1
|
Thibeault KC, Leonard MZ, Kondev V, Emerson SD, Bethi R, Lopez AJ, Sens JP, Nabit BP, Elam HB, Winder DG, Patel S, Kiraly DD, Grueter BA, Calipari ES. A Cocaine-Activated Ensemble Exerts Increased Control Over Behavior While Decreasing in Size. Biol Psychiatry 2025; 97:590-601. [PMID: 38901723 DOI: 10.1016/j.biopsych.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Substance use disorder is characterized by long-lasting changes in reward-related brain regions, such as the nucleus accumbens. Previous work has shown that cocaine exposure induces plasticity in broad, genetically defined cell types in the nucleus accumbens; however, in response to a stimulus, only a small percentage of neurons are transcriptionally active-termed an ensemble. Here, we identify an Arc-expressing neuronal ensemble that has a unique trajectory of recruitment and causally controls drug self-administration after repeated, but not acute, cocaine exposure. METHODS Using Arc-CreERT2 transgenic mice, we expressed transgenes in Arc+ ensembles activated by cocaine exposure (either acute [1 × 10 mg/kg intraperitoneally] or repeated [10 × 10 mg/kg intraperitoneally]). Using genetic, optical, and physiological recording and manipulation strategies, we assessed the contribution of these ensembles to behaviors associated with substance use disorder. RESULTS Repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its control over behavior. Neurons within the repeated cocaine ensemble were hyperexcitable, and their optogenetic excitation was sufficient for reinforcement. Finally, lesioning the repeated cocaine, but not the acute cocaine, ensemble blunted cocaine self-administration. Thus, repeated cocaine exposure reduced the size of the ensemble while simultaneously increasing its contributions to drug reinforcement. CONCLUSIONS We showed that repeated, but not acute, cocaine exposure induced a physiologically distinct ensemble characterized by the expression of the immediate early gene Arc, which was uniquely capable of modulating reinforcement behavior.
Collapse
Affiliation(s)
- Kimberly C Thibeault
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Michael Z Leonard
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Soren D Emerson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Rishik Bethi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee
| | - Alberto J Lopez
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jonathon P Sens
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brett P Nabit
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Hannah B Elam
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry, Northwestern University, Chicago, Illinois
| | - Drew D Kiraly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt JF Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
2
|
Neugornet A, O'Donovan B, Ortinski PI. Comparative Effects of Event Detection Methods on the Analysis and Interpretation of Ca 2+ Imaging Data. Front Neurosci 2021; 15:620869. [PMID: 33841076 PMCID: PMC8032960 DOI: 10.3389/fnins.2021.620869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Calcium imaging has gained substantial popularity as a tool to profile the activity of multiple simultaneously active cells at high spatiotemporal resolution. Among the diverse approaches to processing of Ca2+ imaging data is an often subjective decision of how to quantify baseline fluorescence or F 0. We examine the effect of popular F 0 determination methods on the interpretation of neuronal and astrocyte activity in a single dataset of rats trained to self-administer intravenous infusions of cocaine and compare them with an F 0-independent wavelet ridgewalking event detection approach. We find that the choice of the processing method has a profound impact on the interpretation of widefield imaging results. All of the dF/F 0 thresholding methods tended to introduce spurious events and fragment individual transients, leading to smaller calculated event durations and larger event frequencies. Analysis of simulated datasets confirmed these observations and indicated substantial intermethod variability as to the events classified as significant. Additionally, most dF/F 0 methods on their own were unable to adequately account for bleaching of fluorescence, although the F 0 smooth approach and the wavelet ridgewalking algorithm both did so. In general, the choice of the processing method led to dramatically different quantitative and sometimes opposing qualitative interpretations of the effects of cocaine self-administration both at the level of individual cells and at the level of cell networks. Significantly different distributions of event duration, amplitude, frequency, and network measures were found across the majority of dF/F 0 approaches. The wavelet ridgewalking algorithm broadly outperformed dF/F 0-based methods for both neuron and astrocyte recordings. These results indicate the need for heightened awareness of the limitations and tendencies associated with decisions to use particular Ca2+ image processing pipelines. Both quantification and interpretation of the effects of experimental manipulations are strongly sensitive to such decisions.
