1
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kim YD, Park HG, Song S, Kim J, Lee BJ, Broadie K, Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J Cell Biol 2024; 223:e202309095. [PMID: 38748250 PMCID: PMC11096849 DOI: 10.1083/jcb.202309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.
Collapse
Affiliation(s)
- Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Seunghwan Song
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Joohyung Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Byoung Ju Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kendal Broadie
- Departments of Cell and Developmental Biology, Pharmacology, and Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, USA
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Johannessen JA, Formica M, Haukeland ALC, Bråthen NR, Al Outa A, Aarsund M, Therrien M, Enserink JM, Knævelsrud H. The human leukemic oncogene MLL-AF4 promotes hyperplastic growth of hematopoietic tissues in Drosophila larvae. iScience 2023; 26:107726. [PMID: 37720104 PMCID: PMC10504488 DOI: 10.1016/j.isci.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
MLL-rearranged (MLL-r) leukemias are among the leukemic subtypes with poorest survival, and treatment options have barely improved over the last decades. Despite increasing molecular understanding of the mechanisms behind these hematopoietic malignancies, this knowledge has had poor translation into the clinic. Here, we report a Drosophila melanogaster model system to explore the pathways affected in MLL-r leukemia. We show that expression of the human leukemic oncogene MLL-AF4 in the Drosophila hematopoietic system resulted in increased levels of circulating hemocytes and an enlargement of the larval hematopoietic organ, the lymph gland. Strikingly, depletion of Drosophila orthologs of known interactors of MLL-AF4, such as DOT1L, rescued the leukemic phenotype. In agreement, treatment with small-molecule inhibitors of DOT1L also prevented the MLL-AF4-induced leukemia-like phenotype. Taken together, this model provides an in vivo system to unravel the genetic interactors involved in leukemogenesis and offers a system for improved biological understanding of MLL-r leukemia.
Collapse
Affiliation(s)
- Julie A. Johannessen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Formica
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aina Louise C. Haukeland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Rojahn Bråthen
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Amani Al Outa
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Aarsund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section for Biochemistry and Molecular Biology, The Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Helene Knævelsrud
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Abubaker D, Baassiri A, Ghannam M, Al Outa A, Ghais A, Rahal E, Nasr R, Shirinian M. Expression of chronic myeloid leukemia oncogenes BCR-ABL P210 and BCR-ABL T315I affect cellular and humoral innate immunity in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000551. [PMID: 35622506 PMCID: PMC9008464 DOI: 10.17912/micropub.biology.000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that results from a chromosomal translocation between chromosome 9 and chromosome 22. The resulting fusion gene ( BCR-ABL ) encodes a constitutively active BCR-ABL tyrosine kinase. Some mutations of this oncogene, especially the Threonine 315 to Isoleucine substitution of the ABL kinase is resistant to first and second-generation tyrosine kinase inhibitors (TKIs) conventionally used in CML therapy. We have previously validated a CML fruit fly model for drug screening using the adult fly compound eye. Here we expressed wild-type BCR-ABL P210 and mutated BCR-ABL T315I in Drosophila melanogaster hematopoietic system to understand the phenotypic consequences of this expression and its impact on innate immune pathways. Flies expressing both wild-type BCR-ABL P210 and mutant BCR-ABL T315I showed increased number of circulating hemocytes, disruption in sessile patterning of resident hemocytes, dysregulation in the humoral Toll, ImD, and JAK/STAT pathways at the mRNA level in both the 3 rd instar larva and adult stages. Of note, BCR-ABL T315I flies presented more severe phenotypes and a higher deviation in humoral dysregulation than BCR -ABL P210 flies pointing towards more complex oncogenic effect of this mutant which requires further investigation.
