1
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
2
|
To Stick or Not to Stick: Adhesions in Orofacial Clefts. BIOLOGY 2022; 11:biology11020153. [PMID: 35205020 PMCID: PMC8869391 DOI: 10.3390/biology11020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis. In particular, the interaction of the cell junctions with the cytoskeleton functions to amplify the behavior of individual cells into collective events that are critical for development. In this review we summarize the key morphogenic events that occur during the formation of the face and the palate, as well as the protein complexes required for cell-to-cell adhesions. We then integrate the current knowledge into a comprehensive review of how mutations in cell-to-cell adhesion genes lead to abnormal craniofacial development, with a particular focus on cleft lip with or without cleft palate.
Collapse
|
3
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
5
|
Del Mar Masdeu M, Armendáriz BG, Torre AL, Soriano E, Burgaya F, Ureña JM. Identification of novel Ack1-interacting proteins and Ack1 phosphorylated sites in mouse brain by mass spectrometry. Oncotarget 2017; 8:101146-101157. [PMID: 29254152 PMCID: PMC5731862 DOI: 10.18632/oncotarget.20929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 12/04/2022] Open
Abstract
Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in brain. This kinase contains several protein-protein interaction domains and its action is partially regulated by phosphorylation. As a first step to address the neuronal functions of Ack1, here we screened mouse brain samples to identify proteins that interact with this kinase. Using mass spectrometry analysis, we identified new putative partners for Ack1 including cytoskeletal proteins such as Drebrin or MAP4; adhesion regulators such as NCAM1 and neurabin-2; and synapse mediators such as SynGAP, GRIN1 and GRIN3. In addition, we confirmed that Ack1 and CAMKII both co-immunoprecipitate and co-localize in neurons. We also identified that adult and P5 samples contained the phosphorylated residues Thr 104 and Ser 825, and only P5 samples contained phosphorylated Ser 722, a site linked to cancer and interleukin signaling when phosphorylated. All these findings support the notion that Ack1 could be involved in neuronal plasticity.
Collapse
Affiliation(s)
- Maria Del Mar Masdeu
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.,Present address: Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, United Kingdom
| | - Beatriz G Armendáriz
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Anna La Torre
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Present address: Department of Cell Biology and Human Anatomy, University of California Davis, 95616 Davis, California, USA
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.,Vall d´Hebron Institute of Research, Barcelona 08035, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Ferran Burgaya
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Jesús Mariano Ureña
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| |
Collapse
|
6
|
Masdeu MDM, Armendáriz BG, Soriano E, Ureña JM, Burgaya F. New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry. Biochim Biophys Acta Gen Subj 2016; 1860:1388-94. [PMID: 27033120 DOI: 10.1016/j.bbagen.2016.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 02/23/2016] [Indexed: 01/29/2023]
Abstract
The regulation of focal adhesion kinase (FAK) involves phosphorylation and multiple interactions with other signaling proteins. Some of these pathways are relevant for nervous system functions such as branching, axonal guidance, and plasticity. In this study, we screened mouse brain to identify FAK-interactive proteins and phosphorylatable residues as a first step to address the neuronal functions of this kinase. Using mass spectrometry analysis, we identified new phosphorylated sites (Thr 952, Thr 1048, and Ser 1049), which lie in the FAT domain; and putative new partners for FAK, which include cytoskeletal proteins such as drebrin and MAP 6, adhesion regulators such as neurabin-2 and plakophilin 1, and synapse-associated proteins such as SynGAP and a NMDA receptor subunit. Our findings support the participation of brain-localized FAK in neuronal plasticity.
Collapse
Affiliation(s)
- Maria del Mar Masdeu
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Beatriz G Armendáriz
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Eduardo Soriano
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain; Vall d´Hebron Institute of Research, 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Jesús Mariano Ureña
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ferran Burgaya
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.
| |
Collapse
|
7
|
Schwarzenbacher D, Stiegelbauer V, Deutsch A, Ress AL, Aigelsreiter A, Schauer S, Wagner K, Langsenlehner T, Resel M, Gerger A, Ling H, Ivan C, Calin GA, Hoefler G, Rinner B, Pichler M. Low spinophilin expression enhances aggressive biological behavior of breast cancer. Oncotarget 2016; 6:11191-202. [PMID: 25857299 PMCID: PMC4484449 DOI: 10.18632/oncotarget.3586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/19/2015] [Indexed: 11/25/2022] Open
Abstract
Spinophilin, a putative tumor suppressor gene, has been shown to be involved in the pathogenesis of certain types of cancer, but its role has never been systematically explored in breast cancer. In this study, we determined for the first time the expression pattern of spinophilin in human breast cancer molecular subtypes (n = 489) and correlated it with survival (n = 921). We stably reduced spinophilin expression in breast cancer cells and measured effects on cellular growth, apoptosis, anchorage-independent growth, migration, invasion and self-renewal capacity in vitro and metastases formation in vivo. Microarray profiling was used to determine the most abundantly expressed genes in spinophilin-silenced breast cancer cells. Spinophilin expression was significantly lower in basal-like breast cancer (p<0.001) and an independent poor prognostic factor in breast cancer patients (hazard ratio = 1.93, 95% confidence interval: 1.24-3.03; p = 0.004) A reduction of spinophilin levels increased cellular growth in breast cancer cells (p<0.05), without influencing activation of apoptosis. Anchorage-independent growth, migration and self-renewal capacity in vitro and metastatic potential in vivo were also significantly increased in spinophilin-silenced cells (p<0.05). Finally, we identified several differentially expressed genes in spinophilin-silenced cells. According to our data, low levels of spinophilin are associated with aggressive behavior of breast cancer.
Collapse
Affiliation(s)
| | - Verena Stiegelbauer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Anna Lena Ress
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | | | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Austria
| | - Karin Wagner
- Center for Medical Research, Medical University of Graz, Austria
| | - Tanja Langsenlehner
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, Austria
| | - Margit Resel
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Austria
| | - Beate Rinner
- Center for Medical Research, Medical University of Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, TX, USA
| |
Collapse
|
8
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
9
|
Ishii Y, Saeki K, Liu M, Sasaki F, Koga T, Kitajima K, Meno C, Okuno T, Yokomizo T. Leukotriene B
4
receptor type 2 (BLT2) enhances skin barrier function by regulating tight junction proteins. FASEB J 2015; 30:933-47. [DOI: 10.1096/fj.15-279653] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/19/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yumiko Ishii
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Research Institute for Diseases of the ChestKyushu UniversityFukuokaJapan
| | - Kazuko Saeki
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Min Liu
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
- Department of EndocrinologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fumiyuki Sasaki
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Tomoaki Koga
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Keiko Kitajima
- Department of Developmental BiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Chikara Meno
- Department of Developmental BiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toshiaki Okuno
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Takehiko Yokomizo
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
10
|
Yamada T, Kuramitsu K, Rikitsu E, Kurita S, Ikeda W, Takai Y. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells. Genes Cells 2013; 18:985-98. [PMID: 24112238 DOI: 10.1111/gtc.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/30/2013] [Indexed: 02/02/2023]
Abstract
Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.
Collapse
Affiliation(s)
- Tomohiro Yamada
- KAN Research Institute, Inc., 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kurita S, Yamada T, Rikitsu E, Ikeda W, Takai Y. Binding between the junctional proteins afadin and PLEKHA7 and implication in the formation of adherens junction in epithelial cells. J Biol Chem 2013; 288:29356-68. [PMID: 23990464 DOI: 10.1074/jbc.m113.453464] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Adherens junction (AJ) is a specialized cell-cell junction structure that plays a role in mechanically connecting adjacent cells to resist strong contractile forces and to maintain tissue structure, particularly in the epithelium. AJ is mainly comprised of cell adhesion molecules cadherin and nectin and their associating cytoplasmic proteins including β-catenin, α-catenin, p120(ctn), and afadin. Our series of studies have revealed that nectin first forms cell-cell adhesion and then recruits cadherin to form AJ. The recruitment of cadherin by nectin is mediated by the binding of α-catenin and p120(ctn) to afadin. Recent studies showed that PLEKHA7 binds to p120(ctn), which is associated with E-cadherin, and maintains the integrity of AJ in epithelial cells. In this study, we showed that PLEKHA7 bound to afadin in addition to p120(ctn) and was recruited to the nectin-3α-based cell-cell adhesion site in a manner dependent on afadin, but not on p120(ctn). The binding of PLEKHA7 to afadin was required for the proper formation of AJ, but not for the formation of tight junction, in EpH4 mouse mammary gland epithelial cells. These results indicate that PLEKHA7 plays a cooperative role with nectin and afadin in the proper formation of AJ in epithelial cells.
