1
|
Li M, Feng Z, Han R, Hu B, Zhang R, Wang H. Paclitaxel promotes mTOR signaling-mediated apoptosis in esophageal cancer cells by targeting MUC20. Thorac Cancer 2023; 14:3089-3096. [PMID: 37772424 PMCID: PMC10626250 DOI: 10.1111/1759-7714.15091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The aim of this study was to analyze the effect of paclitaxel on the apoptosis of esophageal cancer cells in relation to MUC20. METHODS RT-qPCR analysis, a CCK-8 assay, western blotting, and flow cytometry were used to analyze the anticancer effects of paclitaxel treatment or OE-MUC20 in vitro and in vivo. RESULTS The in vitro results showed that paclitaxel significantly induced MUC20 upregulation and that paclitaxel treatment or OE-MUC20 significantly decreased esophageal cancer cell viability and increased mTOR signaling activation and apoptosis. In addition, PKM2, a key downstream molecule of mTOR signaling, similarly showed significant upregulation after paclitaxel treatment in cells with OE-MUC20, and its expression was attenuated after treatment with mTOR inhibitors. In a nude mouse model, tumor growth was slow in the OE-MUC20 group and accelerated after inhibition of mTOR signaling. CONCLUSION These data suggest that MUC20 is an important target of paclitaxel in esophageal cancer and promotes apoptosis through activation of mTOR signaling.
Collapse
Affiliation(s)
- Meng Li
- Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Zhen Feng
- Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Rui Han
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Benchuang Hu
- Department of Thoracic SurgeryThe First People's Hospital of JiningJiningChina
| | - Renfeng Zhang
- Department of Laboratory MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Hui Wang
- Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Department of Thoracic Surgery, Shandong Provincial HospitalShandong UniversityJinanChina
| |
Collapse
|
2
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|
3
|
Park JW, Kim KH, Choi JK, Park TS, Song KD, Cho BW. Regulation of Toll-like receptors Expression in Muscle cells by Exercise-induced Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 34:1590-1599. [PMID: 33332945 PMCID: PMC8495349 DOI: 10.5713/ab.20.0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Objective This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung-Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National Univ., City of Cheong-Ju, Republic of Korea
| | - Tae Sub Park
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.,Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
4
|
Iqbal J, Abbasi BA, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Huang S, Wang D, Zhang S, Huang X, Wang D, Ijaz M, Shi Y. Tunicamycin potentiates paclitaxel-induced apoptosis through inhibition of PI3K/AKT and MAPK pathways in breast cancer. Cancer Chemother Pharmacol 2017; 80:685-696. [DOI: 10.1007/s00280-017-3393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
6
|
Wu YL, Engl W, Hu B, Cai P, Leow WR, Tan NS, Lim CT, Chen X. Nanomechanically Visualizing Drug-Cell Interaction at the Early Stage of Chemotherapy. ACS NANO 2017; 11:6996-7005. [PMID: 28530823 DOI: 10.1021/acsnano.7b02376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A detailed understanding of chemotherapy is determined by the response of cell to the formation of the drug-target complex and its corresponding sudden or eventual cell death. However, visualization of this early but important process, encompassing the fast dynamics as well as complex network of molecular pathways, remains challenging. Herein, we report that the nanomechanical traction force is sensitive enough to reflect the early cellular response upon the addition of chemotherapeutical molecules in a real-time and noninvasive manner, due to interactions between chemotherapeutic drug and its cytoskeleton targets. This strategy has outperformed the traditional cell viability, cell cycle, cell impendence as well as intracellular protein analyses, in terms of fast response. Furthermore, by using the nanomechanical traction force as a nanoscale biophysical marker, we discover a cellular nanomechanical change upon drug treatment in a fast and sensitive manner. Overall, this approach could help to reveal the hidden mechanistic steps in chemotherapy and provide useful insights in drug screening.
Collapse
Affiliation(s)
- Yun-Long Wu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University , Xiamen, Fujian 361102, China
| | - Wilfried Engl
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wan Ru Leow
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University , 59 Nanyang Drive, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research , Singapore 138673, Singapore
- KK Research Centre, KK Women's and Children Hospital , 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, Department of Biomedical Engineering & Department of Mechanical Engineering, National University of Singapore , Singapore 117576, Singapore
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
7
|
Podophyllotoxin Extracted from Juniperus sabina Fruit Inhibits Rat Sperm Maturation and Fertility by Promoting Epididymal Epithelial Cell Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6958982. [PMID: 28744317 PMCID: PMC5514346 DOI: 10.1155/2017/6958982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/23/2017] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate the antifertility effect of Juniperus sabina fruit on male rats and its possible mechanism, and hence it might be developed as a potential nonhormonal male contraceptive. Male rats were intragastrically fed for consecutive 8-week and 4-week recovery with the fruit of J. Sabina, and sperm maturation, serum testosterone level, and histopathology were analyzed. Epididymal epithelial cell culture was prepared for detection of podophyllotoxin activities. Furthermore, cell proliferation, transmission electron microscopy, Annexin V/Propidium iodide, TUNEL, RT-PCR, ELISA, and western blotting were examined. The results showed that rat sperm motility and fertility were remarkably declined after feeding the fruit. Moreover, the fruit targeted the epididymis rather than the testis. After 4-week recovery, more than half of the male rats resumed normal fertility. It was found that podophyllotoxin significantly inhibited epididymal epithelial cell proliferation, promoted cell apoptosis, and increased the mRNA and protein levels of TNF-α and the expression levels of cytochrome c, caspase-8, caspase-9, and caspase-3. Our findings suggest that the fruit of J. sabina could inhibit male rat sperm maturation and fertility. The potential mechanism might be related to podophyllotoxin, inducing epididymal epithelial cell apoptosis through TNF-α and caspase signaling pathway.
Collapse
|
8
|
Yendluri R, Lvov Y, de Villiers MM, Vinokurov V, Naumenko E, Tarasova E, Fakhrullin R. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery. J Pharm Sci 2017; 106:3131-3139. [PMID: 28600185 DOI: 10.1016/j.xphs.2017.05.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
Abstract
Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel.
Collapse
Affiliation(s)
- Raghuvara Yendluri
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272; I. Gubkin Russian State University of Oil and Gas, Moscow 119991, Russia.
| | | | - Vladimir Vinokurov
- I. Gubkin Russian State University of Oil and Gas, Moscow 119991, Russia
| | - Ekaterina Naumenko
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Evgenya Tarasova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Rawil Fakhrullin
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272; Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia.
| |
Collapse
|
9
|
Gosselin P, Rando G, Fleury-Olela F, Schibler U. Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM). Genes Dev 2017; 30:1895-907. [PMID: 27601530 PMCID: PMC5024686 DOI: 10.1101/gad.284828.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 12/23/2022]
Abstract
Gosselin et al. designed a widely applicable method, dubbed BC-STAR-PROM, to identify signal-activated TFs without any prior knowledge of their properties. To establish proof of concept for BC-STAR-PROM, they applied it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. The discovery of transcription factors (TFs) controlling pathways in health and disease is of paramount interest. We designed a widely applicable method, dubbed barcorded synthetic tandem repeat promoter screening (BC-STAR-PROM), to identify signal-activated TFs without any a priori knowledge about their properties. The BC-STAR-PROM library consists of ∼3000 luciferase expression vectors, each harboring a promoter (composed of six tandem repeats of synthetic random DNA) and an associated barcode of 20 base pairs (bp) within the 3′ untranslated mRNA region. Together, the promoter sequences encompass >400,000 bp of random DNA, a sequence complexity sufficient to capture most TFs. Cells transfected with the library are exposed to a signal, and the mRNAs that it encodes are counted by next-generation sequencing of the barcodes. This allows the simultaneous activity tracking of each of the ∼3000 synthetic promoters in a single experiment. Here we establish proof of concept for BC-STAR-PROM by applying it to the identification of TFs induced by drugs affecting actin and tubulin cytoskeleton dynamics. BC-STAR-PROM revealed that serum response factor (SRF) is the only immediate early TF induced by both actin polymerization and microtubule depolymerization. Such changes in cytoskeleton dynamics are known to occur during the cell division cycle, and real-time bioluminescence microscopy indeed revealed cell-autonomous SRF–myocardin-related TF (MRTF) activity bouts in proliferating cells.