Collapse
Affiliation(s)
- Dana Abubaker
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mirna Ghannam
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amani Al Outa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Marquilly C, Busto GU, Leger BS, Boulanger A, Giniger E, Walker JA, Fradkin LG, Dura JM. Htt is a repressor of Abl activity required for APP-induced axonal growth. PLoS Genet 2021; 17:e1009287. [PMID: 33465062 PMCID: PMC7845969 DOI: 10.1371/journal.pgen.1009287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Huntington’s disease is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract at the N-terminus of a large cytoplasmic protein. The Drosophila huntingtin (htt) gene is widely expressed during all developmental stages from embryos to adults. However, Drosophila htt mutant individuals are viable with no obvious developmental defects. We asked if such defects could be detected in htt mutants in a background that had been genetically sensitized to reveal cryptic developmental functions. Amyloid precursor protein (APP) is linked to Alzheimer’s disease. Appl is the Drosophila APP ortholog and Appl signaling modulates axon outgrowth in the mushroom bodies (MBs), the learning and memory center in the fly, in part by recruiting Abl tyrosine kinase. Here, we find that htt mutations suppress axon outgrowth defects of αβ neurons in Appl mutant MB by derepressing the activity of Abl. We show that Abl is required in MB αβ neurons for their axon outgrowth. Importantly, both Abl overexpression and lack of expression produce similar phenotypes in the MBs, indicating the necessity of tightly regulating Abl activity. We find that Htt behaves genetically as a repressor of Abl activity, and consistent with this, in vivo FRET-based measurements reveal a significant increase in Abl kinase activity in the MBs when Htt levels are reduced. Thus, Appl and Htt have essential but opposing roles in MB development, promoting and suppressing Abl kinase activity, respectively, to maintain the appropriate intermediate level necessary for axon growth. Understanding the normal physiological roles of proteins involved in neurodegenerative diseases can provide significant insight into disease mechanisms. Drosophila offers a powerful system in which to ask these fundamental questions. Both Htt, related to Huntington’s disease, and Appl, related to Alzheimer’s disease, have well-conserved single orthologs in the fly genome. Appl has been shown to be a conserved modulator of a Wnt-PCP signaling pathway required for axon outgrowth in the mushroom body (MB) in the Drosophila brain. However, roles for Htt in fly brain development have not been reported. Unexpectedly, we found that htt mutations suppress the axon outgrowth defects of Appl mutants in the MB, indicating a link between these two neurodegenerative proteins and a cryptic role of Htt during development. Abl tyrosine kinase is a downstream effector of the Appl receptor, and we show here that Abl is also required for MB axon outgrowth. Importantly, Abl activity must be tightly regulated as evidenced by our observations that both under and overexpression of Abl result in similar axonal defects. We demonstrate that Htt is an inhibitor of Abl activity and provide evidence that the phenotypic rescue of αβ axons in Appl mutants by reducing htt is mediated by the restoration of proper levels of Abl signaling. These data, therefore, suggest that Appl and Htt act antagonistically to maintain an optimal balance of activation and inhibition of Abl, and thereby promote the growth of MB αβ axons.
Collapse
Affiliation(s)
- Claire Marquilly
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Germain U. Busto
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Brittany S. Leger
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ana Boulanger
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Edward Giniger
- Intramural Research Program, NINDS, NIH, Bethesda, Maryland, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jean-Maurice Dura
- IGH, Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
6
|
HumanaFly: high-throughput transgenesis and expression of breast cancer transcripts in Drosophila eye discovers the RPS12-Wingless signaling axis. Sci Rep 2020; 10:21013. [PMID: 33273532 PMCID: PMC7713366 DOI: 10.1038/s41598-020-77942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023] Open
Abstract
Drosophila melanogaster has been a model for multiple human disease conditions, including cancer. Among Drosophila tissues, the eye development is particularly sensitive to perturbations of the embryonic signaling pathways, whose improper activation in humans underlies various forms of cancer. We have launched the HumanaFly project, whereas human genes expressed in breast cancer patients are screened for their ability to aberrate development of the Drosophila eye, hoping to thus identify novel oncogenes. Here we report identification of a breast cancer transgene, which upon expression in Drosophila produces eye malformation similar to the famous Glazed phenotype discovered by Thomas Morgan and decades later dissected to originate from mis-expression of Wingless (Wg). Wg is the ortholog of human Wnt proteins serving as ligands to initiate the developmental/oncogenic Wnt signaling pathway. Through genetic experiments we identified that this transgene interacted with the Wg production machinery, rather than with Wg signal transduction. In Drosophila imaginal discs, we directly show that the transgene promoted long-range diffusion of Wg, affecting expression of the Wg target genes. The transgene emerged to encode RPS12—a protein of the small ribosomal subunit overexpressed in several cancer types and known to also possess extra-ribosomal functions. Our work identifies RPS12 as an unexpected regulator of secretion and activity of Wnts. As Wnt signaling is particularly important in the context of breast cancer initiation and progression, RPS12 might be implicated in tumorigenesis in this and other Wnt-dependent cancers. Continuation of our HumanaFly project may bring further discoveries on oncogenic mechanisms.
