1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Alves CDO, Waku I, Chiossi JN, de Oliveira AR. Dopamine D2-like receptors on conditioned and unconditioned fear: A systematic review of rodent pharmacological studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111080. [PMID: 38950840 DOI: 10.1016/j.pnpbp.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Joyce Nonato Chiossi
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
4
|
Thompson DA, Tsaava T, Rishi A, George SJ, Hepler TD, Hide D, Pavlov VA, Brines M, Chavan SS, Tracey KJ. Galantamine ameliorates experimental pancreatitis. Mol Med 2023; 29:149. [PMID: 37907853 PMCID: PMC10617083 DOI: 10.1186/s10020-023-00746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute pancreatitis is a common and serious inflammatory condition currently lacking disease modifying therapy. The cholinergic anti-inflammatory pathway (CAP) is a potent protective anti-inflammatory response activated by vagus nerve-dependent α7 nicotinic acetylcholine receptor (α7nAChR) signaling using splenic CD4+ T cells as an intermediate. Activating the CAP ameliorates experimental acute pancreatitis. Galantamine is an acetylcholinesterase inhibitor (AChEI) which amplifies the CAP via modulation of central muscarinic ACh receptors (mAChRs). However, as mAChRs also activate pancreatitis, it is currently unknown whether galantamine would be beneficial in acute pancreatitis. METHODS The effect of galantamine (1-6 mg/kg-body weight) on caerulein-induced acute pancreatitis was evaluated in mice. Two hours following 6 hourly doses of caerulein (50 µg/kg-body weight), organ and serum analyses were performed with accompanying pancreatic histology. Experiments utilizing vagotomy, gene knock out (KO) technology and the use of nAChR antagonists were also performed. RESULTS Galantamine attenuated pancreatic histologic injury which was mirrored by a reduction in serum amylase and pancreatic inflammatory cytokines and an increase the anti-inflammatory cytokine IL-10 in the serum. These beneficial effects were not altered by bilateral subdiaphragmatic vagotomy, KO of either choline acetyltransferase+ T cells or α7nAChR, or administration of the nAChR ganglionic blocker mecamylamine or the more selective α7nAChR antagonist methyllycaconitine. CONCLUSION Galantamine improves acute pancreatitis via a mechanism which does not involve previously established physiological and molecular components of the CAP. As galantamine is an approved drug in widespread clinical use with an excellent safety record, our findings are of interest for further evaluating the potential benefits of this drug in patients with acute pancreatitis.
Collapse
Affiliation(s)
- Dane A Thompson
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
- Department of Surgery, Northshore University Hospital, Northwell Health, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sam J George
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Daniel Hide
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Valentin A Pavlov
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| | - Kevin J Tracey
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| |
Collapse
|
5
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
6
|
Witek K, Wydra K, Suder A, Filip M. Maternal monosaccharide diets evoke cognitive, locomotor, and emotional disturbances in adolescent and young adult offspring rats. Front Nutr 2023; 10:1176213. [PMID: 37229474 PMCID: PMC10203434 DOI: 10.3389/fnut.2023.1176213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Anxiety and depression are the most common mental disorders affecting people worldwide. Recent studies have highlighted that a maternal high-sugar diet (HSD) could be a risk factor for neurobehavioural dysregulations, including mood disorders. Increased consumption of added sugar in food such as refined fructose/glucose can increase the risk of metabolic disorders and impact susceptibility to mental disorders. Furthermore, a few papers have reported disabilities in learning and memory among offspring after maternal HSD, thus suggesting a relationship between maternal nutrition and offspring neurogenesis. In this study, we evaluated the impact of maternal monosaccharide consumption based on a glucose (GLU) or fructose (FRU) diet during pregnancy and lactation in adolescent and young adult offspring rats of both sexes on cognitive, locomotor, and emotional disturbances. Locomotor activity, short-term memory, anxiety-like and depressive-like behavior were evaluated in the offspring. We report for the first time that the maternal GLU or FRU diet is sufficient to evoke anxiety-like behavior among adolescent and young adult offspring. Moreover, we found that maternal monosaccharide diets lead to hyperactivity and depressive-like behavior in male adolescent rats. We also noticed that a maternal FRU diet significantly enhanced novelty-seeking behavior only in young adult male rats. Our novel findings indicated that the maternal monosaccharide diet, especially a diet enriched in FRU, resulted in strong behavioral alterations in offspring rats at early life stages. This study also revealed that male rats were more susceptible to hyperactivity and anxiety- and depressive-like phenotypes than female rats. These results suggest that maternal monosaccharide consumption during pregnancy and lactation is an important factor affecting the emotional status of offspring.
Collapse
|
7
|
Kuan W, Alfaidi M, Horne CB, Vallin B, Fox S, Fazal SV, Williams‐Gray CH, Barker RA. Selective neurodegeneration generated by intravenous α-synuclein pre-formed fibril administration is not associated with endogenous α-synuclein levels in the rat brain. Brain Pathol 2023; 33:e13128. [PMID: 36321260 PMCID: PMC10154377 DOI: 10.1111/bpa.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 03/02/2023] Open
Abstract
Selective loss of discrete neuronal populations is a prominent feature of many neurodegenerative conditions, but the molecular basis of this is poorly understood. A central role of α-synuclein in the selective neurodegeneration of Parkinson's disease has been speculated, as its level of expression critically determines the propensity of this protein to misfold. To investigate whether the propensity of neuronal cell loss is associated with the level of endogenous α-synuclein expression, non-transgenic rats were given a single intravenous administration of α-synuclein pre-formed fibrils (PFFs) reversibly complexed with the rabies virus glycoprotein peptide (RVG9R). The number of surviving cells in different neuronal populations was systematically quantified using unbiased stereology. Our data demonstrated that a non-selective, transvascular delivery of α-synuclein PFFs led to a time-dependent loss of specific populations of midbrain (but not olfactory) dopaminergic neurons, medullary (but not pontine) cholinergic neurons, and brainstem serotonergic neurons. Contrary to the central role of endogenous α-synuclein expression in determining the seeding and aggregation propensity of pathological α-synuclein, we did not observe an association between the levels of α-synuclein expression in different regions of the rodent brain (although did not ascertain this at the individual cell level) and neurodegenerative propensity. The results from our study highlight the complexity of the neurodegenerative process generated by α-synuclein seeding. Further investigations are therefore required to elucidate the molecular basis of neurodegeneration driven by exogenous pathogenic α-synuclein spread.
