1
|
Hecht M, Alber N, Marhoffer P, Johnsson N, Gronemeyer T. The concerted action of SEPT9 and EPLIN modulates the adhesion and migration of human fibroblasts. Life Sci Alliance 2024; 7:e202201686. [PMID: 38719752 PMCID: PMC11077590 DOI: 10.26508/lsa.202201686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.
Collapse
Affiliation(s)
- Matthias Hecht
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nane Alber
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Pia Marhoffer
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Nils Johnsson
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| | - Thomas Gronemeyer
- https://ror.org/032000t02 Institute of Molecular Genetics and Cell Biology, James Franck Ring N27, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Liu Z, Fan K, Abudukeremu A, Gao M, Tan X, Mao X, Li X, Ma W, Ma X, Li C, Yang Y, Tu K, Chen J, Zhang Y, Guan Y. LIMA1 links the E3 ubiquitin ligase RNF40 to lipid metabolism. Cell Death Discov 2024; 10:298. [PMID: 38909032 PMCID: PMC11193757 DOI: 10.1038/s41420-024-02072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
LIMA1 is a LIM domain and Actin binding 1 protein that acts as a skeleton protein to promote cholesterol absorption, which makes it an ideal target for interfering with lipid metabolism. However, the detailed regulation of LIMA1 remains unclear. Here, we identified that ring finger protein 40 (RNF40), an E3 ubiquitin ligase previously known as an epigenetic modifier to increase H2B ubiquitination, mediated the ubiquitination of LIMA1 and thereby promoted its degradation in a proteasome-dependent manner. Fraction studies revealed that the 1-166aa fragment of LIMA1 was indispensable for the interaction with RNF40, and at least two domains of RNF40 might mediate the association of RNF40 with LIMA1. Notably, treatment with simvastatin dramatically decreased the levels of CHO and TG in control cells rather than cells with overexpressed LIMA1. Moreover, RNF40 significantly decreased lipid content, which could be reversed by LIMA1 overexpression. These findings suggest that E3 ubiquitin ligase RNF40 could directly target LIMA1 and promote its protein degradation in cytoplasm, leading to the suppression of lipid accumulation mediated by LIMA1. Collectively, this study unveils that RNF40 is a novel E3 ubiquitin ligase of LIMA1, which underpins its high therapeutic value to combat dysregulation of lipid metabolism.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Tan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaojuan Mao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyu Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenting Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xusheng Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Caolong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Yinglai Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, Xinjiang, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Obstetrics, Xi 'an New Chang 'an Maternity Hospital, Xi'an, Shaanxi, China
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Li S, Yang F, Cheng F, Zhu L, Yan Y. Lipotoxic hepatocyte derived LIMA1 enriched small extracellular vesicles promote hepatic stellate cells activation via inhibiting mitophagy. Cell Mol Biol Lett 2024; 29:82. [PMID: 38822260 PMCID: PMC11140962 DOI: 10.1186/s11658-024-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Zhu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine, Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
4
|
Lindell E, Zhang X. Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis. Int J Mol Sci 2024; 25:4970. [PMID: 38732188 PMCID: PMC11084159 DOI: 10.3390/ijms25094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.
Collapse
Affiliation(s)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
5
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
6
|
Wang X, Zhang C, Song H, Yuan J, Zhang X, Yuan Y, Zhang L, He J. Characterization of LIMA1 and its emerging roles and potential therapeutic prospects in cancers. Front Oncol 2023; 13:1115943. [PMID: 37274282 PMCID: PMC10235525 DOI: 10.3389/fonc.2023.1115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
EPLIN, a Putative Tumour Suppressor in Colorectal Cancer, Implications in Drug Resistance. Int J Mol Sci 2022; 23:ijms232315232. [PMID: 36499558 PMCID: PMC9736569 DOI: 10.3390/ijms232315232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.
