1
|
Is Autophagy Always a Barrier to Cisplatin Therapy? Biomolecules 2022; 12:biom12030463. [PMID: 35327655 PMCID: PMC8946631 DOI: 10.3390/biom12030463] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023] Open
Abstract
Cisplatin has long been a first-line chemotherapeutic agent in the treatment of cancer, largely for solid tumors. During the course of the past two decades, autophagy has been identified in response to cancer treatments and almost uniformly detected in studies involving cisplatin. There has been increasing recognition of autophagy as a critical factor affecting tumor cell death and tumor chemoresistance. In this review and commentary, we introduce four mechanisms of resistance to cisplatin followed by a discussion of the factors that affect the role of autophagy in cisplatin-sensitive and resistant cells and explore the two-sided outcomes that occur when autophagy inhibitors are combined with cisplatin. Our goal is to analyze the potential for the combinatorial use of cisplatin and autophagy inhibitors in the clinic.
Collapse
|
2
|
Martorelli D, Coppotelli G, Muraro E, Dolcetti R, Masucci MG. Remodeling of the epitope repertoire of a candidate idiotype vaccine by targeting to lysosomal degradation in dendritic cells. Cancer Immunol Immunother 2012; 61:881-92. [PMID: 22089857 PMCID: PMC11028998 DOI: 10.1007/s00262-011-1157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/03/2011] [Indexed: 02/05/2023]
Abstract
The generation of efficacious vaccines against self-antigens expressed in tumor cells requires breakage of tolerance, and the refocusing of immune responses toward epitopes for which tolerance may not be established. While the presentation of tumor antigens by mature dendritic cells (mDC) may surpass tolerance, broadening of the antigenic repertoire remains an issue. We report that fusion of the candidate idiotype vaccine IGKV3-20 to the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen (EBNA)-1 inhibits degradation by the proteasome and redirects processing to the lysosome. mDCs transduced with a recombinant lentivirus encoding the chimeric idiotype efficiently primed CD4+ and CD8+ cytotoxic T-cell (CTL) responses that lysed autologous blasts expressing IGKV3-20 or pulsed with IGKV3-20 synthetic peptides, and HLA-matched IGKV3-20-positive tumor cell lines. Comparison of the cytotoxic response of CD4+ and CD8+ T lymphocytes activated by mDCs expressing the wild-type or chimeric IGKV3-20 reveled largely non-overlapping epitope repertoires in both CD4+ and CD8+ effectors. Thus, fusion to the GAr may provide an effective means to broaden the immune response to an endogenous protein by promoting the presentation of antigenic epitopes that require a lysosome-dependent processing step.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| | - Elena Muraro
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Riccardo Dolcetti
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Roy D, Dittmer DP. Phosphatase and tensin homolog on chromosome 10 is phosphorylated in primary effusion lymphoma and Kaposi's sarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2108-19. [PMID: 21819957 DOI: 10.1016/j.ajpath.2011.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 06/18/2011] [Accepted: 06/28/2011] [Indexed: 12/23/2022]
Abstract
Primary effusion lymphoma (PEL) is a non-Hodgkin's B-cell lymphoma driven by Kaposi's sarcoma-associated herpesvirus. It is uniquely sensitive to mTOR, PI3K, and Akt inhibitors; however, the basis of this requirement for the mTOR pathway remains to be elucidated. The phosphatase and tensin homolog gene (PTEN) on chromosome 10 controls the first step in the phosphatidylinositol 3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway and is genetically inactivated in many solid tumors. We find an absence of PTEN deletions, mutations, or protein mislocalization in PEL. However, we find consistent hyperphosphorylation at serine 380 of PTEN, which is an inactivating modification, in PEL cell lines and in tumor xenografts. We also evaluated a large tissue microarray of Kaposi's sarcoma biopsies and observed concordant high levels of phospho-PTEN, phospho-Akt, and phospho-S6 ribosomal protein. Reintroduction of PTEN into PEL inhibited colony formation in soft agar, verifying the functional dependence of PEL on PI3K signaling. This was also true for PEL cell lines that carried mutant p53 and for KS-like cell lines. Activating PTEN in these cancers may yield a new treatment strategy for PEL, KS, and similar PTEN wild-type lymphomas.