Collapse
Affiliation(s)
- Souichi Kurita
- From the Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | |
Collapse
|
12
|
Mandai K, Rikitake Y, Shimono Y, Takai Y. Afadin/AF-6 and Canoe. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:433-54. [DOI: 10.1016/b978-0-12-394311-8.00019-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. Handb Exp Pharmacol 2012:343-72. [PMID: 20455098 DOI: 10.1007/978-3-540-68170-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which constitute a family of four members. Nectins homophilically and heterophilically trans-interact and cause cell-cell adhesion. This nectin-based cell-cell adhesion plays roles in the organization of adherens junctions in epithelial cells and fibroblasts and synaptic junctions in neurons in cooperation with cadherins. The nectin-based cell-cell adhesion plays roles in the contacts between commissural axons and floor plate cells and in the organization of Sertoli cell-spermatid junctions in the testis, independently of cadherins. Nectins furthermore regulate intracellular signaling through Cdc42 and Rac small G proteins and cell polarization through cell polarity proteins. Pathologically, nectins serve as entry and cell-cell spread mediators of herpes simplex viruses.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
14
|
Fukumoto Y, Kurita S, Takai Y, Ogita H. Role of scaffold protein afadin dilute domain-interacting protein (ADIP) in platelet-derived growth factor-induced cell movement by activating Rac protein through Vav2 protein. J Biol Chem 2011; 286:43537-48. [PMID: 22027834 DOI: 10.1074/jbc.m111.308858] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell movement is an important cellular function not only in physiological but also in pathological conditions. Although numerous studies have been conducted to reveal the mechanism of cell movement, the full picture has yet to be depicted, likely due to the complex features of cell movement. We show here that the scaffold protein afadin dilute domain-interacting protein (ADIP), an afadin-binding protein, is involved in the regulation of cell movement. ADIP localized at the leading edge of moving cells in response to platelet-derived growth factor (PDGF) and was required for the formation of the leading edge and the promotion of cell movement. Impaired cell movement observed in ADIP knockdown cells was not rescued by expression of an ADIP mutant that is incapable of binding to afadin, leading to the notion that the function of ADIP in moving cells depends on its interaction with afadin. Knockdown of ADIP as well as knockdown of afadin inhibited the activation of the small G protein Rac, which is important for the formation of the leading edge and the promotion of cell movement. Furthermore, ADIP interacted with Vav2, a GDP/GTP exchange factor for Rac, in a Src phosphorylation-dependent manner, suggesting that ADIP mediates the activation of Rac through Vav2. These results indicate that ADIP plays an essential role in PDGF-induced cell movement by interacting with afadin and Vav2 and regulating the activation of Rac.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | |
Collapse
|
15
|
Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N, Ogita H, Takai Y. Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 2009; 285:5003-12. [PMID: 20008323 DOI: 10.1074/jbc.m109.043760] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Miyata M, Ogita H, Komura H, Nakata S, Okamoto R, Ozaki M, Majima T, Matsuzawa N, Kawano S, Minami A, Waseda M, Fujita N, Mizutani K, Rikitake Y, Takai Y. Localization of nectin-free afadin at the leading edge and its involvement in directional cell movement induced by platelet-derived growth factor. J Cell Sci 2009; 122:4319-29. [DOI: 10.1242/jcs.048439] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Afadin is an actin-filament-binding protein that binds to nectin, an immunoglobulin-like cell-cell adhesion molecule, and plays an important role in the formation of adherens junctions. Here, we show that afadin, which did not bind to nectin and was localized at the leading edge of moving cells, has another role: enhancement of the directional, but not random, cell movement. When NIH3T3 cells were stimulated with platelet-derived growth factor (PDGF), afadin colocalized with PDGF receptor, αvβ3 integrin and nectin-like molecule-5 at the leading edge and facilitated the formation of leading-edge structures and directional cell movement in the direction of PDGF stimulation. However, these phenotypes were markedly perturbed by knockdown of afadin, and were dependent on the binding of afadin to active Rap1. Binding of Rap1 to afadin was necessary for the recruitment of afadin and the tyrosine phosphatase SHP-2 to the leading edge. SHP-2 was previously reported to tightly regulate the activation of PDGF receptor and its downstream signaling pathway for the formation of the leading edge. These results indicate that afadin has a novel role in PDGF-induced directional cell movement, presumably in cooperation with active Rap1 and SHP-2.
Collapse
Affiliation(s)
- Muneaki Miyata
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hisakazu Ogita
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hitomi Komura
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shinsuke Nakata
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Ryoko Okamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Misa Ozaki
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Majima
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Naomi Matsuzawa
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Kawano
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Akihiro Minami
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masumi Waseda
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naoyuki Fujita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871 Japan
| | - Kiyohito Mizutani
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
17
|
Majima T, Ogita H, Yamada T, Amano H, Togashi H, Sakisaka T, Tanaka-Okamoto M, Ishizaki H, Miyoshi J, Takai Y. Involvement of afadin in the formation and remodeling of synapses in the hippocampus. Biochem Biophys Res Commun 2009; 385:539-44. [PMID: 19481057 DOI: 10.1016/j.bbrc.2009.05.097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
Abstract
In the hippocampus, synapses are formed between mossy fiber terminals and CA3 pyramidal cell dendrites and comprise highly developed synaptic junctions (SJs) and puncta adherentia junctions (PAJs). Dynamic remodeling of synapses in the hippocampus is implicated in learning and memory. Components of both the nectin-afadin and cadherin-catenin cell adhesion systems exclusively accumulate at PAJs. We investigated the role of afadin at synapses in mice in which the afadin gene was conditionally inactivated in hippocampal neurons. In these mutant mice, the signals for not only nectins, but also N-cadherin and beta-catenin, were hardly detected in the CA3 area, in addition to loss of the signal for afadin, resulting in disruption of PAJs. Ultrastructural analysis revealed an increase in the number of perforated synapses, suggesting the instability of SJs. These results indicate that afadin is involved not only in the assembly of nectins and cadherins at synapses, but also in synaptic remodeling.
Collapse
Affiliation(s)
- Takashi Majima
- Department of Biochemistry, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kuramitsu K, Ikeda W, Inoue N, Tamaru Y, Takai Y. Novel role of nectin: implication in the co-localization of JAM-A and claudin-1 at the same cell-cell adhesion membrane domain. Genes Cells 2008; 13:797-805. [PMID: 18547333 DOI: 10.1111/j.1365-2443.2008.01206.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tight junctions (TJs) are formed at the apical side of adherens junctions (AJs) in epithelial cells. Major cell adhesion molecules (CAMs) at TJs are JAM and claudin, whereas major CAMs at AJs are nectin and cadherin. We previously showed that nectin initially forms cell-cell adhesion and then recruits cadherin to the nectin-based cell-cell adhesion sites to form AJs, followed by the recruitment of JAM and claudin to the apical side of AJs to form TJs. We investigated the roles of nectin in the formation of TJs by expressing various combinations of CAMs in L fibroblasts with no TJs or AJs. Co-expression of one of the AJ CAMs and one of the TJ CAMs formed two separate cell-cell adhesion membrane domains (CAMDs). Co-expression of nectin-3 and E-cadherin formed the same CAMD, but co-expression of JAM-A and claudin-1 did not form the same CAMD. Co-expression of JAM-A and claudin-1 with nectin-3, but not E-cadherin, made them form the same CAMD, which was separated from the nectin-based CAMD. Nectin-3 required afadin, a nectin- and F-actin-binding protein, for this ability. In conclusion, nectin plays a novel role in the co-localization of JAM and claudin at the same CAMD.