Collapse
|
7
|
Al Outa A, Abubaker D, Madi J, Nasr R, Shirinian M. The Leukemic Fly: Promises and Challenges. Cells 2020; 9:E1737. [PMID: 32708107 PMCID: PMC7409271 DOI: 10.3390/cells9071737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Leukemia involves different types of blood cancers, which lead to significant mortality and morbidity. Murine models of leukemia have been instrumental in understanding the biology of the disease and identifying therapeutics. However, such models are time consuming and expensive in high throughput genetic and drug screening. Drosophilamelanogaster has emerged as an invaluable in vivo model for studying different diseases, including cancer. Fruit flies possess several hematopoietic processes and compartments that are in close resemblance to their mammalian counterparts. A number of studies succeeded in characterizing the fly's response upon the expression of human leukemogenic proteins in hematopoietic and non-hematopoietic tissues. Moreover, some of these studies showed that these models are amenable to genetic screening. However, none were reported to be tested for drug screening. In this review, we describe the Drosophila hematopoietic system, briefly focusing on leukemic diseases in which fruit flies have been used. We discuss myeloid and lymphoid leukemia fruit fly models and we further highlight their roles for future therapeutic screening. In conclusion, fruit fly leukemia models constitute an interesting area which could speed up the process of integrating new therapeutics when complemented with mammalian models.
Collapse
Affiliation(s)
- Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Dana Abubaker
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Joelle Madi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
8
|
Wolterhoff N, Gigengack U, Rumpf S. PP2A phosphatase is required for dendrite pruning via actin regulation in Drosophila. EMBO Rep 2020; 21:e48870. [PMID: 32207238 PMCID: PMC7202059 DOI: 10.15252/embr.201948870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Large‐scale pruning, the developmentally regulated degeneration of axons or dendrites, is an important specificity mechanism during neuronal circuit formation. The peripheral sensory class IV dendritic arborization (c4da) neurons of Drosophila larvae specifically prune their dendrites at the onset of metamorphosis in an ecdysone‐dependent manner. Dendrite pruning requires local cytoskeleton remodeling, and the actin‐severing enzyme Mical is an important ecdysone target. In a screen for pruning factors, we identified the protein phosphatase 2 A (PP2A). PP2A interacts genetically with the actin‐severing enzymes Mical and cofilin as well as other actin regulators during pruning. Moreover, Drosophila cofilin undergoes a change in localization at the onset of metamorphosis indicative of a change in actin dynamics. This change is abolished both upon loss of Mical and PP2A. We conclude that PP2A regulates actin dynamics during dendrite pruning.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Ulrike Gigengack
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Sebastian Rumpf
- Institute for Neurobiology, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Outa AA, Abubaker D, Bazarbachi A, Sabban ME, Shirinian M, Nasr R. Validation of a Drosophila model of wild-type and T315I mutated BCR-ABL1 in chronic myeloid leukemia: an effective platform for treatment screening. Haematologica 2020; 105:387-397. [PMID: 31101753 PMCID: PMC7012492 DOI: 10.3324/haematol.2019.219394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is caused by a balanced chromosomal translocation resulting in the formation of BCR-ABL1 fusion gene encoding a constitutively active BCR-ABL1 tyrosine kinase, which activates multiple signal transduction pathways leading to malignant transformation. Standard treatment of CML is based on tyrosine kinase inhibitors (TKI); however, some mutations have proven elusive particularly the T315I mutation. Drosophila melanogaster is an established in vivo model for human diseases including cancer. The targeted expression of chimeric human/fly and full human BCR-ABL1 in Drosophila eyes has been shown to result in detrimental effects. In this study, we expressed human BCR-ABL1p210 and the resistant BCR-ABL1p210/T315I fusion oncogenes in Drosophila eyes. Expression of BCR-ABL1p210/T315I resulted in a severe distortion of the ommatidial architecture of adult eyes with a more prominent rough eye phenotype compared to milder phenotypes in BCR-ABL1p210 reflecting a stronger oncogenic potential of the mutant. We then assessed the efficacy of the currently used TKI in BCR-ABL1p210 and BCR-ABL1p210/T315I expressing flies. Treatment of BCR-ABL1p210 expressing flies with potent kinase inhibitors (dasatinib and ponatinib) resulted in the rescue of ommatidial loss and the restoration of normal development. Taken together, we provide a CML tailored BCR-ABL1p210 and BCR-ABL1p210/T315I fly model which can be used to test new compounds with improved therapeutic indices.