Collapse
Affiliation(s)
- Pauline Gosselin
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gianpaolo Rando
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
10
|
Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2016; 83:255-268. [PMID: 27620987 DOI: 10.1111/bcp.13126] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
Vinca alkaloids have been approved as anticancer drugs for more than 50 years. They have been classified as cytotoxic chemotherapy drugs that act during cellular mitosis, enabling them to target fast growing cancer cells. With the evolution of cancer drug development there has been a shift towards new "targeted" therapies to avoid the side effects and general toxicities of "cytotoxic chemotherapies" such as the vinca alkaloids. Due to their original classification, many have overlooked the fact that vinca alkaloids, taxanes and related drugs do have a specific molecular target: tubulin. They continue to be some of the most effective anticancer drugs, perhaps because their actions upon the microtubule network extend far beyond the ability to halt cells in mitosis, and include the induction of apoptosis at all phases of the cell cycle. In this review, we highlight the numerous cellular consequences of disrupting microtubule dynamics, expanding the textbook knowledge of microtubule destabilising agents and providing novel opportunities for their use in cancer therapy.
Collapse
Affiliation(s)
- Darcy Bates
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alan Eastman
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
11
|
Ozfiliz P, Kizilboga T, Demir S, Alkurt G, Palavan-Unsal N, Arisan ED, Dinler-Doganay G. Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells. Cell Biochem Funct 2015; 33:293-307. [PMID: 26178413 DOI: 10.1002/cbf.3114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
Abstract
Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content.
Collapse
Affiliation(s)
- Pelin Ozfiliz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Salih Demir
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Gizem Alkurt
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Narçin Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Gizem Dinler-Doganay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Chaudhuri D, Ghate NB, Singh SS, Mandal N. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn Mag 2015; 11:269-76. [PMID: 25829764 PMCID: PMC4378123 DOI: 10.4103/0973-1296.153078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/14/2014] [Accepted: 03/12/2015] [Indexed: 11/05/2022] Open
Abstract
Background: Spondias pinnata has been reported for its efficient anticancer effects, but the studies were mostly focused on its extract. Objective: Since its bioactive compounds are largely unknown, this study was designed to characterize the lead components present in it and their anticancer activity against human glioblastoma cell line (U87). Materials and Methods: Major compounds from the ethyl acetate fraction were isolated by column chromatography and their anticancer potentials against U87 cells were evaluated. Furthermore, flow cytometric and immunoblotting analyses were performed to demonstrate the mechanism of apoptosis inducing activity of methyl gallate (MG) against U87 cell line. Results: Four major compounds were isolated from the ethyl acetate fraction. Amongst these, two compounds showed promising activities and with the help of different spectroscopic methods they were identified as gallic acid and MG. Flow cytometric studies revealed that MG-induced apoptosis in U87 cells dose-dependently; the same was confirmed by activation of caspases through cleavage of endogenous substrate poly (adenosine diphosphate-ribose) polymerase. MG treatment also induced the expression of p53 and B-cell lymphoma-2-associated X and cleavage of BH3 interacting-domain with a concomitant decrease in B-cell lymphoma-2 expression. Moreover, MG-induced sustained phosphorylation of extracellular signal-regulated kinase (ERK1/2) in U87 cells with no change in the phosphorylation of other mitogen-activated protein kinases (c-Jun N-terminal of stress-activated protein kinases, p38). Conclusion: MG is a potent antioxidant and it induces sustained ERK1/2 activation and apoptosis in human glioblastoma U87, and provide a rationale for evaluation of MG for other brain carcinoma cell lines for the advancement of glioblastoma therapy.
Collapse
Affiliation(s)
- Dipankar Chaudhuri
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | | |
Collapse
|
13
|
Transcription factor NF-κB associates with microtubules and stimulates apoptosis in response to suppression of microtubule dynamics in MCF-7 cells. Biochem Pharmacol 2015; 93:277-89. [DOI: 10.1016/j.bcp.2014.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 01/13/2023]
|
14
|
Koller D, Hackl H, Bogner-Strauß JG, Hermetter A. Effects of oxidized phospholipids on gene expression in RAW 264.7 macrophages: a microarray study. PLoS One 2014; 9:e110486. [PMID: 25333283 PMCID: PMC4204898 DOI: 10.1371/journal.pone.0110486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/10/2014] [Indexed: 01/09/2023] Open
Abstract
Oxidized phospholipids (oxPLs) are components of oxidized LDL (oxLDL). It is known that oxLDL activates expression of a series of atherogenic genes and their oxPLs contribute to their biological activities. In this study we present the effects of 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on gene expression in RAW 264.7 macrophages using cDNA microarrays. PGPC affected the regulation of 146 genes, whereas POVPC showed only very minor effects. PGPC preferentially influenced expression of genes related to cell death, angiogenesis, cholesterol efflux, procoagulant mechanisms, atherogenesis, inflammation, and cell cycle. Many of these effects are known from studies with oxLDL or oxidized 1-hexadecanoyl-2-eicosatetra-5′,8′,11′,14′-enoyl-sn-glycero-3-phosphocholine (oxPAPC), containing PGPC in addition to other oxPL species. It is known that POVPC efficiently reacts with proteins by Schiff base formation, whereas PGPC only physically interacts with its biological targets. POVPC seems to affect cell physiology to a great extent on the protein level, whereas PGPC gives rise to both the modulation of protein function and regulation on the transcriptional level.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- * E-mail:
| |
Collapse
|
15
|
Vyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther 2014; 7:1015-23. [PMID: 24959088 PMCID: PMC4061164 DOI: 10.2147/ott.s60114] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lack of therapy and the failure of existing therapy has been a challenge for clinicians in treating various cancers. Doxorubicin, 5-fluorouracil, cisplatin, and paclitaxel are the first-line therapy in various cancers; however, toxicity, resistance, and treatment failure limit their clinical use. Their status leads us to discover and investigate more targeted therapy with more efficacy. In this article, we dissect literature from the patient perspective, the tumor biology perspective, therapy-induced metastasis, and cell data generated in the laboratory.