Collapse
Affiliation(s)
- Kaori Kuramitsu
- Department of Molecular Biology and Biochemistry, Osaka Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | |
Collapse
|
19
|
Komura H, Ogita H, Ikeda W, Mizoguchi A, Miyoshi J, Takai Y. Establishment of cell polarity by afadin during the formation of embryoid bodies. Genes Cells 2008; 13:79-90. [PMID: 18173749 DOI: 10.1111/j.1365-2443.2007.01150.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Afadin directly links nectin, an immunoglobulin-like cell-cell adhesion molecule, to actin filaments (F-actin) at adherens junctions (AJs). The nectin-afadin complex is important for the formation of not only AJs but also tight junctions (TJs) in epithelial cells. Studies using afadin-knockout mice have revealed that afadin is indispensable for embryonic development by organizing the formation of cell-cell junctions. However, the molecular mechanism of cell-cell junction disorganization during embryonic development in afadin-knockout mice is poorly understood. To address this, we took advantage of embryoid bodies (EBs) as a model system. The formation of cell-cell junctions including AJs and TJs was impaired in afadin-null EBs. The proper accumulation of the Par complex and the activation of Cdc42 and atypical PKC (aPKC), which are crucial for the formation of cell polarity, were also inhibited by knockout of afadin. In addition, the disruption of afadin caused the abnormal deposition of laminin and the dislocalization of its receptors integrin alpha(6) and integrin beta(1). These results indicate that afadin organizes the formation of cell-cell junctions by regulating cell polarization in early embryonic development.
Collapse
Affiliation(s)
- Hitomi Komura
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kanzaki N, Ogita H, Komura H, Ozaki M, Sakamoto Y, Majima T, Ijuin T, Takenawa T, Takai Y. Involvement of the nectin-afadin complex in PDGF-induced cell survival. J Cell Sci 2008; 121:2008-17. [DOI: 10.1242/jcs.024620] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nectin-afadin complex is involved in the formation of cell-cell junctions, such as adherens junctions (AJs) and tight junctions (TJs). Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, whereas afadin is an intracellular nectin-binding protein that connects nectins to the cadherin-catenin system at AJs and to the claudin–zona-occludens (ZO) protein system at TJs. Afadin–/– mice show embryonic lethality, resulting from impaired migration and improper differentiation of cells due to disorganization of cell-cell junctions during gastrulation. However, it remains to be elucidated whether disruption of afadin affects apoptosis. In the present study, we first found that embryoid bodies derived from afadin-knockout embryonic stem (ES) cells contained many more apoptotic cells than those derived from wild-type ES cells. We also revealed that apoptosis induced by serum starvation or Fas-ligand stimulation was increased in cultured NIH3T3 cells when afadin or nectin-3 was knocked down. The nectin-afadin complex was involved in the platelet-derived growth factor (PDGF)-induced activation of phosphatidylinositol 3-kinase (PI3K)-Akt signaling for cell survival. This complex was associated with PDGF receptor on the plasma membrane at cell-cell adhesion sites. Thus, the nectin-afadin complex is involved in PDGF-induced cell survival, at least through the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Noriyuki Kanzaki
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Hisakazu Ogita
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Hitomi Komura
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Misa Ozaki
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Takashi Majima
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
| | - Takeshi Ijuin
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tadaomi Takenawa
- Division of Lipid Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
21
|
Sakamoto Y, Ogita H, Komura H, Takai Y. Involvement of Nectin in Inactivation of Integrin αvβ3 after the Establishment of Cell-Cell Adhesion. J Biol Chem 2008; 283:496-505. [DOI: 10.1074/jbc.m704195200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
22
|
Nakata S, Fujita N, Kitagawa Y, Okamoto R, Ogita H, Takai Y. Regulation of Platelet-derived Growth Factor Receptor Activation by Afadin through SHP-2. J Biol Chem 2007; 282:37815-25. [DOI: 10.1074/jbc.m707461200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
23
|
Ooshio T, Fujita N, Yamada A, Sato T, Kitagawa Y, Okamoto R, Nakata S, Miki A, Irie K, Takai Y. Cooperative roles of Par-3 and afadin in the formation of adherens and tight junctions. J Cell Sci 2007; 120:2352-65. [PMID: 17606991 DOI: 10.1242/jcs.03470] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Par-3 is a cell-polarity protein that regulates the formation of tight junctions (TJs) in epithelial cells, where claudin is a major cell-cell adhesion molecule (CAM). TJs are formed at the apical side of adherens junctions (AJs), where E-cadherin and nectin are major CAMs. We have revealed that nectin first forms cell-cell adhesions, and then recruits cadherin to nectin-based cell-cell adhesion sites to form AJs and subsequently recruits claudin to the apical side of AJs to form TJs. The cytoplasmic tail of nectin binds afadin and Par-3. Afadin regulates the formation of AJs and TJs cooperatively with nectin. Here, we studied the role of Par-3 in the formation of these junctions by using Par-3-knockdown MDCK cells. Par-3 was necessary for the formation of AJs and TJs but was not necessary for nectin-based cell-cell adhesion. Par-3 promoted the association of afadin with nectin, whereas afadin was not necessary for the association of Par-3 with nectin. However, the association of afadin with nectin alone was not sufficient for the formation of AJs or TJs, and Par-3 and afadin cooperatively regulated it. We describe here these novel roles of Par-3 in the formation of junctional complexes.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 2007; 87:545-64. [PMID: 17429041 DOI: 10.1152/physrev.00012.2006] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mucosal repair is a complex event that immediately follows acute injury induced by ischemia and noxious luminal contents such as bile. In the small intestine, villous contraction is the initial phase of repair and is initiated by myofibroblasts that reside immediately beneath the epithelial basement membrane. Subsequent events include crawling of healthy epithelium adjacent to the wound, referred to as restitution. This is a highly regulated event involving signaling via basement membrane integrins by molecules such as focal adhesion kinase and growth factors. Interestingly, however, ex vivo studies of mammalian small intestine have revealed the importance of closure of the interepithelial tight junctions and the paracellular space. The critical role of tight junction closure is underscored by the prominent contribution of the paracellular space to measures of barrier function such as transepithelial electrical resistance. Additional roles are played by subepithelial cell populations, including neutrophils, related to their role in innate immunity. The net result of reparative mechanisms is remarkably rapid closure of mucosal wounds in mammalian tissues to prevent the onset of sepsis.
Collapse
Affiliation(s)
- Anthony T Blikslager
- Department of Clinical Science, North Carolina State University, Raleigh 27606, USA.
| | | | | | | | | |
Collapse
|
25
|
Ozaki M, Ogita H, Takai Y. Involvement of integrin-induced activation of protein kinase C in the formation of adherens junctions. Genes Cells 2007; 12:651-62. [PMID: 17535255 DOI: 10.1111/j.1365-2443.2007.01083.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In epithelial cells, tight junctions (TJs) and adherens junctions (AJs) form junctional complexes. At AJs, cadherins and nectins are the major cell-cell adhesion molecules. Nectins first form cell-cell adhesions and then recruit cadherins to the nectin-based cell-cell adhesion sites to form AJs in coordination with the activation of integrin alpha(v)beta(3), followed by the formation of TJs. We previously demonstrated that when MDCK cells precultured at a low Ca(2+) concentration were treated with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA), incomplete AJs and a TJ-like structure were achieved. However, it remains unknown how PKC is activated and how it regulates the formation of cell-cell junctions. When MDCK cells precultured at a low Ca(2+) concentration were treated with TPA, incomplete AJs were formed without the activation of integrin alpha(v)beta(3). Treatment of cells with TPA also enhanced the phosphorylation of FAK, which transmits the outside-in signal of integrin and plays a role in the nectin-induced formation of AJs. In addition, inhibition of PKC suppressed the formation of AJs. These results indicate that the activation of PKC functions downstream of integrin alpha(v)beta(3) and upstream of FAK, and is important for the nectin-induced formation of AJs.