Collapse
|
8
|
Qi Y, Wang H, Zhang Q, Liu Z, Wang T, Wu Z, Wu W. CAF-Released Exosomal miR-20a-5p Facilitates HCC Progression via the LIMA1-Mediated β-Catenin Pathway. Cells 2022; 11:cells11233857. [PMID: 36497115 PMCID: PMC9740131 DOI: 10.3390/cells11233857] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, exosomes derived from Cancer-associated fibroblast (CAF) have reportedly been involved in regulating hepatocellular carcinoma (HCC) tumour microenvironment (TME). LIM domain and actin binding 1 (LIMA1) is an actin-binding protein that is involved in controlling the biological behaviour and progression of specific solid tumours. We aimed to determine the effect of LIMA1 and exosome-associated miR-20a-5p in HCC development. LIMA1 and miR-20a-5p expression levels were examined by real-time quantitative PCR (qRT-PCR), western blotting or immunohistochemistry (IHC). Functional experiments, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) assays, colony formation assays, wound healing assays, and Transwell invasion assays, were performed to investigate the effect of LIMA1 and miR-20a-5p. A dual-luciferase reporter gene assay was performed to confirm the interaction of miR-20a-5p and LIMA1. Exosomes were characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. We noted that LIMA1 was downregulated in human HCC tissues and cells and remarkably correlated with overall survival (OS) and recurrence-free survival (RFS). LIMA1 overexpression suppressed HCC cell proliferation and metastasis in vitro and in vivo, while LIMA1 knockdown had the opposite effects. A mechanistic investigation showed that LIMA1 inhibited the Wnt/β-catenin signalling pathway by binding to BMI1 and inducing its destabilisation. Additionally, we found that LIMA1 expression in HCC cells could be suppressed by transferring CAF-derived exosomes harbouring oncogenic miR-20a-5p. In summary, LIMA1 is a tumour suppressor that inhibits the Wnt/β-catenin signalling pathway and is downregulated by CAF-derived exosomes carrying oncogenic miR-20a-5p in HCC.
Collapse
Affiliation(s)
- Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Zhiqiang Liu
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
| | - Tianbing Wang
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Graduate School, Anhui Medical University, Hefei 230032, China
- Department of General Surgery, Anhui No. 2 Provinicial People’s Hospital, Hefei 230011, China
- Correspondence: (Z.W.); (W.W.); Tel.: +86-13965012315 (Z.W.); +86-13805694400 (W.W.)
| |
Collapse
|
9
|
Ma W, Liao Y, Gao Z, Zhu W, Liu J, She W. Overexpression of LIMA1 Indicates Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221109493. [PMID: 35837368 PMCID: PMC9274436 DOI: 10.1177/11795549221109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: LIMA1 encodes LIM domain and actin binding 1, a
cytoskeleton-associated protein whose loss has been linked to migration and
invasion behavior of cancer cells. However, the roles of LIMA1 underlying
the malignant behavior of tumors in head and neck squamous cell carcinoma
(HNSC) are not fully understood. Methods: We conducted a multi-omics study on the role of LIMA1 in HNSC based on The
Cancer Genome Atlas data. Subsequent in vitro experiments were performed to
validate the results of bioinformatic analysis. We first identified the
correlation between LIMA1 and tumor cell functional states
according to single-cell sequencing data in HNSC. The potential downstream
effects of LIMA1 were explored for gene ontology and Kyoto Encyclopedia of
Genes and Genomes pathways through functional enrichment analysis of the
gene sets that correlated with LIMA1 in HNSC. The
prognostic role of LIMA1 was assessed using the log rank test to compare
difference in survival between LIMA1High and LIMA1Low
patients. Univariate Cox regression and multivariate Cox regression were
further carried out to identify the prognostic value of LIMA1 in HNSC. Results: LIMA1 was identified as a prognostic biomarker and is associated with
epithelial-mesenchymal transition (EMT) progress in HNSC. In vitro silencing
of LIMA1 suppressed EMT and related pathways in HNSC. Conclusions: LIMA1 promotes EMT and further leads to tumor invasion and metastasis.
Increased expression of LIMA1 indicates poor survival,
identifying it as a prognostic biomarker in HNSC.
Collapse
Affiliation(s)
- Wei Ma
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.,Department of Otolaryngology-Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Ziwen Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Wenyan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Jianbing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Yancheng City Dafeng People's Hospital, Yancheng, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Lata S, Mishra R, Arya RP, Arora P, Lahon A, Banerjea AC, Sood V. Where all the Roads Meet? A Crossover Perspective on Host Factors Regulating SARS-CoV-2 infection. J Mol Biol 2022; 434:167403. [PMID: 34914966 PMCID: PMC8666384 DOI: 10.1016/j.jmb.2021.167403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023]
Abstract
COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ravi P. Arya
- KSBS, Indian Institute of Technology, New Delhi, India
| | - Pooja Arora
- Hansraj College, University of Delhi, New Delhi, India
| | | | - Akhil C. Banerjea
- Institute of Advanced Virology, Kerala, India,Corresponding authors
| | - Vikas Sood
- Biochemistry Department, Jamia Hamdard, New Delhi, India,Corresponding authors
| |
Collapse
|
11
|
Duethorn B, Groll F, Rieger B, Drexler HCA, Brinkmann H, Kremer L, Stehling M, Borowski MT, Mildner K, Zeuschner D, Zernicka-Goetz M, Stemmler MP, Busch KB, Vaquerizas JM, Bedzhov I. Lima1 mediates the pluripotency control of membrane dynamics and cellular metabolism. Nat Commun 2022; 13:610. [PMID: 35105859 PMCID: PMC8807836 DOI: 10.1038/s41467-022-28139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lima1 is an extensively studied prognostic marker of malignancy and is also considered to be a tumour suppressor, but its role in a developmental context of non-transformed cells is poorly understood. Here, we characterise the expression pattern and examined the function of Lima1 in mouse embryos and pluripotent stem cell lines. We identify that Lima1 expression is controlled by the naïve pluripotency circuit and is required for the suppression of membrane blebbing, as well as for proper mitochondrial energetics in embryonic stem cells. Moreover, forcing Lima1 expression enables primed mouse and human pluripotent stem cells to be incorporated into murine pre-implantation embryos. Thus, Lima1 is a key effector molecule that mediates the pluripotency control of membrane dynamics and cellular metabolism.