Collapse
Affiliation(s)
- Austin Neugornet
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Pavel Ivanovich Ortinski
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Cocaine Potency at the Dopamine Transporter Tracks Discrete Motivational States During Cocaine Self-Administration. Neuropsychopharmacology 2017; 42:1893-1904. [PMID: 28139678 PMCID: PMC5520781 DOI: 10.1038/npp.2017.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023]
Abstract
Although the dopamine transporter (DAT) is the primary site of action for cocaine, and the dopamine system is known to mediate the reinforcing effects of cocaine, the dopaminergic variations underlying individual differences in cocaine self-administration behaviors are not fully understood. Recent advances in the application of economic principles to operant tasks in rodents have allowed for the within-subject, within-session determination of both consummatory and appetitive responding for reinforcers. Here we combined a behavioral economics approach with cocaine self-administration and ex vivo voltammetric recording of dopamine signaling in the core of the nucleus accumbens of rats to determine the relationship between dopamine signaling and discrete aspects of cocaine taking and seeking. We found neither dopamine release or uptake tracked individual differences in cocaine consumption or the reinforcing efficacy of cocaine. Cocaine potency at the DAT was correlated with reinforcing efficacy, but was not related to cocaine consumption. Further, we introduce a novel analysis that determines perseverative responding within the same procedure, and find that cocaine potency at the DAT also tracks differences in perseverative responding. Together, we demonstrate that cocaine effects at the DAT determine the reinforcing efficacy of cocaine, and perseverative responding for sub-threshold doses of cocaine that do not maintain responding when presented in isolation. Surprisingly, we find that variations in cocaine potency do not account for differences in cocaine consumption, suggesting that satiation for cocaine is determined by other targets or mechanisms. Finally, we outline a novel approach for relating drug-target interactions and potency to discrete motivational states during a single self-administration session.
Collapse
|
4
|
Lu H, Zou Q, Chefer S, Ross TJ, Vaupel DB, Guillem K, Rea WP, Yang Y, Peoples LL, Stein EA. Abstinence from cocaine and sucrose self-administration reveals altered mesocorticolimbic circuit connectivity by resting state MRI. Brain Connect 2015; 4:499-510. [PMID: 24999822 DOI: 10.1089/brain.2014.0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous preclinical studies have emphasized that drugs of abuse, through actions within and between mesocorticolimbic (MCL) regions, usurp learning and memory processes normally involved in the pursuit of natural rewards. To distinguish MCL circuit pathobiological neuroadaptations that accompany addiction from general learning processes associated with natural reward, we trained two groups of rats to self-administer either cocaine (IV) or sucrose (orally) followed by an identically enforced 30 day abstinence period. These procedures are known to induce behavioral changes and neuroadaptations. A third group of sedentary animals served as a negative control group for general handling effects. We examined low-frequency spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) signal, known as resting-state functional connectivity (rsFC), as a measure of intrinsic neurobiological interactions between brain regions. Decreased rsFC was seen in the cocaine-SA compared with both sucrose-SA and housing control groups between prelimbic (PrL) cortex and entopeduncular nucleus and between nucleus accumbens core (AcbC) and dorsomedial prefrontal cortex (dmPFC). Moreover, individual differences in cocaine SA escalation predicted connectivity strength only in the Acb-dmPFC circuit. These data provide evidence of fronto-striatal plasticity across the addiction trajectory, which are consistent with Acb-PFC hypoactivity seen in abstinent human drug addicts, indicating potential circuit level biomarkers that may inform therapeutic interventions. They further suggest that available data from cross-sectional human studies may reflect the consequence of rather a predispositional predecessor to their dependence.