Collapse
Affiliation(s)
- Debasmita Roy
- Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
| | | |
Collapse
|
4
|
Distinct p53, p53:LANA, and LANA complexes in Kaposi's Sarcoma--associated Herpesvirus Lymphomas. J Virol 2010; 84:3898-908. [PMID: 20130056 DOI: 10.1128/jvi.01321-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of p53 in primary effusion lymphoma (PEL) is complicated. The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) binds p53. Despite this interaction, we had found that p53 was functional in PEL, i.e., able to induce apoptosis in response to DNA damage (C. E. Petre, S. H. Sin, and D. P. Dittmer, J. Virol. 81:1912-1922, 2007), and that hdm2 was overexpressed. To further elucidate the relationship between LANA, p53, and hdm2, we purified LANA complexes from PEL by column chromatography. This confirmed that LANA bound p53. However, the LANA:p53 complexes were a minority compared to hdm2:p53 and p53:p53 complexes. The half-life of p53 was not extended, which is in contrast to the half-life of simian virus 40 T antigen-transformed cells. p53:p53, LANA:p53, and LANA:LANA complexes coexisted in PEL, and each protein was able to bind to its cognate DNA element. These data suggest that under normal conditions, p53 is inactive in PEL, thus allowing for exponential growth, but that this inactivation is driven by the relative stoichiometries of LANA, hdm2, and p53. If p53 is activated by DNA damage or nutlin-3a, the complex falls apart easily, and p53 exercises its role as guardian of the genome.
Collapse
|
5
|
Petre CE, Sin SH, Dittmer DP. Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2006; 81:1912-22. [PMID: 17121789 PMCID: PMC1797584 DOI: 10.1128/jvi.01757-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is associated with Kaposi's sarcoma (KS) as well as primary effusion lymphomas (PEL). The expression of viral proteins capable of inactivating the p53 tumor suppressor protein has been implicated in KSHV oncogenesis. However, DNA-damaging drugs such as doxorubicin are clinically efficacious against PEL and KS, suggesting that p53 signaling remains intact despite the presence of KSHV. To investigate the functionality of p53 in PEL, we examined the response of a large number of PEL cell lines to doxorubicin. Two out of seven (29%) PEL cell lines harbored a mutant p53 allele (BCBL-1 and BCP-1) which led to doxorubicin resistance. In contrast, all other PEL containing wild-type p53 showed DNA damage-induced cell cycle arrest, p53 phosphorylation, and p53 target gene activation. These data imply that p53-mediated DNA damage signaling was intact. Supporting this finding, chemical inhibition of p53 signaling in PEL led to doxorubicin resistance, and chemical activation of p53 by the Hdm2 antagonist Nutlin-3 led to unimpaired induction of p53 target genes as well as growth inhibition and apoptosis.
Collapse
Affiliation(s)
- Christin E Petre
- Lineberger Comprehensive Cancer Center, Center for AIDS Research and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
6
|
Nazarenko I, Kristiansen G, Fonfara S, Guenther R, Gieseler C, Kemmner W, Schafer R, Petersen I, Sers C. H-REV107-1 stimulates growth in non-small cell lung carcinomas via the activation of mitogenic signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1427-39. [PMID: 17003497 PMCID: PMC1698850 DOI: 10.2353/ajpath.2006.051341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2006] [Indexed: 01/02/2023]
Abstract
H-REV107-1, a known member of the class II tumor suppressor gene family, is involved in the regulation of differentiation and survival. We analyzed H-REV107-1 in non-small cell lung carcinomas, in normal lung, and in immortalized and tumor-derived cell lines. Sixty-eight percent of lung tumors revealed positive H-REV107-1-specific staining. Furthermore, survival analysis demonstrated a significant association of cytoplasmic H-REV107-1 with decreased patient survival. This suggested that H-REV107-1, known as a tumor suppressor, plays a different role in non-small cell lung carcinomas. Knock-down of H-REV107-1 expression in lung carcinoma cells inhibited anchorage-dependent and anchorage-independent growth whereas overexpression of H-REV107-1 induced tumor cell proliferation. Consistent with results of the survival analysis, cytoplasmic localization of the protein was essential for this growth-inducing function. Analysis of signaling pathways potentially involved in this process demonstrated that overexpression of H-REV107-1 stimulated RAS-GTPase activity, ERK1,2 phosphorylation, and caveolin-1 expression in the cell lines analyzed. These results indicate that H-REV107-1 is deficient in its function as a tumor suppressor in non-small cell lung carcinomas and is required for proliferation and anchorage-independent growth in cells expressing high levels of the protein, thus contributing to tumor progression in a subset of non-small cell lung carcinomas.
