1
|
Anupriya ES, Chen R, Kalski D, Palmer J, Shen M. Dual-channel nano-carbon-liquid/liquid junction electrodes for multi-modal analysis: redox-active (dopamine) and non-redox-active (acetylcholine). Analyst 2024. [PMID: 39688537 DOI: 10.1039/d4an01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dual-channel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nano-carbon-ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.
Collapse
Affiliation(s)
- Edappalil Satheesan Anupriya
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| | - Ran Chen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Daniel Kalski
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jordynn Palmer
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Mei Shen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Salloum N, Chouchana M, Icick R, Bloch V, Daumas S, Mestikawy SE, Vorspan F, Clergue-Duval V. Exploring the efficacy of cholinergic agents for the treatment of psychostimulant use disorder: a systematic review. Psychopharmacology (Berl) 2024; 241:2205-2222. [PMID: 39432105 DOI: 10.1007/s00213-024-06696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
RATIONALE No drugs are currently validated to treat psychostimulant use disorder (PUD). Pathophysiological studies consistently highlight the contribution of cholinergic mechanisms in psychostimulant use, including the vulnerability to PUD, paving the way for potential therapeutic strategies. OBJECTIVES The aim of this systematic review is to describe and discuss the efficacy of cholinergic agents in drug trials for patients with PUD. METHODS A systematic review was conducted on April 4, 2024 in MedLine, Embase and Cochrane Library databases on controlled clinical drug trial of cholinergic agents in humans with PUD, psychostimulant abuse or dependence and psychostimulant use in recent year. RESULTS Twenty-eight articles were included, twenty-one on cocaine and seven on amphetamines. Cholinergic agents used in these studies were biperiden (a muscarinic antagonist), mecamylamine (a nicotinic antagonist), nicotinic agonists, acetylcholinesterase inhibitors (AChEI), or citicoline. Two types of trials were identified. There were seventeen randomized controlled clinical trials evaluating cholinergic agents on psychostimulant use reduction in outpatients seeking treatment. Additionally, we retrieved eleven short-term «proof-of-concept» laboratory trials mainly with supervised psychostimulant administration and/or triggered craving challenges. Outpatient trials were heterogeneous and for most, inconclusive. Only two studies on galantamine (AChEI) and citicoline, reported a significant reduction of cocaine consumption. «Proof-of-concept» laboratory trials showed no evidence of efficacy on the selected outcomes, notably on craving. CONCLUSIONS This review does not support the current prescription of cholinergic agents to treat PUD. Replication clinical trials notably on galantamine or other AChEI, and proof-of-concept trials on comedown symptoms will be necessary to identify a potential therapeutic indication for cholinergic agents in PUD.
Collapse
Affiliation(s)
- Nicolas Salloum
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
| | - Margot Chouchana
- Service de Pharmacie Hospitalière, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint- Denis, Paris, 75010, France
- UFR de Pharmacie, Université Paris Cité, 85 boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Vanessa Bloch
- Service de Pharmacie Hospitalière, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint- Denis, Paris, 75010, France
- UFR de Pharmacie, Université Paris Cité, 85 boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Stéphanie Daumas
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (NPS- IBPS), INSERM, CNRS, Sorbonne Université, 9 quai Saint Bernard, Paris, 75005, France
| | - Salah El Mestikawy
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (NPS- IBPS), INSERM, CNRS, Sorbonne Université, 9 quai Saint Bernard, Paris, 75005, France
- Départment of Psychiatry, Douglas Research Center, McGill University, 6875 Boulevard Lasalle, Montréal, QC, H4H 1R3, Canada
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France.
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France.
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France.
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France.
| |
Collapse
|
3
|
Wang Y, Pradhan A, Gupta P, Hanrieder J, Zetterberg H, Cans AS. Analyzing Fusion Pore Dynamics and Counting the Number of Acetylcholine Molecules Released by Exocytosis. J Am Chem Soc 2024; 146:25902-25906. [PMID: 39259049 PMCID: PMC11440489 DOI: 10.1021/jacs.4c08450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Acetylcholine (ACh) is a critical neurotransmitter influencing various neurophysiological functions. Despite its significance, quantitative methods with adequate spatiotemporal resolution for recording a single exocytotic ACh efflux are lacking. In this study, we introduce an ultrafast amperometric ACh biosensor that enables 50 kHz electrochemical recording of spontaneous single exocytosis events at axon terminals of differentiated cholinergic human SH-SY5Y neuroblastoma cells with sub-millisecond temporal resolution. Characterization of the recorded amperometric traces revealed seven distinct current spike types, each displaying variations in shape, time scale, and ACh quantities released. This finding suggests that exocytotic release is governed by complex fusion pore dynamics in these cells. The absolute number of ACh molecules released during exocytosis was quantified by calibrating the sensor through the electroanalysis of liposomes preloaded with varying ACh concentrations. Notably, the largest quantal release involving approximately 8000 ACh molecules likely represents full exocytosis, while a smaller release of 5000 ACh molecules may indicate partial exocytosis. Following a local administration of bafilomycin A1, a V-ATPase inhibitor, the cholinergic cells exhibited both a larger quantity of ACh released and a higher frequency of exocytosis events. Therefore, this ACh sensor provides a means to monitor minute amounts of ACh and investigate regulatory release mechanisms at the single-cell level, which is vital for understanding healthy brain function and pathologies and optimizing drug treatment for disorders.
Collapse
Affiliation(s)
- Yuanmo Wang
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Ajay Pradhan
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
| | - Pankaj Gupta
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
- Department
of Neurodegenerative Disease, UCL Institute
of Neurology, Queen Square, WC1N 3BG London, U.K.
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience &
Physiology, The Sahlgrenska Academy at the
University of Gothenburg, SE-43141 Mölndal, Sweden
- Department
of Neurodegenerative Disease, UCL Institute
of Neurology, Queen Square, WC1N 3BG London, U.K.
- Clinical
Neurochemistry Laboratory, The Sahlgrenska
University Hospital, SE-43141 Mölndal, Sweden
- UK
Dementia
Research Institute at UCL, WC1N 3BG London, U.K.
- Hong
Kong Center for Neurodegenerative Diseases, Clear Water Bay, 999077 Hong Kong, China
- Wisconsin
Alzheimer’s Disease Research Center, University of Wisconsin
School of Medicine and Public Health, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Ann-Sofie Cans
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Kemigården 4, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
4
|
Balakrishnan AS, Johansen LBE, Lindsley CW, Conn PJ, Thomsen M. Co-stimulation of muscarinic M1 and M4 acetylcholine receptors prevents later cocaine reinforcement in male and female mice, but not place-conditioning. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111079. [PMID: 38950842 DOI: 10.1016/j.pnpbp.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.
Collapse
Affiliation(s)
- Abhishek Shankar Balakrishnan
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bornø Engelhardt Johansen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Aceto G, Nardella L, Nanni S, Pecci V, Bertozzi A, Nutarelli S, Viscomi MT, Colussi C, D'Ascenzo M, Grassi C. Glycine-induced activation of GPR158 increases the intrinsic excitability of medium spiny neurons in the nucleus accumbens. Cell Mol Life Sci 2024; 81:268. [PMID: 38884814 PMCID: PMC11335193 DOI: 10.1007/s00018-024-05260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Luca Nardella
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Simona Nanni
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, Rome, Italy
| | - Marcello D'Ascenzo
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
6
|
Lewis A. A non-adaptationist hypothesis of play behaviour. J Physiol 2024; 602:2433-2453. [PMID: 37656171 DOI: 10.1113/jp284413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Play is a suite of apparently non-functional, pleasurable behaviours observed in human and non-human animals. Although the phenomenon has been studied extensively, no adaptationist behavioural theory of how play evolved can be supported by the available evidence. However, the advancement of the extended evolutionary synthesis and developments in systems biology offer alternative avenues for non-adaptationist physiological hypotheses. I therefore propose a hypothesis of play, based upon a complex ACh activity that is under agential control of the organism, whereby play initiates ACh-mediated feedforward and feedback processes which act to: (i) regulate metabolic processes; (ii) form new ACh receptors via ACh mRNA activity; (iii) mediate attention, memory consolidation and learning; and (iv) mediate social behaviours, reproduction and embryonic development. However, play occurs across taxa, but does not occur across all taxonomic groups or within all species of a taxonomic group. Thus, to support the validity of the proposed hypothesis, I further propose potential explanations for this anomaly, which include sampling and observer biases, altricial versus precocial juvenile development, and the influence of habitat niche and environmental conditions on behaviour. The proposed hypothesis thus offers new avenues for study in both the biological and social sciences, in addition to having potential applications in applied sciences, such as animal welfare and biomedical research. Crucially, it is hoped that this hypothesis will promote further study of a valid and behaviourally significant, yet currently enigmatic, biological phenomenon.