Collapse
Affiliation(s)
- Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut
| | - Dana Abubaker
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut
| |
Collapse
|
10
|
Bernardoni R, Giordani G, Signorino E, Monticelli S, Messa F, Pradotto M, Rosso V, Bracco E, Giangrande A, Perini G, Saglio G, Cilloni D. A new BCR-ABL1 Drosophila model as a powerful tool to elucidate the pathogenesis and progression of chronic myeloid leukemia. Haematologica 2018; 104:717-728. [PMID: 30409797 PMCID: PMC6442973 DOI: 10.3324/haematol.2018.198267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
The oncoprotein BCR-ABL1 triggers chronic myeloid leukemia. It is clear that the disease relies on constitutive BCR-ABL1 kinase activity, but not all the interactors and regulators of the oncoprotein are known. We describe and validate a Drosophila leukemia model based on inducible human BCR-ABL1 expression controlled by tissue-specific promoters. The model was conceived to be a versatile tool for performing genetic screens. BCR-ABL1 expression in the developing eye interferes with ommatidia differentiation and expression in the hematopoietic precursors increases the number of circulating blood cells. We show that BCR-ABL1 interferes with the pathway of endogenous dAbl with which it shares the target protein Ena. Loss of function of ena or Dab, an upstream regulator of dAbl, respectively suppresses or enhances both the BCR-ABL1-dependent phenotypes. Importantly, in patients with leukemia decreased human Dab1 and Dab2 expression correlates with more severe disease and Dab1 expression reduces the proliferation of leukemia cells. Globally, these observations validate our Drosophila model, which promises to be an excellent system for performing unbiased genetic screens aimed at identifying new BCR-ABL1 interactors and regulators in order to better elucidate the mechanism of leukemia onset and progression.
Collapse
Affiliation(s)
- Roberto Bernardoni
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Italy .,Health Sciences and Technology - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Giorgia Giordani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Italy.,Department of Clinical and Biological Sciences, University of Turin, Italy.,Present address: Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, UK
| | | | - Sara Monticelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Italy
| | - Francesca Messa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Italy
| | - Monica Pradotto
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Valentina Rosso
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | | | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP 67404 Illkirch, France
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Italy.,Health Sciences and Technology - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
11
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|
12
|
Hakeda-Suzuki S, Takechi H, Kawamura H, Suzuki T. Two receptor tyrosine phosphatases dictate the depth of axonal stabilizing layer in the visual system. eLife 2017; 6:31812. [PMID: 29116043 PMCID: PMC5683756 DOI: 10.7554/elife.31812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring.
Collapse
Affiliation(s)
- Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroki Takechi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
13
|
Yoon J, Kim SB, Ahmed G, Shay JW, Terman JR. Amplification of F-Actin Disassembly and Cellular Repulsion by Growth Factor Signaling. Dev Cell 2017; 42:117-129.e8. [PMID: 28689759 PMCID: PMC5564210 DOI: 10.1016/j.devcel.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Abstract
Extracellular cues that regulate cellular shape, motility, and navigation are generally classified as growth promoting (i.e., growth factors/chemoattractants and attractive guidance cues) or growth preventing (i.e., repellents and inhibitors). Yet, these designations are often based on complex assays and undefined signaling pathways and thus may misrepresent direct roles of specific cues. Here, we find that a recognized growth-promoting signaling pathway amplifies the F-actin disassembly and repulsive effects of a growth-preventing pathway. Focusing on Semaphorin/Plexin repulsion, we identified an interaction between the F-actin-disassembly enzyme Mical and the Abl tyrosine kinase. Biochemical assays revealed Abl phosphorylates Mical to directly amplify Mical Redox-mediated F-actin disassembly. Genetic assays revealed that Abl allows growth factors and Semaphorin/Plexin repellents to combinatorially increase Mical-mediated F-actin disassembly, cellular remodeling, and repulsive axon guidance. Similar roles for Mical in growth factor/Abl-related cancer cell behaviors further revealed contexts in which characterized positive effectors of growth/guidance stimulate such negative cellular effects as F-actin disassembly/repulsion.