Collapse
Affiliation(s)
- Binyamin Duethorn
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Fabian Groll
- Regulatory Genomics group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Bettina Rieger
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Schlossplatz 5, 48149, Münster, Germany
| | - Hannes C A Drexler
- Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Ludmila Kremer
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Marie-Theres Borowski
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Schlossplatz 5, 48149, Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA, 91125, USA
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen, Germany
| | - Karin B Busch
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Schlossplatz 5, 48149, Münster, Germany
| | - Juan M Vaquerizas
- Regulatory Genomics group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany.,MRC London Institute of Medical Sciences, Du Cane Road, W12 0NN, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany.
| |
Collapse
|
12
|
Miyazaki S, Funamoto T, Sekimoto T, Kurogi S, Ohta T, Nagai T, Tajima T, Imasaka M, Yoshinobu K, Araki K, Araki M, Choijookhuu N, Hishikawa Y, Chosa E. EPLINβ Is Involved in the Assembly of Cadherin-catenin Complexes in Osteoblasts and Affects Bone Formation. Acta Histochem Cytochem 2022; 55:99-110. [PMID: 35821749 PMCID: PMC9253499 DOI: 10.1267/ahc.22-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Epithelial protein lost in neoplasm (EPLIN) is an actin-associated cytoskeletal protein that plays an important role in epithelial cell adhesion. EPLIN has two isoforms: EPLINα and EPLINβ. In this study, we investigated the role of EPLINβ in osteoblasts using EPLINβ-deficient (EPLINβGT/GT) mice. The skeletal phenotype of EPLINβGT/GT mice is indistinguishable from the wildtype (WT), but bone properties and strength were significantly decreased compared with WT littermates. Histomorphological analysis revealed altered organization of bone spicules and osteoblast cell arrangement, and decreased alkaline phosphatase activity in EPLINβGT/GT mouse bones. Transmission electron microscopy revealed wider intercellular spaces between osteoblasts in EPLINβGT/GT mice, suggesting aberrant cell adhesion. In EPLINβGT/GT osteoblasts, α- and β-catenins and F-actin were observed at the cell membrane, but OB-cadherin was localized at the perinuclear region, indicating that cadherin-catenin complexes were not formed. EPLINβ knockdown in MC3T3-e1 osteoblast cells showed similar results as in calvaria cell cultures. Bone formation markers, such as RUNX2, Osterix, ALP, and Col1a1 mRNA were reduced in EPLINβ knockdown cells, suggesting an important role for EPLINβ in osteoblast formation. In conclusion, we propose that EPLINβ is involved in the assembly of cadherin-catenin complexes in osteoblasts and affects bone formation.
Collapse
Affiliation(s)
- Shihoko Miyazaki
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Taro Funamoto
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Tomohisa Sekimoto
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Syuji Kurogi
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Tomomi Ohta
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Takuya Nagai
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Takuya Tajima
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| | - Mai Imasaka
- Department of Genetics, Hyogo College of Medicine
| | - Kumiko Yoshinobu
- Institute of Resource Development and Analysis, Kumamoto University
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Etsuo Chosa
- Division of Orthopaedic Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
13
|
Zeng J, Jiang WG, Sanders AJ. Epithelial Protein Lost in Neoplasm, EPLIN, the Cellular and Molecular Prospects in Cancers. Biomolecules 2021; 11:biom11071038. [PMID: 34356662 PMCID: PMC8301816 DOI: 10.3390/biom11071038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial Protein Lost In Neoplasm (EPLIN), also known as LIMA1 (LIM Domain And Actin Binding 1), was first discovered as a protein differentially expressed in normal and cancerous cell lines. It is now known to be key to the progression and metastasis of certain solid tumours. Despite a slow pace in understanding the biological role in cells and body systems, as well as its clinical implications in the early years since its discovery, recent years have witnessed a rapid progress in understanding the mechanisms of this protein in cells, diseases and indeed the body. EPLIN has drawn more attention over the past few years with its roles expanding from cell migration and cytoskeletal dynamics, to cell cycle, gene regulation, angiogenesis/lymphangiogenesis and lipid metabolism. This concise review summarises and discusses the recent progress in understanding EPLIN in biological processes and its implications in cancer.