Collapse
Affiliation(s)
- Hanbing Lu
- 1 Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ortinski PI, Briand LA, Pierce RC, Schmidt HD. Cocaine-seeking is associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 dopamine receptor-expressing neurons. Neuropharmacology 2015; 92:80-9. [PMID: 25596492 PMCID: PMC4346508 DOI: 10.1016/j.neuropharm.2015.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Stimulation of D1-like dopamine receptors (D1DRs) or D2-like dopamine receptors (D2DRs) in the nucleus accumbens (NAc) shell reinstates cocaine seeking in rats, an animal model of relapse. D2DRs and D1DRs activate protein kinase C (PKC) and recent studies indicate that activation of PKC in the NAc plays an important role in the reinstatement of drug seeking induced by a systemic cocaine priming injection. In the present study, pharmacological inhibition of PKC in the NAc shell attenuated cocaine seeking induced by intra-accumbens shell microinjection of a D2DR agonist, but not a D1DR agonist. D1DRs and D2DRs are primarily expressed on different accumbens medium spiny (MSN) neurons. Neuronal signaling and activity were assessed in these two populations of NAc neurons with transgenic mice expressing fluorescent labels under the control of D1DR and D2DR promoters. Following the extinction of cocaine self-administration, bath application of a PKC inhibitor produced similar effects on single evoked excitatory and inhibitory post-synaptic currents in D1DR- and D2DR-positive MSNs in the NAc shell. However, inhibition of PKC preferentially improved the ability of excitatory, but not inhibitory, synapses to sustain responding to brief train of stimuli specifically in D2DR-positive MSNs. This effect did not appear to involve modulation of presynaptic release mechanisms. Taken together, these findings indicate that the reinstatement of cocaine seeking is at least partially due to D2DR-dependent increases in PKC signaling in the NAc shell, which reduce excitatory synaptic efficacy in D2DR-expressing MSNs.
Collapse
Affiliation(s)
- Pavel I Ortinski
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Lisa A Briand
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Guillem K, Ahmed SH, Peoples LL. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol Psychiatry 2014; 76:31-9. [PMID: 24120118 DOI: 10.1016/j.biopsych.2013.08.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cocaine addiction is characterized by a progressive increase in drug intake and a persistent craving for the drug during prolonged abstinence. Whether these two prominent features of cocaine addiction are related to each other and are mediated by similar or different neuronal processes is currently unknown. METHODS Rats were first allowed to self-administer cocaine under long-access (6-hour) conditions to induce escalation of cocaine intake. Self-administration sessions were designed to measure both drug seeking and drug taking. After escalation, rats underwent a 1-month period of forced abstinence after which they were re-exposed to cocaine to induce re-escalation of cocaine intake. In vivo electrophysiologic recordings were conducted in the core and shell subregions of the nucleus accumbens (NAc) during cocaine intake escalation, after abstinence and during re-escalation. RESULTS After abstinence, escalated levels of cocaine taking decreased toward pre-escalation levels, whereas cocaine seeking increased persistently. These opposite postabstinence changes were uncorrelated. At the neuronal level, the postabstinence decrease in cocaine taking was correlated with a normalization of depressed neuronal activity in the NAc shell that had developed during escalation of cocaine intake. In contrast, the incubation-like increase in cocaine seeking was selectively correlated with a persistent increase in the proportion of neurons in the NAc core that phasically fire during cocaine seeking. CONCLUSIONS These findings show that cocaine taking and cocaine seeking evolve differently during abstinence from extended drug use and depend on dissociable neuronal processes in different subregions of the nucleus accumbens.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France.
| | - Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France
| | - Laura L Peoples
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Calipari ES, Ferris MJ, Siciliano CA, Zimmer BA, Jones SR. Intermittent cocaine self-administration produces sensitization of stimulant effects at the dopamine transporter. J Pharmacol Exp Ther 2014; 349:192-8. [PMID: 24566123 DOI: 10.1124/jpet.114.212993] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous literature investigating neurobiological adaptations following cocaine self-administration has shown that high, continuous levels of cocaine intake (long access; LgA) results in reduced potency of cocaine at the dopamine transporter (DAT), whereas an intermittent pattern of cocaine administration (intermittent access; IntA) results in sensitization of cocaine potency at the DAT. Here, we aimed to determine whether these changes are specific to cocaine or translate to other psychostimulants. Psychostimulant potency was assessed by fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens following IntA, short access, and LgA cocaine self-administration, as well as in brain slices from naive animals. We assessed the potency of amphetamine (a releaser), and methylphenidate (a DAT blocker, MPH). MPH was selected because it is functionally similar to cocaine and structurally related to amphetamine. We found that MPH and amphetamine potencies were increased following IntA, whereas neither was changed following LgA or short access cocaine self-administration. Therefore, whereas LgA-induced tolerance at the DAT is specific to cocaine as shown in previous work, the sensitizing effects of IntA apply to cocaine, MPH, and amphetamine. This demonstrates that the pattern with which cocaine is administered is important in determining the neurochemical consequences of not only cocaine effects but potential cross-sensitization/cross-tolerance effects of other psychostimulants as well.