Collapse
Affiliation(s)
- Irina Nazarenko
- Institute of Pathology, Charité Universitaetsmedizin Berlin Schumannstr. 20/21, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V, Snyder EY. Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: Evidence from the effect of hypoxia–ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 2006; 199:156-78. [PMID: 16737696 DOI: 10.1016/j.expneurol.2006.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/01/2006] [Indexed: 11/16/2022]
Abstract
Clonal neural cells with stem-like features integrate appropriately into the developing and degenerating central and peripheral nervous system throughout the neuraxis. In response to hypoxic-ischemic (HI) injury, previously engrafted, integrated, and quiescent clonal neural stem cells (NSCs) transiently re-enter the cell cycle, migrate preferentially to the site of ischemia, and differentiate into neurons and oligodendrocytes, the neural cell types typically lost following HI brain injury. They also replenish the supply of immature uncommitted resident stem/progenitor cells. Although they yield astrocytes, scarring is inhibited. These responses appear to occur most robustly within a 3-7 day "window" following HI during which signals are elaborated that upregulate genetic programs within the NSC that mediate proliferation, migration, survival, and differentiation, most of which appear to be terminated once the "window closes" and the chronic phase ensues, sending the NSCs into a quiescent state. These insights derived from using the stem cell in a novel role--as a "reporter" cell--to both track and probe the activity of endogenous stem cells as well as to "interrogate" and "report" the genes differentially induced by the acutely vs. chronically injured milieu. NSCs may be capable of the replacement of cells, genes, and non-diffusible factors in both a widespread or more circumscribed manner (depending on the therapeutic demands of the clinical situation). They may be uniquely responsive to some types of neurodegenerative conditions. We submit that these various capabilities are simply the normal expression of the basic homeostasis-preserving biologic properties and attributes of a stem cell which, if used rationally and in concert with this biology, may be exploited for therapeutic ends.
Collapse
Affiliation(s)
- Kook In Park
- Department of Pediatrics and The Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chung JH, Ginn-Pease ME, Eng C. Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN) Has Nuclear Localization Signal–Like Sequences for Nuclear Import Mediated by Major Vault Protein. Cancer Res 2005; 65:4108-16. [PMID: 15899801 DOI: 10.1158/0008-5472.can-05-0124] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although phosphatase and tensin homologue deleted on chromosome 10 (PTEN) localization in the nucleus and cytoplasm is established, the mechanism is unknown. PTEN is a tumor suppressor phosphatase that causes cell cycle arrest and/or apoptosis. Nuclear-cytoplasmic compartmentalization may be a novel mechanism in regulating these events. PTEN does not contain a traditional nuclear localization sequence (NLS); however, we identified putative NLS-like sequences, which we analyzed by site-directed mutagenesis and localization studies in MCF-7 cells. Two double site mutations exhibited nuclear localization defects. Furthermore, unlike wild-type PTEN, double NLS mutant PTEN did not interact with major vault protein (MVP), a previously hypothesized nuclear-cytoplasmic transport protein. We conclude that these two NLS-like sequences are required for PTEN nuclear import that is mediated by MVP. Further, we show that this MVP-mediated nuclear import is independent of PTEN phosphorylation and of the lipid and protein phosphatase activities of PTEN.
Collapse
Affiliation(s)
- Ji-Hyun Chung
- Clinical Cancer Genetics Program, Human Cancer Genetics Program, Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
9
|
Abstract
The subcellular location and function of many proteins are regulated by nuclear-cytoplasmic shuttling. BRCA1 and BARD1 provide an interesting model system for understanding the influence of protein dimerization on nuclear transport and localization. These proteins function predominantly in the nucleus to regulate cell cycle progression, DNA repair/recombination and gene transcription, and their export to the cytoplasm has been linked to apoptosis. Germ-line mutations in the BRCA1/BRCA2 and BARD1 genes predispose to risk of breast/ovarian cancer, and certain mutations impair protein function and nuclear accumulation. BRCA1 and BARD1 shuttle between the nucleus and cytoplasm; however heterodimerization masks the nuclear export signals located within each protein, causing nuclear retention of the BRCA1-BARD1 complex and potentially influencing its role in DNA repair, cell survival and regulation of centrosome duplication. This review discusses BRCA1, BRCA2 and BARD1 subcellular localization with emphasis on regulation of transport by protein dimerization and its functional implications.