Collapse
Affiliation(s)
- Wei‐Li Kuan
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Maha Alfaidi
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Catherine B. Horne
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Benjamin Vallin
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sarah Fox
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Shaline V. Fazal
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Caroline H. Williams‐Gray
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
- Department of NeurologyAddenbrooke's HospitalCambridgeUK
- Wellcome Trust MRC Cambridge Stem Cell CentreCambridgeUK
| |
Collapse
|
8
|
Chen W, Man X, Zhang Y, Yao G, Chen J. Medial prefrontal cortex oxytocin mitigates epilepsy and cognitive impairments induced by traumatic brain injury through reducing neuroinflammation in mice. Sci Rep 2023; 13:5214. [PMID: 36997619 PMCID: PMC10063625 DOI: 10.1038/s41598-023-32351-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor to develop epilepsy and cognitive impairments. Neuropeptide oxytocin has been previously evidenced to produce antiepileptic effects. However, the involvement of central oxytocin in TBI-induced epileptic status and cognitive dysfunctions is not fully elucidated. In this study, we aim to investigate the role of oxytocin on a TBI model followed by seizure induction to clarify whether the epilepsy and cognitive deficits could be mitigated by oxytocin. TBI was established by weight drop and epileptic behaviors were induced by pentylenetetrazole (PTZ) injection in mice. Moreover, oxytocin was microinjected into the medial prefrontal cortex (mPFC) to observe the effects on the epilepsy and cognition. The blood-brain barrier (BBB) function and the neuroinflammation were measured by Evans Blue staining and enzyme-linked immunosorbent assays, respectively. Mice exposed to TBI demonstrate increased vulnerability to PTZ-mediated seizures and cognitive disturbances with a decrease in peripheral and brain oxytocin levels. Additionally, TBI reduces oxytocin, disrupts the BBB permeability and triggers neuroinflammation in mPFC in PTZ-treated mice. Intra-mPFC oxytocin simultaneously mitigates epilepsy and cognitive impairments. Finally, oxytocin restores BBB integrity and reduces mPFC inflammation in PTZ-treated TBI mice. These findings showed that intra-mPFC oxytocin suppressed the seizure vulnerability and cognitive deficits in TBI mice. The normalization of BBB integrity and inhibition of neuroinflammation may be involved in the antiepileptic and cognition-improved effects of oxytocin, suggesting that targeting inflammatory procedure in mPFC may decrease the risk to develop epilepsy and cognitive impairments in individuals previously experienced TBI.
Collapse
Affiliation(s)
- Wen Chen
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China.
| | - Xiaoxiao Man
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Yu Zhang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Guangyan Yao
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| | - Jing Chen
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Rd, Lixia District, Jinan, 250013, Shandong, China
| |
Collapse
|
9
|
Akhtar A, Gupta SM, Dwivedi S, Kumar D, Shaikh MF, Negi A. Preclinical Models for Alzheimer's Disease: Past, Present, and Future Approaches. ACS OMEGA 2022; 7:47504-47517. [PMID: 36591205 PMCID: PMC9798399 DOI: 10.1021/acsomega.2c05609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
A robust preclinical disease model is a primary requirement to understand the underlying mechanisms, signaling pathways, and drug screening for human diseases. Although various preclinical models are available for several diseases, clinical models for Alzheimer's disease (AD) remain underdeveloped and inaccurate. The pathophysiology of AD mainly includes the presence of amyloid plaques and neurofibrillary tangles (NFT). Furthermore, neuroinflammation and free radical generation also contribute to AD. Currently, there is a wide gap in scientific approaches to preventing AD progression. Most of the available drugs are limited to symptomatic relief and improve deteriorating cognitive functions. To mimic the pathogenesis of human AD, animal models like 3XTg-AD and 5XFAD are the primarily used mice models in AD therapeutics. Animal models for AD include intracerebroventricular-streptozotocin (ICV-STZ), amyloid beta-induced, colchicine-induced, etc., focusing on parameters such as cognitive decline and dementia. Unfortunately, the translational rate of the potential drug candidates in clinical trials is poor due to limitations in imitating human AD pathology in animal models. Therefore, the available preclinical models possess a gap in AD modeling. This paper presents an outline that critically assesses the applicability and limitations of the current approaches in disease modeling for AD. Also, we attempted to provide key suggestions for the best-fit model to evaluate potential therapies, which might improve therapy translation from preclinical studies to patients with AD.
Collapse
Affiliation(s)
- Ansab Akhtar
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shraddha M. Gupta
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Shubham Dwivedi
- Department
of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, Dehradun 248007, India
| | - Devendra Kumar
- Faculty
of Pharmacy, DIT University, Uttarakhand, Dehradun 248009, India
| | - Mohd. Farooq Shaikh
- Neuropharmacology
Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
- E-mail:
| |
Collapse
|
10
|
Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells 2022; 12:cells12010058. [PMID: 36611852 PMCID: PMC9818716 DOI: 10.3390/cells12010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.
Collapse
|
11
|
Kang J, Wang Z, Cremonini E, Le Gall G, Pontifex MG, Muller M, Vauzour D, Oteiza PI. (-)-Epicatechin mitigates anxiety-related behavior in a mouse model of high fat diet-induced obesity. J Nutr Biochem 2022; 110:109158. [PMID: 36150679 DOI: 10.1016/j.jnutbio.2022.109158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Mounting evidence demonstrates that consumption of high fat diet (HFD) and subsequent development of obesity leads to alterations in cognition and mood. While obesity can affect brain function, consumption of select dietary bioactives may help prevent obesity-related cognitive decline. This study investigated the capacity of the dietary flavonoid (-)-epicatechin (EC) to mitigate HFD-induced obesity-associated alterations in memory and mood. Healthy 8-week old male C57BL/6J mice were maintained on either a control diet (10 kCal% from fat) or a HFD (45 kCal% from fat) and were supplemented with EC at 2 or 20 mg/kg body weight (B.W.) for a 24 week period. Between week 20 and 22, anxiety-related behavior, recognition memory, and spatial memory were measured. Underlying mechanisms were assessed by measuring the expression of selected genes in the hippocampus and by 16S rRNA sequencing and metabolomic analysis of the gut microbiota. 24 weeks of HFD feeding resulted in obesity, which was not affected by EC supplementation. HFD-associated increase in anxiety-related behavior was mitigated by EC in a dose-response manner and was accompanied by increased hippocampal brain-derived neurotrophic factor (BDNF), as well as partial or full restoration of glucocorticoid receptor, mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression. Higher EC dosage (20 mg/kg B.W.) also restored aberrant Lactobacillus and Enterobacter abundance altered by HFD and/or the associated obesity. Together, these results demonstrate how EC mitigates anxiety-related behaviors, revealing a connection between BDNF- and glucocorticoids-mediated signaling. Our findings link changes in the hippocampus and the gut microbiota in a context of HFD-induced obesity and anxiety.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Eleonora Cremonini
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich NR4 7TJ, United Kingdom
| | - Patricia I Oteiza
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
12
|
Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Popiołek Ł, Herbet M, Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep 2022; 12:6708. [PMID: 35468904 PMCID: PMC9035983 DOI: 10.1038/s41598-022-10187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a chronic disease leading to memory difficulties and deterioration of learning abilities. The previous studies showed that modulation of inflammatory pathways in the diabetic brain may reduce dysfunction or cell death in brain areas which are important for control of cognitive function. In the present study, we investigated the neuroprotective actions of newly synthesized adamantane derivatives on diabetes-induced cognitive impairment in mice. Our study relied on the fact that both vildagliptin and saxagliptin belong to DPP4 inhibitors and, contain adamantanyl group. Efficacy of tested compounds at reversing diabetes-induced different types of memory impairment was evaluated with the use of selected behavioural tests. The following neuroinflammatory indicators were also analyzed: neuroinflammatory indicators and the expression of genes involved in the inflammatory response of brain (Cav1, Bdnf). Our study demonstrated that new adamantane derivatives, similarly to DPP4 inhibitors, can restrict diabetes-induced cognitive deficits. We demonstrated that the overexpression of GLP-1-glucagon-like peptide as well as Bdnf, Cav1 genes translate into central blockade of pro-inflammatory synthesis of cytokines and significantly improvement on memory performance in diabetes mice. Newly synthesized adamantane derivatives might have important roles in prevention and treatment of cognitive impairment by inflammatory events in patients with diabetes or related diseases.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland.