Collapse
Affiliation(s)
- Amelia Lewis
- Independent Researcher, Lincoln, Lincolnshire, UK
| |
Collapse
|
7
|
Junior MSC, Bezerra AG, Curado DF, Gregório RP, Galduróz JCF. Preliminary investigation of the administration of biperiden to reduce relapses in individuals with cocaine/crack user disorder: A randomized controlled clinical trial. Pharmacol Biochem Behav 2024; 237:173725. [PMID: 38340989 DOI: 10.1016/j.pbb.2024.173725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Several studies have demonstrated that ACh modulates the dopaminergic circuit in the nucleus accumbens, and its blockade appears to be associated with the inhibition of the reinforced effect or the increase in dopamine caused by cocaine use. The objective of this study was to evaluate the effect of biperiden (a muscarinic receptor antagonist with a relatively higher affinity for the M1 receptor) on crack/cocaine use relapse compared to a control group that received placebo. METHODS This study is a double-blind, randomized, placebo-controlled clinical trial. The intervention group received 2 mg of biperiden, 3 times a day, for a period of 3 months. The control group received identical placebo capsules, at the same frequency and over the same period. All participants were followed for a period of six months. RESULTS The sample comprised 128 people, with 61 in the control group and 67 in the biperiden group. Lower substance consumption was observed in the group that received biperiden treatment two (bT2 = -2.2 [-3.3; -1.0], p < 0.001) and six months (bT4 = -6, 2 [-8.6; -3.9], p < 0.001) after the beginning of the intervention. The biperiden group had a higher latency until a possible first day of consumption, in the same evaluation periods (bT2 = 0.26 [0.080; 0.44], p = 0.004; bT4 = 0.63 [0.32; 0.93], p < 0.001). CONCLUSIONS Despite the major limitations of the present study, the group that received biperiden reduced the number of days of cocaine/crack use and showed an increase in the latency time for relapse. More studies are needed to confirm the utility of this approach.
Collapse
|
8
|
Shabani M, Ilaghi M, Naderi R, Razavinasab M. The hyperexcitability of laterodorsal tegmentum cholinergic neurons accompanies adverse behavioral and cognitive outcomes of prenatal stress. Sci Rep 2023; 13:6011. [PMID: 37045899 PMCID: PMC10097720 DOI: 10.1038/s41598-023-33016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Exposure to prenatal stress (PS) leads to the offspring's vulnerability towards the development of cognitive and behavioral disorders. Laterodorsal tegmentum (LDT) is a part of the brainstem cholinergic system that is believed to play a pivotal role in the stress-associated progression of anxiety, memory impairment, and addictive behaviors. In this study, we aimed to investigate the electrophysiological alterations of LDT cholinergic neurons and its accompanied behavioral and cognitive outcomes in the offspring of mice exposed to physical or psychological PS. Swiss Webster mice were exposed to physical or psychological stress on the tenth day of gestation. Ex vivo investigations in LDT brain slices of adolescent male offspring were performed to evaluate the effects of two stressor types on the activity of cholinergic neurons. Open field test, elevated plus maze, passive avoidance test, and conditioned place preference were conducted to assess behavioral and cognitive alterations in the offspring. The offspring of both physical and psychological PS-exposed mice exhibited increased locomotor activity, anxiety-like behavior, memory impairment, and preference to morphine. In both early- and late-firing cholinergic neurons of the LDT, stressed groups demonstrated higher firing frequency, lower adaptation ratio, decreased action potential threshold, and therefore increased excitability compared to the control group. The findings of the present study suggest that the hyperexcitability of the cholinergic neurons of LDT might be involved in the development of PS-associated anxiety-like behaviors, drug seeking, and memory impairment.
Collapse
Affiliation(s)
- Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran
| | - Mehran Ilaghi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran
| | - Reyhaneh Naderi
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street 3, 02-093, Warsaw, Poland
| | - Moazamehosadat Razavinasab
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, P.O. Box 76198-13159, Kerman, Iran.
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Galor A, Britten-Jones AC, Feng Y, Ferrari G, Goldblum D, Gupta PK, Merayo-Lloves J, Na KS, Naroo SA, Nichols KK, Rocha EM, Tong L, Wang MTM, Craig JP. TFOS Lifestyle: Impact of lifestyle challenges on the ocular surface. Ocul Surf 2023; 28:262-303. [PMID: 37054911 DOI: 10.1016/j.jtos.2023.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Many factors in the domains of mental, physical, and social health have been associated with various ocular surface diseases, with most of the focus centered on aspects of dry eye disease (DED). Regarding mental health factors, several cross-sectional studies have noted associations between depression and anxiety, and medications used to treat these disorders, and DED symptoms. Sleep disorders (both involving quality and quantity of sleep) have also been associated with DED symptoms. Under the domain of physical health, several factors have been linked to meibomian gland abnormalities, including obesity and face mask wear. Cross-sectional studies have also linked chronic pain conditions, specifically migraine, chronic pain syndrome and fibromyalgia, to DED, principally focusing on DED symptoms. A systematic review and meta-analysis reviewed available data and concluded that various chronic pain conditions increased the risk of DED (variably defined), with odds ratios ranging from 1.60 to 2.16. However, heterogeneity was noted, highlighting the need for additional studies examining the impact of chronic pain on DED signs and subtype (evaporative versus aqueous deficient). With respect to societal factors, tobacco use has been most closely linked to tear instability, cocaine to decreased corneal sensitivity, and alcohol to tear film disturbances and DED symptoms.
Collapse
Affiliation(s)
- Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Surgical Services, Miami Veterans Administration, Miami, FL, USA.
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Yun Feng
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Scientific Institute, Milan, Italy
| | - David Goldblum
- Pallas-Kliniken, Olten, Bern, Zurich, Switzerland; University of Basel, Basel, Switzerland
| | - Preeya K Gupta
- Triangle Eye Consultants, Raleigh, NC, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, USA
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernandez-Vega, Universidad de Oviedo, Principality of Asturias, Spain
| | - Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eduardo M Rocha
- Department of Ophthalmology, Othorynolaringology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Center, Ocular Surface Research Group, Singapore Eye Research Institute, Eye Academic Clinical Program, Duke-National University of Singapore, Singapore
| | - Michael T M Wang
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
11
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
12
|
Gimenez-Gomez P, Le T, Martin GE. Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 2023; 16:1098211. [PMID: 36866357 PMCID: PMC9971943 DOI: 10.3389/fnmol.2023.1098211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Drug use poses a serious threat to health systems throughout the world. The number of consumers rises every year being alcohol the drug of abuse most consumed causing 3 million deaths (5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years. In this review, we present an up-to-date summary about what is known regarding the global impact of binge alcohol drinking on brains and how it affects the development of cognitive functions, as well as the various preclinical models used to probe its effects on the neurobiology of the brain. This will be followed by a detailed report on the state of our current knowledge of the molecular and cellular mechanisms underlying the effects of binge drinking on neuronal excitability and synaptic plasticity, with an emphasis on brain regions of the meso-cortico limbic neurocircuitry.