Collapse
Affiliation(s)
- Misa Ozaki
- The Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
26
|
Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol 2007; 292:G647-56. [PMID: 17053162 DOI: 10.1152/ajpgi.00183.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies utilizing an ex vivo porcine model of intestinal ischemic injury demonstrated that prostaglandin (PG)E(2) stimulates repair of mucosal barrier function via a mechanism involving Cl(-) secretion and reductions in paracellular permeability. Further experiments revealed that the signaling mechanism for PGE(2)-induced mucosal recovery was mediated via type-2 Cl(-) channels (ClC-2). Therefore, the objective of the present study was to directly investigate the role of ClC-2 in mucosal repair by evaluating mucosal recovery in ischemia-injured intestinal mucosa treated with the selective ClC-2 agonist lubiprostone. Ischemia-injured porcine ileal mucosa was mounted in Ussing chambers, and short-circuit current (I(sc)) and transepithelial electrical resistance (TER) were measured in response to lubiprostone. Application of 0.01-1 microM lubiprostone to ischemia-injured mucosa induced concentration-dependent increases in TER, with 1 microM lubiprostone stimulating a twofold increase in TER (DeltaTER = 26 Omega.cm(2); P < 0.01). However, lubiprostone (1 microM) stimulated higher elevations in TER despite lower I(sc) responses compared with the nonselective secretory agonist PGE(2) (1 microM). Furthermore, lubiprostone significantly (P < 0.05) reduced mucosal-to-serosal fluxes of (3)H-labeled mannitol to levels comparable to those of normal control tissues and restored occludin localization to tight junctions. Activation of ClC-2 with the selective agonist lubiprostone stimulated elevations in TER and reductions in mannitol flux in ischemia-injured intestine associated with structural changes in tight junctions. Prostones such as lubiprostone may provide a selective and novel pharmacological mechanism of accelerating recovery of acutely injured intestine compared with the nonselective action of prostaglandins such as PGE(2).
Collapse
Affiliation(s)
- Adam J Moeser
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
27
|
Goossens S, Janssens B, Vanpoucke G, De Rycke R, van Hengel J, van Roy F. Truncated isoform of mouse αT‐catenin is testis‐restricted in expression and function. FASEB J 2006; 21:647-55. [PMID: 17185752 DOI: 10.1096/fj.06-6066com] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AlphaT-catenin is a recently identified member of the alpha-catenin family of cell-cell adhesion molecules. For decades it was thought that alpha-catenins mediate solid cell-cell adhesion by linking the cadherin-mediated cell-cell adhesion complex with the actin cytoskeleton. However, the roles of alpha-catenins in this classical adhesion model have been questioned recently. AlphaT-catenin has a restricted expression pattern, in contrast to the ubiquitously expressed alphaE-catenin. High levels of alphaT-catenin were detected in heart and testis. Northern and Western blot experiments indicated that besides the standard full-length alphaT-catenin transcript, smaller alternative transcripts are expressed in testis. We report the cloning of two alternative transcripts of the mouse alphaT-catenin gene (transcript-B and -X), both of which are expressed in a testis-restricted manner from two putative alternative promoters. Alternative transcript-X encodes a smaller protein, isoform-X, which lacks the amino-terminal beta-catenin binding domain of the standard mouse alphaT-catenin protein, and is therefore unable to restore cell-cell adhesion in an alpha-catenin-negative colon carcinoma cell line. Immunohistochemical analysis showed specific localization of the alphaT-catenin isoform-X in the differentiating germ cells. In contrast to the standard full-length alphaT-catenin protein, this shortened isoform-X can bind to l-afadin, an important component of the nectin/afadin/ponsin adhesion complex that reportedly is essential for spermatogenesis.
Collapse
Affiliation(s)
- Steven Goossens
- Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Sarrouilhe D, di Tommaso A, Métayé T, Ladeveze V. Spinophilin: from partners to functions. Biochimie 2006; 88:1099-113. [PMID: 16737766 DOI: 10.1016/j.biochi.2006.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 04/21/2006] [Indexed: 01/14/2023]
Abstract
Spinophilin/neurabin 2 has been isolated independently by two laboratories as a protein interacting with protein phosphatase 1 (PP1) and F-actin. Gene analysis and biochemical approaches have contributed to define a number of distinct modular domains in spinophilin that govern protein-protein interactions such as two F-actin-, three potential Src homology 3 (SH3)-, a receptor- and a PP1-binding domains, a PSD95/DLG/zo-1 (PDZ) and three coiled-coil domains, and a potential leucine/isoleucine zipper (LIZ) motif. More than 30 partner proteins of spinophilin have been discovered, including cytoskeletal and cell adhesion molecules, enzymes, guanine nucleotide exchange factors (GEF) and regulator of G-protein signalling protein, membrane receptors, ion channels and others proteins like the tumour suppressor ARF. The physiological relevance of some of these interactions remains to be demonstrated. However, spinophilin structure suggests that the protein is a multifunctional protein scaffold that regulates both membrane and cytoskeletal functions. Spinophilin plays important functions in the nervous system where it is implicated in spine morphology and density regulation, synaptic plasticity and neuronal migration. Spinophilin regulates also seven-transmembrane receptor signalling and may provide a link between some of these receptors and intracellular mitogenic signalling events dependent on p70(S6) kinase and Rac G protein-GEF. Strikingly a role for spinophilin in cell growth was demonstrated and this effect was enhanced by its interaction with ARF. Here we review the current knowledge of the protein partners of spinophilin and present the available data that are contributing to the appreciation of spinophilin functions.
Collapse
Affiliation(s)
- D Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 34, rue du Jardin-des-Plantes, BP 199, 86005 Poitiers cedex, France.