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| |
Collapse
|
13
|
Kwon YR, Kim JH, Lee S, Kim HY, Cho EJ. Protective effects of Populus tomentiglandulosa against cognitive impairment by regulating oxidative stress in an amyloid beta 25-35-induced Alzheimer's disease mouse model. Nutr Res Pract 2022; 16:173-193. [PMID: 35392529 PMCID: PMC8971824 DOI: 10.4162/nrp.2022.16.2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease (AD) is one of the most representative neurodegenerative disease mainly caused by the excessive production of amyloid beta (Aβ). Several studies on the antioxidant activity and protective effects of Populus tomentiglandulosa (PT) against cerebral ischemia-induced neuronal damage have been reported. Based on this background, the present study investigated the protective effects of PT against cognitive impairment in AD. MATERIALS/METHODS We orally administered PT (50 and 100 mg/kg/day) for 14 days in an Aβ25-35-induced mouse model and conducted behavioral experiments to test cognitive ability. In addition, we evaluated the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and measured the production of lipid peroxide, nitric oxide (NO), and reactive oxygen species (ROS) in tissues. RESULTS PT treatment improved the space perceptive ability in the T-maze test, object cognitive ability in the novel object recognition test, and spatial learning/long-term memory in the Morris water-maze test. Moreover, the levels of AST and ALT were not significantly different among the groups, indicating that PT did not show liver toxicity. Furthermore, administration of PT significantly inhibited the production of lipid peroxide, NO, and ROS in the brain, liver, and kidney, suggesting that PT protected against oxidative stress. CONCLUSIONS Our study demonstrated that administration of PT improved Aβ25-35-induced cognitive impairment by regulating oxidative stress. Therefore, we propose that PT could be used as a natural agent for AD improvement.
Collapse
Affiliation(s)
- Yu Ri Kwon
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea
- Natural Product Institute of Science and Technology, Anseong 17546, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| |
Collapse
|
14
|
Zhu W, Ding Z, Zhang Z, Wu X, Liu X, Zhang Y, Li S, Zhou L, Tian G, Qin J. Enhancement of Oxytocin in the Medial Prefrontal Cortex Reverses Behavioral Deficits Induced by Repeated Ketamine Administration in Mice. Front Neurosci 2021; 15:723064. [PMID: 34566567 PMCID: PMC8462509 DOI: 10.3389/fnins.2021.723064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a popular recreational substance of abuse that induces persistent behavioral deficits. Although disrupted oxytocinergic systems have been considered to modulate vulnerability to developing drugs of abuse, the involvement of central oxytocin in behavioral abnormalities caused by chronic ketamine has remained largely unknown. Herein, we aimed to investigate the potential role of oxytocin in the medial prefrontal cortex (mPFC) in social avoidance and cognitive impairment resulting from repeated ketamine administration in mice. We found that ketamine injection (5 mg/kg, i.p.) for 10 days followed by a 6-day withdrawal period induced behavioral disturbances in social interaction and cognitive performance, as well as reduced oxytocin levels both at the periphery and in the mPFC. Repeated ketamine exposure also inhibited mPFC neuronal activity as measured by a decrease in c-fos-positive cells. Furthermore, direct microinjection of oxytocin into the mPFC reversed the social avoidance and cognitive impairment following chronic ketamine exposure. In addition, oxytocin administration normalized ketamine-induced inflammatory cytokines including TNF-α, IL-6, and IL-1β levels. Moreover, the activation of immune markers such as neutrophils and monocytes, by ketamine was restored in oxytocin-treated mice. Finally, the reversal effects of oxytocin on behavioral performance were blocked by pre-infusion of the oxytocin receptor antagonist atosiban into the mPFC. These results demonstrate that enhancing oxytocin signaling in the mPFC is a potential pathway to reverse social avoidance and cognitive impairment caused by ketamine, partly through inhibition of inflammatory stimulation.
Collapse
Affiliation(s)
- Weili Zhu
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zhihui Zhang
- Department of Stomatology, Peking University Third Hospital, Beijing, China
| | - Xiao Wu
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Xiaoya Liu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ya Zhang
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Suxia Li
- National Institute on Drug Dependence, Peking University & Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Liping Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| | - Geng Tian
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| |
Collapse
|
15
|
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav 2021; 236:113411. [PMID: 33811908 DOI: 10.1016/j.physbeh.2021.113411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022]
Abstract
Saccharomyces boulardii, a probiotic yeast is well prescribed for various gastrointestinal disorders accompanied by gut dysbiosis such as inflammatory bowel disease, bacterial diarrhea and antibiotic associated diarrhea. Gut dysbiosis has been associated with central nervous system via gut brain axis primarily implied in the modulation of psychiatric conditions. In the current study we use Saccharomyces boulardii as a therapeutic agent against gut dysbiosis associated cognitive decline. In mice, gut dysbiosis was induced by oral Ampicillin Na (250 mg/kg twice-daily) for 14 days. While in the treatment group S. boulardii (90 mg/kg once a day) was administered orally for 21 days along with 14 days of antibiotic treatment. Gene expression studies revealed antibiotic mediated decrease in the Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were restored by S. boulardii treatment. Cognitive behavioral studies showed a parallel reduction in fear conditioning, spatial as well as recognition memory which were reversed upon S. boulardii treatment in these animals. S. boulardii treatment reduced myeloperoxidase enzyme, an inflammatory marker, in colon as well as brain which was increased after antibiotic administration. Similarly, S. boulardii reduced the brain acetylcholine esterase, oxidative stress and inflammatory cytokines and chemokines which were altered due to antibiotic treatment. S. boulardii treatment also protected hippocampal neuronal damage and restored villus length and crypt depth thus normalizing gut permeability in antibiotic treated animals. Hence, we conclude that S. boulardii prevented antibiotic associated gut dysbiosis leading to reduced intestinal and brain inflammation and oxidative stress thus preventing hippocampal neuronal damage and eventually reversing gut dysbiosis associate cognitive decline in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Abhishek Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Maria Adhikary
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
16
|
Ringland C, Schweig JE, Eisenbaum M, Paris D, Ait-Ghezala G, Mullan M, Crawford F, Abdullah L, Bachmeier C. MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease. BMC Neurosci 2021; 22:39. [PMID: 34034683 PMCID: PMC8152085 DOI: 10.1186/s12868-021-00643-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | | | - Maxwell Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Ghania Ait-Ghezala
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Milton Keynes, UK.
- Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
17
|
Roy Sarkar S, Mitra Mazumder P, Banerjee S. Probiotics protect against gut dysbiosis associated decline in learning and memory. J Neuroimmunol 2020; 348:577390. [PMID: 32956951 DOI: 10.1016/j.jneuroim.2020.577390] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Gut-Brain-Axis imbalance due to gut dysbiosis by antibiotics may lead to neurobehavioral changes. Here we determine neuroprotective effect of probiotic against gut dysbiosis associated decline in learning and memory. Oral Ampicillin was used to induce gut dysbiosis while probiotic was administered along with antibiotic as treatment in Swiss albino mice. Antibiotic decreased Lactobacillus, Bifidobacterium, Firmicutes and Clostridium level. This was followed by reduced cognition, hippocampal neuronal density, intestinal crypt depth, villus length and increased corticohippocampal acetylcholinesterase, myeloperoxidase activity and oxidative stress which were partially reversed by probiotic treatment. Probiotic protected hippocampal neurons from gut dysbiosis associated inflammatory and oxidative damage in mice.
Collapse
Affiliation(s)
- Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Division of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
18
|
Okada M, Kozaki I, Honda H. Antidepressive effect of an inward rectifier K+ channel blocker peptide, tertiapin-RQ. PLoS One 2020; 15:e0233815. [PMID: 33186384 PMCID: PMC7665585 DOI: 10.1371/journal.pone.0233815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Renal outer medullary K+ channel, ROMK (Kir1.1, kcnj1) is expressed in the kidney and brain, but its role in the central nervous system remains unknown. Recent studies suggested an involvement of the ROMK channel in mental diseases. Tertiapin (TPN) is a European honey bee venom peptide and is reported to selectively block the ROMK channel. Here, we have chemically synthesized a series of mutated TPN peptides, including TPN-I8R and -M13Q (TPN-RQ), reported previously, and examined their blocking activity on the ROMK channel. Among 71 peptides tested, TPN-RQ was found to block the ROMK channel most effectively. Whole-cell patch-clamp recordings showed the essential roles of two disulfide bonds and the circular structure for the blockade activity. To examine the central role, we injected TPN-RQ intracerebroventricularly and examined the effects on depression- and anxiety-like behaviors in mice. TPN-RQ showed an antidepressive effect in tail-suspension and forced swim tests. The injection of TPN-RQ also enhanced the anxiety-like behavior in the elevated plus-maze and light/dark box tests and impaired spontaneous motor activities in balance beam and wheel running tests. Administration of TPM-RQ suppressed the anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in antidepressant-related nuclei, e.g. the dorsal raphe nucleus and locus coeruleus. TPN-RQ may exert its antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| | - Ikkou Kozaki
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Saad MA, Eltarzy MA, Abdel Salam RM, Ahmed MAE. Liraglutide mends cognitive impairment by averting Notch signaling pathway overexpression in a rat model of polycystic ovary syndrome. Life Sci 2020; 265:118731. [PMID: 33160995 DOI: 10.1016/j.lfs.2020.118731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
AIMS Polycystic ovary syndrome (PCOS), the rifest endocrine disorder in women, is involved in disrupting many metabolic processes. However, the impact of PCOS on cognitive deficits is still uncertain. Recently, Notch signaling pathway was identified as a key modifier in regulating the pathological process in the ovary and various neurodegenerative disorders. Liraglutide has favourable neuroprotective effects that may protect against the possible cognitive dysfunction in PCOS. MAIN METHODS PCOS was induced in rats by administrating Letrozole orally for 21 successive days. Then, Liraglutide (LIR) was administered intraperitoneally for 30 days. Memory was examined using Y-maze, novel object recognition (NOR), and Morris water maze (MWM) tests. Western blotting, enzyme immunoassay, and quantitative real-time PCR were used to examine Notch signaling downstream targets, as well as assessing the expression of the components of various pathways cross talked with Notch signaling in memory impairment. Furthermore, histopathological examination was performed to examine neuronal changes. KEY FINDINGS Notch signaling was overexpressed in PCOS rats, which increased Aβ aggregation, apoptosis, and neuroinflammation. Additionally, histopathological examination showed neuronal degeneration, which was marked by diminished acetylcholine levels in the PCOS rats' hippocampi. Finally, serum levels of insulin and testosterone were elevated while estradiol was reduced. Treatment with LIR repaired Notch signaling-attributed changes and improved the PCOS-induced memory impairment in rats. SIGNIFICANCE The obtained findings confirm that Notch signaling activation in the hippocampus of rats impairs cognitive functions in PCOS, which is mitigated by LIR. Therefore, LIR may offer a novel therapeutic intervention to impede PCOS-induced dementia.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, NewGiza University, Giza, Egypt
| | - Muhammad A Eltarzy
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Rania M Abdel Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, NewGiza University, Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| |
Collapse
|
20
|
Kheyrkhah H, Soltani Zangbar H, Salimi O, Shahabi P, Alaei H. Prefrontal dopaminergic system and its role in working memory and cognition in spinal cord‐injured rats. Exp Physiol 2020; 105:1579-1587. [DOI: 10.1113/ep088537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Hasan Kheyrkhah
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and CognitionFaculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Omid Salimi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Parviz Shahabi
- Neurosciences Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - HojjatAllah Alaei
- Department of PhysiologyFaculty of MedicineIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
21
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
22
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal neuroactive steroid manipulation differentially affects recognition memory and passive avoidance performance in male rats. Behav Brain Res 2020; 394:112833. [PMID: 32726667 DOI: 10.1016/j.bbr.2020.112833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
Early postnatal neuroactive steroids (NAS) play a significant role in the neurodevelopment. Their alteration can modify adult behavior, such as anxiety or learning. For this reason, we set out to observe if neonatal NAS levels alteration affects two types of learning implying low or high levels of emotional content, such as recognition memory and aversive learning respectively. Thus, we tested allopregnanolone or finasteride administered from postnatal days 5-9. In adulthood, recognition memory was assessed using the object recognition test, as well as aversive learning throughout the passive avoidance test (PA). Because of the important emotional component of PA, which can be influencing learning, we evaluated anxiety-like behavior by means of the open field test (OF). The results indicated that those animals administered with finasteride showed higher recognition levels of a familiar object. On the other hand, they showed an impairment in a stressful learning, such as PA. However, no effects of finasteride were observed on anxiety-like behavior in OF, despite it has been reported that neonatal finasteride treatment can promote an anxiety-like profile in the elevated plus-maze test in adulthood. Regarding neonatal allopregnanolone, animals showed higher levels in OF exploration only when they were already familiar with the apparatus. Furthermore, neonatal allopregnanolone did not affect recognition memory or aversive learning. In conclusion, the neonatal NAS manipulation by means of finasteride differently affected two types of learning implying distinct stress levels. Altogether, the results show the importance of the emotional content to explain the effects of neonatal NAS manipulation on learning.