Collapse
|
14
|
Linklater ES, Duncan ED, Han KJ, Kaupinis A, Valius M, Lyons TR, Prekeris R. Rab40-Cullin5 complex regulates EPLIN and actin cytoskeleton dynamics during cell migration. J Cell Biol 2021; 220:212111. [PMID: 33999101 PMCID: PMC8129794 DOI: 10.1083/jcb.202008060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Erik S Linklater
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily D Duncan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Cancer Center, Young Women's Breast Cancer Translational Program, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
Wirsing AM, Bjerkli IH, Steigen SE, Rikardsen O, Magnussen SN, Hegge B, Seppola M, Uhlin-Hansen L, Hadler-Olsen E. Validation of Selected Head and Neck Cancer Prognostic Markers from the Pathology Atlas in an Oral Tongue Cancer Cohort. Cancers (Basel) 2021; 13:cancers13102387. [PMID: 34069237 PMCID: PMC8156750 DOI: 10.3390/cancers13102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The Pathology Atlas is an open-access database that reports the prognostic value of protein-coding transcripts in 17 cancers, including head and neck cancer. However, cancers of the various head and neck anatomical sites are specific biological entities. Thus, the aim of the present study was to validate promising prognostic markers for head and neck cancer reported in the Pathology Atlas in oral tongue squamous cell carcinoma (OTSCC). We selected three promising markers from the Pathology Atlas (CALML5, CD59, LIMA1), and analyzed their prognostic value in a Norwegian OTSCC cohort comprising 121 patients. We correlated target protein and mRNA expression in formalin-fixed, paraffin-embedded cancer tissue to five-year disease-specific survival (DSS) in univariate and multivariate analyses. Protein expression of CALML5 and LIMA1 were significantly associated with five-year DSS in the OTSCC cohort in univariate analyses (p = 0.016 and p = 0.043, respectively). In multivariate analyses, lymph node metastases, tumor differentiation, and CALML5 were independent prognosticators. The prognostic role of the other selected markers for head and neck cancer patients identified through unbiased approaches could not be validated in our OTSCC cohort. This underlines the need for subsite-specific analyses for head and neck cancer.
Collapse
Affiliation(s)
- Anna Maria Wirsing
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Inger-Heidi Bjerkli
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Sonja Eriksson Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Oddveig Rikardsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Synnøve Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Marit Seppola
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- The Public Dental Health Service Competence Centre of Northern Norway, 9019 Tromsø, Norway
- Correspondence: ; Tel.: +47-48-06-72-49
| |
Collapse
|
16
|
EPLIN Expression in Gastric Cancer and Impact on Prognosis and Chemoresistance. Biomolecules 2021; 11:biom11040547. [PMID: 33917939 PMCID: PMC8068319 DOI: 10.3390/biom11040547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial protein lost in neoplasm (EPLIN) has been implicated as a suppressor of cancer progression. The current study explored EPLIN expression in clinical gastric cancer and its association with chemotherapy resistance. EPLIN transcript expression, in conjunction with patient clinicopathological information and responsiveness to neoadjuvant chemotherapy (NAC), was explored in two gastric cancer cohorts collected from the Beijing Cancer Hospital. Kaplan-Meier survival analysis was undertaken to explore EPLIN association with patient survival. Reduced EPLIN expression was associated with significant or near significant reductions of overall, disease-free, first progression or post-progression survival in the larger host cohort and Kaplan Meier plotter datasets. In the larger cohort EPLIN expression was significantly higher in the combined T1 + T2 gastric cancer group compared to the T3 + T4 group and identified to be an independent prognostic factor of disease-free survival and overall survival by multivariate analysis. In the smaller, NAC cohort, EPLIN expression was found to be significantly lower in tumour tissues than in paratumour tissues. EPLIN expression was significantly associated with responsiveness to chemotherapy which contributes to overall survival. Together, EPLIN appears to be a prognostic factor and may be associated with patient sensitivity to NAC.