Collapse
Affiliation(s)
- Beric R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales, Australia.
| |
Collapse
|
10
|
Chipuk JE, Maurer U, Green DR, Schuler M. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 2003; 4:371-81. [PMID: 14667504 DOI: 10.1016/s1535-6108(03)00272-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent efforts to develop pharmacologic agents that restore function to mutant forms of p53 hold significant promise in cancer therapy. Here, we examine the effects of such pharmacologic activation of p53 function using a small molecule, PRIMA-1, and a model system employing a p53 protein fused to a mutant steroid binding domain of the murine estrogen receptor (p53ERtam) that renders it responsive only in the presence of 4-hydroxytamoxifen. In either case, p53 activation triggered apoptosis that was not inhibited by the presence of macromolecular synthesis inhibitors. This p53-induced, transcription-independent apoptosis is Bax dependent, proceeds in the absence of a nucleus, and involves Bax translocation and cytochrome c release. Hence, pharmacologic p53 modulators can activate a transcription-independent apoptotic program.
Collapse
Affiliation(s)
- Jerry E Chipuk
- Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Tumor suppressor proteins control the proliferation and survival of normal cells; consequently, their inactivation by gene mutations can initiate or drive cancer progression. Most tumor suppressors have been identified by genetic screening, and in many cases their function and regulation are poorly understood. Ten such proteins were recently shown to contain nuclear transport signals that facilitate their "shuttling" between the nucleus and cytoplasm. This type of dynamic intracellular movement not only regulates protein localization, but also often impacts on function. Here, we review the pathways by which tumor suppressors such as APC, p53, VHL, and BRCA1 cross the nuclear envelope and the impact of regulated nuclear import/export on protein function.
Collapse
Affiliation(s)
- Megan Fabbro
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, New South Wales, Australia
| | | |
Collapse
|
12
|
Abdulkarim B, Sabri S, Deutsch E, Chagraoui H, Maggiorella L, Thierry J, Eschwege F, Vainchenker W, Chouaïb S, Bourhis J. Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 2002; 21:2334-46. [PMID: 11948417 DOI: 10.1038/sj.onc.1205006] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 01/08/2023]
Abstract
High-risk human papillomaviruses (HPVs) have been associated to the development of cervical and some other human cancers. Most of them express E6 and E7 oncoproteins, able to bind to p53 and retinoblastoma (pRb) tumor suppressor proteins respectively and neutralize their function. Restoration of these pathways by blocking E6 and E7 expression would provide a selective therapeutic effect. Here, we show that a clinically approved antiviral agent Cidofovir reduced E6 and E7 expression in cervical carcinoma Me180 and head and neck squamous cell carcinoma HEP2 cells at the transcriptional level. Cidofovir induced the accumulation of active p53 and pRb associated to induction of cyclin dependent kinase inhibitor p21(WAF1/CIP1) in Me180 and HEP2 cells. p53 induction was also shown in Hela HPV-positive cervical carcinoma cell line. In addition, S phase cell cycle accumulation with concomitant decrease of cyclin A expression were associated to the antiproliferative activity of Cidofovir in HPV-treated cells. Combining Cidofovir to irradiation both in vivo and in nude mice xenografts resulted in a marked radiosensitization in HPV-positive cells, which was not observed in virus negative cells. This study provides the basis for a new anticancer strategy to enhance the antitumor effect of ionizing radiation in HPV-related cancers, without increase deleterious effects.
Collapse
Affiliation(s)
- Bassam Abdulkarim
- Laboratoire UPRES EA N degrees 27-10 'Radiosensibilité-Radiocarcinogénèse humaine' and Unité METSI, Institut Gustave-Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Touitou R, Hickabottom M, Parker G, Crook T, Allday MJ. Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol 2001; 75:7749-55. [PMID: 11462050 PMCID: PMC115013 DOI: 10.1128/jvi.75.16.7749-7755.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CtBP has been shown to be a highly conserved corepressor of transcription. E1A and all the various transcription factors to which CtBP binds contain a conserved PLDLS CtBP-interacting domain, and EBNA3C includes a PLDLS motif (amino acids [aa] 728 to 732). Here we show that EBNA3C binds to CtBP both in vitro and in vivo and that the interaction requires an intact PLDLS. The C terminus of EBNA3C (aa 580 to 992) has modest trans-repressor activity when it is fused to the DNA-binding domain of Gal4, and deletion or mutation of the PLDLS sequence ablates this and unmasks a transactivation function within the fragment. However, loss of the CtBP interaction motif had little effect on the ability of full-length EBNA3C to repress transcription. A striking correlation between CtBP binding and the capacity of EBNA3C to cooperate with (Ha-)Ras in the immortalization and transformation of primary rat embryo fibroblasts was also revealed.