| | | | | | | |
Collapse
|
29
|
Chen X, Gumbiner BM. Crosstalk between different adhesion molecules. Curr Opin Cell Biol 2006; 18:572-8. [PMID: 16859906 DOI: 10.1016/j.ceb.2006.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/10/2006] [Indexed: 11/29/2022]
Abstract
Cell adhesion molecules mediate cell-cell and cell-extracellular matrix adhesions, and coordination between these molecules is essential for tissue formation and morphogenesis. Crosstalk between integrins and cadherins may result from a physical response to integrin-mediated adhesion, complex cell differentiation processes, or direct signaling pathways linking the two adhesion systems. Nectins have recently been shown to regulate the organization of cadherins into adherens junctions and the formation of tight junctions by several processes. Furthermore, protocadherins can interact with extracellular matrix proteins or function by regulating classical cadherins.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, P.O. Box 800732, 1300 Jefferson Park Ave., Charlottesville, VA 22908, USA
| | | |
Collapse
|
30
|
Sakamoto Y, Ogita H, Hirota T, Kawakatsu T, Fukuyama T, Yasumi M, Kanzaki N, Ozaki M, Takai Y. Interaction of integrin alpha(v)beta3 with nectin. Implication in cross-talk between cell-matrix and cell-cell junctions. J Biol Chem 2006; 281:19631-44. [PMID: 16679515 DOI: 10.1074/jbc.m600301200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-matrix and cell-cell junctions cross-talk together, and these two junctions cooperatively regulate cell movement, proliferation, adhesion, and polarization. However, the mechanism of this cross-talk remains unknown. An immunoglobulin-like cell-cell adhesion molecule nectin first trans-interacts with each other to form cell-cell adhesion and induces activation of Rap1, Cdc42, and Rac small G proteins through c-Src. Trans-interacting nectin then recruits another cell-cell adhesion molecule cadherin to the nectin-based cell-cell adhesion sites and forms adherens junctions (AJs). Here, we show that integrin alpha(v)beta3 functionally and physically associates with nectin. Integrin alpha(v)beta3 colocalized with nectin at the nectin-based cell-cell adhesion sites. The association of integrin alpha(v)beta3 with nectin was direct and was mediated through their extracellular regions. This interaction was necessary for the nectin-induced signaling. Focal adhesion kinase, which relays the integrin-initiated outside-in signals to the intracellular signaling molecules, was also involved in the nectin-induced signaling. During the formation of AJs, the high affinity form of integrin alpha(v)beta3 co-localized with nectin at the primordial cell-cell contact sites, and then after the establishment of AJs, this high affinity form of integrin alpha(v)beta3 was converted to the low affinity form, which continued to co-localize with nectin. Thus, integrin alpha(v)beta3 and nectin play pivotal roles in the cross-talk between cell-matrix and cell-cell junctions and the formation of cadherin-based AJs.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sato T, Fujita N, Yamada A, Ooshio T, Okamoto R, Irie K, Takai Y. Regulation of the Assembly and Adhesion Activity of E-cadherin by Nectin and Afadin for the Formation of Adherens Junctions in Madin-Darby Canine Kidney Cells. J Biol Chem 2006; 281:5288-99. [PMID: 16361708 DOI: 10.1074/jbc.m510070200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Ca2+-independent immunoglobulin-like molecule nectin first forms cell-cell adhesion and then assembles cadherin at nectin-based cell-cell adhesion sites, resulting in the formation of adherens junctions (AJs). Afadin is a nectin- and actin filament-binding protein that connects nectin to the actin cytoskeleton. Here, we studied the roles and modes of action of nectin and afadin in the formation of AJs in cultured MDCK cells. The trans-interaction of nectin assembled E-cadherin, which associated with p120(ctn), beta-catenin, and alpha-catenin, at the nectin-based cell-cell adhesion sites in an afadin-independent manner. However, the assembled E-cadherin showed weak cell-cell adhesion activity and might be the non-trans-interacting form. This assembly was mediated by the IQGAP1-dependent actin cytoskeleton, which was organized by Cdc42 and Rac small G proteins that were activated by the action of trans-interacting nectin through c-Src and Rap1 small G protein in an afadin-independent manner. However, Rap1 bound to afadin, and this Rap1-afadin complex then interacted with p120(ctn) associated with non-trans-interacting E-cadherin, thereby causing the trans-interaction of E-cadherin. Thus, nectin regulates the assembly and cell-cell adhesion activity of E-cadherin through afadin, nectin signaling, and p120(ctn) for the formation of AJs in Madin-Darby canine kidney cells.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Okamoto R, Irie K, Yamada A, Katata T, Fukuhara A, Takai Y. Recruitment of E-cadherin associated with alpha- and beta-catenins and p120ctn to the nectin-based cell-cell adhesion sites by the action of 12-O-tetradecanoylphorbol-13-acetate in MDCK cells. Genes Cells 2005; 10:435-45. [PMID: 15836772 DOI: 10.1111/j.1365-2443.2005.00846.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formation of tight junctions (TJs) is dependent on the formation of adherens junctions (AJs) in MDCK cells. E-Cadherin and nectin are major cell-cell adhesion molecules (CAMs) at AJs, whereas claudin, occludin and junctional adhesion molecule (JAM) are major CAMs at TJs. When MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 mm Ca(2+), nectin first forms cell-cell adhesion and recruits E-cadherin to the nectin-based cell-cell adhesion sites to form AJs. Thereafter, nectin recruits first JAM-A and then claudin-1 and occludin to the apical side of AJs to form TJs. In contrast, when MDCK cells precultured at 2 microm Ca(2+) are cultured at 2 microm Ca(2+) in the presence of a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a TJ-like structure is formed without the formation of the E-cadherin-based AJs. We showed here that GFP-E-cadherin, which did not trans-interact due to 2 microm Ca(2+) but associated with alpha- and beta-catenins and p120(ctn), was recruited to the nectin-based cell-cell adhesion sites by the action of TPA. The nectin inhibitors, which inhibited the trans-interaction of nectin, inhibited the recruitment of GFP-E-cadherin and their associating catenins by the action of TPA. Microbeads coated with the extracellular fragment of nectin recruited not only cellular nectin but also GFP-E-cadherin and their associating catenins by the action of TPA. These results indicate that when the TJ-like structure is formed by the action of TPA, non-trans-interacting E-cadherin and its associating catenins are recruited to the nectin-based cell-cell adhesion sites and that the trans-interaction of E-cadherin is not essential for the formation of TJs.
Collapse
Affiliation(s)
- Ryoko Okamoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A, Takai Y. Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 2005; 118:1267-77. [PMID: 15741237 DOI: 10.1242/jcs.01656] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules and comprise a family of four members. At the mossy fiber terminals of hippocampus, nectin-1 and nectin-3 localize at the presynaptic and postsynaptic sides of synaptic junctions, respectively, and their trans-interactions play a role in formation of synapses in cooperation with N-cadherin. Nectins are associated with the actin cytoskeleton through afadin, a nectin- and actin-filament-binding protein. Five nectin-like molecules (Necls) which have domain structures similar to those of nectins have been identified and here we characterize Necl-1/TSLL1/SynCAM3, from now on referred to as Necl-1. Tissue distribution analysis showed that Necl-1 was specifically expressed in the neural tissue. Immunofluorescence and immunoelectron microscopy revealed that Necl-1 localized at the contact sites among axons, their terminals, and glia cell processes that cooperatively formed synapses, axon bundles and myelinated axons. Necl-1 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 from now on referred to as Necl-2, nectin-1 and nectin-3, but not with Necl-5 or nectin-2. The C-terminal cytoplasmic region of Necl-1 did not bind afadin but bound membrane-associated guanylate kinase subfamily members that contain the L27 domain, including Dlg3, Pals2 and CASK. These results indicate that Necl-1 is a neural-tissue-specific Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which potentially has membrane-associated guanylate kinase subfamily member-binding activity and localizes at the non-junctional cell-cell contact sites.
Collapse
Affiliation(s)
- Shigeki Kakunaga
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Okabe N, Ozaki-Kuroda K, Nakanishi H, Shimizu K, Takai Y. Expression patterns of nectins and afadin during epithelial remodeling in the mouse embryo. Dev Dyn 2004; 230:174-86. [PMID: 15108322 DOI: 10.1002/dvdy.20033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cell-cell adhesion plays key roles in tissue morphogenesis and organogenesis. Nectins are Ca2+-independent immunoglobulin-like cell adhesion molecules connected to the actin cytoskeleton through afadin. Nectins play roles in a variety of cell-cell junctions in cooperation with or independently of cadherins. Here, we examined the cellular localization of nectins and afadin throughout primitive streak, neural plate, and early organogenesis stages of mouse development. Nectin and afadin localization coincided with a honeycomb-shaped meshwork of actin filaments at adherens junctions of polarized epithelia, including neuroepithelium, epithelial somites, and facial primordia. As organogenesis progressed, nectin-2 expression was maintained in general columnar epithelia, whereas nectin-1 and -3 became highly concentrated at sites of neural morphogenesis. Moreover, nectin-1 was highly expressed in keratinocytes of the skin, developing hair follicles, and epithelium of developing teeth. These results suggest that nectins and afadin are involved in dynamic epithelial remodeling during mouse development.