Collapse
Affiliation(s)
- Jimok Yoon
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giasuddin Ahmed
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJT, Levis RW, Spradling AC, Hoskins RA, Bellen HJ. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. eLife 2015; 4. [PMID: 25824290 PMCID: PMC4379497 DOI: 10.7554/elife.05338] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/06/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates. DOI:http://dx.doi.org/10.7554/eLife.05338.001 In the last few decades, technical advances in altering the genes of organisms have led to many discoveries about how genes work. For example, it is now possible to add a specific DNA sequence to a gene so that the protein it makes will carry a ‘tag’ that enables us to track it in cells. One such tag is called green fluorescent protein (GFP) and it is often used to study other proteins in living cells because it produces green fluorescence that can be detected under a microscope. It is labor intensive to add tags to individual genes, so this limits the number of proteins that can be studied in this way. In 2011, researchers developed a new method that can easily tag many genes in fruit flies. It makes use of small sections of DNA called transposons, which are able to move around the genome by ‘cutting’ themselves out of one location and ‘pasting’ themselves in somewhere else. The researchers used a transposon called Minos, which is naturally found in fruit flies. When Minos inserts into a gene, it often disrupts the gene and stops it from working. However, the researchers could swap the inserted transposon for a gene encoding GFP by making use of a natural process that rearranges DNA in cells. This resulted in the protein encoded by the gene containing GFP and so it can be detected under a microscope. This method allowed the researchers to create a collection of fly lines that have the GFP tag on many different proteins. Now, Nagarkar-Jaiswal et al. have greatly expanded this initial collection. More than 75% of GFP-tagged proteins worked normally and the flies producing these altered proteins remain healthy. It is possible to use a technique called RNA interference against the GFP to lower the production of the tagged proteins. Moreover, Nagarkar-Jaiswal et al. show that it is also possible to degrade the tagged proteins so that less protein is present. The removal of proteins is reversible and can be done in specific tissues during any phase in fly development. These techniques allow researchers to directly associate the loss of the protein with the consequences for the fly. This collection of fruit fly lines is a useful resource that can help us understand how genes work. The method for tagging the proteins could also be modified to work in other animals. DOI:http://dx.doi.org/10.7554/eLife.05338.002
Collapse
Affiliation(s)
- Sonal Nagarkar-Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Megan E Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | | | - Manuel Cantu Gutierrez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Theodore Busby
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yuchun He
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Karen L Schulze
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Benjamin W Booth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Martha Evans-Holm
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Robert W Levis
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Roger A Hoskins
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
15
|
Bernusso VA, Machado-Neto JA, Pericole FV, Vieira KP, Duarte AS, Traina F, Hansen MD, Olalla Saad ST, Barcellos KS. Imatinib restores VASP activity and its interaction with Zyxin in BCR–ABL leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:388-95. [DOI: 10.1016/j.bbamcr.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
|
16
|
Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:51-82. [PMID: 21377624 DOI: 10.1016/b978-0-12-384878-9.00002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.
Collapse
Affiliation(s)
- Cédric Polesello
- Université de Toulouse, UPS, CBD, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062, CNRS, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
17
|
The putative pocket protein binding site of Autographa californica nucleopolyhedrovirus BV/ODV-C42 is required for virus-induced nuclear actin polymerization. J Virol 2010; 84:7857-68. [PMID: 20484515 DOI: 10.1128/jvi.00174-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nuclear filamentous actin (F-actin) is essential for nucleocapsid morphogenesis of lepidopteran nucleopolyhedroviruses. Previously, we had demonstrated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) BV/ODV-C42 (C42) is involved in nuclear actin polymerization by recruiting P78/83, an AcMNPV orf9-encoded N-WASP homology protein that is capable of activating an actin-related-protein 2/3 (Arp2/3) complex to initiate actin polymerization, to the nucleus. To further investigate the role of C42 in virus-induced actin polymerization, the recombinant bacmid vAc(p78/83nls-gfp), with a c42 knockout, p78/83 tagged with a nuclear localization signal coding sequence, and egfp as a reporter gene under the control of the Pp10 promoter, was constructed and transfected to Sf9 cells. In the nuclei of vAc(p78/83nls-gfp)-transfected cells, polymerized F-actin filaments were absent, whereas other actin polymerization elements (i.e., P78/83, G-actin, and Arp2/3 complex) were present. This in vivo evidence indicated that C42 actively participates in the nuclear actin polymerization process as a key element, besides its role in recruiting P78/83 to the nucleus. In order to collect in vitro evidence for the participation of C42 in actin polymerization, an anti-C42 antibody was used to neutralize the viral nucleocapsid, which is capable of initiating actin polymerization in vitro. Both the kinetics of pyrene-actin polymerization and F-actin-specific staining by phalloidin indicated that anti-C42 can significantly attenuate the efficiency of F-actin formation compared to that with control antibodies. Furthermore, we have identified the putative pocket protein binding sequence (PPBS) on C42 that is essential for C42 to exert its function in nuclear actin polymerization.