Collapse
Affiliation(s)
- Pablo Gimenez-Gomez
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| |
Collapse
|
13
|
Zamani N, Osgoei LT, Aliaghaei A, Zamani N, Hassanian-Moghaddam H. Chronic exposure to methadone induces activated microglia and astrocyte and cell death in the cerebellum of adult male rats. Metab Brain Dis 2023; 38:323-338. [PMID: 36287354 DOI: 10.1007/s11011-022-01108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Methadone is a centrally-acting synthetic opioid analgesic widely used in the methadone maintenance therapy (MMT) programs throughout the world. Considering its neurotoxic effects particularly on the cerebellum, this study aims to address the behavioral and histological alterations in the cerebellar cortex associated with methadone administration. Twenty-four adult male albino rats were randomized into two groups of control and methadone treatment. Methadone was subcutaneously administered (2.5-10 mg/kg) once a day for two consecutive weeks. The functional and structural changes in the cerebellum were compared to the control group. Our data revealed that treating rats with methadone not only induced cerebellar atrophy, but also prompted the actuation of microgliosis, astrogliosis, and apoptotic biomarkers. We further demonstrated that treating rats with methadone increased complexity of astrocyte processes and decreased complexity of microglia processes. Our result showed that methadone impaired motor coordination and locomotor performance and neuromuscular activity. Additionally, relative gene expression of TNF-α, caspase-3 and RIPK3 increased significantly due to methadone. Our findings suggest that methadone administration has a neurodegenerative effect on the cerebellar cortex via dysregulation of microgliosis, astrogliosis, apoptosis, and neuro-inflammation.
Collapse
Affiliation(s)
- Naghmeh Zamani
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Laya Takbiri Osgoei
- Department of Microbiology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nasim Zamani
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Motherhood goes through preparation, onset and maintenance phases until the natural weaning. A variety of changes in hormonal/neurohormonal systems and brain circuits are involved in the maternal behavior. Hormones, neuropeptides, and neurotransmitters involved in maternal behavior act via G-protein-coupled receptors, many of which in turn activate plasma membrane enzymes including phospholipase C (PLC) β isoforms. In this study, we examined the effect of PLCβ1 knockout (KO) on maternal behavior. There was little difference between PLCβ1-KO and wild-type (WT) dams in the relative time spent in maternal behavior during the period between 24 h prepartum and 12 h postpartum (-24 h ∼ PPH 12). After PPH 18, however, PLCβ1-KO dams neglected their pups so that they all died in 2-3 days. In the pup retrieval test, latency was not different during the period within PPH 12, but after PPH 18, PLCβ1-KO dams could not finish pup retrieval in a given time. During both periods, FosB expression in the nucleus accumbens (NAcc) of PLCβ1-KO dams was significantly lower than WT, but not different in the medial preoptic area (mPOA). Given that mPOA activity is required for initiation of maternal behavior, and that NAcc is known to be involved in maternal motivation and maintenance of maternal behavior, our results suggest that PLCβ1 signaling is essential for transition from the onset to maintenance phase of maternal behavior.
Collapse
Affiliation(s)
- Hea-jin Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jaewon Jang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hae-Young Koh
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea, Hae-Young Koh Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
15
|
He T, Chen W, Fan Y, Xu X, Guo H, Li N, Lu X, Ge F, Guan X. A novel cholinergic projection from the lateral parabrachial nucleus and its role in methamphetamine-primed conditioned place preference. Brain Commun 2022; 4:fcac219. [PMID: 36213311 PMCID: PMC9536296 DOI: 10.1093/braincomms/fcac219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 12/27/2022] Open
Abstract
Drug relapse is a big clinical challenge in the treatment of addiction, but its neural circuit mechanism is far from being fully understood. Here, we identified a novel cholinergic pathway from choline acetyltransferase-positive neurons in the external lateral parabrachial nucleus (eLPBChAT) to the GABAergic neurons in the central nucleus of the amygdala (CeAGABA) and explored its role in methamphetamine priming-induced reinstatement of conditioned place preference. The anatomical structure and functional innervation of the eLPBChAT–CeAGABA pathway were investigated by various methods such as fluorescent micro-optical sectioning tomography, virus-based neural tracing, fibre photometry, patch-clamp and designer receptor exclusively activated by a designer drug. The role of the eLPBChAT–CeAGABA pathway in methamphetamine relapse was assessed using methamphetamine priming-induced reinstatement of conditioned place preference behaviours in male mice. We found that the eLPBChAT neurons mainly projected to the central nucleus of the amygdala. A chemogenetic activation of the eLPBChAT neurons in vitro or in vivo triggered the excitabilities of the CeAGABA neurons, which is at least in part mediated via the cholinergic receptor system. Most importantly, the chemogenetic activation of either the eLPBChAT neurons or the eLPBChAT neurons that project onto the central nucleus of the amygdala decreased the methamphetamine priming-induced reinstatement of conditioned place preference in mice. Our findings revealed a previously undiscovered cholinergic pathway of the eLPBChAT–CeAGABA and showed that the activation of this pathway decreased the methamphetamine priming-induced reinstatement of conditioned place preference.
Collapse
Affiliation(s)
| | | | | | | | - Hao Guo
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feifei Ge
- Correspondence may also be addressed to: Feifei Ge, PhD E-mail:
| | - Xiaowei Guan
- Correspondence to: Xiaowei Guan, MD, PhD Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine 138 Xianlin Rd, Nanjing, China E-mail:
| |
Collapse
|
16
|
Barbee BR, Gourley SL. Brain systems in cocaine abstinence-induced anxiety-like behavior in rodents: A review. ADDICTION NEUROSCIENCE 2022; 2:100012. [PMID: 37485439 PMCID: PMC10361393 DOI: 10.1016/j.addicn.2022.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy and abstinence duration interact to generate anxiety-like behavior.
Collapse
Affiliation(s)
- Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| | - Shannon L. Gourley
- Graduate Program in Molecular and Systems Pharmacology,
Emory University
- Department of Pediatrics, Emory University School of
Medicine; Yerkes National Primate Research Center
| |
Collapse
|
17
|
Spelta LEW, Torres YYS, de Oliveira SCWSEF, Yonamine M, Bailey A, Camarini R, Garcia RCT, Marcourakis T. Chronic escalating-dose and acute binge cocaine treatments change the hippocampal cholinergic muscarinic system on drug presence and after withdrawal. Toxicol Appl Pharmacol 2022; 447:116068. [PMID: 35597300 DOI: 10.1016/j.taap.2022.116068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a relapsing disorder with loss of control in limiting drug intake. Considering the involvement of acetylcholine in the neurobiology of the disease, our aim was to evaluate whether cocaine induces plastic changes in the hippocampal cholinergic muscarinic system. Male Swiss-Webster mice received saline or cocaine (ip) three times daily (60-min intervals) either acutely or in an escalating-dose binge paradigm for 14 days. Locomotor activity was measured in all treatment days. Dopaminergic and cholinergic muscarinic receptors (D1R, D2R, M1-M5, mAChRs), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and acetylcholinesterase (AChE) were quantified in the hippocampus by immunoblotting one hour after the last injection (on drug) or after 14 days of abstinence (withdrawal). Escalating-dose group showed cocaine-induced locomotor sensitization from day 2. M3 mAChR and ChAT significantly increased after the on-drug acute binge treatment. Escalating-dose on-drug group showed increased ChAT, M1, M5 mAChR and D2R; and decreased D1R. Acute-binge withdrawal group showed increased VAChT, M2 mAChR, D1R, and D2R; and decreased M1 mAChR. Escalating-dose withdrawal group presented increased D1R and VAChT and decreased M1 mAChR and D2R. Locomotor activity was negatively correlated with M1 mAChR and AChE in on-drug group and positively correlated with VAChT in withdrawal group. M1 mAChR was positively correlated with M2 mAChR and ChAT in on-drug group, whereas ChAT was positively correlated with M5 mAChR in withdrawal group. The results indicate that cocaine induced an increase in the hippocampal cholinergic tone in the presence of the drug, whereas withdrawal causes a resetting in the system.
Collapse
Affiliation(s)
- Lidia E W Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Yuli Y S Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Sarah C W S E F de Oliveira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil; Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, SW17 0RE London, UK
| | - Rosana Camarini
- Department of Pharmacology, Laboratory of Neurochemical and Behavior Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Prédio 1, 05508-900 São Paulo/SP, Brazil.
| | - Raphael C T Garcia
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, 1° andar, 09913-030 Diadema/SP, Brazil.