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Repeated ketamine administration induces recognition memory impairment together with morphological changes in neurons from ventromedial prefrontal cortex, dorsal striatum, and hippocampus. Behav Pharmacol 2020; 31:633-640. [DOI: 10.1097/fbp.0000000000000571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Wulaer B, Kunisawa K, Hada K, Jaya Suento W, Kubota H, Iida T, Kosuge A, Nagai T, Yamada K, Nitta A, Yamamoto Y, Saito K, Mouri A, Nabeshima T. Shati/Nat8l deficiency disrupts adult neurogenesis and causes attentional impairment through dopaminergic neuronal dysfunction in the dentate gyrus. J Neurochem 2020; 157:642-655. [PMID: 32275776 DOI: 10.1111/jnc.15022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention. In addition to the higher-order brain function, dopamine is implicated in the regulation of adult neurogenesis. Previously, we generated mice lacking Shati, an N-acetyltransferase-8-like protein on a C57BL/6J genetic background (Shati/Nat8l-/- ). These mice showed a series of changes in the dopamine system and ADHD-like behavioral phenotypes. Therefore, we hypothesized that deficiency of Shati/Nat8l would affect neurogenesis and attentional behavior in mice. We found aberrant morphology of neurons and impaired neurogenesis in the dentate gyrus of Shati/Nat8l-/- mice. Additionally, research has suggested that impaired neurogenesis might be because of the reduction of dopamine in the hippocampus. Galantamine (GAL) attenuated the attentional impairment observed in the object-based attention test via increasing the dopamine release in the hippocampus of Shati/Nat8l-/- mice. The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, and dopamine D1 receptor antagonist, SCH23390, blocked the ameliorating effect of GAL on attentional impairment in Shati/Nat8l-/- mice. These results suggest that the ameliorating effect of GAL on Shati/Nat8l-/- attentional impairment is associated with activation of D1 receptors following increased dopamine release in the hippocampus via α7 nicotinic acetylcholine receptor. In summary, Shati/Nat8l is important in both morphogenesis and neurogenesis in the dentate gyrus and attention, possible via modulation of dopaminergic transmission. Cover Image for this issue: https://doi.org/10.1111/jnc.15061.
Collapse
Affiliation(s)
- Bolati Wulaer
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kazuhiro Hada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Willy Jaya Suento
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Department of Psychiatry, Hasanuddin University, South Sulawesi, Indonesia
| | - Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Tsubasa Iida
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan.,Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
25
|
Bondžić AM, Senćanski MV, Vujačić Nikezić AV, Kirillova MV, André V, Kirillov AM, Bondžić BP. Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. J Inorg Biochem 2020; 205:110990. [DOI: 10.1016/j.jinorgbio.2019.110990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023]
|
26
|
Stone TW. Does kynurenic acid act on nicotinic receptors? An assessment of the evidence. J Neurochem 2020; 152:627-649. [PMID: 31693759 PMCID: PMC7078985 DOI: 10.1111/jnc.14907] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
As a major metabolite of kynurenine in the oxidative metabolism of tryptophan, kynurenic acid is of considerable biological and clinical importance as an endogenous antagonist of glutamate in the central nervous system. It is most active as an antagonist at receptors sensitive to N-methyl-D-aspartate (NMDA) which regulate neuronal excitability and plasticity, brain development and behaviour. It is also thought to play a causative role in hypo-glutamatergic conditions such as schizophrenia, and a protective role in several neurodegenerative disorders, notably Huntington's disease. An additional hypothesis, that kynurenic acid could block nicotinic receptors for acetylcholine in the central nervous system has been proposed as an alternative mechanism of action of kynurenate. However, the evidence for this alternative mechanism is highly controversial, partly because at least eight earlier studies concluded that kynurenic acid blocked NMDA receptors but not nicotinic receptors and five subsequent, independent studies designed to repeat the results have failed to do so. Many studies considered to support the alternative 'nicotinic' hypothesis have been based on the use of analogs of kynurenate such as 7-chloro-kynurenic acid, or putatively nicotinic modulators such as galantamine, but a detailed analysis of the pharmacology of these compounds suggests that the results have often been misinterpreted, especially since the pharmacology of galantamine itself has been disputed. This review examines the evidence in detail, with the conclusion that there is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors. Therefore, since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, with some activity at GPR35 sites and Aryl Hydrocarbon Receptors, results with kynurenic acid should be interpreted only in terms of these confirmed sites of action.
Collapse
Affiliation(s)
- Trevor W. Stone
- Institute for Neuroscience and PsychologyUniversity of GlasgowGlasgowG12 8QQUK
- Present address:
Kennedy InstituteNDORMSUniversity of OxfordOxfordOX3 7FYUK
| |
Collapse
|
27
|
Kang J, Wang Z, Oteiza PI. (−)-Epicatechin mitigates high fat diet-induced neuroinflammation and altered behavior in mice. Food Funct 2020; 11:5065-5076. [DOI: 10.1039/d0fo00486c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(−)-Epicatechin improves memory in high fat diet-induced obese mice in association with prevention of endotoxemia and mitigation of neuroinflammation.
Collapse
Affiliation(s)
- Jiye Kang
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| | - Ziwei Wang
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| | - Patricia I. Oteiza
- Department of Nutrition and Department of Environmental Toxicology
- University of California
- Davis
- USA
| |
Collapse
|
28
|
Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem 2019; 164:107066. [PMID: 31400467 DOI: 10.1016/j.nlm.2019.107066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Prenatal hypoxia often results in dramatic alterations in developmental profiles and behavioral characteristics, including learning and memory, in later life. Despite the accumulation of considerable amounts of experimental data, the mechanisms underlying developmental deficits caused by prenatal hypoxia remain unclear. In the present study, we investigated whether prenatal hypoxia on embryonic day 14 (E14) affected synaptic properties in the hippocampus and hippocampal-related cognitive functions in young rats. We found that 20- to 30-d-old rats subjected to prenatal hypoxia had significantly disturbed basal synaptic transmission in CA3-CA1 synapses and a two-fold decrease in hippocampal long-term synaptic potentiation. These alterations were accompanied by a significant decline in the protein level of GluN2B but not GluN2A NMDA receptor subunits. In addition, the number of synaptopodin-positive dendritic spines in the CA1 area of the hippocampus was reduced in the rats exposed to prenatal hypoxia. These changes resulted in significant learning and memory deficits in a novel object recognition test.
