharmacology
- Flumazenil/pharmacology
- GABA Modulators/pharmacology
- GABA-A Receptor Antagonists/pharmacology
- Male
- Mice
- Mice, Knockout
- Neuropsychological Tests
- Piperazines/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, GABA-A/metabolism
- Receptors, Prostaglandin E, EP1 Subtype/agonists
- Receptors, Prostaglandin E, EP1 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP1 Subtype/genetics
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- Chihiro Suzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | | | |
Collapse
|
18
|
Ruiz-Medina J, Ledent C, Carretón O, Valverde O. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA. J Psychopharmacol 2011; 25:550-64. [PMID: 21262860 DOI: 10.1177/0269881110389210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.
Collapse
Affiliation(s)
- Jessica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GRNC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Wall VZ, Parker JG, Fadok JP, Darvas M, Zweifel L, Palmiter RD. A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling. Mol Cell Neurosci 2010; 46:21-31. [PMID: 20888914 DOI: 10.1016/j.mcn.2010.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022] Open
Abstract
Dopamine-producing neurons fire with both basal level tonic patterns and phasic bursts. Varying affinities of the five dopamine receptors have led to a hypothesis that higher affinity receptors are primarily activated by basal level tonic dopamine, while lower affinity receptors may be tuned to be sensitive to higher levels caused by phasic bursts. Genetically modified mice provide a method to begin to probe this hypothesis. Here we discuss three mouse models. Dopamine-deficient mice were used to determine which behaviors require dopamine. These behaviors were then analyzed in mice lacking D1 receptors and in mice with reduced phasic dopamine release. Comparison of the latter two mouse models revealed a similar failure to learn about and respond normally to cues that indicate either a positive or negative outcome, giving support to the hypothesis that phasic dopamine release and the D1 receptor act in the same pathway. However, the D1 receptor likely has additional roles beyond those of phasic dopamine detection, because D1 receptor knockout mice have deficits in addition to what has been observed in mice with reduced phasic dopamine release.
Collapse
Affiliation(s)
- Valerie Z Wall
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
20
|
Anderson GR, Cao Y, Davidson S, Truong HV, Pravetoni M, Thomas MJ, Wickman K, Giesler GJ, Martemyanov KA. R7BP complexes with RGS9-2 and RGS7 in the striatum differentially control motor learning and locomotor responses to cocaine. Neuropsychopharmacology 2010; 35:1040-50. [PMID: 20043004 PMCID: PMC2887292 DOI: 10.1038/npp.2009.212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gbeta5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gbeta5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP.
Collapse
Affiliation(s)
- Garret R Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Yan Cao
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Steve Davidson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Hai V Truong
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Glenn J Giesler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kirill A Martemyanov
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA,Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA. Tel: +612 626 5309; Fax: +612 625 8408; E-mail:
| |
Collapse
|
21
|
Abstract
Abstract
The specific events between initial presumably manageable drug intake and the development of a drug- addicted state are not yet known. Drugs of abuse have varying mechanisms of action that create a complex pattern of behaviour related to drug consumption, drug-seeking, withdrawal and relapse. The neuromodulator adenosine has been shown to play a role in reward-related behaviour, both as an independent mediator and via interactions of adenosine receptors with other receptors. Adenosine levels are elevated upon exposure to drugs of abuse and adenosine A2A receptors are enriched in brain nuclei known for their involvement in the processing of drug-related reinforcement processing. A2A receptors are found in receptor clusters with dopamine and glutamate receptors. A2A receptors are thus ideally situated to influence the signalling of neurotransmitters relevant in the neuronal responses and plasticity that underlie the development of drug taking and drug-seeking behaviour. In this review, we present evidence for the role of adenosine and A2A receptors in drug addiction, thereby providing support for current efforts aimed at developing drug therapies to combat substance abuse that target adenosine signalling via A2A receptors.