Collapse
|
18
|
Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl. Mol Cell Biol 2009; 29:3623-32. [PMID: 19398577 DOI: 10.1128/mcb.00229-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identify Kette, a key regulator of actin polymerization, as a substrate for Drosophila protein tyrosine phosphatase PTP61F, as well as for dAbl tyrosine kinase. We further show that dAbl is a direct substrate for PTP61F. Therefore, Kette phosphotyrosine levels are regulated both directly and indirectly by PTP61F. Kette and PTP61F genetically interact in the regulation of F-actin organization in pupal eye discs, suggesting that tyrosine phosphorylation is essential for the proper regulation of Kette-mediated actin dynamics. This hypothesis was confirmed by demonstrating the loss of Kette-mediated F-actin organization and lamella formation in S2 cells in a Kette Y482F mutant in which the dAbl phosphorylation site was eliminated. Our results establish for the first time that PTP61F and dAbl ensure proper actin organization through the coordinated and reversible tyrosine phosphorylation of Kette.
Collapse
|
19
|
Xiong W, Dabbouseh NM, Rebay I. Interactions with the Abelson tyrosine kinase reveal compartmentalization of eyes absent function between nucleus and cytoplasm. Dev Cell 2009; 16:271-9. [PMID: 19217428 DOI: 10.1016/j.devcel.2008.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/17/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022]
Abstract
Eyes absent (Eya), named for its role in Drosophila eye development but broadly conserved in metazoa, possesses dual functions as a transcriptional coactivator and protein tyrosine phosphatase. Although Eya's transcriptional activity has been extensively characterized, the physiological requirements for its phosphatase activity remain obscure. In this study, we provide insight into Eya's participation in phosphotyrosine-mediated signaling networks by demonstrating cooperative interactions between Eya and the Abelson (Abl) tyrosine kinase during development of the Drosophila larval visual system. Mechanistically, Abl-mediated phosphorylation recruits Eya to the cytoplasm, where in vivo studies reveal a requirement for its phosphatase function. Thus, we propose a model in which, in addition to its role as a transcription factor, Eya functions as a cytoplasmic protein tyrosine phosphatase.
Collapse
Affiliation(s)
- Wenjun Xiong
- Ben May Department for Cancer Research, University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
20
|
Stephan R, Grevelhörster A, Wenderdel S, Klämbt C, Bogdan S. Abi induces ectopic sensory organ formation by stimulating EGFR signaling. Mech Dev 2007; 125:183-95. [PMID: 18221859 DOI: 10.1016/j.mod.2007.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/05/2007] [Accepted: 12/07/2007] [Indexed: 01/31/2023]
Abstract
One of the central regulators coupling tyrosine phosphorylation with cytoskeletal dynamics is the Abelson interactor (Abi). Its activity regulates WASP-/WAVE mediated F-actin formation and in addition modulates the activity of the Abelson tyrosine kinase (Abl). We have recently shown that the Drosophila Abi is capable of promoting bristle development in a wasp dependent fashion. Here, we report that Drosophila Abi induces sensory organ development by modulating EGFR signaling. Expression of a membrane-tethered activated Abi protein (Abi(Myr)) leads to an increase in MAPK activity. Additionally, suppression of EGFR activity inhibits the induction of extra-sensory organs by Abi(Myr), whereas co-expression of activated Abi(Myr) and EGFR dramatically enhances the neurogenic phenotype. In agreement with this observation Abi is able to associate with the EGFR in a common complex. Furthermore, Abi binds the Abl tyrosine kinase. A block of Abl kinase-activity reduces Abi protein stability and strongly abrogates ectopic sensory organ formation induced by Abi(Myr). Concomitantly, we noted changes in tyrosine phosphorylation supporting previous reports that Abi protein stability is linked to tyrosine phosphorylation mediated by Abl.