Collapse
Affiliation(s)
- Dinesh Vyas
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Gieric Laput
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Arpitak K Vyas
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Das V, Sim DA, Miller JH. Effect of taxoid and nontaxoid site microtubule-stabilizing agents on axonal transport of mitochondria in untransfected and ECFP-htau40-transfected rat cortical neurons in culture. J Neurosci Res 2014; 92:1155-66. [PMID: 24788108 DOI: 10.1002/jnr.23394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/26/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
Abstract
An important aspect of synaptic plasticity in the brain is axonal transport of essential components such as mitochondria from the soma to the synapse. For uninterrupted transport of cellular cargo down the axon, functional microtubules are required. Altered microtubule dynamics induced by changes in expression of microtubule-associated tau protein affects normal microtubule function and interferes with axonal transport. Here we investigate the effects of the nontaxoid-binding-site microtubule-stabilizing agents peloruside A (PelA) and laulimalide, compared with the taxoid-site-binding agents paclitaxel (Ptx) and ixabepilone, on axonal transport of mitochondria in 1-day-old rat pup cerebral cortical neuron cultures. The differences in effects of these two types of compound on mitochondrial trafficking were specifically compared under conditions of excess tau expression. PelA and laulimalide had no adverse effects on their own on mitochondrial transport compared with Ptx and ixabepilone, which inhibited mitochondrial run length at higher concentrations. PelA, like Ptx, was able to partially reverse the blocked mitochondrial transport seen in ECFP-htau40-overexpressing neurons, although at higher concentrations of microtubule-stabilizing agent, the PelA response was improved over the Ptx response. These results support a neuroprotective effect of microtubule stabilization in maintaining axonal transport in neurons overexpressing tau protein and may be beneficial in reducing the severity of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Viswanath Das
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | |
Collapse
|
17
|
Ojima I, Kamath A, Seitz JD. Taxol, Taxoids, and Related Taxanes. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wu X, Xu T, Li D, Zhu S, Chen Q, Hu W, Pan D, Zhu H, Sun H. ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion. PLoS One 2013; 8:e82957. [PMID: 24386130 PMCID: PMC3875429 DOI: 10.1371/journal.pone.0082957] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R) in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i) DMSO group (DMSO); (ii) I/R group (I/R); (iii) luteolin+I/R group (Lut+I/R); (iv) ERK1/2 inhibitor PD98059+I/R group (PD+I/R); (v) PD98059+luteolin+I/R group (PD+Lut+I/R); and (vi) JNK inhibitor SP600125+I/R group (SP+I/R). The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH); the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a), phospholamban (PLB) and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile function after I/R injury by an ERK1/2-PP1a-PLB-SERCA2a-mediated mechanism independent of JNK signaling pathway.
Collapse
Affiliation(s)
- Xin Wu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Tongda Xu
- Department of The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
- Department of The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, PR China
- * E-mail: (DL); (HS)
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Qiuping Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Wenjing Hu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Defeng Pan
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
- * E-mail: (DL); (HS)
| |
Collapse
|
19
|
Tseng SC, Huang YC, Chen HJ, Chiu HC, Huang YJ, Wo TY, Weng SH, Lin YW. Metformin-mediated downregulation of p38 mitogen-activated protein kinase-dependent excision repair cross-complementing 1 decreases DNA repair capacity and sensitizes human lung cancer cells to paclitaxel. Biochem Pharmacol 2012; 85:583-94. [PMID: 23228696 DOI: 10.1016/j.bcp.2012.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Metformin, an extensively used and well-tolerated drug for treating individuals with type 2 diabetes, has recently gained significant attention as an anticancer drug. On the other hand, paclitaxel (Taxol) is a new antineoplastic drug that has shown promise in the treatment of non-small cell lung cancer (NSCLC). High expression levels of excision repair cross-complementary 1 (ERCC1) in cancers have been positively associated with the DNA repair capacity and a poor prognosis in NSCLC patients treated with platinum-containing chemotherapy. In this current study, paclitaxel was found to increase phosphorylation of mitogen-activated protein kinase (MAPK) kinase 3/6 (MKK3/6)-p38 MAPK as well as protein and mRNA levels of ERCC1 in H1650 and H1703 cells. Moreover, paclitaxel-induced ERCC1 protein and mRNA levels significantly decreased via the downregulation of p38 activity by either a p38 MAPK inhibitor SB202190 or p38 knockdown with specific small interfering RNA (siRNA). Specific inhibition of ERCC1 with siRNA was found to enhance the paclitaxel-induced cytotoxic effect and growth inhibition. Furthermore, metformin was able to not only decrease the paclitaxel-induced p38 MAPK-mediated ERCC1 expression, but also augment the cytotoxic effect induced by paclitaxel. Finally, expression of constitutive activate MKK6 or HA-p38 MAPK vectors in lung cancer cells was able to abrogate ERCC1 downregulation by metformin and paclitaxel as well as cell viability and DNA repair capacity. Overall, our results suggest that inhibition of the p38 MAPK signaling by metformin coupled with paclitaxel therapy in human NSCLC cells may be a clinically useful combination, which however will require further validation.
Collapse
Affiliation(s)
- Sheng-Chieh Tseng
- Molecular Oncology Laboratory, Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Meng X, Laidler LL, Kosmacek EA, Yang S, Xiong Z, Zhu D, Wang X, Dai D, Zhang Y, Wang X, Brachova P, Albitar L, Liu D, Ianzini F, Mackey MA, Leslie KK. Induction of mitotic cell death by overriding G2/M checkpoint in endometrial cancer cells with non-functional p53. Gynecol Oncol 2012; 128:461-9. [PMID: 23146687 DOI: 10.1016/j.ygyno.2012.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles' heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. METHODS We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. RESULTS In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14nM as a single agent to 1.3nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. CONCLUSIONS These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dey H, Liu ZR. Phosphorylation of p68 RNA helicase by p38 MAP kinase contributes to colon cancer cells apoptosis induced by oxaliplatin. BMC Cell Biol 2012; 13:27. [PMID: 23110695 PMCID: PMC3519718 DOI: 10.1186/1471-2121-13-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/15/2012] [Indexed: 12/28/2022] Open
Abstract
Background We previously demonstrated that p68 phosphorylation at threonine residues correlates with cancer cell apoptosis under the treatments of TNF-α and TRAIL (Yang, L. Mol Cancer Res Vol 3, pp 355–63 2005). Results In this report, we characterized the role of p68 phosphorylation in apoptosis induction under the treatment of oxaliplatin in the colon cancer cells. Our data suggest that oxaliplatin treatment activates p38 MAP kinase, which subsequently phosphorylates p68 at T564 and/or T446. The phosphorylation of p68, at least partially, mediates the effects of the drug on apoptosis induction, as mutations at these two sites greatly reduce the cancer cell death. Conclusion Our studies reveal an important molecular mechanism that mediates the effects of anti-cancer drug, providing a potential strategy for improving cancer treatment.
Collapse
Affiliation(s)
- Heena Dey
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
22
|
c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anticancer Drugs 2012; 23:98-107. [PMID: 21968419 DOI: 10.1097/cad.0b013e32834bc978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microtubule-binding agents (MBAs) form one of the most important anticancer-drug families, but their molecular mechanisms are poorly understood. MBAs such as paclitaxel (PTX) stabilize microtubules, whereas XRP44X (a novel pyrazole) and combretastatins A4 (CA4) destabilize microtubules. These two different types of MBAs have potent antitumor activity. Comparisons of their effects on signal transduction and cellular responses will help uncover the molecular mechanism by which MBAs affect tumor cells. We used MCF-7 cells to compare the effects of the three MBAs on the cytoskeleton, cell cycle distribution, and activation of the three major mitogen-activated protein kinase (MAPK) signaling cascades [extracellular signal-related kinases, c-Jun N-terminal kinase (JNK), and p38 MAPK] using pharmacological inhibitors. The G2/M phase arrest was induced following polymerization of microtubules by PTX and depolymerization by XRP44X and CA4. The three major MAPKs were rapidly activated by XRP44X, and extracellular signal-related kinases and p38 by PTX, whereas JNK did not quickly respond to PTX. Pharmacological inhibitors indicated that activation of JNK is principally required for XRP44X- and CA4-induced microtubule depolymerization and G2/M phase arrest. Our results suggest that early phosphorylation of JNK is a specific mechanism involved in microtubule depolymerization by certain MBAs.