Collapse
Affiliation(s)
- Igor A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Nadezhda M Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Dmitry S Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Tatyana Yu Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, Saint Petersburg 197341, Russia.
| |
Collapse
|
29
|
Ren E, Roncacé V, Trazzi S, Fuchs C, Medici G, Gennaccaro L, Loi M, Galvani G, Ye K, Rimondini R, Aicardi G, Ciani E. Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist. Front Cell Neurosci 2019; 13:169. [PMID: 31114483 PMCID: PMC6503158 DOI: 10.3389/fncel.2019.00169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/09/2019] [Indexed: 11/24/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental encephalopathy caused by mutations in the CDKL5 gene and characterized by early-onset epilepsy and intellectual and motor impairments. No cure is currently available for CDD patients, as limited knowledge of the pathology has hindered the development of therapeutics. Cdkl5 knockout (KO) mouse models, recently created to investigate the role of CDKL5 in the etiology of CDD, recapitulate various features of the disorder. Previous studies have shown alterations in synaptic plasticity and dendritic pattern in the cerebral cortex and in the hippocampus, but the knowledge of the molecular substrates underlying these alterations is still limited. Here, we have examined for the first time synaptic function and plasticity, dendritic morphology, and signal transduction pathways in the perirhinal cortex (PRC) of this mouse model. Being interconnected with a wide range of cortical and subcortical structures and involved in various cognitive processes, PRC provides a very interesting framework for examining how CDKL5 mutation leads to deficits at the synapse, circuit, and behavioral level. We found that long-term potentiation (LTP) was impaired, and that the TrkB/PLCγ1 pathway could be mechanistically involved in this alteration. PRC neurons in mutant mice showed a reduction in dendritic length, dendritic branches, PSD-95-positive puncta, GluA2-AMPA receptor levels, and spine density and maturation. These functional and structural deficits were associated with impairment in visual recognition memory. Interestingly, an in vivo treatment with a TrkB agonist (the 7,8-DHF prodrug R13) to trigger the TrkB/PLCγ1 pathway rescued defective LTP, dendritic pattern, PSD-95 and GluA2-AMPA receptor levels, and restored visual recognition memory in Cdkl5 KO mice. Present findings demonstrate a critical role of TrkB signaling in the synaptic development alterations due to CDKL5 mutation, and suggest the possibility of TrkB-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Roncacé
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Keqiang Ye
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Roberto Rimondini
- Department of Biomedical and Clinical Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy.,Interdepartmental Center "Luigi Galvani" for Integrated Studies of Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer's disease. Neurobiol Aging 2018; 69:1-9. [DOI: 10.1016/j.neurobiolaging.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
|
31
|
Song L, Pei L, Hu L, Pan S, Xiong W, Liu M, Wu Y, Shang Y, Yao S. Death-associated protein kinase 1 mediates interleukin-1β production through regulating inlfammasome activation in Bv2 microglial cells and mice. Sci Rep 2018; 8:9930. [PMID: 29967321 PMCID: PMC6028446 DOI: 10.1038/s41598-018-27842-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-1β (IL-1β) plays a crucial role in mediating inflammation and innate immunity response in the central nervous system. Death-associated protein kinase 1 (DAPK1) was shown to be involved in several cellular processes. Here, we investigated the effects of DAPK1 on IL-1β production in microglial cells. We used a combination of in vitro (Bv2 microglial cell cultures) and in vivo (mice injected with amyloid-β (Aβ)) techniques to address the role of caspase-1 activation in release of IL-1β. DAPK1 involvement was postulated through genetic approaches and pharmacological blockade of this enzyme. We found that Aβ25-35 stimulation induced IL-1β production and caspase-1 activation in LPS-primed Bv2 cells and mice. DAPK1 knockdown and catalytic activity inhibition reduced IL-1β maturation and caspase-1 activation, nevertheless, DAPK1 overexpression attenuated these effects. Aβ25-35-induced lysosomal cathepsin B leakage was required for DAPK1 activation. Furthermore, repeated DAPK1 inhibitor treatment ameliorated the memory impairment in Aβ25-35-injected mice. Taken together, our findings suggest that DAPK1 facilitates Aβ25-35-induced IL-1β production through regulating caspase-1 activation in microglial cells.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical Collge, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
32
|
Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward learning task. Behav Pharmacol 2018; 29:351-364. [DOI: 10.1097/fbp.0000000000000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. PLoS One 2018; 13:e0194476. [PMID: 29554110 PMCID: PMC5858783 DOI: 10.1371/journal.pone.0194476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26–28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes’ size. Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, has been associated with potential health benefits, both on cognition and cardiovascular phenotypes, through several mechanisms. We aimed to investigate the effects of green tea extracts on WBS-related phenotypes through a phase I clinical trial in mice. After feeding CD animals with green tea extracts dissolved in the drinking water, starting at three different time periods (prenatal, youth and adulthood), a set of behavioral tests and several anatomical, histological and molecular analyses were performed. Treatment resulted to be effective in the reduction of cardiac hypertrophy and was also able to ameliorate short-term memory deficits of CD mice. Taken together, these results suggest that EGCG might have a therapeutic and/or preventive role in the management of WBS.
Collapse
|
34
|
Neuroprotective Effect and Molecular Mechanism of [6]-Gingerol against Scopolamine-Induced Amnesia in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8941564. [PMID: 29770155 PMCID: PMC5892971 DOI: 10.1155/2018/8941564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
We have investigated the neuroprotective and memory enhancing effect of [6]-gingerol (GIN), a pungent ingredient of ginger, using an animal model of amnesia. To determine the neuroprotective effect of GIN on cognitive dysfunction, scopolamine (SCO, 1 mg/kg, i.p.) was injected into C57BL/6 mice, and a series of behavioral tests were conducted. SCO-induced behavior changes and memory impairments, such as decreased alteration (%) in Y-maze test, increased mean escape latency in water maze test, diminished step-through latency in passive avoidance test, and shortened freezing time in fear condition test, were significantly prevented and restored by the oral administration of GIN (10 or 25 mg/kg/day). To further verify the neuroprotective mechanism of GIN, we have focused on the brain-derived neurotrophic factor (BDNF). The administration of GIN elevated the protein expression of BDNF, which was mediated via the activation of protein kinase B/Akt- and cAMP-response element binding protein (CREB) signaling pathway. These results suggest that GIN may have preventive and/or therapeutic potentials in the management of memory deficit and cognitive impairment in mice with amnesia.
Collapse
|
35
|
Arafa NMS, Ali EHA, Hassan MK. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem Biol Interact 2017; 277:195-203. [PMID: 28837785 DOI: 10.1016/j.cbi.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022]
Abstract
Canagliflozin (CAN) is a sodium-glucose co-transporter 2 (SGLT2) inhibitor indicated to improve glycemic control in adults with type 2 diabetes mellitus. There is a little information about its effect on the cholinergic system that proposed mechanism for memory improvement occurring by SGLT2 drugs. This study aimed to estimate the effect of CAN as compared to galantamine (GAL) treatments for two weeks on scopolamine hydrobromide (SCO)-induced memory dysfunction in experimental rats. Animals divided into six groups; control (CON), CAN, GAL, SCO, SCO + CAN and SCO + GAL. Results indicated significant decrease in body weights of the CAN groups as compared to control values. Moreover, in the SCO + CAN and SCO + GAL the number of arm entry and number of correct alternation in Y maze task increased and showed improvement in the water maze task, acetylcholinesterase (AChE) activities decreased significantly, while monoamines levels significantly increased compared with the SCO group values. Results also recorded acetylcholine M1 receptor (M1 mAChR) in SCO + CAN or SCO + GAL groups in comparison with the SCO group. The study suggested that canagliflozin might improve memory dysfunction induced by scopolamine hydrobromide via cholinergic and monoamines system.