Collapse
Affiliation(s)
- Raiko Stephan
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
Song JK, Giniger E, Desai CJ. The receptor protein tyrosine phosphatase PTP69D antagonizes Abl tyrosine kinase to guide axons in Drosophila. Mech Dev 2007; 125:247-56. [PMID: 18160268 DOI: 10.1016/j.mod.2007.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
During Drosophila embryogenesis, both the cytoplasmic Abelson tyrosine kinase (Abl) and the membrane bound tyrosine phosphatase PTP69D are required for proper guidance of CNS and motor axons. We provide evidence that PTP69D modulates signaling by Abl and its antagonist, Ena. An Abl loss-of function mutation dominantly suppresses most Ptp69D mutant phenotypes including larval/pupal lethality and CNS and motor axon defects, while increased Abl and decreased Ena expression dramatically increase the expressivity of Ptp69D axonal defects. In contrast, Ptp69D mutations do not affect Abl mutant phenotypes. These results support the hypothesis that PTP69D antagonizes the Abl/Ena genetic pathway, perhaps as an upstream regulator. We also find that mutation of the gene encoding the cytoplasmic Src64B tyrosine kinase exacerbates Ptp69D phenotypes, suggesting that two different cytoplasmic tyrosine kinases, Abl and Src64B, modify PTP69D-mediated axon patterning in quite different ways.
Collapse
Affiliation(s)
- Jeong K Song
- Axon Guidance and Neural Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 37 Room 1016, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Stevens TL, Rogers EM, Koontz LM, Fox DT, Homem CCF, Nowotarski SH, Artabazon NB, Peifer M. Using Bcr-Abl to examine mechanisms by which abl kinase regulates morphogenesis in Drosophila. Mol Biol Cell 2007; 19:378-93. [PMID: 17959833 DOI: 10.1091/mbc.e07-01-0008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Signaling by the nonreceptor tyrosine kinase Abelson (Abl) plays key roles in normal development, whereas its inappropriate activation helps trigger the development of several forms of leukemia. Abl is best known for its roles in axon guidance, but Abl and its relatives also help regulate embryonic morphogenesis in epithelial tissues. Here, we explore the role of regulation of Abl kinase activity during development. We first compare the subcellular localization of Abl protein and of active Abl, by using a phosphospecific antibody, providing a catalog of places where Abl is activated. Next, we explore the consequences for morphogenesis of overexpressing wild-type Abl or expressing the activated form found in leukemia, Bcr-Abl. We find dose-dependent effects of elevating Abl activity on morphogenetic movements such as head involution and dorsal closure, on cell shape changes, on cell protrusive behavior, and on the organization of the actin cytoskeleton. Most of the effects of Abl activation parallel those caused by reduction in function of its target Enabled. Abl activation leads to changes in Enabled phosphorylation and localization, suggesting a mechanism of action. These data provide new insight into how regulated Abl activity helps direct normal development and into possible biological functions of Bcr-Abl.
Collapse
Affiliation(s)
- Traci L Stevens
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Leyssen M, Ayaz D, Hébert SS, Reeve S, De Strooper B, Hassan BA. Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO J 2005; 24:2944-55. [PMID: 16052209 PMCID: PMC1187942 DOI: 10.1038/sj.emboj.7600757] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/06/2005] [Indexed: 01/12/2023] Open
Abstract
The mechanisms regulating the outgrowth of neurites during development, as well as after injury, are key to the understanding of the wiring and functioning of the brain under normal and pathological conditions. The amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease (AD). However, its physiological role in the central nervous system is not known. Many physical interactions between APP and intracellular signalling molecules have been described, but their functional relevance remains unclear. We show here that human APP and Drosophila APP-Like (APPL) can induce postdevelopmental axonal arborization, which depends critically on a conserved motif in the C-terminus and requires interaction with the Abelson (Abl) tyrosine kinase. Brain injury induces APPL upregulation in Drosophila neurons, correlating with increased post-traumatic mortality in appl(d) mutant flies. Finally, we also found interactions between APP and the JNK stress kinase cascade. Our findings suggest a role for APP in axonal outgrowth after traumatic brain injury.