Collapse
|
23
|
Meshkini A, Yazdanparast R. Involvement of oxidative stress in taxol-induced apoptosis in chronic myelogenous leukemia K562 cells. ACTA ACUST UNITED AC 2012; 64:357-65. [DOI: 10.1016/j.etp.2010.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/15/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
|
24
|
Shen L, Xu W, Li A, Ye J, Zhou J. JWA enhances As₂O₃-induced tubulin polymerization and apoptosis via p38 in HeLa and MCF-7 cells. Apoptosis 2012; 16:1177-93. [PMID: 21847655 DOI: 10.1007/s10495-011-0637-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arsenic trioxide (As₂O₃) has potential anti-cancer activity against a wide range of carcinomas via apoptosis induction or oncoprotein degradation. The mechanisms involved are not fully elucidated. Here, we demonstrated that As₂O₃ induced-apoptosis in HeLa and MCF-7 cancer cells was in part triggered by tubulin polymerization. High expression of JWA promoted tubulin polymerization and increased the sensitivity of the cancer cells to As₂O₃. The activation of the p38 MAPK (mitogen-activated protein kinases) signaling pathway was found to contribute to JWA-promoted tubulin polymerization. Our results suggest that JWA may serve as an effective enhancer of microtubule-targeted As₂O₃ anti-cancer therapy.
Collapse
Affiliation(s)
- Lianlian Shen
- Department of Molecular Cell Biology & Toxicology, The Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Monteagudo S, Pérez-Martínez FC, Pérez-Carrión MD, Guerra J, Merino S, Sánchez-Verdú MP, Ceña V. Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine (Lond) 2011; 7:493-506. [PMID: 21995500 DOI: 10.2217/nnm.11.61] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS The aim of this work was to study if a G1-polyamidoamine dendrimer/siRNA dendriplex can remove the p42 MAPK protein in prostate cancer cells and to potentiate the anti-tumoral effect of the antidiabetic drug metformin and taxane docetaxel. MATERIAL & METHODS The dendriplex uptake was studied using flow cytometry analysis. Transfection efficiency was determined by measuring p42 MAPK mRNA and protein levels. Anti-tumoral effects were determined by measuring cellular proliferation and damage. RESULTS The dendriplex siRNA/G1-polyamidoamine dendrimer decreased both p42 MAPK mRNA and protein levels by more than 80%, which potentiates the anti-tumoral effects of metformin. CONCLUSION Blockade of the MAPK pathway using a dendrimer-vehiculized siRNA to block the MAPK signaling pathway in prostate cancer cells can potentiate the anti-tumoral activity of anticancer drugs, indicating that the combination of siRNA-mediated blockade of survival signals plus anti-tumoral therapy might be a useful approach for cancer therapy.
Collapse
|
26
|
Buganim Y, Madar S, Rais Y, Pomeraniec L, Harel E, Solomon H, Kalo E, Goldstein I, Brosh R, Haimov O, Avivi C, Polak-Charcon S, Goldfinger N, Barshack I, Rotter V. Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression. Carcinogenesis 2011; 32:1749-57. [DOI: 10.1093/carcin/bgr203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Gan L, Wang J, Xu H, Yang X. Resistance to docetaxel-induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. Prostate 2011; 71:1158-66. [PMID: 21656826 DOI: 10.1002/pros.21331] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/03/2010] [Indexed: 11/12/2022]
Abstract
BACKGROUND Taxane chemotherapy is one of the few therapeutic options for men with castration-resistant prostate cancer. However, the working mechanisms are not fully understood. We aimed to investigate the possible molecular mechanism of apoptosis induced by taxanes in prostate cancer. METHODS The human LNCaP cells (bearing wild-type p53), DU145 cells (bearing mutant p53) and PC3 cells (lacking p53) were used. The expression levels of protein were determined by Western blot and the mRNA levels were determined by reverse transcriptase PCR. The apoptosis was measured by propidium iodide (PI) staining and flow cytometric analysis. RESULTS LNCaP cells are more resistant to docetaxel than DU145 and PC3 cells. Knocking down p53 by small interference RNA (siRNA) sensitizes LNCaP cells to docetaxel treatment. Docetaxel stabilizes p53 protein level and upregulates p21 in a p53-dependent manner in LNCaP cells. Docetaxel increases p38 phosphorylation in LNCaP cells. Treatment with p38-specific inhibitor SB203580 or knocking down p38 by siRNA significantly impaired the upregulation of p53 and p21 by docetaxel. Knocking down p38 or p21 sensitizes LNCaP cells to docetaxel treatment and the antiapoptotic effect of p21 can be reversed by p38 siRNA in LNCaP cells. CONCLUSIONS Stimulation of the p38/p53/p21 signaling axis could be important for regulating the susceptibility towards docetaxel in prostate cancer.
Collapse
Affiliation(s)
- Lu Gan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | |
Collapse
|
28
|
Kaluzhny DN, Shchyolkina AK, Ilyinsky NS, Borisova OF, Shtil AA. Novel Indolocarbazole Derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione Is a Preferred c-Myc Guanine Quadruplex Ligand. J Nucleic Acids 2011; 2011:184735. [PMID: 21772991 PMCID: PMC3136114 DOI: 10.4061/2011/184735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
The indolocarbazole derivative 12-(α-L-arabinopyranosyl)indolo[2,3-a]pyrrolo[3,4-c]carbazole-5,7-dione (AIC) has demonstrated a high potency (at nanomolar to submicromolar concentrations) towards the NCI panel of human tumor cell lines and transplanted tumors. Intercalation into the DNA double helix has been identified as an important prerequisite for AIC cytotoxicity. In this study, we provide evidence for preferential binding to the G-quadruplex derived from the c-Myc oncogene promoter (Pu18 d(AG(3)TG(4))(2); G-c-Myc). The association constant for AIC:G-c-Myc complex was ~100 times and 10 times greater than the respective values for the complexes AIC:c-Myc duplex and AIC:telomeric d(TTAGGG)(4) G-quadruplex. The concentrations at which AIC formed complexes with G-c-Myc were close to those that attenuated the steady-state level of the c-Myc mRNA in the human HCT116 colon carcinoma cell line. We suggest that preferential binding of AIC to G-c-Myc rather than to the c-Myc duplex might favor the quadruplex formation in the cells, thereby contributing to downregulation of the c-Myc expression by AIC.
Collapse
Affiliation(s)
- Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
29
|
Tong JS, Zhang QH, Huang X, Fu XQ, Qi ST, Wang YP, Hou Y, Sheng J, Sun QY. Icaritin causes sustained ERK1/2 activation and induces apoptosis in human endometrial cancer cells. PLoS One 2011; 6:e16781. [PMID: 21408143 PMCID: PMC3050810 DOI: 10.1371/journal.pone.0016781] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/14/2011] [Indexed: 11/22/2022] Open
Abstract
Icaritin, a compound from Epimedium Genus, has selective estrogen receptor (ER) modulating activities, and posses anti-tumor activity. Here, we examined icaritin effect on cell growth of human endometrial cancer Hec1A cells and found that icaritin potently inhibited proliferation of Hec1A cells. Icaritin-inhibited cell growth was associated with increased levels of p21 and p27 expression and reduced cyclinD1 and cdk 4 expression. Icaritin also induced cell apoptosis accompanied by activation of caspases as evidenced by the cleavage of endogenous substrate Poly (ADP-ribose) polymerase (PARP) and cytochrome c release, which was abrogated by pretreatment with the pan-caspase inhibitor z-VAD-fmk. Icaritin treatment also induced expression of pro-apoptotic protein Bax with a concomitant decrease of Bcl-2 expression. Furthermore, icaritin induced sustained phosphorylation of extracellular signal-regulated kinase1/2 (the MAPK/ ERK1/2) in Hec1A cells and U0126, a specific MAP kinase kinase (MEK1/2) inhibitor, blocked the ERK1/2 activation by icaritin and abolished the icaritin-induced growth inhibition and apoptosis. Our results demonstrated that icaritin induced sustained ERK 1/2 activation and inhibited growth of endometrial cancer Hec1A cells, and provided a rational for preclinical and clinical evaluation of icaritin for endometrial cancer therapy.