Collapse
Affiliation(s)
- Erin S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
8
|
Roberts DCS, Gabriele A, Zimmer BA. Conflation of cocaine seeking and cocaine taking responses in IV self-administration experiments in rats: methodological and interpretational considerations. Neurosci Biobehav Rev 2013; 37:2026-36. [PMID: 23669047 DOI: 10.1016/j.neubiorev.2013.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 01/13/2023]
Abstract
IV drug self-administration is a special case of an operant task. In most operant experiments, the instrumental response that completes the schedule requirement is separate and distinct from the consumptive response (e.g. eating or drinking) that follows the delivery of the reinforcing stimulus. In most IV self-administration studies drug seeking and drug taking responses are conflated. The instrumental lever press or nose poke is also a consumptive response. The conflation of these two response classes has important implications for interpretation of the data as they are differentially regulated by dose and price. The types of pharmacological pretreatments that affect appetitive responses are not necessarily the same as those that affect consumptive responses suggesting that the neurobiology of the two response classes are to some extent controlled by different mechanisms. This review discusses how schedules of reinforcement and behavioral economic analyses can be used to assess the regulation of drug seeking and drug taking separately. New methods are described that allow the examination of appetitive or consumptive responding in isolation and provide subjects with greater control over the self-administered dose. These procedures provide novel insights into the regulation of drug intake. Cocaine intake patterns that result in large, intermittent spikes in cocaine levels are shown to produce increases in appetitive responding (i.e. drug seeking). The mechanisms that control drug intake should be considered distinct from appetitive and motivational processes and should be taken into consideration in future IV self-administration studies.
Collapse
Affiliation(s)
- David C S Roberts
- Department of Physiology and Pharmacology, Wake Forest Health Sciences, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
9
|
Zimmer BA, Dobrin CV, Roberts DCS. Examination of behavioral strategies regulating cocaine intake in rats. Psychopharmacology (Berl) 2013; 225:935-44. [PMID: 22993052 PMCID: PMC3558541 DOI: 10.1007/s00213-012-2877-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
Abstract
RATIONALE It has long been observed that rats self-administer psychostimulants in a highly regular pattern. The inverse relationship between dose and rate of drug intake has been interpreted as a titration phenomenon wherein brain-cocaine levels are maintained within a range. Most studies examining this phenomenon have used fixed, unit doses in which case the only titration strategy available to the animal is to adjust inter-infusion intervals. OBJECTIVES In this study, we examined whether selection of dose size could also be a factor in regulation of intake. We used a schedule of reinforcement, under which the dose can vary through a wide range and is determined by the behavior of the animal. METHODS Rats self-administered cocaine using a behaviorally dependent dosing schedule of reinforcement, under which the size of each dose was determined by the length of time the lever was held down. The concentration of cocaine was changed across sessions. RESULTS Total pump-time self-administered decreased by 56 % following each doubling of the concentration, which led to an average 11 % increase in total intake. Similarly, estimated brain levels of cocaine increased by 12 % for each doubling of concentration. These adjustments were the result of manipulation of both the size and spacing of infusions. CONCLUSIONS In agreement with previous studies, the regular pattern of intake appears to be the result of a titration mechanism in which animals maintain brain levels of cocaine above some threshold. Compensatory regulation appeared to involve both the selection of dose size and inter-infusion intervals.