Collapse
Affiliation(s)
- Maarten Leyssen
- Laboratory of Neurogenetics, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
- Neuronal Cell Biology and Gene Transfer Laboratory, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
| | - Derya Ayaz
- Laboratory of Neurogenetics, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
| | - Sébastien S Hébert
- Neuronal Cell Biology and Gene Transfer Laboratory, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
| | - Simon Reeve
- Laboratory of Neurogenetics, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
| | - Bart De Strooper
- Neuronal Cell Biology and Gene Transfer Laboratory, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
| | - Bassem A Hassan
- Laboratory of Neurogenetics, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB) and University of Leuven, School of Medicine, Leuven, Belgium
- Laboratory of Neurogenetics, Department of Human Genetics—VIB4, VIB and University of Leuven, School of Medicine, Post Box 602, O&N Building, Rm 06.547, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32 16 346226; Fax: +32 16 346218; E-mail:
| |
Collapse
|
24
|
Chodniewicz D, Klemke RL. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:63-76. [PMID: 15246680 DOI: 10.1016/j.bbamcr.2004.03.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 03/16/2004] [Indexed: 01/09/2023]
Abstract
The molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis.
Collapse
Affiliation(s)
- David Chodniewicz
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, SP231, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
Hsouna A, Kim YS, VanBerkum MFA. Abelson tyrosine kinase is required to transduce midline repulsive cues. JOURNAL OF NEUROBIOLOGY 2003; 57:15-30. [PMID: 12973825 DOI: 10.1002/neu.10232] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tyrosine phosphorylation-dependent signaling cascades play key roles in determining the formation of an axon pathway. The cytoplasmic Abelson tyrosine kinase participate in several signaling pathways that orchestrate both growth cone advance and steering in response to guidance cues. Here, a genetic approach is used to evaluate the role for Abelson in growth cones during a decision to cross or not to cross the Drosophila embryonic midline. Our data indicate that both loss- and gain-of-function conditions for Abl cause neurons within the pCC/MP2 pathway to project across the midline incorrectly. The frequency of abnormal crossovers is enhanced by mutations in the genes encoding the midline repellent, Slit, or its receptor, Roundabout. In comm mutants, where repulsive signals remain elevated, increasing or decreasing Abl activity partially rescues commissure formation. Thus, both too much and too little Abl activity causes axons to cross the midline inappropriately, indicating that Abl plays a critical role in transducing midline repulsive cues. How Abl functions in this role is not yet clear, but we suggest that Abl may help regulate cytoskeletal dynamics underlying a growth cone's response to midline cues.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
26
|
Maurel-Zaffran C, Suzuki T, Gahmon G, Treisman JE, Dickson BJ. Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 2001; 32:225-35. [PMID: 11683993 DOI: 10.1016/s0896-6273(01)00471-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During Drosophila visual system development, photoreceptors R7 and R8 project axons to targets in distinct layers of the optic lobe. We show here that the LAR receptor tyrosine phosphatase is required in the eye for correct targeting of R7 axons. In LAR mutants, R7 axons initially project to their correct target layer, but then retract to the R8 target layer. This targeting defect can be fully rescued by transgenic expression of LAR in R7, and partially rescued by expression of LAR in R8. The phosphatase domains of LAR are required for its activity in R7, but not in R8. These data suggest that LAR can act both as a receptor in R7, and as a ligand provided by R8. Genetic interactions implicate both Enabled and Trio in LAR signal transduction.
Collapse
Affiliation(s)
- C Maurel-Zaffran
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
In recent years, Drosophila researchers have developed powerful genetic techniques that allow for the rapid identification and characterization of genes involved in tumor formation and development. The high level of gene and pathway conservation, the similarity of cellular processes and the emerging evidence of functional conservation of tumor suppressors between Drosophila and mammals, argue that studies of tumorigenesis in flies can directly contribute to the understanding of human cancer. In this review, we explore the historical and current roles of Drosophila in cancer research, as well as speculate on the future of Drosophila as a model to investigate cancer-related processes that are currently not well understood.
Collapse
Affiliation(s)
- C J Potter
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, NewHaven, CT 06536-0812,
| | | | | |
Collapse
|