Collapse
Affiliation(s)
- Jing-Shan Tong
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Jilin University, Changchun, China
| | - Qing-Hua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Fu
- College of Life Sciences, Jilin University, Changchun, China
| | - Shu-Tao Qi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ya-Peng Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Sheng
- College of Life Sciences, Jilin University, Changchun, China
- Yunnan Agricultural University, Kunming, China
- * E-mail: (QYS); (JS)
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (QYS); (JS)
| |
Collapse
|
30
|
Pan Z, Gollahon L. Taxol directly induces endoplasmic reticulum-associated calcium changes that promote apoptosis in breast cancer cells. Breast J 2010; 17:56-70. [PMID: 21073601 DOI: 10.1111/j.1524-4741.2010.00988.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium, a key regulator of cell survival, is also important in regulating apoptosis. Although the chemotherapeutic agent Taxol employs apoptosis to induce cell death, the exact mechanism of how it induces apoptosis and the role of calcium in this process remains unclear. The main intracellular calcium storehouse, the endoplasmic reticulum, was identified as a new important gateway in apoptosis, possibly providing a target for Taxol. The goal of this study was to investigate whether calcium changes associated with the endoplasmic reticulum, were directly or indirectly generated by Taxol at clinically relevant doses, and related to Taxol-induced apoptosis in breast cancer cells. Time-lapsed imaging techniques followed by an endoplasmic reticulum-targeted construct, cameleon D1ER, were used to monitor cytosol--endoplasmic reticulum calcium dynamics in MDA-MB-468 (Bcl-2 negative) and MCF 7 (Bcl-2 positive) breast carcinoma cells. Apoptosis levels were measured with Annexin V and Propidium Iodide (PI) using flow cytometry. In both cell lines, Taxol at 2.5μM (∼10(-6) M) was observed to induce significant internal calcium changes, first a rapid endoplasmic reticulum calcium release and a transient cytosolic calcium increase upon Taxol addition. After several hours of Taxol treatment, the endoplasmic reticulum calcium store was gradually depleted, and a sustained cytosolic calcium elevation was observed before significant induction of apoptosis. Inhibition of these calcium changes decreased Taxol-induced apoptosis levels. In contrast, 0.2μM Taxol (∼10(-7)M) induced only a slight cellular calcium change, not enough to regulate apoptosis. Our findings demonstrate that endoplasmic reticulum calcium stores provide a direct target for Taxol action and are important for induction of apoptosis, independent of Bcl-2 status. Furthermore, our results show for the first time, that the role of calcium in Taxol-induced endoplasmic reticulum-mediated apoptosis is dependent on Taxol dosage.
Collapse
Affiliation(s)
- Zhi Pan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | |
Collapse
|
31
|
Zhen YZ, Lin YJ, Gao JL, Zhao YF, Xu AJ. Rhein lysinate inhibits cell growth by modulating various mitogen-activated protein kinases in cervical cancer cells. Oncol Lett 2010; 2:129-133. [PMID: 22870141 DOI: 10.3892/ol.2010.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/20/2010] [Indexed: 11/06/2022] Open
Abstract
In previous studies, we found that rhein lysinate (RHL; the salt of rhein and lysine, easily dissolved in water) inhibited the growth of tumor cells in breast and ovarian cancer and hepatocellular carcinoma. This study aimed to investigate the effect of RHL on the growth of human cervical carcinoma HeLa cells and any underlying mechanisms. RHL inhibited the growth of HeLa cells in a dose- and time-dependent manner. It was also noted that RHL induced apoptosis in HeLa cells in a dose-dependent manner. Mechanistically, RHL triggered HeLa cell apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, the activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in RHL-induced growth inhibition. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed RHL-induced growth inhibition by decreasing the level of cleaved PARP and caspase-3/7. Phosphorylation of the extracellular signal-related kinase (ERK) was increased by RHL; conversely, the MEK inhibitor which inhibits ERK activity, synergistically enhanced RHL-induced growth inhibition in HeLa cells. The results showed that RHL inhibits Hela cell growth through the activation of p38 MAPK and JNK, and is a potential chemotherapeutic agent for cervical cancer.
Collapse
Affiliation(s)
- Yong-Zhan Zhen
- North China Coal Medical University, Tangshan, Hebei 063000
| | | | | | | | | |
Collapse
|
32
|
Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 2010; 398:2505-33. [DOI: 10.1007/s00216-010-4223-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 12/26/2022]
|
33
|
Markova AA, Pliavnik NV, Tatarskiĭ VV, Shtil' AA, Serebrennikova GA. [New alkyl cationic glycerolipids with heterocyclic polar domain are responsible for disorders in the leukemia cells cycle and cells apoptosis]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:574-6. [PMID: 20823928 DOI: 10.1134/s106816201004014x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of new modifications of alkyl cationic glycerolipids with hetero polar domain has been synthesized. The most active compound rac-N-(4-[(2-ethoxy-3-octadecyloxy)prop-1-yloxycarbonyl]butyl)-N'-etylimidazoliyiodid in micromolar concentrations causes a delay of cell cycle in phase G1, DNA fragmentation and apoptosis of cell line leukemia.
Collapse
|
34
|
Chen YQ, Xie X. Podophyllotoxin induces CREB phosphorylation and CRE-driven gene expression via PKA but not MAPKs. Mol Cells 2010; 29:41-50. [PMID: 20033853 DOI: 10.1007/s10059-010-0015-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022] Open
Abstract
CRE-driven luciferase reporter is commonly used in drug screening systems involving G protein-coupled receptors (GPCRs). In a screen campaign designed to search for melanocortin-4 receptor (MC4R) agonists, podophyllotoxin, a microtubules disruptor, was found to induce cAMP-responsive element (CRE)-driven reporter expression. MC4R was not involved because podophyllotoxin induced CREB activation and CRE-driven transcription in cells not expressing MC4R. Previous studies indicated that intracellular calcium, PKA, and MAPKs are involved in CREB phosphorylation and activation. Our studies revealed that podophyllotoxin did not affect intracellular calcium level and the phosphorylation state of p38. Podophyllotoxin induced JNK and ERK activation, but blockade of JNK and ERK activation with specific inhibitors had no effect on podophyllotoxin-induced CREB activation and CRE-regulated gene expression. Further experiments revealed that H89, a specific inhibitor of PKA, significantly inhibited podophyllotoxin-induced CREB activation. Podophyllotoxin itself did not alter intracellular cAMP level. Taken together, podophyllotoxin induces CREB activation and CRE-driven gene expression via PKA activation by a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Ya Qiong Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | | |
Collapse
|
35
|
Zhen YZ, Lin YJ, Li Y, Zhen YS. Lidamycin shows highly potent cytotoxic to myeloma cells and inhibits tumor growth in mice. Acta Pharmacol Sin 2009; 30:1025-32. [PMID: 19575006 DOI: 10.1038/aps.2009.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the effects of lidamycin (LDM) on a mouse myeloma cell line (SP2/0) and human multiple myeloma cell lines (U266 and SKO-007), and provide the basis for the use of LDM in cancer therapy. METHODS A 3-[4,5-dimethylthiazol-2-yl]5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]2H-tetrazolium inner salt (MTS) assay was used to determine the degree of growth inhibition by the drugs analyzed in this study. Cell cycle distribution and analysis were measured by flow cytometry combined with propidium iodide (PI) staining. The effects on apoptosis were measured by Hoechst 33342 staining and by flow cytometry combined with fluorescein-isothiocyanate-Annexin V/propidium iodide (FITC-Annexin V/PI) staining. Protein expression was determined by Western blot analysis. In vivo antitumor activity was measured using a murine myeloma model in BALB/c mice. RESULTS There was a significant reduction in cell proliferation after treatment with LDM. The overall growth inhibition correlated with increased apoptotic cell death. LDM-induced cell apoptosis was associated with the activation of c-Jun-N-terminal kinase (JNK), and cleavage of caspase-3/7 and poly (ADP-ribose) polymerase (PARP). LDM markedly suppressed tumor growth in a murine myeloma model. CONCLUSION LDM induces apoptosis in murine myeloma SP2/0 cells as well as in human myeloma U266 and SKO-007 cell lines. The sustained activation of JNK might play a critical role in LDM-induced apoptosis in the SP2/0 cell line. LDM demonstrates significant antitumor efficacy against myeloma SP2/0 cells in mice. Taken together, our data provide some clues for further research of the effects of LDM on human multiple myeloma.Acta Pharmacologica Sinica (2009) 30: 1025-1032; doi: 10.1038/aps.2009.75.