Collapse
|
17
|
Gonçalves J, Sharma A, Coyaud É, Laurent EMN, Raught B, Pelletier L. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. J Cell Biol 2021; 219:151837. [PMID: 32496561 PMCID: PMC7337498 DOI: 10.1083/jcb.201908132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Seebach J, Klusmeier N, Schnittler H. Autoregulatory "Multitasking" at Endothelial Cell Junctions by Junction-Associated Intermittent Lamellipodia Controls Barrier Properties. Front Physiol 2021; 11:586921. [PMID: 33488392 PMCID: PMC7815704 DOI: 10.3389/fphys.2020.586921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Vascular endothelial cell (EC) junctions are key structures controlling tissue homeostasis in physiology. In the last three decades, excellent studies have addressed many aspects of this complex and highly dynamic regulation, including cell signaling, remodeling processes of the proteins of tight junctions, adherens junctions, and gap junctions, the cytoskeleton, and post-transcriptional modifications, transcriptional activation, and gene silencing. In this dynamic process, vascular endothelial cadherin (VE-cadherin) provides the core structure of EC junctions mediating the physical adhesion of cells as well as the control of barrier function and monolayer integrity via remodeling processes, regulation of protein expression and post-translational modifications. In recent years, research teams have documented locally restricted dynamics of EC junctions in which actin-driven protrusions in plasma membranes play a central role. In this regard, our research group showed that the dynamics of VE-cadherin is driven by small (1-5 μm) actin-mediated protrusions in plasma membranes that, due to this specific function, were named "junction-associated intermittent lamellipodia" (JAIL). JAIL form at overlapping, adjacent cells, and exactly at this site new VE-cadherin interactions occur, leading to new VE-cadherin adhesion sites, a process that restores weak or lost VE-cadherin adhesion. Mechanistically, JAIL formation occurs locally restricted (1-5 μm) and underlies autoregulation in which the local VE-cadherin concentration is an important parameter. A decrease in the local concentration of VE-cadherin stimulates JAIL formation, whereas an increase in the concentration of VE-cadherin blocks it. JAIL mediated VE-cadherin remodeling at the subjunctional level have been shown to be of crucial importance in angiogenesis, wound healing, and changes in permeability during inflammation. The concept of subjunctional regulation of EC junctions is strongly supported by permeability assays, which can be employed to quantify actin-driven subjunctional changes. In this brief review, we summarize and discuss the current knowledge and concepts of subjunctional regulation in the endothelium.
Collapse
Affiliation(s)
- Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Klusmeier
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
19
|
Taha M, Aldirawi M, März S, Seebach J, Odenthal-Schnittler M, Bondareva O, Bojovic V, Schmandra T, Wirth B, Mietkowska M, Rottner K, Schnittler H. EPLIN-α and -β Isoforms Modulate Endothelial Cell Dynamics through a Spatiotemporally Differentiated Interaction with Actin. Cell Rep 2020; 29:1010-1026.e6. [PMID: 31644899 DOI: 10.1016/j.celrep.2019.09.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-β by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-β levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-β has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-β turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function.
Collapse
Affiliation(s)
- Muna Taha
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Mohammed Aldirawi
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Sigrid März
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Maria Odenthal-Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Department of Ophthalmology, Westfälische Wilhelms University of Münster, Medical Center, 48149 Münster, Germany
| | - Olga Bondareva
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Vesna Bojovic
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Thomas Schmandra
- Heart and Vascular Clinic Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Institute for Analysis and Numerics, Westfälische Wilhelms University of Münster, 48149 Münster Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 CiM), Westfälische Wilhelms University of Münster, 48149 Münster, Germany.
| |
Collapse
|
20
|
Early Events in Actin Cytoskeleton Dynamics and E-Cadherin-Mediated Cell-Cell Adhesion during Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9030578. [PMID: 32121325 PMCID: PMC7140442 DOI: 10.3390/cells9030578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in development and also in initiation of metastasis during cancer. Disruption of cell-cell contacts during EMT allowing cells to detach from and migrate away from their neighbors remains poorly understood. Using immunofluorescent staining and live-cell imaging, we analyzed early events during EMT induced by epidermal growth factor (EGF) in IAR-20 normal epithelial cells. Control cells demonstrated stable adherens junctions (AJs) and robust contact paralysis, whereas addition of EGF caused rapid dynamic changes at the cell-cell boundaries: fragmentation of the circumferential actin bundle, assembly of actin network in lamellipodia, and retrograde flow. Simultaneously, an actin-binding protein EPLIN was phosphorylated, which may have decreased the stability of the circumferential actin bundle. Addition of EGF caused gradual replacement of linear E-cadherin–based AJs with dynamic and unstable punctate AJs, which, unlike linear AJs, colocalized with the mechanosensitive protein zyxin, confirming generation of centripetal force at the sites of cell-cell contacts during EMT. Our data show that early EMT promotes heightened dynamics at the cell-cell boundaries—replacement of stable AJs and actin structures with dynamic ones—which results in overall weakening of cell-cell adhesion, thus priming the cells for front-rear polarization and eventual migration.