Collapse
Affiliation(s)
- R Touitou
- Section of Virology and Cell Biology and Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, St. Mary's Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Forslund A, Lönnroth C, Andersson M, Brevinge H, Lundholm K. Mutations and allelic loss of p53 in primary tumor DNA from potentially cured patients with colorectal carcinoma. J Clin Oncol 2001; 19:2829-36. [PMID: 11387354 DOI: 10.1200/jco.2001.19.11.2829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To compare p53 alterations in survivors and nonsurvivors after surgery for colorectal cancer. PATIENTS AND METHODS Twenty-nine potentially cured patients with colorectal carcinoma, without recurrent disease for more than 6 years after their primary surgery, were selected to match a group of 41 colorectal cancer patients with early metastatic spread to the liver. All patients were screened for mutations in the p53 gene, exons 5 to 9, by denaturing gradient gel electrophoresis and subsequent sequencing. RESULTS The frequency of p53 mutations was significantly different in cured patients (60%) compared with patients with early relapse (41%, P <.05). A significant difference was found in the distribution of mutations, indicating that potentially cured patients had a different proportion of mutations in conserved regions of p53 (P =.02). This difference was explained by a significantly different frequency of mutations in exon 8 (40% v 15%, P =.03), which is part of the conserved region V. All mutations in region V were codon 273 mutations in cured patients, whereas three of four mutations were located in codon 273 in patients with metastatic disease. Allelic loss of p53 (loss of heterozygosity [LOH]) was demonstrated in 26% of the cured patients and in 39% of patients with metastatic disease (P =.36). The combination of mutation and LOH of p53 was the same (17%) in both groups. CONCLUSION A large number of p53 mutations in colorectal cancer do not promote disease progression. Some mutations, particularly within conserved regions, may even counteract negative functional effects of other p53 structural alterations. A complete loss of p53 function was not related to survival or progression after curative operation of colorectal carcinoma.
Collapse
Affiliation(s)
- A Forslund
- Surgical Metabolic Research Laboratory at the Lundberg Laboratory for Cancer Research, Department of Surgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
15
|
Preuss U, Kreutzfeld R, Scheidtmann KH. Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int J Cancer 2000; 88:162-71. [PMID: 11004663 DOI: 10.1002/1097-0215(20001015)88:2<162::aid-ijc3>3.0.co;2-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SV40 large T antigen-induced primitive neuroectodermal tumors of the rat provide a model system to study induction and progression of primitive neuroectodermal tumors at the molecular level. A cell line derived from such a tumor reproducibly gave rise to malignant derivatives that ceased large T-antigen expression but harbored a mutant p53 allele with a common mutation at Cys(174) to Tyr (C174Y). To determine whether this p53 mutation contributes to tumor progression, we analyzed mutant C174Y functionally. Co-transfection experiments in Saos-2 cells with mutant or wild-type p53 and reporter genes linked to various p53-responsive promoters revealed that mutant C174Y failed to transcriptionally transactivate the Mdm2, Waf1, Cyclin G and Bax promoters. Loss of transcriptional activation correlated with loss of DNA-binding activity. Moreover, mutant C174Y exhibited a dominant negative effect on co-expressed wild-type p53. The ability of mutant p53 to repress the viral RSV, LTR or SV40 early promoters or the cellular fos promoter was likewise impaired. In contrast, it showed even induction of the fos promoter. Consistent with these observations, mutant C174Y was non-functional in the suppression of Saos-2 cell growth and even conferred a growth advantage to the cells. Surprisingly, mutant C174Y was also impaired in nuclear transport, as revealed by immunofluorescence analyses. Taken together, our results demonstrate that mutant C174Y possesses features that can positively contribute to cancer progression.