Collapse
Affiliation(s)
- Noriko Okabe
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
35
|
Yamada A, Irie K, Hirota T, Ooshio T, Fukuhara A, Takai Y. Involvement of the annexin II-S100A10 complex in the formation of E-cadherin-based adherens junctions in Madin-Darby canine kidney cells. J Biol Chem 2004; 280:6016-27. [PMID: 15574423 DOI: 10.1074/jbc.m408215200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
E-cadherin and nectins are major cell-cell adhesion molecules at adherens junctions (AJs) in epithelial cells. When Madin-Darby canine kidney (MDCK) cells stably expressing nectin-1 (nectin-1-MDCK cells) are cultured at normal Ca(2+), E-cadherin and nectin-1 are concentrated at the cell-cell contact sites. When these cells are cultured at low Ca(2+), E-cadherin disappears from the cell-cell contact sites, but nectin-1 persists there. When these cells are re-cultured at normal Ca(2+), E-cadherin is recruited to the nectin-based cell-cell contact sites. We found here that this recruitment was dependent on protein synthesis, because a protein synthesis inhibitor, cycloheximide, prevented the accumulation of E-cadherin. When nectin-1-MDCK cells, precultured at low Ca(2+) in the presence of a proteasome inhibitor, ALLN (N-acetyl-Leu-Leu-norleucinal), were re-cultured at normal Ca(2+), E-cadherin was recruited to the nectin-based cell-cell contact sites but the level of E-cadherin was reduced. Similar results were obtained when wild-type MDCK cells were used instead of nectin-1-MDCK cells. These results suggest that degradation of one or more protein factors and de novo synthesis of the same or different protein factor(s) are needed for the formation of the E-cadherin-based AJs. We biochemically identified the annexin II-S100A10 complex as such a candidate. Depletion of plasma membrane cholesterol, which abolished the localization of the annexin II-S100A10 complex at the plasma membrane, inhibited the re-concentration of E-cadherin at the nectin-based cell-cell contact sites in the Ca(2+) switch experiment. Knockdown of annexin II by RNA interference also inhibited the re-concentration of E-cadherin. These results indicate that the annexin II-S100A10 complex is involved in the formation of the E-cadherin-based AJs in MDCK cells.
Collapse
Affiliation(s)
- Akio Yamada
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Yamada A, Irie K, Fukuhara A, Ooshio T, Takai Y. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells. Genes Cells 2004; 9:843-55. [PMID: 15330861 DOI: 10.1111/j.1365-2443.2004.00768.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nectins, Ca(2+)-independent immunoglobulin-like cell adhesion molecules (CAMs), first form cell-cell adhesion where cadherins are recruited, forming adherens junctions (AJs) in epithelial cells and fibroblasts. In addition, nectins recruit claudins, occludin, and junctional adhesion molecules (JAMs) to the apical side of AJs, forming tight junctions (TJs) in epithelial cells. Nectins are associated with these CAMs through peripheral membrane proteins (PMPs), many of which are actin filament-binding proteins. We examined here the roles of the actin cytoskeleton in the association of nectins with other CAMs in MDCK cells stably expressing exogenous nectin-1. The nectin-1-based cell-cell adhesion was formed and maintained irrespective of the presence and absence of the actin filament-disrupting agents, such as cytochalasin D and latrunculin A. In the presence of these agents, only afadin remained at the nectin-1-based cell-cell adhesion sites, whereas E-cadherin and other PMPs at AJs, alpha-catenin, beta-catenin, vinculin, alpha-actinin, ADIP, and LMO7, were not concentrated there. The CAMs at TJs, claudin-1, occludin and JAM-1, or the PMPs at TJs, ZO-1 and MAGI-1, were not concentrated there, either. These results indicate that the actin cytoskeleton is required for the association of the nectin-afadin unit with other CAMs and PMPs at AJs and TJs.
Collapse
Affiliation(s)
- Akio Yamada
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
37
|
Okabe N, Shimizu K, Ozaki-Kuroda K, Nakanishi H, Morimoto K, Takeuchi M, Katsumaru H, Murakami F, Takai Y. Contacts between the commissural axons and the floor plate cells are mediated by nectins. Dev Biol 2004; 273:244-56. [PMID: 15328010 DOI: 10.1016/j.ydbio.2004.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 05/14/2004] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
During development of the central nervous system (CNS), commissural axons grow toward the ventral midline. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. The contacts between the commissural axons and the floor plate cells are involved in this axonal guidance, but their mechanisms or structures have not fully been understood. In this study, we found that nectin-1 and -3, immunoglobulin-like cell-cell adhesion molecules, asymmetrically localized at the contact sites between the commissural axons and the floor plate cells, respectively. In vitro perturbation of the endogenous trans-interaction between nectin-1 and -3 caused abnormal fasciculation of the commissural axons and impairment of the contacts, and resulted in failure in longitudinal turns of the commissural axons at the contralateral sites of the rat hindbrain. These results indicate that the contacts between the commissural axons and the floor plate cells are mediated by the hetero-trans-interaction between nectin-1 and -3 and involved in regulation of the trajectory of the commissural axons.
Collapse
Affiliation(s)
- Noriko Okabe
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 621] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
39
|
Yamada A, Irie K, Deguchi-Tawarada M, Ohtsuka T, Takai Y. Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes Cells 2004; 8:985-94. [PMID: 14750953 DOI: 10.1046/j.1356-9597.2003.00690.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Two types of intercellular junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAs), are observed at the synapses between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the hippocampus. SJs are associated with active zones and postsynaptic densities (PSDs) where neurotransmission occurs, whereas PAs are not associated with either of them. We have found that the nectin-afadin unit as well as the N-cadherin-catenin unit localizes at the PAs and that both the units cooperatively organize the PAs. Nectins are Ca2+-independent Ig-like cell-cell adhesion molecules and afadin is a nectin- and actin filament-binding protein that connects nectins to the actin cytoskeleton. Synaptic scaffolding molecule (S-SCAM) is a neural scaffolding protein which interacts with many proteins including neuroligin, NMDA receptors, neural plakophilin-related armadillo-repeat protein/delta-catenin, a GDP/GTP exchange protein for Rap1 small G protein (PDZ-Rap-GEP), and beta-catenin. S-SCAM has been suggested to be a component of PSDs, but its precise localization at the synapses remains unknown. RESULTS S-SCAM was not concentrated at the PSDs but highly concentrated and co-localized with nectins at both the sides of the PAs formed between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the adult mouse hippocampus. S-SCAM co-localized with nectin-1 at the primitive synapses where the SJs and the PAs were not morphologically differentiated, and they co-localized during the maturation of the SJs and the PAs. Nectin-1 had a potency to recruit S-SCAM to the nectin-1-based cell-cell adhesion sites formed in cadherin-deficient L cells as a model system. This recruitment was dependent on the C-terminal PDZ domain-binding motif of nectin-1 which is necessary for the binding of afadin, suggesting that nectins recruit S-SCAM through afadin. Consistently, S-SCAM was co-immunoprecipitated with afadin by the anti-S-SCAM antibody from the mouse brain, but S-SCAM did not directly bind afadin. CONCLUSION These results indicate that S-SCAM localizes at the PAs in the CA3 area of the hippocampus in a nectin-dependent manner and suggest that S-SCAM serves as a scaffolding molecule at the PAs after maturation of the synapses and at the SJs during the maturation.