Collapse
|
21
|
The Yin and Yang of cancer genes. Gene 2019; 704:121-133. [DOI: 10.1016/j.gene.2019.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
|
22
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
23
|
Hofer I, Schimp C, Taha M, Seebach J, Aldirawi M, Cao J, Leidl Q, Ahle A, Schnittler H. Advanced Methods for the Investigation of Cell Contact Dynamics in Endothelial Cells Using Florescence-Based Live Cell Imaging. J Vasc Res 2018; 55:350-364. [DOI: 10.1159/000494933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
|
24
|
Collins RJ, Morgan LD, Owen S, Ruge F, Jiang WG, Sanders AJ. Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis. Int J Cancer 2018; 143:2537-2550. [PMID: 30098000 DOI: 10.1002/ijc.31786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023]
Abstract
EPLIN is frequently downregulated or lost in various cancers. The purpose of this study was to evaluate the importance of EPLIN in prostate cancer progression, with particular focus on the mechanistic implications to elucidate EPLIN's tumor suppressive function in cancer. EPLIN expression was evaluated in prostate cancer cell lines and tissues. PC-3 and LNCaP EPLINα overexpression models were generated through transfection with EPLINα sequence and EPLIN knockdown was achieved using shRNA in CA-HPV-10 cells. Functional assays were performed to evaluate cellular characteristics and potential mechanisms were evaluated using a protein microarray, and validated using western blot analysis. EPLIN expression was reduced in clinical prostate cancer sections, including hyperplasia (p ≤ 0.001) and adenocarcinoma (p = 0.005), when compared to normal prostate tissue. EPLINα overexpression reduced cell growth, migration and invasion, and influenced transcript, protein and phosphoprotein expression of paxillin, FAK and Src. EPLIN knockdown increased the invasive and migratory nature of CA-HPV-10 cells and also induced changes to FAK and Src total and/or phospho expression. Functional characterization of cellular migration and invasion in addition to FAK and Src inhibition demonstrated differential effects between control and EPLINα overexpression and EPLIN knockdown cell lines. This study highlights that EPLIN expression in prostate cancer is able to influence several aspects of cancer cell characteristics, including cell growth, migration and invasion. The mechanism of the tumor suppressive action of EPLIN remains to be fully elucidated; and this study proposes a role for EPLIN's ability to regulate the aggressive characteristics of prostate cancer cells partially through regulating FAK/Src signaling.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sioned Owen
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
25
|
RACK1/TRAF2 regulation of modulator of apoptosis-1 (MOAP-1). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:684-694. [DOI: 10.1016/j.bbamcr.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/23/2023]
|
26
|
Sakakibara S, Maruo T, Miyata M, Mizutani K, Takai Y. Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions. Genes Cells 2018; 23:185-199. [DOI: 10.1111/gtc.12566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shotaro Sakakibara
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
27
|
Wu D. Epithelial protein lost in neoplasm (EPLIN): Beyond a tumor suppressor. Genes Dis 2017; 4:100-107. [PMID: 30258911 PMCID: PMC6136588 DOI: 10.1016/j.gendis.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/25/2017] [Indexed: 12/25/2022] Open
Abstract
The majority of cancer-related deaths are caused by tumor recurrence, metastasis and therapeutic resistance. During the late stages of tumor progression, multiple factors are involved, including the downregulation and/or loss of function of metastasis suppressors. Epithelial protein lost in neoplasm (EPLIN), an actin-binding protein, was initially identified as a putative tumor suppressor that is frequently downregulated in epithelial tumors. Recent evidence indicates that EPLIN may negatively regulate epithelia-to-mesenchymal transition (EMT), a crucial process by which cancer cells acquire invasive capabilities and therapeutic resistance. Importantly, downregulation of EPLIN is associated with clinical metastasis in a variety of solid tumors, suggesting that EPLIN could be a suppressor of metastasis. In this review, I will discuss the regulation and function of EPLIN in human cancer cells and explore the clinical significance of EPLIN in metastatic disease.