Collapse
Affiliation(s)
- U Preuss
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Bonn, Germany.
| | | | | |
Collapse
|
16
|
Abstract
In vivo models of cerebral hypoxia-ischemia have shown that neuronal death may occur via necrosis or apoptosis. Necrosis is, in general, a rapidly occurring form of cell death that has been attributed, in part, to alterations in ionic homeostasis. In contrast, apoptosis is a delayed form of cell death that occurs as the result of activation of a genetic program. In the past decade, we have learned considerably about the mechanisms underlying apoptotic neuronal death following cerebral hypoxia-ischemia. With this growth in knowledge, we are coming to the realization that apoptosis and necrosis, although morphologically distinct, are likely part of a continuum of cell death with similar operative mechanisms. For example, following hypoxia-ischemia, excitatory amino acid release and alterations in ionic homeostasis contribute to both necrotic and apoptotic neuronal death. However, apoptosis is distinguished from necrosis in that gene activation is the predominant mechanism regulating cell survival. Following hypoxic-ischemic episodes in the brain, genes that promote as well as inhibit apoptosis are activated. It is the balance in the expression of pro- and anti-apoptotic genes that likely determines the fate of neurons exposed to hypoxia. The balance in expression of pro- and anti-apoptotic genes may also account for the regional differences in vulnerability to hypoxic insults. In this review, we will examine the known mechanisms underlying apoptosis in neurons exposed to hypoxia and hypoxia-ischemia.
Collapse
Affiliation(s)
- K J Banasiak
- Department of Pediatrics, Section of Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
17
|
Parker GA, Touitou R, Allday MJ. Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 2000; 19:700-9. [PMID: 10698515 DOI: 10.1038/sj.onc.1203327] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of EBNA3C is essential for the immortalization of B cells by EBV in vitro and, in co-operation with activated ras, EBNA3C has oncogenic activity in primary rodent fibroblasts. This suggested that this viral oncoprotein might disrupt the cyclin/CDK-pRb-E2F pathway, which regulates cell cycle progression at the restriction point (R-point) in G1 of the proliferation cycle. An assay was established in which transfected EBNA3C-positive cells could be sorted and simultaneously analysed for their distribution in the cell cycle. This revealed that in NIH3T3 fibroblasts compelled to arrest by serum-withdrawal, EBNA3C induces nuclear division that is often divorced from cytokinesis and so produces bi- and multinucleated cells. This was confirmed using the ecdysone-inducible system for expression of EBNA3C in human U2OS cells and by microinjection of expression vectors into NIH3T3 and U2OS. Further analysis revealed that in the inducible system, EBNA3C expression inhibits the accumulation of p27(K1P1) but not the dephosphorylation of pRb. Experiments using the microtubule destabilizing drug nocodazole, showed that EBNA3C could abrogate the mitotic spindle checkpoint.
Collapse
Affiliation(s)
- G A Parker
- Section of Virology and Cell Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
18
|
Laín S, Xirodimas D, Lane DP. Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel strategy to promote the p53 tumor suppressor function. Exp Cell Res 1999; 253:315-24. [PMID: 10585254 DOI: 10.1006/excr.1999.4672] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S Laín
- Department of Biochemistry, University of Dundee, Dundee, Scotland, DD1 5EH, United Kingdom.
| | | | | |
Collapse
|
19
|
Jimenez GS, Khan SH, Stommel JM, Wahl GM. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 1999; 18:7656-65. [PMID: 10618705 DOI: 10.1038/sj.onc.1203013] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
p53 activation by diverse stresses involves post-translational modifications that alter its structure and result in its nuclear accumulation. We will discuss several unresolved topics regarding p53 regulation which are currently under investigation. DNA damage is perhaps the best-studied stress which activates p53, and recent data implicate phosphorylation at N-terminal serine residues as critical in this process. We discuss recent data regarding the potential kinases which modify p53 and the possible role of the resulting phosphorylation events. By contrast, much less is understood about agents which disrupt the mitotic spindle. The cell cycle phase, induction signal, and biochemical mechanism of the reversible arrest induced by microtubule disruption are currently under investigation. Finally, a key event in response to any genotoxic stress is the accumulation of p53 in the nucleus. The factors which determine the steady state level of p53 are starting to be elucidated, but the mechanisms responsible for nuclear accumulation and nuclear export remain controversial. We discuss new studies revealing a mechanism for nuclear retention of p53, and the potential contributions of MDM2 to this process.