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl. 13B, 05508-000 São Paulo/SP, Brazil.
| |
Collapse
|
18
|
Lynch KG, Plebani J, Spratt K, Morales M, Tamminga M, Feibush P, Kampman KM. Varenicline for the Treatment of Cocaine Dependence. J Addict Med 2022; 16:157-163. [PMID: 33840773 PMCID: PMC8497642 DOI: 10.1097/adm.0000000000000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Varenicline is a partial agonist at the α2β4 and α6β2 nAChR receptors and a full agonist at α7 receptors. Both α7 and α6β2 receptors are implicated in the neural reward circuitry activated by cocaine use. A preliminary clinical trial suggested that varenicline treatment reduced cocaine use. This trial was intended to replicate and extend the findings of the previous trial. METHODS This was a 12-week, double-blind, placebo-controlled clinical trial involving 156 subjects with DSM IV cocaine dependence. Subjects received up to 2 mg of varenicline or identical placebo daily along with weekly relapse prevention psychotherapy. The primary outcome measure was cocaine use measured by thrice-weekly urine drug screens. Additional outcome measures included end of study cocaine abstinence, cocaine craving, cocaine withdrawal symptom severity, cigarette use, and global improvement measure by the Clinical Global Improvement Scale. RESULTS End of study cocaine abstinence, measured by urine drug screens during the last 3 weeks of the trial, was not different between groups (8% in the varenicline treated subjects and versus 9% in placebo-treated subjects). Generalized estimating equations analysis of urine drug screen results showed no significant difference between groups in cocaine abstinence over the 12 weeks of the trial. There were no significant differences between the 2 groups in cocaine craving or cocaine withdrawal symptom severity. Varenicline was well-tolerated. There were no medication-associated serious adverse events. CONCLUSIONS Varenicline plus cognitive-behavioral therapy does not seem to be an efficacious treatment for cocaine dependence.
Collapse
Affiliation(s)
- Kevin G. Lynch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Jennifer Plebani
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Kelly Spratt
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA, 19104
| | - Mark Morales
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Mila Tamminga
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Philip Feibush
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| | - Kyle M. Kampman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3900 Chestnut Street, Philadelphia, PA, USA, 19104
| |
Collapse
|
19
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Zinsmaier AK, Dong Y, Huang YH. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 2022; 27:669-686. [PMID: 33963288 PMCID: PMC8691189 DOI: 10.1038/s41380-021-01112-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Cocaine craving, seeking, and relapse are mediated, in part, by cocaine-induced adaptive changes in the brain reward circuits. The nucleus accumbens (NAc) integrates and prioritizes different emotional and motivational inputs to the reward system by processing convergent glutamatergic projections from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and other limbic and paralimbic brain regions. Medium spiny neurons (MSNs) are the principal projection neurons in the NAc, which can be divided into two major subpopulations, namely dopamine receptor D1- versus D2-expressing MSNs, with complementing roles in reward-associated behaviors. After cocaine experience, NAc MSNs exhibit complex and differential adaptations dependent on cocaine regimen, withdrawal time, cell type, location (NAc core versus shell), and related input and output projections, or any combination of these factors. Detailed characterization of these cellular adaptations has been greatly facilitated by the recent development of optogenetic/chemogenetic techniques combined with transgenic tools. In this review, we discuss such cell type- and projection-specific adaptations induced by cocaine experience. Specifically, (1) D1 and D2 NAc MSNs frequently exhibit differential adaptations in spinogenesis, glutamatergic receptor trafficking, and intrinsic membrane excitability, (2) cocaine experience differentially changes the synaptic transmission at different afferent projections onto NAc MSNs, (3) cocaine-induced NAc adaptations exhibit output specificity, e.g., being different at NAc-ventral pallidum versus NAc-ventral tegmental area synapses, and (4) the input, output, subregion, and D1/D2 cell type may together determine cocaine-induced circuit plasticity in the NAc. In light of the projection- and cell-type specificity, we also briefly discuss ensemble and circuit mechanisms contributing to cocaine craving and relapse after drug withdrawal.
Collapse
Affiliation(s)
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
21
|
Walker LC, Campbell EJ, Huckstep KL, Chen NA, Langmead CJ, Lawrence AJ. M 1 muscarinic receptor activation decreases alcohol consumption via a reduction in consummatory behavior. Pharmacol Res Perspect 2021; 10:e00907. [PMID: 34962108 PMCID: PMC8929368 DOI: 10.1002/prp2.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 11/07/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been shown to mediate alcohol consumption and seeking. Both M4 and M5 mAChRs have been highlighted as potential novel treatment targets for alcohol use disorders (AUD). Similarly, M1 mAChRs are expressed throughout reward circuitry, and their signaling has been implicated in cocaine consumption. However, whether the same effects are seen for alcohol consumption, or whether natural reward intake is inadvertently impacted is still unknown. To determine the role of M1 mAChRs in alcohol consumption, we tested operant self-administration of alcohol under both fixed ratio (FR3) and progressive ratio (PR3-4) schedules. Enhancing M1 mAChR signaling (via the M1 PAM-Agonist PF-06767832, 1 mg/kg, i.p.) reduced operant alcohol consumption on a fixed schedule but had no effect on motivation to acquire alcohol. To determine whether these actions were specific to alcohol, we examined the effects of M1 enhancement on natural reward (sucrose) self-administration. Systemic administration of PF-06767832 (1 mg/kg, i.p.) also reduced operant sucrose self-administration, suggesting the actions of the M1 receptor may be non-selective across drug and natural rewards. Finally, to understand whether this reduction extended to natural consummatory behaviors, we assessed home cage standard chow and water consumption. M1 enhancement via systemic PF-06767832 administration reduced food and water consumption. Together our results suggest the M1 PAM-agonist, PF-06767832, non-specifically reduces consummatory behaviors that are not associated with motivational strength for the reward. These data highlight the need to further characterize M1 agonists, PAMs, and PAM-agonists, which may have varying degrees of utility in the treatment of neuropsychiatric disorders including AUD.
Collapse
Affiliation(s)
- Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Erin J. Campbell
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Kate L. Huckstep
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Nicola A. Chen
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Christopher J. Langmead
- Drug Discovery BiologyMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
22
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
23
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
24
|
Betts GD, Hynes TJ, Winstanley CA. Pharmacological evidence of a cholinergic contribution to elevated impulsivity and risky decision-making caused by adding win-paired cues to a rat gambling task. J Psychopharmacol 2021; 35:701-712. [PMID: 33573446 DOI: 10.1177/0269881120972421] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pairing rewards with sensory stimulation, in the form of auditory and visual cues, increases risky decision-making in both rats and humans. Understanding the neurobiological basis of this effect could help explain why electronic gambling machines are so addictive, and inform treatment development for compulsive gambling and gaming. Numerous studies implicate the dopamine system in mediating the motivational influence of reward-paired cues; recent data suggest the cholinergic system also plays a critical role. Previous work also indicates that cholinergic drugs alter decision-making under uncertainty. AIMS We investigated whether the addition of reward-concurrent cues to the rat gambling task (crGT) altered the effects of peripherally administered cholinergic compounds. METHODS Muscarinic and nicotinic agonists and antagonists were administered to 16 male, Long-Evans rats trained on the crGT. Measures of optimal/risky decision-making and motor impulsivity were the main dependent variables of interest. RESULTS The muscarinic receptor antagonist scopolamine improved decision-making overall, decreasing selection of one of the risky options while increasing choice of the more advantageous options. The muscarinic agonist oxotremorine increased choice latency but did not significantly affect option preference. Neither the nicotinic antagonist mecamylamine nor the agonist nicotine affected choice patterns, but mecamylamine decreased premature responding, an index of motor impulsivity. CONCLUSIONS These results contrast sharply from those obtained previously using the uncued rGT, and suggest that the deleterious effects of win-paired cues on decision-making and impulse control may result from elevated cholinergic tone.