Collapse
|
36
|
Enediyne lidamycin induces apoptosis in human multiple myeloma cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase. Int J Hematol 2009; 90:44-51. [DOI: 10.1007/s12185-009-0340-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/25/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
37
|
Involvement of endoplasmic reticulum stress in Docetaxel-induced JNK-dependent apoptosis of human melanoma. Apoptosis 2008; 13:1505-12. [PMID: 18989785 DOI: 10.1007/s10495-008-0276-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our previous studies revealed that Docetaxel-induced apoptosis of melanoma cells is entirely dependent on activation of the JNK signalling pathway. Here, we show that Docetaxel-induced apoptosis is mediated by induction of ER stress. This was shown by Docetaxel-induced activation of proteins involved in ER stress signalling namely GRP78, ATF6, IRE1alpha, and PERK/eIF2alpha. Knockdown of IRE1alpha by siRNA markedly inhibited Docetaxel-induced JNK activation and downstream targets of JNK indicating that activation of IRE1alpha was upstream of activation of the JNK. Co-immunoprecipitation experiments showed that activation of JNK is due to activation of ASK1 through formation of an IRE1alpha-TRAF2-ASK1 complex. ER stress mediated activation of the JNK pathway is downstream of activation of PKCdelta in that downregulation of PKCdelta expression using specific PKCdelta siRNA significantly inhibited Docetaxel-induced activation of IRE1alpha and the JNK pathway. These findings provide new insights to understand the mode of action of taxanes in treatment of human melanoma.
Collapse
|
38
|
Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. Anticancer Drugs 2008; 19:553-63. [PMID: 18525314 DOI: 10.1097/cad.0b013e3282ffd68d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.
Collapse
|
39
|
Rabi T, Banerjee S. Novel synthetic triterpenoid methyl 25-hydroxy-3-oxoolean-12-en-28-oate induces apoptosis through JNK and p38 MAPK pathways in human breast adenocarcinoma MCF-7 cells. Mol Carcinog 2008; 47:415-23. [PMID: 18058803 DOI: 10.1002/mc.20399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breast cancer is the most common neoplasm in women and is the leading cause of cancer-related death for women. Therefore, new agents targeting prevention and treatment of breast cancer are urgently needed. The present study first investigates that a novel triterpenoid Methyl 25-Hydroxy-3-oxoolean-12-en-28-oate (AMR-Me) derived from 25-Hydroxy-3-oxoolean-12-en-28-oic acid (AMR) is a potent inhibitor of cell growth by inducing human breast cancer MCF-7 cells to undergo apoptosis. AMR-Me induced DNA fragmentation and PARP degradation which were preceded by changing Bax/Bcl-2 ratios, cytochrome c release, and subsequent induction of pro-caspase-9 and -7 processing in breast carcinoma MCF-7 cells, but it did not act on Fas/Fas ligand pathways and the activation of caspase-8, suggesting AMR-Me triggered the mitochondrial apoptotic pathway. The general caspase blocking peptide VAD partially blocked AMR-Me induced apoptosis. AMR-Me stimulated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase (JNK), but not extracellular signal-regulated kinase activation during apoptosis. SP600125, a specific inhibitor for JNK and SB203580, a p38 MAPK-specific inhibitor suppressed AMR-Me induced apoptosis indicating that activation of JNK and p38 MAPKs involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that AMR-Me can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, is critical for both our understanding of cell death events and development of cancer preventive/therapeutic agents.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|
40
|
Quan H, Xu Y, Lou L. p38 MAPK, but not ERK1/2, is critically involved in the cytotoxicity of the novel vascular disrupting agent combretastatin A4. Int J Cancer 2007; 122:1730-7. [DOI: 10.1002/ijc.23262] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Kawaguchi W, Itamochi H, Kigawa J, Kanamori Y, Oishi T, Shimada M, Sato S, Shimogai R, Sato S, Terakawa N. Simultaneous inhibition of the mitogen-activated protein kinase kinase and phosphatidylinositol 3'-kinase pathways enhances sensitivity to paclitaxel in ovarian carcinoma. Cancer Sci 2007; 98:2002-8. [PMID: 17900261 PMCID: PMC11159845 DOI: 10.1111/j.1349-7006.2007.00624.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/16/2007] [Accepted: 08/22/2007] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel (PTX), one of the key drugs used to treat ovarian cancer, activates the Raf-mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3'-kinase (PI3K) pathways, both considered to be proliferation and cell-survival pathways. The present study aimed to clarify whether and how MEK and PI3K inhibitors affect sensitivity to PTX in ovarian cancer cells. We treated five ovarian cancer cell lines using PTX combined with MEK inhibitor (PD98059 [PD]) and PI3K inhibitor (LY294002 [LY]), then assessed cell viability, apoptosis, and expression of phosphorylated (p) MEK and pAkt. We also investigated the effect of combined treatment on survival in a xenograft model. The protein expression levels of MEK, pMEK, Akt, and pAkt were confirmed in all cell lines. pMEK levels increased after PTX treatment in all five ovarian cancer cell lines. Combining PTX with either PD or LY had an additive effect on cell-growth inhibition. In contrast, we observed a synergistic effect when PTX was combined with both PD and LY. The number of apoptotic cells was significantly higher after treatment with PTX combined with PD and LY, compared with PTX alone or PTX with either PD or LY (P < 0.05). PD with PTX downregulated the protein expression level of pMEK and upregulated pAkt in all five cell lines. Treating nude mice with PTX and PD and LY prolonged survival in an ovarian cancer xenograft model (P < 0.005). These results indicate that further study is warranted for PTX combined with MEK inhibitor and PI3K inhibitor to treat ovarian carcinoma.