Collapse
Affiliation(s)
- Benjamin A Zimmer
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center BLVD, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
10
|
Lu H, Chefer S, Kurup PK, Guillem K, Vaupel DB, Ross TJ, Moore A, Yang Y, Peoples LL, Stein EA. fMRI response in the medial prefrontal cortex predicts cocaine but not sucrose self-administration history. Neuroimage 2012; 62:1857-66. [PMID: 22664568 PMCID: PMC3875563 DOI: 10.1016/j.neuroimage.2012.05.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/04/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022] Open
Abstract
Repeated cocaine exposure induces long-lasting neuroadaptations that alter subsequent responsiveness to the drug. However, systems-level investigation of these neuroplastic consequences is limited. We employed a rodent model of drug addiction to investigate neuroadaptations associated with prolonged forced abstinence after long-term cocaine self-administration (SA). Since natural rewards also activate the mesolimbic reward system in a partially overlapping fashion as cocaine, our design also included a sucrose SA group. Rats were trained to self-administer cocaine or sucrose using a fixed-ratio one, long-access schedule (6 h/day for 20 days). A third group of naïve, sedentary rats served as a negative control. After 30 days of abstinence, the reactivity of the reward system was assessed with functional magnetic resonance imaging (fMRI) following an intravenous cocaine injection challenge. A strong positive fMRI response, as measured by fractional cerebral blood volume changes relative to baseline (CBV%), was seen in the sedentary control group in such cortico-limbic regions as medial prefrontal cortex and anterior cingulate cortex. In contrast, both the cocaine and sucrose SA groups demonstrated a very similar initial negative fMRI response followed by an attenuated positive response. The magnitude of the mPFC response was significantly correlated with the total amount of reinforcer intake during the training sessions for the cocaine SA but not for the sucrose SA group. Given that the two SA groups had identical histories of operant training and handling, this region-specific group difference revealed by regression analysis may reflect the development of neuroadaptive mechanisms specifically related to the emergence of addiction-like behavior that occurs only in cocaine SA animals.
Collapse
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Svetlana Chefer
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Pradeep K. Kurup
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Karine Guillem
- Department of Psychiatry, TRL, University of Pennsylvania, Philadelphia, PA 19104, USA
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - D. Bruce Vaupel
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Laura L. Peoples
- Department of Psychiatry, TRL, University of Pennsylvania, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th St, Philadelphia PA 19102, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
11
|
AMPAR-independent effect of striatal αCaMKII promotes the sensitization of cocaine reward. J Neurosci 2012; 32:6578-86. [PMID: 22573680 DOI: 10.1523/jneurosci.6391-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Changes in CaMKII-regulated synaptic excitability are a means through which experience may modify neuronal function and shape behavior. While behavior in rodent addiction models is linked with CaMKII activity in the nucleus accumbens (NAc) shell, the key cellular adaptations that forge this link are unclear. Using a mouse strain with striatal-specific expression of autonomously active CaMKII (T286D), we demonstrate that while persistent CaMKII activity induces behaviors comparable to those in mice repeatedly exposed to psychostimulants, it is insufficient to increase AMPAR-mediated synaptic strength in NAc shell. However, autonomous CaMKII upregulates A-type K(+) current (IA) and decreases firing in shell neurons. Importantly, inactivating the transgene with doxycycline eliminates both the IA-mediated firing decrease and the elevated behavioral response to cocaine. This study identifies CaMKII regulation of IA in NAc shell neurons as a novel cellular contributor to the sensitization of cocaine reward.
Collapse
|
12
|
The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 2012; 37:1901-10. [PMID: 22453139 PMCID: PMC3376322 DOI: 10.1038/npp.2012.37] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent attempts to model the addiction process in rodents have focused on cocaine self-administration procedures that provide extended daily access. Such procedures produce a characteristic loading phase during which blood levels rapidly rise and then are maintained within an elevated range for the duration of the session. The present experiments tested the hypothesis that multiple fast-rising spikes in cocaine levels contribute to the addiction process more robustly than constant, maintained drug levels. Here, we compared the effects of various cocaine self-administration procedures that produced very different patterns of drug intake and drug dynamics on Pmax, a behavioral economic measure of the motivation to self-administer drug. Two groups received intermittent access (IntA) to cocaine during daily 6-h sessions. Access was limited to twelve 5-min trials that alternated with 25-min timeout periods, using either a hold-down procedure or a fixed ratio 1 (FR1). Cocaine levels could not be maintained with this procedure; instead the animals experienced 12 fast-rising spikes in cocaine levels each day. The IntA groups were compared with groups given 6-h FR1 long access and 2-h short access sessions and two other control groups. Here, we report that cocaine self-administration procedures resulting in repeatedly spiking drug levels produce more robust increases in Pmax than procedures resulting in maintained high levels of cocaine. These results suggest that rapid spiking of brain-cocaine levels is sufficient to increase the motivation to self-administer cocaine.