Collapse
Affiliation(s)
- Graeme D Betts
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Tristan J Hynes
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
25
|
Jiang X, Zhang JJ, Song S, Li Y, Sui N. The duration of withdrawal affects the muscarinic signaling in the nucleus accumbens after chronic morphine exposure in neonatal rats. J Neurophysiol 2021; 125:2228-2236. [PMID: 33978485 DOI: 10.1152/jn.00441.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infants experience withdrawal from opiates, and time-dependent adaptations in neuronal activity of nucleus accumbens (NAc) may be crucial for this process. A key adaptation is an increased release of acetylcholine. The present study investigates muscarinic acetylcholine receptors (mAChRs) functions in the NAc at short-term (SWT) and long-term (LWT) withdrawal time following chronic morphine exposure in neonatal rats. The inhibitory role of presynaptic mAChRs activation in spontaneous excitatory postsynaptic currents (sEPSCs) in medium spiny neurons was decreased at LWT but not at SWT. Whereas, the excitatory role of post/extrasynaptic mAChRs activation in membrane currents was reduced at LWT but enhanced at SWT. Furthermore, the inhibitory effect of acute morphine on post/extrasynaptic mAChRs-mediated inward currents was enhanced at SWT but not at LWT. These results suggest that withdrawal from morphine leads to downregulation of presynaptic and post/extrasynaptic mAChRs functions in the NAc, which may coregulate the development of withdrawal in neonates.NEW & NOTEWORTHY We investigated for the first time how the duration of withdrawal affects mAChRs functions in the nucleus accumbens in neonatal rats. Compared with short-term withdrawal time, rats showed downregulation of presynaptic and post/extrasynaptic mAChRs functions during long-term withdrawal time. Our finding introduces a new possible correlation between the mAChRs dysfunction in the nucleus accumbens and the development of withdrawal in neonates.
Collapse
Affiliation(s)
- Xiao Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People's Republic of China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sen Song
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
26
|
Loftén A, Adermark L, Ericson M, Söderpalm B. An acetylcholine-dopamine interaction in the nucleus accumbens and its involvement in ethanol's dopamine-releasing effect. Addict Biol 2021; 26:e12959. [PMID: 32789970 PMCID: PMC8244087 DOI: 10.1111/adb.12959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
Alcohol use disorder is a chronic, relapsing brain disorder causing substantial morbidity and mortality. Cholinergic interneurons (CIN) within the nucleus accumbens (nAc) have been suggested to exert a regulatory impact on dopamine (DA) neurotransmission locally, and defects in CIN have been implied in several psychiatric disorders. The aim of this study was to investigate the role of CIN in regulation of basal extracellular levels of DA and in modulation of nAc DA release following ethanol administration locally within the nAc of male Wistar rats. Using reversed in vivo microdialysis, the acetylcholinesterase inhibitor physostigmine was administered locally in the nAc followed by addition of either the muscarinic acetylcholine (ACh) receptor antagonist scopolamine or the nicotinic ACh receptor antagonist mecamylamine. Further, ethanol was locally perfused in the nAc following pretreatment with scopolamine and/or mecamylamine. Lastly, ethanol was administered locally into the nAc of animals with accumbal CIN‐ablation induced by anticholine acetyl transferase‐saporin. Physostigmine increased accumbal DA levels via activation of muscarinic ACh receptors. Neither scopolamine and/or mecamylamine nor CIN‐ablation altered basal DA levels, suggesting that extracellular DA levels are not tonically controlled by ACh in the nAc. In contrast, ethanol‐induced DA elevation was prevented following coadministration of scopolamine and mecamylamine and blunted in CIN‐ablated animals, suggesting involvement of CIN‐ACh in ethanol‐mediated DA signaling. The data presented in this study suggest that basal extracellular levels of DA within the nAc are not sustained by ACh, whereas accumbal CIN‐ACh is involved in mediating ethanol‐induced DA release.
Collapse
Affiliation(s)
- Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Beroendekliniken Sahlgrenska University Hospital Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Beroendekliniken Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
27
|
Popescu A, Marian M, Drăgoi AM, Costea RV. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp Ther Med 2021; 21:544. [PMID: 33815617 PMCID: PMC8014976 DOI: 10.3892/etm.2021.9976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
The hypothesis issued by modern medicine states that many diseases known to humans are genetically determined, influenced or not by environmental factors, which is applicable to most psychiatric disorders as well. This article focuses on two pending questions regarding addiction: Why do some individuals become addicted while others do not? along with Is it a learned behavior or is it genetically predefined? Recent data suggest that addiction is more than repeated exposure, it is the synchronicity between intrinsic factors (genotype, sex, age, preexisting addictive disorder, or other mental illness), extrinsic factors (childhood, level of education, socioeconomic status, social support, entourage, drug availability) and the nature of the addictive agent (pharmacokinetics, path of administration, psychoactive properties). The dopamine-mesolimbic motivation-reward-reinforcement cycle remains the most coherent physiological theory in addiction. While the common property of addictive substances is that they are dopamine-agonists, each class has individual mechanisms, pharmacokinetics and psychoactive potentials.
Collapse
Affiliation(s)
- Alexandra Popescu
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Maria Marian
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Ana Miruna Drăgoi
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Radu-Virgil Costea
- Department of General Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
28
|
Palombo P, Engi SA, Yokoyama TS, Bezerra AG, Curado DF, Anésio A, Leão RM, Santos PCJDL, Cruz FC, Galduróz JCF. Effects of biperiden (cholinergic muscarinic m1/m4 receptor antagonist) on ethanol conditioned place preference in mice. Neurosci Lett 2020; 745:135551. [PMID: 33346074 DOI: 10.1016/j.neulet.2020.135551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Previous studies suggest that muscarinic cholinergic receptors might act upon the dopamine release in the mesolimbic system and alter drug-reinforcing values related to drug craving. AIMS We examined the effects of systemic biperiden administration, a muscarinic cholinergic (M1/M4) receptor antagonist, on ethanol (dose of 2 g/Kg) conditioned place preference (CPP), neuronal activation, dopamine and its metabolites levels in the nucleus accumbens. METHODS Thirty minutes before the ethanol-induced CPP test, mice received saline or biperiden at doses of 1.0, 5.0, or 10.0 mg/kg. The time spent in each compartment was recorded for 15 min. After the CPP protocol, animals were euthanized, and we investigated the activation of the nucleus accumbens by immunohistochemistry for Fos. We also quantified dopamine, homovanillic acid (HVA), and dihydroxyphenylacetic acid (DOPAC) levels in the nucleus accumbens by high-performance liquid chromatography (HPLC). Additionally, the rotarod was employed to evaluate the effects of biperiden on motor coordination. RESULTS Biperiden at different doses (1.0, 5.0, and 10.0 mg/kg) blocked the expression of ethanol-induced CPP. These biperiden doses increased the number of Fos-positive cells and the dopamine turnover in the nucleus accumbens. None of the doses affected the motor coordination evaluated by the rotarod. CONCLUSIONS Our results show that biperiden can modulate the effect of alcohol reward, and its mechanism of action may involve a change in dopamine and cholinergic mesolimbic neurotransmission.
Collapse
Affiliation(s)
- Paola Palombo
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Suemi Yokoyama
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Augusto Anésio
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Molini Leão
- Laboratório de Farmacologia, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia - UFU, Uberlândia, Brazil
| | | | - Fábio Cardoso Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
29
|
|
30
|
Huggett SB, Stallings MC. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J Neurosci 2020; 40:5300-5313. [PMID: 32457073 PMCID: PMC7329314 DOI: 10.1523/jneurosci.2879-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/12/2023] Open
Abstract
We integrated genomic and bioinformatic analyses, using data from the largest genome-wide association study of cocaine dependence (CD; n = 6546; 82.37% with CD; 57.39% male) and the largest postmortem gene-expression sample of individuals with cocaine use disorder (CUD; n = 36; 51.35% with CUD; 100% male). Our genome-wide analyses identified one novel gene (NDUFB9) associated with the genetic predisposition to CD in African-Americans. The genetic architecture of CD was similar across ancestries. Individual genes associated with CD demonstrated modest overlap across European-Americans and African-Americans, but the genetic liability for CD converged on many similar tissue types (brain, heart, blood, liver) across ancestries. In a separate sample, we investigated the neuronal gene expression associated with CUD by using RNA sequencing of dorsal-lateral prefrontal cortex neurons. We identified 133 genes differentially expressed between CUD case patients and cocaine-free control subjects, including previously implicated candidates for cocaine use/addiction (FOSB, ARC, KCNJ9/GIRK3, NR4A2, JUNB, and MECP2). Differential expression analyses significantly correlated across European-Americans and African-Americans. While genes significantly associated with CD via genome-wide methods were not differentially expressed, two of these genes (NDUFB9 and C1qL2) were part of a robust gene coexpression network associated with CUD involved in neurotransmission (GABA, acetylcholine, serotonin, and dopamine) and drug addiction. We then used a "guilt-by-association" approach to unravel the biological relevance of NDUFB9 and C1qL2 in the context of CD. In sum, our study furthers the understanding of the genetic architecture and molecular neuropathology of human cocaine addiction and provides a framework for translating biological meaning into otherwise obscure genome-wide associations.SIGNIFICANCE STATEMENT Our study further clarifies the genetic and neurobiological contributions to cocaine addiction, provides a rapid approach for generating testable hypotheses for specific candidates identified by genome-wide research, and investigates the cross-ancestral biological contributions to cocaine use disorder/dependence for individuals of European-American and African-American ancestries.