Collapse
Affiliation(s)
- Wakae Kawaguchi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago 683-8504, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Selimovic D, Hassan M, Haikel Y, Hengge UR. Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal 2007; 20:311-22. [PMID: 18068334 DOI: 10.1016/j.cellsig.2007.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/07/2007] [Indexed: 02/07/2023]
Abstract
Taxol (paclitaxel) is a new antineoplastic drug that has shown promise in the treatment of different tumor types. However, the molecular mechanisms governing taxol-induced apoptosis are poorly understood. Activation of mitogen-activated protein (MAP) kinases is induced by a wide variety of external stress signals and may lead to apoptosis. Therefore, we challenged the human melanoma cell lines A375 and BLM with taxol and characterized the molecular mechanisms regulating taxol-induced apoptosis. Taxol resulted in the activation of apoptosis signal regulated kinase (ASK)1, c-jun NH(2)-terminal kinase (JNK), p38(MAPK) and extracellular-regulated kinase (ERK) together with the downregulation of uncoupling protein 2 (UCP2). In addition, reactive oxygen species (ROS) were induced and DNA-binding activity of the transcription factors AP-1, ATF-2 and ELK-1 was enhanced. Ultimately, cytochrome c was released, and caspases-9 and -3 as well as PARP were cleaved. Pretreatment of melanoma cells with the JNK inhibitor (SP600125) or the p38 inhibitor (SB203580) blocked taxol-induced UCP2 downregulation, ROS generation and apoptosis, whereas the ERK inhibitor (PD98059) had no such effect. Our data provide evidence that taxol-induced mitochondrial stress occurs through the activation of both JNK and p38 pathways, and suggest a novel role for UCP2 in the modulation of taxol-induced apoptosis of melanoma cells.
Collapse
Affiliation(s)
- Denis Selimovic
- Laboratory for Molecular Tumour Therapy, Department of Dermatology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | | | | | | |
Collapse
|
43
|
Azambuja E, Durbecq V, Rosa DD, Colozza M, Larsimont D, Piccart-Gebhart M, Cardoso F. HER-2 overexpression/amplification and its interaction with taxane-based therapy in breast cancer. Ann Oncol 2007; 19:223-32. [PMID: 17872901 DOI: 10.1093/annonc/mdm352] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women and it is incurable when metastases are diagnosed. Taxanes, namely docetaxel and paclitaxel, are effective chemotherapeutic agents in the metastatic, neoadjuvant and adjuvant settings. HER-2 overexpression/amplification is detected in 25-30% of BCs and confers aggressive tumor behavior as well as resistance to some systemic treatments; nevertheless, its association with response to taxane-based chemotherapy is still unclear, with conflicting results in both in vitro and in vivo preclinical studies. This review will address the impact of HER-2 overexpression/amplification in BC patients treated with taxanes. Prospective, randomized trials incorporating important biological hypotheses are either ongoing or just closed, and their results will hopefully help to shed more light on this issue.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Humanized
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Biomarkers, Tumor/analysis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/surgery
- Chemotherapy, Adjuvant
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Mastectomy/methods
- Neoplasm Staging
- Paclitaxel/administration & dosage
- Predictive Value of Tests
- Prognosis
- Randomized Controlled Trials as Topic
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Risk Assessment
- Sensitivity and Specificity
- Survival Analysis
- Taxoids/administration & dosage
- Trastuzumab
- Treatment Outcome
Collapse
Affiliation(s)
- E Azambuja
- Department of Medical Oncology and Translational Research Unit-Jules Bordet Institute, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Guarneri V, Frassoldati A, Ficarra G, Puglisi F, Andreetta C, Michelotti A, Cresti N, Boni C, Bisagni G, Berardi R, Battelli N, Santoro A, Banna G, Bottini A, Di Blasio B, Maiorana A, Piacentini F, Giovannelli S, Jovic G, Conte P. Phase II, randomized trial of preoperative epirubicin-paclitaxel +/− gefitinib with biomarker evaluation in operable breast cancer. Breast Cancer Res Treat 2007; 110:127-34. [PMID: 17687648 DOI: 10.1007/s10549-007-9688-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the in vivo effect of adding gefitinib to preoperative chemotherapy on the EGFR-dependent p42/44 MAPK in operable breast cancer (BC) patients. Secondary aims: to evaluate EGFR, (p)-EGFR, Ki67, apoptotic index (TUNEL test) and VEGFR2 expression from baseline to surgery, percentage of pathologic complete response (pCR), and toxicity. PATIENTS AND METHODS 90 patients with stage II-IIIA BC have been randomized to receive epirubicin 90 mg/sqm and paclitaxel 175 mg/sqm on day 1 plus: gefitinib 250 mg daily from day 5 to 16 (Arm A, intermittent), gefitinib 250 mg daily from day 1 to 21 (Arm B, continuous), or placebo (Arm C). Treatment plan: 4 courses every 3 weeks, followed by surgery. RESULTS After preoperative therapy, 86/90 patients underwent surgery; 46 patients (51%) received breast conservative surgery. A pCR was observed in 4 patients. No significant differences in the expression of p42/44 MAPK, EGFR, (p)-EGFR, VEGFR2, proliferation index and apoptosis were observed comparing the combined Arms A + B vs C, and comparing Arm A vs B. Hematologic toxicities were not significantly different comparing Arms A + B vs Arm C, and comparing Arm A vs B. Significantly higher skin and mucosal toxicities were observed when comparing the two gefitinib Arms (A + B) vs Arm C (32% vs 9.6%, P = 0.018; 57% vs 29%, P = 0.009 respectively), while no significant differences were observed comparing Arm A vs B. CONCLUSION Adding gefitinib to chemotherapy did not result in different effects on the EGFR-dependent pathway, proliferation, apoptosis and VEGFR2 expression as compared to placebo, while enhancing skin and mucosal toxicity. The two schedules of gefitinib (intermittent vs continuous) did not result in different biologic effects.
Collapse
Affiliation(s)
- Valentina Guarneri
- Department of Oncology and Hematology, Modena University Hospital, via del Pozzo 71, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Campbell CT, Prince M, Landry GM, Kha V, Kleiner HE. Pro-apoptotic effects of 1'-acetoxychavicol acetate in human breast carcinoma cells. Toxicol Lett 2007; 173:151-60. [PMID: 17766064 DOI: 10.1016/j.toxlet.2007.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
The tropical ginger compound, 1'-acetoxychavicol acetate (ACA) possesses cancer chemopreventive properties in several models but its effects on breast cancer have not been fully evaluated. In this study, the effects of ACA on human breast carcinoma-derived MCF-7 and MDA-MB-231 cell viability were assessed using trypan blue exclusion analysis. ACA significantly decreased cell viability in a time- and dose-dependent manner, with effective concentrations 10-50 microM. Apoptosis was confirmed by morphological examination of cells through light microscopy, 4,6-diamidino-2-phenylindole dihydrochloride staining, and annexin V/Alexa Fluor 488 staining visualized using flow cytometry. ACA also increased protein expression of the activated form of caspase-3 in MDA-MB-231 cells. Addition of antioxidants N-acetylcysteine, ascorbic acid, or trolox prevented the loss of viability caused by ACA using trypan blue uptake as a marker. These results suggest ACA may have potential anticancer effects against breast carcinoma cells by inducing apoptosis.
Collapse
Affiliation(s)
- Cheryl T Campbell
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
46
|
Zhang YW, Wen J, Xiao JB, Talbot SG, Li GC, Xu M. Induction of apoptosis and transient increase of phosphorylated MAPKs by diallyl disulfide treatment in human nasopharyngeal carcinoma CNE2 cells. Arch Pharm Res 2007; 29:1125-31. [PMID: 17225462 DOI: 10.1007/bf02969303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was undertaken to elucidate the effect of diallyl disulfide (DADS), an oil-soluble organosulfur compound found in garlic, in suppressing human nasopharyngeal carcinoma cells. A potent increase (of at least 9-fold) in apoptotic cells has accompanied 1) a decrease in cell viability, 2) a increase of the fraction of S-phase cells by up to 63.8%, and 3) a transient increase of the phospho-p38 and phospho-p42/44 (phosphorylated p38 MAPK and phosphorylated p42/44 MAPK) in a time- and concentration-dependent manner. These results indicate that DADS can induce apoptosis in human nasopharyngeal carcinoma cells via, at least partly, S-phase block of the cell cycle, related to a rise in MAPK phosphorylation.