Collapse
|
13
|
Zimmer BA, Dobrin CV, Roberts DCS. Brain-cocaine concentrations determine the dose self-administered by rats on a novel behaviorally dependent dosing schedule. Neuropsychopharmacology 2011; 36:2741-9. [PMID: 21849981 PMCID: PMC3230497 DOI: 10.1038/npp.2011.165] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel behaviorally dependent dosing (BDD) schedule was used to examine the relationship between doses of cocaine self-administered by rats and brain drug levels within a session. The BDD schedule used a hold-down response to activate a syringe pump. The length of time the lever was held down determined the duration that the syringe pump was activated. In the first experiment, rats self-administered cocaine for daily 3 h sessions and brain levels of cocaine were modeled using well-established parameters. Although analysis revealed that rats self-administered doses within a predicted range, one extremely large dose was consistently observed at the beginning of each session when brain levels of cocaine were low. In the second experiment, we introduced a range of timeout periods (10-25 min) in order to produce variability in brain-cocaine concentrations. Animals self-administered larger doses immediately following each timeout period and the dose size was inversely correlated with the length of the timeout. These results show that the dose of cocaine that rats self-administer within a session is inversely related to the amount of drug on board.
Collapse
Affiliation(s)
- Benjamin A Zimmer
- Neuroscience Program, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Carson V Dobrin
- Neuroscience Program, Wake Forest University Health Sciences, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - David C S Roberts
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Guillem K, Peoples LL. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues. PLoS One 2011; 6:e24049. [PMID: 21961032 PMCID: PMC3178519 DOI: 10.1371/journal.pone.0024049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Nicotine self-administration (SA) is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc) is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg) paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively). Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1) excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2) a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
- * E-mail: (KG); (LLP)
| | - Laura L. Peoples
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KG); (LLP)
| |
Collapse
|
15
|
Zhang X, Salmeron BJ, Ross TJ, Gu H, Geng X, Yang Y, Stein EA. Anatomical differences and network characteristics underlying smoking cue reactivity. Neuroimage 2010; 54:131-41. [PMID: 20688176 DOI: 10.1016/j.neuroimage.2010.07.063] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022] Open
Abstract
A distributed network of brain regions is linked to drug-related cue responding. However, the relationships between smoking cue-induced phasic activity and possible underlying differences in brain structure, tonic neuronal activity and connectivity between these brain areas are as yet unclear. Twenty-two smokers and 22 controls viewed smoking-related and neutral pictures during a functional arterial spin labeling scanning session. T1, resting functional, and diffusion tensor imaging data were also collected. Six brain areas, dorsal lateral prefrontal cortex (dlPFC), dorsal medial prefrontal cortex (dmPFC), dorsal anterior cingulate cortex/cingulate cortex, rostral anterior cingulate cortex (rACC), occipital cortex, and insula/operculum, showed significant smoking cue-elicited activity in smokers when compared with controls and were subjected to secondary analysis for resting state functional connectivity (rsFC), structural, and tonic neuronal activity. rsFC strength between rACC and dlPFC was positively correlated with the cue-elicited activity in dlPFC. Similarly, rsFC strength between dlPFC and dmPFC was positively correlated with the cue-elicited activity in dmPFC while rsFC strength between dmPFC and insula/operculum was negatively correlated with the cue-elicited activity in both dmPFC and insula/operculum, suggesting these brain circuits may facilitate the response to the salient smoking cues. Further, the gray matter density in dlPFC was decreased in smokers and correlated with cue-elicited activity in the same brain area, suggesting a neurobiological mechanism for the impaired cognitive control associated with drug use. Taken together, these results begin to address the underlying neurobiology of smoking cue salience, and may speak to novel treatment strategies and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xiaochu Zhang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Guillem K, Kravitz AV, Moorman DE, Peoples LL. Orbitofrontal and insular cortex: neural responses to cocaine-associated cues and cocaine self-administration. Synapse 2010; 64:1-13. [PMID: 19725114 DOI: 10.1002/syn.20698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Based on neuro-imaging studies in cocaine-addicted humans, it is hypothesized that increases in neural activity within several regions of the prefrontal cortex contribute to cue-induced cocaine seeking and cocaine-induced compulsive drug self-administration. However, electrophysiological tests of these hypotheses are lacking. In the present study, animals were trained to self-administer cocaine (0.75 mg/kg) for 14 days. On the 14th day, we conducted electrophysiological recordings of lateral orbitofrontal (LO) and ventral anterior insula (AIV) neurons. A subset of the combined population of recorded neurons showed a change in firing rate in association with one or more of the following discrete events: (1) presentation of a discriminative stimulus that signaled the onset of the self-administration session, (2) occurrence of the first cocaine-directed operant response, (3) occurrence of a cocaine-reinforced press, and (4) presentation of cues normally paired with delivery of the cocaine reinforcer. The majority of the stimulus- and response-related changes in firing involved a brief increase in firing during the stimulus and response event, respectively. In addition to these event-specific responses, approximately half of the recorded neurons exhibited a sustained change in average firing (i.e., discharges per 30-s bin) during the cocaine self-administration session, relative to average firing during a presession, drug-free period (referred to as session changes). The prevalence of session-increases and decreases were not significantly different. These and other findings are discussed in relation to hypotheses about cue-evoked and cocaine-maintained cocaine-directed behavior.