Collapse
Affiliation(s)
- Spencer B Huggett
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309-0345
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado 80309-0447
| | - Michael C Stallings
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309-0345
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado 80309-0447
| |
Collapse
|
31
|
Zhu PK, Zheng WS, Zhang P, Jing M, Borden PM, Ali F, Guo K, Feng J, Marvin JS, Wang Y, Wan J, Gan L, Kwan AC, Lin L, Looger LL, Li Y, Zhang Y. Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. NANO LETTERS 2020; 20:4073-4083. [PMID: 32396366 PMCID: PMC7519949 DOI: 10.1021/acs.nanolett.9b04877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 μm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.
Collapse
Affiliation(s)
- Paula K. Zhu
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Math, Engineering & Science Academy Class of 2020, Albemarle High School, Charlottesville, VA 22901
- Summer Secondary School Neurobiology Class of 2019, Harvard University, Cambridge, MA 02138
- Current address: Undergraduate Class of 2024, Harvard College, Cambridge, MA 02138
| | - W. Sharon Zheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Biomedical Engineering Class of 2021, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Miao Jing
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Philip M. Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Current address: LifeEDIT, Research Triangle Park, NC 27709
| | - Farhan Ali
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kaiming Guo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yali Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine College, New York, NY 10065
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yulong Li
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
32
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
33
|
Ma ZG, Jiang N, Huang YB, Ma XK, Brek Eaton J, Gao M, Chang YC, Lukas RJ, Whiteaker P, Neisewander J, Wu J. Cocaine potently blocks neuronal α 3β 4 nicotinic acetylcholine receptors in SH-SY5Y cells. Acta Pharmacol Sin 2020; 41:163-172. [PMID: 31399700 PMCID: PMC7471406 DOI: 10.1038/s41401-019-0276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023] Open
Abstract
Cocaine is one of the most abused illicit drugs worldwide. It is well known that the dopamine (DA) transporter is its major target; but cocaine also acts on other targets including nicotinic acetylcholine receptors (nAChRs). In this study, we investigated the effects of cocaine on a special subtype of neuronal nAChR, α3β4-nAChR expressed in native SH-SY5Y cells. α3β4-nAChR-mediated currents were recorded using whole-cell recordings. Drugs were applied using a computer-controlled U-tube drug perfusion system. We showed that bath application of nicotine induced inward currents in a concentration-dependent manner with an EC50 value of 20 µM. Pre-treatment with cocaine concentration-dependently inhibited nicotine-induced current with an IC50 of 1.5 μM. Kinetic analysis showed that cocaine accelerated α3β4-nAChR desensitization, which caused a reduction of the amplitude of nicotine-induced currents. Co-application of nicotine and cocaine (1.5 μM) depressed the maximum response on the nicotine concentration-response curve without changing the EC50 value, suggesting a non-competitive mechanism. The cocaine-induced inhibition of nicotine response exhibited both voltage- and use-dependence, suggesting an open-channel blocking mechanism. Furthermore, intracellular application of GDP-βS (via recording electrode) did not affect cocaine-induced inhibition, suggesting that cocaine did not alter receptor internalization. Moreover, intracellular application of cocaine (30 µM) failed to alter the nicotine response. Finally, cocaine (1.5 μM) was unable to inhibit the nicotine-induced inward current in heterologous expressed α6/α3β2β3-nAChRs and α4β2-nAChRs expressed in human SH-EP1 cells. Collectively, our results suggest that cocaine is a potent blocker for native α3β4-nAChRs expressed in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ze-Gang Ma
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Nan Jiang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuan-Bing Huang
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China
| | - Xiao-Kuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Yong-Chang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Jie Wu
- Department of Physiology, Institute of Brain Science and Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- Department of Neurology, Yunfu People's Hospital, Yunfu, 527300, China.
- Department of Physiology, Shantou University Medical College, Shantou, 515004, China.
| |
Collapse
|
34
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Moreno-Rius J. Opioid addiction and the cerebellum. Neurosci Biobehav Rev 2019; 107:238-251. [DOI: 10.1016/j.neubiorev.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023]
|
36
|
Kampman KM. The treatment of cocaine use disorder. SCIENCE ADVANCES 2019; 5:eaax1532. [PMID: 31663022 PMCID: PMC6795516 DOI: 10.1126/sciadv.aax1532] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/25/2019] [Indexed: 06/01/2023]
Abstract
Cocaine use continues to be a serious worldwide public health problem. Cocaine abuse is associated with substantial morbidity and mortality. Cocaine overdose deaths are increasing in the United States and, in certain populations, outnumber heroin and opiate overdose deaths. Psychosocial treatments remain the treatments of choice for cocaine use disorder (CUD), with standard approaches including contingency management and cognitive behavioral therapy. However, the effect sizes of these treatments are not large, and they are not effective for most patients. Consequently, investigators have sought to develop pharmacological agents to augment the efficacy of psychosocial treatments. Despite these efforts, no medications have yet been proven to be safe and effective for the treatment of CUD. The most promising pharmacological strategies for CUD treatment thus far include the use of dopamine agonists, such as long-acting amphetamine and modafinil or glutamatergic and GABAergic agents such as topiramate. Combination drugs may be especially promising.
Collapse
Affiliation(s)
- Kyle M Kampman
- Department of Psychiatry, Perelman School of Medicine, Center for Studies of Addiction, University of Pennsylvania, 3535 Market Street, Suite 500, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Patel M, Verrico CD, De La Garza R. Rivastigmine does not alter cocaine-induced subjective effects or self-administration. Pharmacol Biochem Behav 2019; 185:172758. [PMID: 31430484 DOI: 10.1016/j.pbb.2019.172758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/01/2019] [Accepted: 08/10/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acetylcholinergic (ACh) neurons interface with the mesolimbic dopamine pathway implicated in addiction, and acetylcholinesterase inhibitors (AChEis) have been shown to reduce the immediate effects of cocaine and amount used. Our study is the first to examine if the safe and low-interaction AChEi rivastigmine (riv) alters the subjective effects produced by cocaine administration. METHODS Cocaine-dependent subjects were randomized to daily placebo, riv 3 mg, or riv 6 mg, administered inpatient for 10 days. On day 1 (pre-dose) and day 9, subjects received both IV cocaine 40 mg or placebo in a randomized order with subsequent serial assessments of visual analog scale (VAS) subjective effects and pharmacokinetic measurements. On day 10 all participants received one baseline dose of cocaine 20 mg with assessment of subjective effects, and were then able to purchase additional doses at 15 min intervals with study earnings. RESULTS 40 subjects were randomized to placebo (n = 16), riv 3 mg (n = 13), or riv 6 mg (n = 12). All subjects completed the study and there were no demographic differences between treatment groups. Pre- and post- treatment, there were no significant pharmacokinetic differences (blood levels of cocaine, BE, EME) following cocaine administration. In a two-way ANOVA, IV cocaine significantly increased positive VAS category ratings compared to placebo, but rivastigmine treatment at either dose had no significant effect on any VAS category ratings. Similarly, there was no significant rivastigmine effect on any category in the day 10 cocaine administration, and no effect on number of subsequent doses participants purchased. CONCLUSION Rivastigmine 3 or 6 mg had no significant effect on the subjective effects of cocaine after 9 days of treatment. This is an important finding as other drugs in the AChEi class (donepezil, Huperzine A) have produced significant results, but differ in their receptor specificity and PK parameters.