Collapse
Affiliation(s)
- Daqing Wu
- Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA,MetCure Therapeutics LLC, Atlanta, GA, USA,Corresponding author. Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
28
|
p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN. Cancer Lett 2017; 390:58-66. [PMID: 28093207 DOI: 10.1016/j.canlet.2016.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/07/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022]
Abstract
The tumor suppressor gene p53 is frequently mutated in human cancer. p53 executes various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. In this study, LIM domain and Actin-binding protein 1 (LIMA1) was identified as a target of the p53 family using a cDNA microarray. We also evaluated genome-wide occupancy of the p53 protein by performing chromatin immunoprecipitation-sequencing (ChIP-seq) and identified two p53 response elements in the LIMA1 gene. LIMA1 protein levels were increased by treatment with nutlin-3a, a small molecule that activates endogenous p53. In addition, LIMA1 expression was significantly downregulated in cancers compared with normal tissues. Knockdown of LIMA1 significantly enhanced cancer cell invasion and partially inhibited p53-induced suppression of cell invasion. Furthermore, low expression of LIMA1 in cancer patients correlated with decreased survival and poor prognosis. Thus, p53-induced LIMA1 inhibits cell invasion, and the downregulation of LIMA1 caused by p53 mutation results in decreased survival in cancer patients. Collectively, this study reveals the molecular mechanism of LIMA1 downregulation in various cancers and suggests that LIMA1 may be a novel prognostic predictor and a therapeutic target for cancer.
Collapse
|
29
|
Abstract
Treatment of malignant disease is of paramount importance in modern medicine. In 2012, it was estimated that 162,000 people died from cancer in the UK which illustrates a fundamental problem. Traditional treatments for cancer have various drawbacks, and this creates a considerable need for specific, molecular targets to overcome cancer spread. Epithelial protein lost in neoplasm (EPLIN) is an actin-associated molecule which has been implicated in the development and progression of various cancers including breast, prostate, oesophageal and lung where EPLIN expression is frequently lost as the cancer progresses. EPLIN is important in the regulation of actin dynamics and has multiple associations at epithelial cells junctions. Thus, EPLIN loss in cancer may have significant effects on cancer cell migration and invasion, increasing metastatic potential. Overexpression of EPLIN has proved to be an effective tool for manipulating cancerous traits such as reducing cell growth and cell motility and rendering cells less invasive illustrating the therapeutic potential of EPLIN. Here, we review the current state of knowledge of EPLIN, highlighting EPLIN involvement in regulating cytoskeletal dynamics, signalling pathways and implications in cancer and metastasis.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - Malcolm D Mason
- Department of Clinical Oncology, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
30
|
Abstract
The ROS1 gene belongs to the sevenless subfamily of tyrosine kinase insulin receptor genes. A literature review identified a ROS1 fusion in 2.54% of the patients with lung adenocarcinoma and even higher frequencies in spitzoid neoplasms and inflammatory myofibroblastic tumors. At present, 26 genes were found to fuse with ROS1, some of them already known to fuse with RET and ALK. All the fusion proteins retain the ROS1 kinase domain, but rarely its transmembrane domain. Most of the partners have dimerization domains that are retained in the fusion, presumably leading to constitutive ROS1 tyrosine kinase activation. Some partners have transmembrane domains that are retained or not in the chimeric proteins. Therefore, different ROS1 fusions have distinct subcellular localization, suggesting that they may activate different substrates in vivo.
Collapse
Affiliation(s)
- Arnaud Uguen
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service d'Anatomie et Cytologie Pathologiques, Hôpital Morvan, CHRU Brest, Brest, France
| | - Marc De Braekeleer
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| |
Collapse
|
31
|
Liu R, Martin TA, Jordan NJ, Ruge F, Ye L, Jiang WG. Epithelial protein lost in neoplasm-α (EPLIN-α) is a potential prognostic marker for the progression of epithelial ovarian cancer. Int J Oncol 2016; 48:2488-96. [PMID: 27035883 DOI: 10.3892/ijo.2016.3462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial protein lost in neoplasm-α (EPLIN-α) is a cytoskeletal protein whose expression is often lost or is aberrant in cancerous cells and tissues and whose loss is believed to be involved in aggressive phenotypes. This study examined this molecule in human epithelial ovarian tissues and investigated the cellular impact of EPLIN-α on ovarian cancer cells (EOC), SKOV3 and COV504. The expression of EPLIN-α in human ovarian tissues and EOC was assessed at both the mRNA and protein levels using reverse transcription-PCR (RT-PCR) and immunohistochemistry, respectively. In vitro assays for cellular matrix adhesion and migration (confirmed by an electrical cell substrate impedance sensing (ECIS) based method), invasion and cell growth were employed in order to assess the biological influence of EPLIN-α expression on EOC cells. Immunohistochemical analysis of ovarian cancer samples demonstrated that only a small number expressed EPLIN-α protein. Downregulation of EPLIN-α protein in EOC cell lines increased the growth, invasion, adhesion and migration in vitro. This EPLIN-α downregulation may have a prognostic value. From these data, we conclude that downregulation of EPLIN-α may be associated with poorer patient prognosis, and that this molecule appears to play a tumour suppressor role by inhibition of EOC growth and migration.