Collapse
Affiliation(s)
- Akio Yamada
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
40
|
Sato T, Irie K, Ooshio T, Ikeda W, Takai Y. Involvement of heterophilic trans-interaction of Necl-5/Tage4/PVR/CD155 with nectin-3 in formation of nectin- and cadherin-based adherens junctions. Genes Cells 2004; 9:791-9. [PMID: 15330856 DOI: 10.1111/j.1365-2443.2004.00763.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nectins, Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules and cadherins, Ca(2+)-dependent cell-cell adhesion molecules, are associated through their respective cytoplasmic tail-binding proteins, afadin and catenins and play roles in formation of adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-like molecule-5 (Necl-5) is a Ca(2+)-independent Ig-like molecule which does not homophilically trans-interact, but heterophilically trans-interacts with nectin-3, one member of the nectin family. Necl-5 does not directly bind afadin and therefore is not associated with cadherins. Necl-5 regulates cell motility and proliferation in cooperation with integrins and growth factor receptors, when it does not interact with nectin-3. We studied here a role of the heterophilic trans-interaction of Necl-5 with nectin-3 in cell-cell adhesion using L cells stably expressing Necl-5, nectin-3 and E-cadherin (Necl-5-nectin-3-EL cells). Afadin, E-cadherin and catenins were recruited to the nectin-3 side, but not to the Necl-5 side, of the contact sites formed by the heterophilic trans-interaction between Necl-5 and nectin-3. The anti-Necl-5 monoclonal antibody, which specifically inhibited the heterophilic trans-interaction of Necl-5 with nectin-3, inhibited the formation of the E-cadherin-based AJs in Necl-5-nectin-3-EL cells. These results indicate that Necl-5 plays roles not only in cell motility and proliferation but also in cell-cell adhesion in cooperation with nectin-3.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
41
|
Ohnishi H, Nakahara T, Furuse K, Sasaki H, Tsukita S, Furuse M. JACOP, a novel plaque protein localizing at the apical junctional complex with sequence similarity to cingulin. J Biol Chem 2004; 279:46014-22. [PMID: 15292197 DOI: 10.1074/jbc.m402616200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apical junctional complex is composed of various cell adhesion molecules and cytoplasmic plaque proteins. Using a monoclonal antibody that recognizes a chicken 155-kDa cytoplasmic antigen (p155) localizing at the apical junctional complex, we have cloned a cDNA of its mouse homologue. The full-length cDNA of mouse p155 encoded a 148-kDa polypeptide containing a coiled-coil domain with sequence similarity to cingulin, a tight junction (TJ)-associated plaque protein. We designated this protein JACOP (junction-associated coiled-coil protein). Immunofluorescence staining showed that JACOP was concentrated in the junctional complex in various types of epithelial and endothelial cells. Furthermore, in the liver and kidney, JACOP was also distributed along non-junctional actin filaments. Upon immunoelectron microscopy, JACOP was found to be localized to the undercoat of TJs in the liver, but in some tissues, its distribution was not restricted to TJs but extended to the area of adherens junctions. Overexpression studies have revealed that JACOP was recruited to the junctional complex in epithelial cells and to cell-cell contacts and stress fibers in fibroblasts. These findings suggest that JACOP is involved in anchoring the apical junctional complex, especially TJs, to actin-based cytoskeletons.
Collapse
Affiliation(s)
- Hiroe Ohnishi
- Department of Cell Biology, Kyoto University Faculty of Medicine, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ooshio T, Irie K, Morimoto K, Fukuhara A, Imai T, Takai Y. Involvement of LMO7 in the Association of Two Cell-Cell Adhesion Molecules, Nectin and E-cadherin, through Afadin and α-Actinin in Epithelial Cells. J Biol Chem 2004; 279:31365-73. [PMID: 15140894 DOI: 10.1074/jbc.m401957200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules that are involved in formation of cadherin-based adherens junctions (AJs). The nectin-based cell-cell adhesion induces activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of AJs through reorganization of the actin cytoskeleton. Although evidence has accumulated that nectins recruit cadherins to the nectin-based cell-cell adhesion sites through their cytoplasm-associated proteins, afadin and catenins, it is not fully understood how nectins are physically associated with cadherins. Here we identified a rat counterpart of the human LIM domain only 7 (LMO7) as an afadin- and alpha-actinin-binding protein. Rat LMO7 has two splice variants, LMO7a and LMO7b, consisting of 1,729 and 1,395 amino acids, respectively. LMO7 has calponin homology, PDZ, and LIM domains. Western blotting revealed that LMO7 was expressed ubiquitously in various rat tissues. Immunofluorescence and immunoelectron microscopy revealed that LMO7 localized at cell-cell AJs, where afadin localized, in epithelial cells of rat gallbladder. In addition, LMO7 localized at the cytoplasmic faces of apical membranes in the same epithelial cells. We furthermore revealed that LMO7 bound alpha-actinin, an actin filament-bundling protein, which bound to alpha-catenin. Immunoprecipitation analysis revealed that LMO7 was associated with both the nectin-afadin and E-cadherin-catenin systems. LMO7 was assembled at the cell-cell adhesion sites after both the nectin-afadin and E-cadherin-catenin systems had been assembled. These results indicate that LMO7 is an afadin- and alpha-actinin-binding protein that connects the nectin-afadin and E-cadherin-catenin systems through alpha-actinin.
Collapse
Affiliation(s)
- Takako Ooshio
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka Suita, Osaka 565-0871, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
44
|
Hoshino T, Shimizu K, Honda T, Kawakatsu T, Fukuyama T, Nakamura T, Matsuda M, Takai Y. A novel role of nectins in inhibition of the E-cadherin-induced activation of Rac and formation of cell-cell adherens junctions. Mol Biol Cell 2003; 15:1077-88. [PMID: 14699074 PMCID: PMC363079 DOI: 10.1091/mbc.e03-05-0321] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules. The trans-interactions of nectins recruit cadherins to the nectin-based cell-cell adhesion, resulting in formation of cell-cell adherens junctions (AJs) in epithelial cells and fibroblasts. The trans-interaction of E-cadherin induces activation of Rac small G protein, whereas the trans-interactions of nectins induce activation of not only Rac but also Cdc42 small G protein. We showed by the fluorescent resonance energy transfer (FRET) imaging that the trans-interaction of E-cadherin induced dynamic activation and inactivation of Rac, which led to dynamic formation and retraction of lamellipodia. Moreover, we found here that the nectins, which did not trans-interact with other nectins (non-trans-interacting nectins), inhibited the E-cadherin-induced activation of Rac and reduced the velocity of the formation of the E-cadherin-based cell-cell AJs. The inhibitory effect of non-trans-interacting nectins was suppressed by the activation of Cdc42 induced by the trans-interactions of nectins. These results indicate a novel role of nectins in regulation of the E-cadherin-induced activation of Rac and formation of cell-cell AJs.
Collapse
Affiliation(s)
- Takashi Hoshino
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fukuhara A, Shimizu K, Kawakatsu T, Fukuhara T, Takai Y. Involvement of Nectin-activated Cdc42 Small G Protein in Organization of Adherens and Tight Junctions in Madin-Darby Canine Kidney Cells. J Biol Chem 2003; 278:51885-93. [PMID: 14530286 DOI: 10.1074/jbc.m308015200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nectins, Ca2+-independent immunoglobulin-like cell-cell adhesion molecules, trans-interact and form cell-cell adhesion, which increases the velocities of the formation of the E-cadherin-based adherens junctions (AJs) and the claudin-based tight junctions (TJs) in Madin-Darby canine kidney (MDCK) cells. The trans-interactions of nectins furthermore induce activation of Cdc42 and Rac small G proteins, but the roles of these small G proteins activated in this way remain unknown. We examined here the role and the mode of action of Cdc42 in the organization of AJs and TJs in MDCK cells. We first made the NWASP-Cdc42 and Rac interactive binding (CRIB) domain, an inhibitor of activated Cdc42, fused to the Ki-Ras CAAX motif (NWASP-CRIB-CAAX; where A is aliphatic amino acid), which was targeted to the cell-cell adhesion sites. We then found that overexpression of NWASP-CRIB-CAAX reduced the velocities of the formation of AJs and TJs. Conversely, overexpression of a constitutively active mutant of Cdc42 (V12Cdc42) increased their velocities, and the inhibitory effect of NWASP-CRIB-CAAX was suppressed by co-expression with V12Cdc42. The inhibitory effect of NWASP-CRIB-CAAX on the formation of AJs and TJs was suppressed by co-expression of nectin-1 of which trans-interaction activated endogenous Cdc42. Moreover, the formation of the claudin-based TJs required a greater amount of activated Cdc42 than that of the E-cadherin-based AJs. These results indicate that the Cdc42 activated by the trans-interactions of nectins is involved in the organization of AJs and TJs in different mechanisms in MDCK cells.