Collapse
Affiliation(s)
- Karine Guillem
- Department of Psychiatry, TRL, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
17
|
Guillem K, Peoples LL. Progressive and lasting amplification of accumbal nicotine-seeking neural signals. J Neurosci 2010; 30:276-86. [PMID: 20053909 PMCID: PMC2855140 DOI: 10.1523/jneurosci.2820-09.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/21/2022] Open
Abstract
Although neuroadaptations in the nucleus accumbens (NAc) are thought to contribute to nicotine addiction, little is known about the chronic effects of nicotine on NAc neuronal activity. In the present experiment, rats were exposed to a 23 d period of nicotine self-administration (SA), a 30 d abstinence period, and a 7 d period of reexposure to SA. Chronic electrophysiological procedures were used to record the activity of individual NAc neurons on the 3rd and 23rd days of initial SA and on the 1st, 3rd, and 7th days of reexposure. Between-session comparisons showed that NAc neurons exhibit two patterns of plasticity under the present experimental conditions. First, phasic-increase firing patterns time-locked to the nicotine-reinforced lever press do not change during initial SA, but then show increases in prevalence and amplitude after abstinence, which persist during reexposure. Second, for neurons that show no phasic response time-locked to the nicotine-reinforced lever press, average baseline and SA firing rates decrease during initial SA, return to normal during abstinence, and decrease again during reexposure. As a combined consequence of the two types of neurophysiological plasticity, average firing rate of NAc neurons at the time of nicotine-directed behavior undergoes a progressive and persistent net amplification, across the successive stages of SA, abstinence, and reexposure. This net increase in NAc firing at the time of nicotine-directed behavior occurs in association with an increase in animals' motivation to seek nicotine. The adaptations that occur in nicotine-exposed animals do not occur in animals exposed to sucrose. The NAc neurophysiological plasticity potentially contributes to compulsive tobacco use.
Collapse
Affiliation(s)
- Karine Guillem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | - Laura L. Peoples
- Department of Psychiatry, Translational Research Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
18
|
Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J Neurosci 2009; 29:12275-83. [PMID: 19793986 DOI: 10.1523/jneurosci.3028-09.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The principal components of neuronal excitability include synaptic and intrinsic membrane parameters. While recent studies indicate that cocaine exposure can induce widespread changes in synaptic function in the neural circuits for reward, intrinsic firing properties have received much less attention. Using whole-cell recording in ex vivo brain slices from cocaine-treated mice, we studied the intrinsic firing characteristics of medium-spiny projection neurons of the nucleus accumbens--a key node in the circuit that controls reward-directed behavior. Our data demonstrate that repeated in vivo cocaine (5 x 15 mg/kg, i.p., once daily, 5 d) induces opposite changes in neurons of the two main subdivisions of the accumbens, the shell and the core. While shell neurons exhibit an initial depression in firing capacity (1-3 d abstinence) that persists for at least 2 weeks, core neurons exhibit increased firing capacity during early abstinence (1-3 d) that declines to basal levels within 2 weeks. Shared adaptations between addictive drugs may mediate core processes of addiction. We find that amphetamine exposure (5 x 5 mg/kg, i.p., once daily, 5 d) that induced a similar degree of locomotor sensitization as cocaine also induced an indistinguishable pattern of NAc intrinsic plasticity. Finally, we provided evidence that opposite regulation of A-type potassium current is an important factor in this bidirectional intrinsic plasticity for both cocaine and amphetamine. We propose that a persistent disparity in core/shell excitability might be an important mediator of the changes in reward circuit activity that drive drug-seeking behavior in animal models of addiction.