Collapse
Affiliation(s)
- Robyn M Brown
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, 3052, Australia
| | - Jennifer L Short
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, 3052, Australia
| |
Collapse
|
22
|
Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Prog Neurobiol 2010; 90:198-216. [DOI: 10.1016/j.pneurobio.2009.10.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/05/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
|
23
|
Kanegawa N, Suzuki C, Ohinata K. Dipeptide Tyr-Leu (YL) exhibits anxiolytic-like activity after oral administration via activating serotonin 5-HT1A, dopamine D1and GABAAreceptors in mice. FEBS Lett 2009; 584:599-604. [DOI: 10.1016/j.febslet.2009.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/01/2022]
|
24
|
McPherson CS, Mantamadiotis T, Tan SS, Lawrence AJ. Deletion of CREB1 from the Dorsal Telencephalon Reduces Motivational Properties of Cocaine. Cereb Cortex 2009; 20:941-52. [DOI: 10.1093/cercor/bhp159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Brown RM, Short JL, Cowen MS, Ledent C, Lawrence AJ. A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior. Neuropsychopharmacology 2009; 34:844-56. [PMID: 18536706 DOI: 10.1038/npp.2008.72] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A(2A) knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A(2A) knockout mice. In support of this finding, a place preference to morphine was not observed in A(2A) knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A(2A) knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A(2A) knockout was similar to wild-type mice, yet A(2A) knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A(2A) receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A(2A) receptors in opiate reinforcement compared to opiate-seeking.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
26
|
Abstract
The metabotropic glutamate receptor 5 (mGlu5) has been implicated in ethanol- and drug-seeking behaviours in rodent studies. Here we examine a number of ethanol-related behavioural assays in mice lacking mGlu5 and wild-type littermates. In a two-bottle free-choice paradigm, mGlu5-deficient mice consumed less ethanol with a reduced preference compared to wild-type mice. Indeed, mGlu5-deficienct mice were ethanol-avoiding at both concentrations of ethanol proffered (5% and 10% v/v). However, there was no difference in the rate of hepatic ethanol and acetaldehyde metabolism between genotypes and consumption of saccharin was similar. In a conditioned place preference study, mGlu5-deficient mice displayed a place preference for ethanol when conditioned with a low dose (1g/kg) of ethanol. Thus, while mGlu5-deficient mice consume less ethanol (with a reduced preference) than wild-type mice, this is not apparently related to impaired hepatic metabolism or a lack of reward from ethanol. Rather, we provide evidence that deletion of the mGlu5 receptor increases sensitivity to centrally mediated effects of ethanol.
Collapse
|
27
|
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008; 7:575-90. [PMID: 18591979 DOI: 10.1038/nrd2605] [Citation(s) in RCA: 464] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A(2A), P2X(4) and P2X(7), that might be therapeutically targeted for the treatment of these conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
28
|
Pérez de la Mora M, Jacobsen KX, Crespo-Ramírez M, Flores-Gracia C, Fuxe K. Wiring and volume transmission in rat amygdala. Implications for fear and anxiety. Neurochem Res 2008; 33:1618-33. [PMID: 18473172 DOI: 10.1007/s11064-008-9722-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
The amygdala plays a key role in anxiety. Information from the environment reaches the amygdaloid basolateral nucleus and after its processing is relayed to the amygdaloid central nucleus where a proper anxiogenic response is implemented. Experimental evidence indicates that in this information transfer a GABAergic interface controls the trafficking of impulses between the two nuclei. Recent work indicates that interneuronal communication can take place by classical synaptic transmission (wiring transmission) and by volume transmission in which the neurotransmitter diffuses and flows through the extracellular space from its site of release and binds to extrasynaptic receptors at various distances from the source. Based on evidence from our laboratory the concept is introduced that neurotransmitters in the amygdala can modulate anxiety involving changes in fear learning and memories by effects on receptor mosaics in the fear circuits through wiring and volume transmission modes of communication.