Collapse
Affiliation(s)
- Nadia M S Arafa
- Faculty of Science, Biology Department, Jazan University, KSA & National Organization for Drug Control and Research, Department of Physiology, Egypt.
| | - Elham H A Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Mohamed Kamel Hassan
- Biotechnology Program, Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt.
| |
Collapse
|
36
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
37
|
Khongsombat O, Nakdook W, Ingkaninan K. Inhibitory effects of Tabernaemontana divaricata root extract on oxidative stress and neuronal loss induced by amyloid β 25-35 peptide in mice. J Tradit Complement Med 2017; 8:184-189. [PMID: 29322008 PMCID: PMC5756015 DOI: 10.1016/j.jtcme.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
In Alzheimer's disease, there are numerous amyloid plaques, neurofibrillary tangles, and neuronal loss in several brain areas. Oxidative stress is involved in the mechanisms of Aβ-peptide induced neurotoxicity by the generation of free radical oxidative stress that may lead to neurodegeneration. Tabernaemontana divaricata has various medical properties in Thai folklore medicine including prevent forgetfulness or improve memory. The present study aimed to investigate the effects of T. divaricata root extract (TDE) on Aβ25-35 peptides induced neuronal loss and oxidative stress in mice. Male ICR mice were administered with vehicle or TDE (250, 500, and 1000 mg/kg b.w., p.o.) for 28 consecutive days. Then, these mice were given a single intracerebroventricular (i.c.v.) injection of Aβ25-35 or phosphate buffer saline (PBS) (10 μg/mouse). The novel object recognition (NOR) test was used to determine memory disturbance. In addition, the neuronal cells in the cerebral cortex and hippocampus were measured by using crystal violet staining and lipid peroxidation was determined by measuring the formation of thiobarbituric acid reactive substances. An i.c.v. injection of Aβ25-35 peptides could significantly induce memory impairment, increase level of lipid peroxidation including the neuronal loss in CA3 of hippocampus. However, the mice pretreated with TDE could prevent the memory loss, neuronal loss and decrease lipid peroxidation. These results suggest the potential therapeutic value in dementia of TDE through its antioxidant property.
Collapse
Affiliation(s)
- Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Walika Nakdook
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
38
|
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, Badavi M, Khalaj L. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol 2017; 95:388-395. [DOI: 10.1139/cjpp-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia–reperfusion (I–R) (P < 0.01). Pretreatment of the I–R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I–R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I–R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I–R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I–R group compared to the I–R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I–R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yaghoob Farbood
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
39
|
Castillo WO, Aristizabal-Pachon AF, de Lima Montaldi AP, Sakamoto-Hojo ET, Takahashi CS. Galanthamine decreases genotoxicity and cell death induced by β-amyloid peptide in SH-SY5Y cell line. Neurotoxicology 2016; 57:291-297. [DOI: 10.1016/j.neuro.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 10/23/2016] [Indexed: 12/11/2022]
|
40
|
Time Course, Behavioral Safety, and Protective Efficacy of Centrally Active Reversible Acetylcholinesterase Inhibitors in Cynomolgus Macaques. Neurochem Res 2016; 42:1962-1971. [DOI: 10.1007/s11064-016-2120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 01/18/2023]
|
41
|
Zhai Y, Yamashita T, Nakano Y, Sun Z, Shang J, Feng T, Morihara R, Fukui Y, Ohta Y, Hishikawa N, Abe K. Chronic Cerebral Hypoperfusion Accelerates Alzheimer’s Disease Pathology with Cerebrovascular Remodeling in a Novel Mouse Model. J Alzheimers Dis 2016; 53:893-905. [DOI: 10.3233/jad-160345] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits. J Vis Exp 2016. [PMID: 27023127 DOI: 10.3791/53308] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Amyloid-β (Aβ) is a major pathological mediator of both familial and sporadic Alzheimer's disease (AD). In the brains of AD patients, progressive accumulation of Aβ oligomers and plaques is observed. Such Aβ abnormalities are believed to block long-term potentiation, impair synaptic function, and induce cognitive deficits. Clinical and experimental evidences have revealed that the acute increase of Aβ levels in the brain allows development of Alzheimer-like phenotypes. Hence, a detailed protocol describing how to acutely generate an AD mouse model via the intracerebroventricular (ICV) injection of Aβ is necessary in many cases. In this protocol, the steps of the experiment with an Aβ-injected mouse are included, from the preparation of peptides to the testing of behavioral abnormalities. The process of preparing the tools and animal subjects before the injection, of injecting the Aβ into the mouse brain via ICV injection, and of assessing the degree of cognitive impairment are easily explained throughout the protocol, with an emphasis on tips for effective ICV injection of Aβ. By mimicking certain aspects of AD with a designated injection of Aβ, researchers can bypass the aging process and focus on the downstream pathology of Aβ abnormalities.
Collapse
Affiliation(s)
- Hye Yun Kim
- Center for Neuro-Medicine, Korea Institute of Science and Technology; Research Institute, GoshenBiotech, Inc
| | - Dongkeun K Lee
- Center for Neuro-Medicine, Korea Institute of Science and Technology
| | - Bo-Ryehn Chung
- Center for Neuro-Medicine, Korea Institute of Science and Technology; Department of Chemical and Biological Engineering, Princeton University
| | - Hyunjin V Kim
- Center for Neuro-Medicine, Korea Institute of Science and Technology; Biological Chemistry Program, Korea University of Science and Technology
| | - YoungSoo Kim
- Center for Neuro-Medicine, Korea Institute of Science and Technology; Biological Chemistry Program, Korea University of Science and Technology;
| |
Collapse
|
43
|
Ortiz-Pérez A, Espinosa-Raya J, Picazo O. An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 2016; 17:15-25. [DOI: 10.1007/s10339-015-0746-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023]
|
44
|
Nikiforuk A, Kos T, Hołuj M, Potasiewicz A, Popik P. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats. Neuropharmacology 2016; 101:389-400. [DOI: 10.1016/j.neuropharm.2015.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
|
45
|
EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-β oligomers and plaques. Nat Commun 2015; 6:8997. [PMID: 26646366 PMCID: PMC4686862 DOI: 10.1038/ncomms9997] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the transition of amyloid-β (Aβ) monomers into toxic oligomers and plaques. Given that Aβ abnormality typically precedes the development of clinical symptoms, an agent capable of disaggregating existing Aβ aggregates may be advantageous. Here we report that a small molecule, 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS), binds to Aβ aggregates and converts them into monomers. The oral administration of EPPS substantially reduces hippocampus-dependent behavioural deficits, brain Aβ oligomer and plaque deposits, glial γ-aminobutyric acid (GABA) release and brain inflammation in an Aβ-overexpressing, APP/PS1 transgenic mouse model when initiated after the development of severe AD-like phenotypes. The ability of EPPS to rescue Aβ aggregation and behavioural deficits provides strong support for the view that the accumulation of Aβ is an important mechanism underlying AD. Amyloid-beta deposits are a pathological hallmark of Alzheimer's disease, and have previously been targeted in immunisation therapies. Here, the authors show that oral administration of the small molecule EPPS reduces Aß plaque and oligomer load in APP/PS1 mice and improves learning and memory performance.