Collapse
|
19
|
Amphetamine exposure enhances accumbal responses to reward-predictive stimuli in a pavlovian conditioned approach task. J Neurosci 2008; 28:7501-12. [PMID: 18650328 DOI: 10.1523/jneurosci.1071-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute and repeated exposure to psychostimulants such as amphetamine enhances the effects of pavlovian conditioned stimuli on conditioned behavior. It is hypothesized that amphetamine facilitates conditioned stimulus (CS) effects by selectively enhancing accumbal neuronal responses to stimuli. To test this hypothesis, rats were trained to discriminate between two pavlovian stimuli. One stimulus (i.e., CS+) was paired with sucrose delivery [i.e., unconditioned stimulus (US)], and the other stimulus (i.e., CS-) was paired with the absence of sucrose. Animals developed a conditioned approach response that occurred during the CS+ but not during the CS-. We tested the effect of different doses of amphetamine (0, 0.25, 0.5, or 1.0 mg/kg) on this conditioned approach behavior as well as on accumbal neuronal responses time locked to the CS+, the CS-, and the US. Acute amphetamine exposure increased conditioned approach behavior during the CS+, but not during the CS-. This change in behavior was associated with a selective increase in the magnitude of accumbal responses during the CS+. Repeated amphetamine administration followed by a drug-free period and reexposure did not affect the conditioned behavior, but increased accumbal responses to the CS+. These findings support the hypothesis that amphetamine exposure enhances behavioral responses to pavlovian conditioned stimuli by amplifying accumbal responses to those stimuli.
Collapse
|
20
|
Kiyatkin EA, Brown PL. I.v. cocaine induces rapid, transient excitation of striatal neurons via its action on peripheral neural elements: single-cell, iontophoretic study in awake and anesthetized rats. Neuroscience 2007; 148:978-95. [PMID: 17706878 PMCID: PMC2084066 DOI: 10.1016/j.neuroscience.2007.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 06/29/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Cocaine's (COC) direct interaction with the dopamine (DA) transporter is usually considered the most important action underlying the psychomotor stimulant and reinforcing effects of this drug. However, some physiological, behavioral and psycho-emotional effects of COC are very rapid and brief and they remain intact during DA receptor blockade, suggesting possible involvement of peripheral non-DA neural mechanisms. To assess this issue, single-unit recording with microiontophoresis was used to examine changes in impulse activity of dorsal and ventral striatal neurons to i.v. COC (0.25-0.5 mg/kg) in the same rats under two conditions: awake with DA receptor blockade and anesthetized with urethane. In the awake preparation approximately 70% striatal neurons showed rapid and transient (latency approximately 6 s, duration approximately 15 s) COC-induced excitations. These effects were stronger in ventral than dorsal striatum. During anesthesia, these phasic effects were fully blocked and COC slowly decreased neuronal discharge rate. Cocaine-methiodide (COC-M), a derivative that cannot cross the blood-brain barrier, also caused phasic excitations in the awake, but not anesthetized condition. In contrast to regular COC, COC-M had no tonic effect on discharge rate in either preparation. Most striatal neurons that were phasically excited by both COC forms also showed short-latency excitations during tail-touch and tail-pinch in the awake preparation, an effect strongly attenuated during anesthesia. Finally, most striatal neurons that in awake conditions were phasically excited by somato-sensory stimuli and COC salts were also excited by iontophoretic glutamate (GLU). Although striatal neurons were sensitive to GLU in both preparations, the response magnitude at the same GLU current was higher in awake than anesthetized conditions. These data suggest that in awake animals i.v. COC, like somato-sensory stimuli, transiently excites striatal neurons via its action on peripheral neural elements and rapid neural transmission. While the nature of these neuronal elements needs to be clarified using other analytical techniques, they might involve voltage-gated K(+) and Na(+) channels, which have a high affinity for COC and are located on terminals of visceral sensory nerves that densely innervate peripheral vessels. Therefore, along with direct action on specific brain substrates, central excitatory effects of COC may occur via indirect action, involving afferents of visceral sensory nerves and rapid neural transmission. By providing a rapid sensory signal and triggering transient neural activation, such a peripherally triggered action might play a crucial role in the sensory effects of COC, thus contributing to learning and development of drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|