Collapse
Affiliation(s)
- G S Jimenez
- Gene Expression Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
20
|
Huang C, Kohno N, Inufusa H, Kodama K, Taki T, Miyake M. Overexpression of bax associated with mutations in the loop-sheet-helix motif of p53. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:955-65. [PMID: 10487853 PMCID: PMC1868607 DOI: 10.1016/s0002-9440(10)65195-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent investigations have revealed that mutations of the loop-sheet-helix motif of p53 is a significant factor for a poor prognosis in patients with non-small-cell lung cancer (NSCLC). To clarify this mechanism, bcl-2 and bax expression were evaluated in relation to mutations of p53. Tumor tissues of 203 patients with NSCLC were analyzed. Immunohistochemistry was performed to evaluate bcl-2 and bax expression, and polymerase chain reaction single-strand conformation polymorphism following direct sequencing was performed to investigate p53 status. A total of 79 carcinomas were bcl-2 positive, 146 carcinomas were bax positive, and 72 carcinomas had missense mutations of p53. There was no difference in bcl-2 expression in relation to p53 status. On the other hand, tumors with structural mutations of p53 had significantly lower expression of bax than those with wild-type p53 (P = 0.0026). In contrast, tumors with mutations of the loop-sheet-helix motif of p53 had significantly higher expression of bax than those with wild-type p53 (P = 0.0236). The frequency of a bcl-2/bax ratio of >/=1 was significantly lower in tumors with mutations of the loop-sheet-helix motif than that in tumors with wild-type p53 (P = 0.0240). The bcl-2/bax ratio status was a significant factor for a prognosis in patients with NSCLC (P = 0.0083). Mutations of the loop-sheet-helix motif of p53 were correlated with overexpression of bax, while other mutations of p53 were correlated with low levels of bax expression. This variation in pattern of bax expression in relation to mutant p53 might reflect the biological behavior of tumors in patients with bcl-2-positive NSCLC.
Collapse
Affiliation(s)
- C Huang
- Department of Thoracic Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Mantovani F, Banks L. Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene 1999; 18:3309-15. [PMID: 10362351 DOI: 10.1038/sj.onc.1202688] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The E6 proteins derived from tumour associated papillomavirus types target the cellular tumour suppressor protein p53 for ubiquitin mediated degradation. In cell lines derived from cervical tumours the p53 protein is present in very low amounts, but it can be activated by appropriate DNA damaging agents, indicating that functional p53 is present within these lines. Recent studies have also shown that different polymorphic forms of the p53 protein are differentially susceptible to E6 mediated degradation. Therefore we have been interested in analysing the effects of different HPV E6 proteins upon p53 levels in a variety of cervical tumour derived cell lines. We show that inhibition of E6 mediated degradation of p53 frequently results in increased levels of p53 expression. However, there are notable exceptions to this where increased p53 levels are only obtained following DNA damage and proteasome inhibition. We also show in E6 expressing cells, that as well as p53 being targeted for degradation, the localization of p53 to the nucleus is also inhibited, consistent with previous observations which indicate that degradation of p53 is not essential for E6 mediated inhibition of p53 function. These results have important implications for any potential therapies which might aim to block E6 mediated degradation of p53.
Collapse
Affiliation(s)
- F Mantovani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | |
Collapse
|
22
|
Smith PD, Crossland S, Parker G, Osin P, Brooks L, Waller J, Philp E, Crompton MR, Gusterson BA, Allday MJ, Crook T. Novel p53 mutants selected in BRCA-associated tumours which dissociate transformation suppression from other wild-type p53 functions. Oncogene 1999; 18:2451-9. [PMID: 10229196 DOI: 10.1038/sj.onc.1202565] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inheritance of germ-line mutant alleles of BRCA1 and BRCA2 confers a markedly increased risk of breast cancer and we have previously reported a higher incidence of p53 mutations in these tumours than in grade matched sporadic tumours. We have now characterized these p53 mutants. The results of these studies identify a novel class of p53 mutants previously undescribed in human cancer yet with multiple occurrences in BRCA-associated tumours which retain a profile of p53-dependent activities in terms of transactivation, growth suppression and apoptosis induction which is close or equal to wild-type. However, these mutants fail to suppress transformation and exhibit gain of function transforming activity in rat embryo fibroblasts. These mutants therefore fall into a novel category of p53 mutants which dissociate transformation suppression from other wild-type functions. The rarity of these mutants in human cancer and their multiple occurrence in BRCA-associated breast tumours suggests that these novel p53 mutants are selected during malignant progression in the unique genetic background of BRCA1- and BRCA2-associated tumours.
Collapse
Affiliation(s)
- P D Smith
- Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|