Collapse
Affiliation(s)
- M Patel
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America
| | - C D Verrico
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America
| | - R De La Garza
- Baylor College of Medicine, Menninger Department of Psychiatry, Houston, TX, United States of America.
| |
Collapse
|
38
|
Association of status of acetylcholinesterase and ACHE gene 3' UTR variants (rs17228602, rs17228616) with drug addiction vulnerability in pakistani population. Chem Biol Interact 2019; 308:130-136. [PMID: 31129131 DOI: 10.1016/j.cbi.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
Substance addiction is a chronic, relapsing mental disorder Characterized by compulsive drug seeking, and loss of control over drug intake and relapse after prolonged abstinence. Genetics has been shown to contribute towards an individual's vulnerability to addiction. Acetylecholine (ACh), a cholinergic neurotransmitter hydrolyzed by acetylcholinesterase (AChE), is an essential neurotransmitter and neuromodulator in central and peripheral nervous system and has regulatory influence on numerous neuronal functions including addiction. The present study was carried out to investigate the role of acetylcholinesterase (AChE) in addiction through measurement of enzyme activity and to find potential association of ACHE gene 3'UTR variants rs17228602 and rs17228616 in heroin, hashish and poly drug addicts. Both SNPs are located within microRNA (miRNA) recognition sites with potential to affect miRNA/transcript interaction. A total of 122 addicts of heroin, hashish and polydrug were recruited from local rehabilitation centers to participate in this study. AChE activity was measured in blood by Ellman's method. SNP genotyping was performed by restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing. The AChE activity was found significantly higher (p ≤ 0.005) in addicted cohort (mean ± standard error of mean 0.020 ± 0.001 μmol/L/min; 95% confidence interval (CI) 0.018-0.022) in comparison to non-addicted healthy subjects (0.011 ± 0.001 μmol/L/min; 95% confidence interval CI 0.010-0.013). A statistically significant association of ACHE rs17228602 SNP with addiction vulnerability in dominant (DM: Odd's ratio OR = 2.095, 95% CI = 1.157-3.807 p = 0.009) and allelic genetic models (OR = 1.854 95% CI = 1.082-3.187, p = 0.016) was observed. However, no statistically significant association of rs17228616 SNP with substance abuse disorder was found. The data presented here shows that AChE could play significant role in substance addiction. Further studies with larger sample size and other variants of AChE are recommended to identify novel therapeutic approaches for cholinergic based treatment of addiction.
Collapse
|
39
|
Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 2019; 143:113-118. [PMID: 30894329 DOI: 10.1016/j.phrs.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023]
Abstract
Sleep profoundly regulates our emotional and motivational state of mind. Human brain imaging and animal model studies are providing initial insights on the underlying neural mechanisms. Here, we focus on the brain cholinergic system, including cholinergic neurons in the basal forebrain, ventral striatum, habenula, and brain stem. Although much is learned about cholinergic regulations of emotion and motivation, less is known on their interactions with sleep. Specifically, we present an anatomical framework that highlights cholinergic signaling in the integrated reward-arousal/sleep circuitry, and identify the knowledge gaps on the potential roles of cholinergic system in sleep-mediated regulation of emotion and motivation. Sleep impacts every aspect of brain functions. It not only restores cognitive control, but also retunes emotional and motivational regulation [1]. Sleep disturbance is a comorbidity and sometimes a predicting factor for various psychiatric diseases including major depressive disorder, anxiety, post-traumatic stress disorder, and drug addiction [2-9]. Although it is well recognized that sleep prominently shapes emotional and motivational regulation, the underlying neural mechanisms remain elusive. The brain cholinergic system is essential for a diverse variety of functions including cognition, learning and memory, sensory and motor processing, sleep and arousal, reward processing, and emotion regulation [10-14]. Although cholinergic functions in cognition, learning and memory, motor control, and sleep and arousal have been well established, its interaction with sleep in regulating emotion and motivation has not been extensively studied. Here we review current evidence on sleep-mediated regulation of emotion and motivation, and reveal knowledge gaps on potential contributions from the cholinergic system.
Collapse
Affiliation(s)
- Ping Mu
- College of Life Sciences, Ludong University, 186 Hongqi Middle Road, Yantai, Shandong, 264025, China.
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, PA, United States.
| |
Collapse
|
40
|
Pei F, Li H, Liu B, Bahar I. Quantitative Systems Pharmacological Analysis of Drugs of Abuse Reveals the Pleiotropy of Their Targets and the Effector Role of mTORC1. Front Pharmacol 2019; 10:191. [PMID: 30906261 PMCID: PMC6418047 DOI: 10.3389/fphar.2019.00191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Existing treatments against drug addiction are often ineffective due to the complexity of the networks of protein-drug and protein-protein interactions (PPIs) that mediate the development of drug addiction and related neurobiological disorders. There is an urgent need for understanding the molecular mechanisms that underlie drug addiction toward designing novel preventive or therapeutic strategies. The rapidly accumulating data on addictive drugs and their targets as well as advances in machine learning methods and computing technology now present an opportunity to systematically mine existing data and draw inferences on potential new strategies. To this aim, we carried out a comprehensive analysis of cellular pathways implicated in a diverse set of 50 drugs of abuse using quantitative systems pharmacology methods. The analysis of the drug/ligand-target interactions compiled in DrugBank and STITCH databases revealed 142 known and 48 newly predicted targets, which have been further analyzed to identify the KEGG pathways enriched at different stages of drug addiction cycle, as well as those implicated in cell signaling and regulation events associated with drug abuse. Apart from synaptic neurotransmission pathways detected as upstream signaling modules that “sense” the early effects of drugs of abuse, pathways involved in neuroplasticity are distinguished as determinants of neuronal morphological changes. Notably, many signaling pathways converge on important targets such as mTORC1. The latter emerges as a universal effector of the persistent restructuring of neurons in response to continued use of drugs of abuse.
Collapse
Affiliation(s)
- Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bing Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Abstract
AbstractBorsboom and colleagues argue that reductionism in psychopathology research has not provided the expected insights. Instead, they suggest a systems approach of interacting syndromes, which, however, falls short of a perspective for empirical testing. Here, a combination of both approaches is suggested: a reductionistic empirical approach allowing testability, synergistic with a constructivistic systems appraisal of syndrome networks – a constructive reductionism.
Collapse
|
42
|
Chen D, Gao F, Ma X, Eaton JB, Huang Y, Gao M, Chang Y, Ma Z, Der-Ghazarian T, Neisewander J, Whiteaker P, Wu J, Su Q. Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons. Front Pharmacol 2019; 10:72. [PMID: 30837868 PMCID: PMC6383119 DOI: 10.3389/fphar.2019.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine's EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence.