Collapse
Affiliation(s)
- Yi Wei Zhang
- Research Institute for Molecular Pharmacology and Therapeutics, Central South University, Changsha, Hunan 410083, China
| | | | | | | | | | | |
Collapse
|
47
|
Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J. Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J Cell Sci 2007; 120:1299-310. [PMID: 17356065 DOI: 10.1242/jcs.03424] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Actin disruption by CytochalasinD (CytD) and LatrunculinB (LatB) induced NF-kappaB activation in myelomonocytic and intestinal epithelial cells. In an attempt to elucidate the mechanism by which actin disruption induced IKK activation, we studied the human Nod2 protein, which was able to induce NF-kappaB activation and whose expression was restricted to myelomonocytic and intestinal epithelial cells. Nod2 is thought to play key roles in pathogen defence through sensing bacteria and generating an inflammatory immune response. We showed that actin disruption by CytD significantly and specifically increased Nod2-mediated NF-kappaB signaling. Nod2 was fully partitioned in the Triton-X-100-insoluble fraction but translocated into the soluble fraction after CytD treatment, demonstrating that the presence of Nod2 in the detergent-insoluble pellet was specific to actin cytoskeleton. Confocal analysis also revealed a Nod2 colocalization with membrane-associated F-actin. Colocalization and co-immunoprecipitation assays with endogenous Rac1 have shown that Nod2 associated with activated Rac1 in membrane ruffles through both its N-terminal caspase recruitment domains (CARD) and C-terminal leucine-rich repeats (LRRs). Membrane ruffle disruption by a Rac1 dominant negative form primed Nod2-dependent NF-kappaB signaling. The recruitment of Nod2 in Rac-induced dynamic cytoskeletal structures could be a strategy to both repress the Nod2-dependent NF-kappaB signaling in unstimulated cells and rapidly mobilize Nod2 during bacterial infection.
Collapse
Affiliation(s)
- Sylvie Legrand-Poels
- Laboratory of Virology and Immunology, CBIG-GIGA, University of Liège, Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
48
|
Mhaidat NM, Zhang XD, Jiang CC, Hersey P. Docetaxel-Induced Apoptosis of Human Melanoma Is Mediated by Activation of c-Jun NH2-Terminal Kinase and Inhibited by the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 1/2 Pathway. Clin Cancer Res 2007; 13:1308-14. [PMID: 17317842 DOI: 10.1158/1078-0432.ccr-06-2216] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Our studies have shown variable sensitivity of cultured melanoma cells to docetaxel. To better understand this response, we studied the role of signal transduction pathways in modulating docetaxel-induced melanoma killing. EXPERIMENTAL DESIGN Involvement of c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt signaling was studied by evaluating their extent of activation in melanoma cells after treatment with docetaxel. The effect of their activation on docetaxel-induced apoptosis was assessed using biochemical inhibitors of the pathways and Western blot analysis of proteins involved. RESULTS Docetaxel induced activation of both JNK and ERK1/2 but not p38 mitogen-activated protein kinase or Akt kinases. Apoptosis was dependent on activation of JNK and mediated through activation of caspase-2 and caspase-dependent changes in Bax and Bak. The levels of activated JNK in individual lines showed a close correlation with the levels of apoptosis. In contrast, activation of ERK1/2 by docetaxel inhibited apoptosis and the levels of activation in individual lines were inversely correlated to the degree of apoptosis. Studies on the Bcl-2 family proteins seemed to reflect changes induced by activation of JNK and ERK1/2 pathways. Docetaxel-induced JNK activation was required for Bcl-2 phosphorylation as well as caspase-2-dependent activation of Bax and Bak and subsequent mitochondrial release of apoptosis-inducing factor and cytochrome c. In contrast, activation of ERK1/2 resulted in degradation of BH3-only protein Bim and phosphorylation of Bad. CONCLUSIONS These studies provide further insights into sensitivity of melanoma cells to taxanes and provide a basis for the current rationale of combining taxanes with inhibitors of the Raf-ERK1/2 pathway.
Collapse
Affiliation(s)
- Nizar M Mhaidat
- Immunology and Oncology Unit, Royal Newcastle Hospital, Newcastle, New South Wales, Australia
| | | | | | | |
Collapse
|
49
|
Henley D, Isbill M, Fernando R, Foster JS, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol 2007; 59:235-49. [PMID: 16972069 DOI: 10.1007/s00280-006-0262-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 04/30/2006] [Indexed: 11/29/2022]
Abstract
PURPOSE Paclitaxel (PTX) is a widely used chemotherapy agent and may cause cell death by apoptosis subsequent to microtubule (MT) disruption. In this paper, we have investigated whether cell cycle transit and or Cdc2 (Cdk1) activity is required for the apoptosis induced by PTX. METHODS Cell cycle was analyzed by flow cytometry, Cdc2 was assayed bio chemically. Cdc2 activity was decreased by siRNA and dominant negative (dn) Cdc2 expression. Cells were arrested by chemical or biological inhibitors in a G1 or S phase. Apoptosis was measured by DNA fragmentation and examination of nuclei by microscopy. JNK and AKT activations were assessed as well. RESULTS Cell cycle inhibition was highly effective in decreasing PTX induced apoptosis. MT morphology was not altered by these inhibitors. PTX induced JNK activity or AKT mediated BAD phosphorylation was unaffected by cell cycle inhibitors. Abrogation of Cdc 2 activity was without effect on PTX induced apoptosis. CONCLUSIONS While cell cycle transit is required for PTX induced apoptosis; Cdc2 activity is not required.
Collapse
Affiliation(s)
- D Henley
- Department of OB/GYN, GSM, UTMCK, University of Tennessee, Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | | | |
Collapse
|
50
|
Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2007; 292:L487-99. [PMID: 17012370 DOI: 10.1152/ajplung.00217.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Methoxyestradiol (2ME), a promising anti-tumor agent, is currently tested in phase I/II clinical trial to assess drug tolerance and clinical effects. 2ME is known to affect microtubule (MT) polymerization rather than act through estrogen receptors. We hypothesized that 2ME, similar to other MT inhibitors, disrupts endothelial barrier properties. We show that 2ME decreases transendothelial electrical resistance and increases FITC-dextran leakage across human pulmonary artery endothelial monolayer, which correlates with 2ME-induced MT depolymerization. Pretreatment of endothelium with MT stabilizer taxol significantly attenuates the decrease in transendothelial resistance. 2ME treatment results in the induction of F-actin stress fibers, accompanied by the increase in myosin light chain (MLC) phosphorylation. The experiments with Rho kinase (ROCK) and MLC kinase inhibitors and ROCK small interfering RNA (siRNA) revealed that increase in MLC phosphorylation is attributed to the ROCK activation rather than MLC kinase activation. 2ME induces significant ERK1/2, p38, and JNK phosphorylation and activation; however, only p38 activation is relevant to the 2ME-induced endothelial hyperpermeability. p38 activation is accompanied by a marked increase in MAPKAP2 and 27-kDa heat shock protein (HSP27) phosphorylation level. Taxol significantly decreases p38 phosphorylation and activation in response to 2ME stimulation. Vice versa, p38 inhibitor SB203580 attenuates MT rearrangement in 2ME-challenged cells. Together, these results indicate that 2ME-induced barrier disruption is governed by MT depolymerization and p38- and ROCK-dependent mechanisms. The fact that certain concentrations of 2ME induce endothelial hyperpermeability suggests that the issue of the maximum-tolerated dose of 2ME for cancer treatment should be addressed with caution.
Collapse
|