Collapse
Affiliation(s)
- Atsunori Fukuhara
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
46
|
Honda T, Shimizu K, Fukuhara A, Irie K, Takai Y. Regulation by nectin of the velocity of the formation of adherens junctions and tight junctions. Biochem Biophys Res Commun 2003; 306:104-9. [PMID: 12788073 DOI: 10.1016/s0006-291x(03)00919-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadherins are key Ca(2+)-dependent cell-cell adhesion molecules at adherens junctions (AJs) in fibroblasts and epithelial cells, whereas claudins are key Ca(2+)-independent cell-cell adhesion molecules at tight junctions (TJs) in epithelial cells. The formation and maintenance of TJs are dependent on the formation and maintenance of AJs. Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which comprise a family of four members, nectin-1, -2, -3, and -4, and are involved in the formation of AJs in cooperation with cadherins, and the subsequent formation of TJs. We show here that the velocity of the formation of the E-cadherin-based AJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in L cells stably expressing E-cadherin and Madin-Darby canine kidney cells. Moreover, the velocity of the formation of the claudin-based TJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in Madin-Darby canine kidney cells. These results indicate that nectins regulate the velocity of the formation of the E-cadherin-based AJs and the subsequent formation of the claudin-based TJs.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka University, 565-0871, Suita, Japan
| | | | | | | | | |
Collapse
|
47
|
Inagaki M, Irie K, Deguchi-Tawarada M, Ikeda W, Ohtsuka T, Takeuchi M, Takai Y. Nectin-dependent localization of ZO-1 at puncta adhaerentia junctions between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of adult mouse hippocampus. J Comp Neurol 2003; 460:514-24. [PMID: 12717711 DOI: 10.1002/cne.10653] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nectin and afadin constitute a novel intercellular adhesion system that organizes adherens junctions in cooperation with the cadherin-catenin system in epithelial cells. Nectin is a Ca(2+)-independent immunoglobulin-like adhesion molecule and afadin is an actin filament (F-actin)-binding protein that connects nectin to the actin cytoskeleton. At the puncta adhaerentia junctions (PAs) between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of the adult mouse hippocampus, the nectin-afadin system also colocalizes with the cadherin-catenin system and has a role in the formation of synapses. ZO-1 is another F-actin-binding protein that localizes at tight junctions (TJs) and connects claudin to the actin cytoskeleton in epithelial cells. The nectin-afadin system is able to recruit ZO-1 to the nectin-based cell-cell adhesion sites in nonepithelial cells that have no TJs. In the present study, we investigated the localization of ZO-1 in the mouse hippocampus. Immunofluorescence and immunoelectron microscopy revealed that ZO-1 also localized at the PAs between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of the adult mouse hippocampus, as described for afadin. ZO-1 colocalized with afadin during the development of synaptic junctions and PAs. Microbeads coated with the extracellular fragment of nectin, which interacts with cellular nectin, recruited both afadin and ZO-1 to the bead-cell contact sites in cultured rat hippocampal neurons. These results indicate that ZO-1 colocalizes with nectin and afadin at the PAs and that the nectin-afadin system is involved in the localization of ZO-1.
Collapse
Affiliation(s)
- Maiko Inagaki
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Katata T, Irie K, Fukuhara A, Kawakatsu T, Yamada A, Shimizu K, Takai Y. Involvement of nectin in the localization of IQGAP1 at the cell-cell adhesion sites through the actin cytoskeleton in Madin-Darby canine kidney cells. Oncogene 2003; 22:2097-109. [PMID: 12687012 DOI: 10.1038/sj.onc.1206255] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IQGAP1, a putative downstream target of the Rho family small G proteins, Cdc42 and Rac, localizes at adherens junctions (AJs) in epithelial cells. It has been suggested that IQGAP1 localizes at AJs through its binding to beta-catenin, and negatively regulates the E-cadherin-mediated cell-cell adhesion. Nectin is a Ca(2+)-independent, immunoglobulin-like cell-cell adhesion molecule that localizes at AJs. Nectin is associated with E-cadherin through their respective cytoplasmic tail-binding proteins, afadin and catenins, and involved in the formation of AJs cooperatively with E-cadherin. Here we investigated a role of nectin in the localization of IQGAP1 at AJs. Ca(2+) chelation from the medium causes disruption of the E-cadherin-mediated cell-cell adhesion, but not the nectin-based cell-cell adhesion, in Madin-Darby canine kidney (MDCK) cells. IQGAP1 remained at the residual nectin-based cell-cell adhesion sites where the E-cadherin immunofluorescence signal disappeared. Restoration of Ca(2+) in the medium causes re-accumulation of E-cadherin to the residual nectin-based cell-cell adhesion sites to re-form AJs. Nectin inhibitors inhibit this re-accumulation of E-cadherin to re-form AJs by impairing the nectin-based cell-cell adhesion. The nectin inhibitors also reduced the localization of IQGAP1 at the cell-cell adhesion sites. When MDCK cells were incubated with microbeads coated with the extracellular fragment of nectin that interacts with cellular nectin, IQGAP1 also accumulated at the bead-MDCK cell contact sites. The accumulation of IQGAP1 at the cell-cell adhesion sites was inhibited by actin filament-disrupting agents, latrunculin A and cytochalasin D. These results indicate that nectin is involved in the localization of IQGAP1 at AJs through the actin cytoskeleton.
Collapse
Affiliation(s)
- Tatsuo Katata
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Tanaka Y, Nakanishi H, Kakunaga S, Okabe N, Kawakatsu T, Shimizu K, Takai Y. Role of nectin in formation of E-cadherin-based adherens junctions in keratinocytes: analysis with the N-cadherin dominant negative mutant. Mol Biol Cell 2003; 14:1597-609. [PMID: 12686612 PMCID: PMC153125 DOI: 10.1091/mbc.e02-10-0632] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin-based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin-based AJs in keratinocytes.
Collapse
Affiliation(s)
- Yoshinari Tanaka
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Takekuni K, Ikeda W, Fujito T, Morimoto K, Takeuchi M, Monden M, Takai Y. Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. J Biol Chem 2003; 278:5497-500. [PMID: 12515806 DOI: 10.1074/jbc.c200707200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAR-3 is a cell polarity protein that localizes at tight junctions (TJs) by direct binding to an immunoglobulin (Ig)-like cell-cell adhesion molecule JAM-1 in mammalian epithelial cells. Another Ig-like cell-cell adhesion molecule nectin plays a role in the localization of JAM-1 at TJs in epithelial cells. Nectin furthermore plays a role in the organization of adherens junctions (AJs) and TJs. Nectin comprises a family of four members, nectin-1, -2, -3, and -4. Nectins are associated with the actin cytoskeleton through afadin, of which the PDZ domain binds to nectins through their C-terminal four amino acids. We show here that PAR-3 binds to nectin-1 and -3 in neuroepithelial cells of the embryonic telencephalon, which are equipped with AJs, but not with typical TJs. Nectin-1, -2, -3, and afadin, but not JAM-1, were concentrated at AJs in neuroepithelial cells of the embryonic telencephalon at E13.5 and PAR-3 co-localized with nectins. PAR-3 was co-immunoprecipitated with nectin-1 and -3, but not with nectin-2 or JAM-1, from the mouse whole brain at E13.5. Recombinant PAR-3 stoichiometrically bound to recombinant nectin-1 and -3. The first one of the three PDZ domains of PAR-3 bound to the C-terminal four amino acids of nectin-1 and -3. The affinities of PAR-3 and afadin for nectin-1 and -3 were similar. Cadherin-deficient L cells expressing nectin-1 and -3 formed nectin-1- and -3-based cell-cell junctions, respectively, where PAR-3 as well as afadin was recruited. These results indicate that nectin-1 and -3 are involved in the localization of PAR-3 at AJs in the neuroepithelial cells of the embryonic telencephalon.
Collapse
Affiliation(s)
- Kyoji Takekuni
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|