Collapse
Affiliation(s)
- Dejie Chen
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Fenfei Gao
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
| | - Xiaokuang Ma
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jason Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ming Gao
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Zegang Ma
- Department of Physiology, Qingdao University of Medical College, Qingdao, China
| | | | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jie Wu
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Jie Wu, ;
| | - Quanxi Su
- Department of Neurology, Yunfu People’s Hospital, Yunfu, China
- Quanxi Su,
| |
Collapse
|
43
|
p11 in Cholinergic Interneurons of the Nucleus Accumbens Is Essential for Dopamine Responses to Rewarding Stimuli. eNeuro 2018; 5:eN-NWR-0332-18. [PMID: 30417079 PMCID: PMC6223111 DOI: 10.1523/eneuro.0332-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
A recent study showed that p11 expressed in cholinergic interneurons (CINs) of the nucleus accumbens (NAc) is a key regulator of depression-like behaviors. Dopaminergic neurons projecting to the NAc are responsible for reward-related behaviors, and their function is impaired in depression. The present study investigated the role of p11 in NAc CINs in dopamine responses to rewarding stimuli. The extracellular dopamine and acetylcholine (ACh) levels in the NAc were determined in freely moving male mice using in vivo microdialysis. Rewarding stimuli (cocaine, palatable food, and female mouse encounter) induced an increase in dopamine efflux in the NAc of wild-type (WT) mice. The dopamine responses were attenuated (cocaine) or abolished (food and female mouse encounter) in constitutive p11 knock-out (KO) mice. The dopamine response to cocaine was accompanied by an increase in ACh NAc efflux, whereas the attenuated dopamine response to cocaine in p11 KO mice was restored by activation of nicotinic or muscarinic ACh receptors in the NAc. Dopamine responses to rewarding stimuli and ACh release in the NAc were attenuated in mice with deletion of p11 from cholinergic neurons (ChAT-p11 cKO mice), whereas gene delivery of p11 to CINs restored the dopamine responses. Furthermore, chemogenetic studies revealed that p11 is required for activation of CINs in response to rewarding stimuli. Thus, p11 in NAc CINs plays a critical role in activating these neurons to mediate dopamine responses to rewarding stimuli. The dysregulation of mesolimbic dopamine system by dysfunction of p11 in NAc CINs may be involved in pathogenesis of depressive states.
Collapse
|
44
|
Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, Jiang H, Wang S, Looby JC, Guagliardo NA, Langma LW, Lu J, Zuo Y, Talmage DA, Role LW, Barrett PQ, Zhang LI, Luo M, Song Y, Zhu JJ, Li Y. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol 2018; 36:726-737. [PMID: 29985477 PMCID: PMC6093211 DOI: 10.1038/nbt.4184] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.
Collapse
Affiliation(s)
- Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin
150001, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Lukas Mesik
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Huoqing Jiang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Shaohua Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Jess C. Looby
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Undergraduate Class of 2019, University of Virginia College of Arts and Sciences, Charlottesville, VA
22908
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Linda W. Langma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ju Lu
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA
95064
| | - David A. Talmage
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Lorna W. Role
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Song
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Medicine, Ningbo University, Ningbo, 315010, China
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen,
Netherlands
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
45
|
Oliveira NG, Dinis-Oliveira RJ. Drugs of abuse from a different toxicological perspective: an updated review of cocaine genotoxicity. Arch Toxicol 2018; 92:2987-3006. [DOI: 10.1007/s00204-018-2281-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023]
|
46
|
Briones M, Shoptaw S, Cook R, Worley M, Swanson AN, Moody DE, Fang WB, Tsuang J, Furst B, Heinzerling K. Varenicline treatment for methamphetamine dependence: A randomized, double-blind phase II clinical trial. Drug Alcohol Depend 2018; 189:30-36. [PMID: 29860057 PMCID: PMC6391991 DOI: 10.1016/j.drugalcdep.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous studies have suggested that varenicline, an α4β2 nicotinic receptor partial agonist, and α7 nicotinic receptor full agonist, may be effective for the treatment of methamphetamine (MA) dependence due to dopaminergic effects, relief of glutamatergic and cognitive dysfunction, and activation of nicotinic cholinergic systems. This study aimed to determine if varenicline (1 mg BID) resulted in reduced methamphetamine use compared to placebo among treatment-seeking MA-dependent volunteers. METHODS Treatment-seeking MA-dependent volunteers were randomized to varenicline 1 mg twice daily (n = 27) or placebo (n = 25) and cognitive behavioral therapy for 9 weeks. The primary outcomes were the proportion of participants achieving end-of-treatment-abstinence (EOTA, MA-negative urine specimens during weeks 8 and 9) and the treatment effectiveness score (TES, number of MA-negative urine specimens) for varenicline versus placebo. RESULTS There was no significant difference in EOTA between varenicline (15%, 4/27) and placebo (20%, 5/25; p = 0.9). There was some suggestion that urinary confirmed medication compliance corresponded with EOTA in the varenicline condition, though it did not reach statistical significance, OR = 1.57 for a 100 ng/ml increase in urine varenicline, p = 0.10, 95% CI (0.99, 3.02). There was no significant difference in mean TES in the varenicline condition (8.6) compared to the placebo condition (8.1), and treatment condition was not a statistically significant predictor of TES, IRR = 1.01, p = 0.9, 95% CI (0.39, 2.70). CONCLUSIONS The results of this study indicate that 1 mg varenicline BID was not an effective treatment for MA dependence among treatment-seeking MA-dependent volunteers.
Collapse
Affiliation(s)
- Marisa Briones
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Steven Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan Cook
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Worley
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aimee-Noelle Swanson
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David E. Moody
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Wenfang B. Fang
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - John Tsuang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Benjamin Furst
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Parrilla-Carrero J, Buchta WC, Goswamee P, Culver O, McKendrick G, Harlan B, Moutal A, Penrod R, Lauer A, Ramakrishnan V, Khanna R, Kalivas P, Riegel AC. Restoration of Kv7 Channel-Mediated Inhibition Reduces Cued-Reinstatement of Cocaine Seeking. J Neurosci 2018; 38:4212-4229. [PMID: 29636392 PMCID: PMC5963852 DOI: 10.1523/jneurosci.2767-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and afterhyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues.SIGNIFICANCE STATEMENT Long after the cessation of drug use, cues associated with cocaine still elicit drug-seeking behavior, in part by activation of the prelimbic prefrontal cortex (PL-PFC). The underlying cellular mechanisms governing these activated neurons remain unclear. Using a rat model of relapse to cocaine seeking, we identified a population of PL-PFC neurons that become hyperexcitable following chronic cocaine self-administration. These neurons show persistent loss of spike frequency adaptation, reduced afterhyperpolarizations, decreased sensitivity to dopamine, and reduced Kv7 channel-mediated inhibition. Stabilization of Kv7 channel function with retigabine normalized neuronal excitability, restored Kv7 channel currents, and reduced drug-seeking behavior when administered into the PL-PFC before reinstatement. These data highlight a persistent adaptation in a subset of PL-PFC neurons that may contribute to relapse vulnerability.
Collapse
Affiliation(s)
- Jeffrey Parrilla-Carrero
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - William C Buchta
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Priyodarshan Goswamee
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Oliver Culver
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Greer McKendrick
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Benjamin Harlan
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, and
| | - Rachel Penrod
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Abigail Lauer
- Department of Public Health Sciences., Medical University of South Carolina, Charleston, SC 29425
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences., Medical University of South Carolina, Charleston, SC 29425
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, and
| | - Peter Kalivas
- Department of Neuroscience
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Arthur C Riegel
- Department of Neuroscience,
- Neurobiology of Addiction Research Center, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
48
|
Cheng T, Wallace DM, Ponteri B, Tuli M. Valium without dependence? Individual GABA A receptor subtype contribution toward benzodiazepine addiction, tolerance, and therapeutic effects. Neuropsychiatr Dis Treat 2018; 14:1351-1361. [PMID: 29872302 PMCID: PMC5973310 DOI: 10.2147/ndt.s164307] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benzodiazepines are one of the most prescribed medications as first-line treatment of anxiety, insomnia, and epilepsy around the world. Over the past two decades, advances in the neuropharmacological understanding of gamma aminobutyric acid (GABA)A receptors revealed distinct contributions from each subtype and produced effects. Recent findings have highlighted the importance of α1 containing GABAA receptors in the mechanisms of addiction and tolerance in benzodiazepine treatments. This has shown promise in the development of tranquilizers with minimal side effects such as cognitive impairment, dependence, and tolerance. A valium-like drug without its side effects, as repeatedly demonstrated in animals, is achievable.
Collapse
Affiliation(s)
| | | | | | - Mahir Tuli
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats. Neurotox Res 2017; 34:834-847. [DOI: 10.1007/s12640-017-9813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022]
|
50
|
Sun J, Tian L, Cui R, Ruan H, Li X. Muscarinic acetylcholine receptor but not nicotinic acetylcholine receptor plays a role in morphine-induced behavioral sensitization in rats. Pharmacol Biochem Behav 2017; 160:39-46. [DOI: 10.1016/j.pbb.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
|