Collapse
Affiliation(s)
- Miguel Pérez de la Mora
- Department of Biophysics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Mexico, DF, 04510, Mexico.
| | | | | | | | | |
Collapse
|
29
|
Moore R, Krstew EV, Kirchhoff J, Davisson RL, Lawrence AJ. Central Overexpression of Angiotensin AT1AReceptors Prevents Dopamine D2Receptor Regulation of Alcohol Consumption in Mice. Alcohol Clin Exp Res 2007; 31:1128-37. [PMID: 17451402 DOI: 10.1111/j.1530-0277.2007.00399.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND While angiotensin receptors are found on the soma and terminals of dopaminergic neurons, controversy surrounds the potential role of angiotensin in alcohol consumption. METHODS Using a transgenic mouse with a brain-specific overexpression of angiotensin AT(1A) receptors (NSE-AT(1A) mice), we have examined the role of angiotensin in alcohol consumption and alcohol-induced regulation of the dopaminergic system. RESULTS The functional relevance of the overexpressed AT(1A) receptors was confirmed by an exaggerated rehydration response following 24-hour dehydration. NSE-AT(1A) mice showed a high preference for alcohol (similar to wild-type mice); yet, raclopride treatment had no effect on alcohol consumption in NSE-AT(1A) mice, while significantly reducing consumption in wild-type mice. In contrast, NSE-AT(1A) mice showed enhanced sensitivity to raclopride compared with wild types in terms of D(2) receptor up-regulation within the ventral mesencephalon. In addition, striatal D(2) receptors in NSE-AT(1A) mice were sensitive to up-regulation by chronic alcohol consumption. CONCLUSIONS Collectively, these data imply that while expression of angiotensin AT(1A) receptors on striatal neurons has no impact upon basal alcohol consumption or preference, AT(1A) receptors do modulate the sensitivity of dopamine D(2) receptors to regulation by alcohol and the ability of a D(2) receptor antagonist to reduce consumption.
Collapse
Affiliation(s)
- Rosanna Moore
- Howard Florey Institute, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
30
|
Do T, Sun Q, Beuve A, Kuzhikandathil EV. Extracellular cAMP inhibits D1 dopamine receptor expression in CAD catecholaminergic cells via A2a adenosine receptors. J Neurochem 2007; 101:619-31. [PMID: 17254022 DOI: 10.1111/j.1471-4159.2006.04388.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The expression of D1 dopamine (DA) receptor gene is regulated during development, aging, and pathophysiology. The extracellular factors and signaling mechanisms that modulate the expression of D1 DA receptor have not been well characterized. Here, we present novel evidence that endogenous D1 DA receptor expression is inhibited by extracellular cAMP in the Cath.A Derived (CAD) catecholaminergic neuronal cell line. CAD cells express the multi-drug resistance protein 5 transporters and secrete cAMP. Addition of exogenous cAMP decreases D1 receptor mRNA and protein greater than fourfold in 24 h. The cAMP-induced decrease of D1 receptor mRNA levels is blocked by cGMP and by 1,3-dipropyl-8-(p-sulfo-phenyl)xanthine, an inhibitor of ecto-phosphodiestrase. Extracellular AMP, a metabolite of cAMP, also independently decreased D1 receptor mRNA levels. Inhibitors of ecto-nucleotidases, alpha,beta-methyleneadenosine 5'-di-phosphate and GMP, completely blocked the decrease of D1 receptor mRNA by extracellular cAMP, but only partially blocked the decrease induced by extracellular AMP. Levamisole, an inhibitor of tissue non-specific alkaline phosphatase, completely blocked the AMP-induced decrease of D1 receptor mRNA. The extracellular cAMP, AMP, and adenosine (ADO)-induced decrease in D1 receptor mRNA expression are mediated by A2a ADO receptor subtype. The results suggest a novel molecular mechanism linking activation of A2a ADO receptors with inhibition of D1 DA receptor expression.
Collapse
Affiliation(s)
- Thuy Do
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|