Collapse
|
46
|
Naharci MI, Ozturk A, Yasar H, Cintosun U, Kocak N, Bozoglu E, Tasci I, Doruk H. Galantamine improves sleep quality in patients with dementia. Acta Neurol Belg 2015; 115:563-8. [PMID: 25777522 DOI: 10.1007/s13760-015-0453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
The purpose of the study was to evaluate the influences of cholinesterase inhibitors on sleep pattern and sleep disturbance. A total of 87 mild to moderate stage dementia patients who were not on cholinesterase enzyme inhibitor and memantine treatment were included in the study. The dementia patients were treated with donepezil, galantamine or rivastigmine, depending on the preference of the clinician. Fifty-five dementia patients (63.2 %) completed the study. Twenty-three elderly subjects, who had normal cognitive functions, were included in the study as the control group. The Pittsburgh Sleep Quality Index was used for evaluating the sleep quality at the beginning and at the final assessment. The improvement in sleep quality was better with regard to changes in Pittsburgh Sleep Quality Index scores with galantamine treatment compared to the donepezil and the control groups. A significant decrease in Pittsburgh Sleep Quality Index scores was detected in the galantamine group after treatment. Although statistically not significant, rivastigmine decreased and donepezil increased the Pittsburgh Sleep Quality Index scores after treatment. Dementia patients who had a poor sleep quality (n: 36), the rate of improvement in sleep disturbance was 81.8 % in the galantamine group, 75 % in the rivastigmine, and 50 % in the donepezil group. Galantamine may be the first choice of cholinesterase inhibitor in mild to moderate dementia patients in terms of improving sleep quality.
Collapse
Affiliation(s)
- Mehmet Ilkin Naharci
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey.
- Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| | - Ahmet Ozturk
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey
| | - Halit Yasar
- Department of Neurology, Mevki Military Hospital, Ankara, Turkey
| | - Umit Cintosun
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey
| | - Necmettin Kocak
- Department of Epidemiology, Gulhane School of Medicine, Ankara, Turkey
| | - Ergun Bozoglu
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey
| | - Ilker Tasci
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey
| | - Huseyin Doruk
- Division of Geriatrics, Department of Internal Medicine, Gulhane School of Medicine, Ankara, Turkey
| |
Collapse
|
47
|
Sadigh-Eteghad S, Mahmoudi J, Babri S, Talebi M. Effect of alpha-7 nicotinic acetylcholine receptor activation on beta-amyloid induced recognition memory impairment. Possible role of neurovascular function. Acta Cir Bras 2015; 30:736-42. [DOI: 10.1590/s0102-865020150110000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/05/2015] [Indexed: 11/22/2022] Open
|
48
|
Nikiforuk A, Kos T, Potasiewicz A, Popik P. Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol 2015; 25:1300-13. [PMID: 26003081 DOI: 10.1016/j.euroneuro.2015.04.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 11/15/2022]
Abstract
A wide body of preclinical and clinical data suggests that alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) may represent useful targets for cognitive improvement in schizophrenia and Alzheimer׳s disease. A promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs due to their several advantages over the direct agonists. Nevertheless, the behavioural effects of this class of compounds, particularly with regard to higher-order cognitive functions, have not been broadly characterised. The aim of the present study was to evaluate the procognitive efficacies of type I and type II α7-nAChRs PAMs, N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI) and N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) in the novel object recognition task (NORT), attentional set-shifting task (ASST) and five-choice serial reaction time task (5-CSRTT) in rats. Additionally, the effects of galantamine, an acetylcholinesterase inhibitor that also allosterically modulates nAChRs, were assessed. We report that CCMI (0.3-3mg/kg), PNU-120596 (0.3-3mg/kg) and galantamine (1-3mg/kg) attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. Methyllycaconitine (3mg/kg) blocked the actions of CCMI, PNU-120596 and galantamine in the NORT and ASST, suggesting that the procognitive effects of these compounds are α7-nAChRs-dependent. However, none of the compounds tested affected the rats' attentional performance in the 5-CSRTT. The present findings confirm and extend the observations indicating that the positive allosteric modulation of α7-nAChRs enhances recognition memory and cognitive flexibility in preclinical tasks. Therefore, the present study supports the utility of α7-nAChRs PAMs as a potential cognitive enhancing therapy.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Kos
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
49
|
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 2015; 298:81-93. [DOI: 10.1016/j.neuroscience.2015.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
|
50
|
Li J, Ding X, Zhang R, Jiang W, Sun X, Xia Z, Wang X, Wu E, Zhang Y, Hu Y. Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neuroscience 2015; 303:103-14. [PMID: 26135675 DOI: 10.1016/j.neuroscience.2015.06.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
So far, no effective disease-modifying therapies for Alzheimer's disease (AD) aiming at protecting or reversing neurodegeneration of the disease have been established yet. The present work aims to elucidate the effect of Harpagoside (abbreviated HAR), an iridoid glycosides purified from the Chinese medicinal herb Scrophularia ningpoensis, on neurodegeneration induced by β-amyloid peptide (Aβ) and the underlying molecular mechanism. Here we show that HAR exerts neuroprotective effects against Aβ neurotoxicity. Rats injected aggregated Aβ₁₋₄₀ into the bilateral hippocampus displayed impaired spatial learning and memory ability in a Y-maze test and novel object recognition test, while HAR treatment ameliorated Aβ₁₋₄₀-induced behavioral deficits. Moreover, administration of HAR increased the expression levels of brain-derived neurotrophic factor (BDNF) and activated the extracellular-regulated protein kinase (ERK) and the phosphatidylinositol 3-kinase (PI3-kinase) pathways both in the cerebral cortex and hippocampus of the Aβ₁₋₄₀-insulted rat model. Furthermore, in cultured primary cortical neurons, Aβ₁₋₄₂ induced significant decrease of choline acetyltransferase (ChAT)-positive neuron number and neurite outgrowth length, both of which were dose dependently increased by HAR. In addition, HAR pretreatment also significantly attenuated the decrease of cell viability in Aβ₁₋₄₂-injured primary cortical neurons. Finally, when K252a, an inhibitor of Trk tyrosine kinases, and a BDNF neutralizing antibody were added to the culture medium 2 h prior to HAR addition, the protective effect of HAR on Aβ₁₋₄₂-induced neurodegeneration in the primary cortical neuron was almost inhibited. Taken together, HAR exerting neuroprotection effect and ameliorating learning and memory deficit appears to be associated, at least in part, with up-regulation of BDNF content as well as activating its downstream signaling pathways, e.g., MAPK/PI3K pathways. It raises the possibility that HAR has potential to be a therapeutic agent against AD.
Collapse
Affiliation(s)
- J Li
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Ding
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - R Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - W Jiang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Sun
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Z Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China
| | - X Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - E Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| | - Y Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China.
| | - Y Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|