Collapse
Affiliation(s)
- Rong Liu
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Tracey A Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicola J Jordan
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
32
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|
33
|
Caburet S, Anttonen M, Todeschini AL, Unkila-Kallio L, Mestivier D, Butzow R, Veitia RA. Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes. BMC Cancer 2015; 15:251. [PMID: 25884336 PMCID: PMC4407711 DOI: 10.1186/s12885-015-1283-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background Ovarian granulosa cell tumors (GCTs) are the most frequent sex cord-stromal tumors. Several studies have shown that a somatic mutation leading to a C134W substitution in the transcription factor FOXL2 appears in more than 95% of adult-type GCTs. Its pervasive presence suggests that FOXL2 is the main cancer driver gene. However, other mutations and genomic changes might also contribute to tumor formation and/or progression. Methods We have performed a combined comparative genomic hybridization and transcriptomic analyses of 10 adult-type GCTs to obtain a picture of the genomic landscape of this cancer type and to identify new candidate co-driver genes. Results Our results, along with a review of previous molecular studies, show the existence of highly recurrent chromosomal imbalances (especially, trisomy 14 and monosomy 22) and preferential co-occurrences (i.e. trisomy 14/monosomy 22 and trisomy 7/monosomy 16q). In-depth analyses showed the presence of recurrently broken, amplified/duplicated or deleted genes. Many of these genes, such as AKT1, RUNX1 and LIMA1, are known to be involved in cancer and related processes. Further genomic explorations suggest that they are functionally related. Conclusions Our combined analysis identifies potential candidate genes, whose alterations might contribute to adult-type GCT formation/progression together with the recurrent FOXL2 somatic mutation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| | - Mikko Anttonen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Anne-Laure Todeschini
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Leila Unkila-Kallio
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Denis Mestivier
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Department of pathology, University of Helsinki, and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| |
Collapse
|
34
|
Ohoka A, Kajita M, Ikenouchi J, Yako Y, Kitamoto S, Kon S, Ikegawa M, Shimada T, Ishikawa S, Fujita Y. EPLIN is a crucial regulator for extrusion of RasV12-transformed cells. J Cell Sci 2015; 128:781-9. [PMID: 25609711 DOI: 10.1242/jcs.163113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At the initial stage of carcinogenesis, a mutation occurs in a single cell within a normal epithelial layer. We have previously shown that RasV12-transformed cells are apically extruded from the epithelium when surrounded by normal cells. However, the molecular mechanisms underlying this phenomenon remain elusive. Here, we demonstrate that Cav-1-containing microdomains and EPLIN (also known as LIMA1) are accumulated in RasV12-transformed cells that are surrounded by normal cells. We also show that knockdown of Cav-1 or EPLIN suppresses apical extrusion of RasV12-transformed cells, suggesting their positive role in the elimination of transformed cells from epithelia. EPLIN functions upstream of Cav-1 and affects its enrichment in RasV12-transformed cells that are surrounded by normal cells. Furthermore, EPLIN regulates non-cell-autonomous activation of myosin-II and protein kinase A (PKA) in RasV12-transformed cells. In addition, EPLIN substantially affects the accumulation of filamin A, a vital player in epithelial defense against cancer (EDAC), in the neighboring normal cells, and vice versa. These results indicate that EPLIN is a crucial regulator of the interaction between normal and transformed epithelial cells.
Collapse
Affiliation(s)
- Atsuko Ohoka
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuta Yako
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Sho Kitamoto
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Masaya Ikegawa
- Genomics, Proteomics and Biomedical Functions, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Takashi Shimada
- Shimadzu Corporation, Life Science Research Center, 1-3 Kanda, Nishiki-cho, Chiyoda-ku, Tokyo 101-8448, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| |
Collapse
|
35
|
Karaköse E, Geiger T, Flynn K, Lorenz-Baath K, Zent R, Mann M, Fässler R. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. J Cell Sci 2015; 128:1023-33. [PMID: 25609703 DOI: 10.1242/jcs.162545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN.
Collapse
Affiliation(s)
- Esra Karaköse
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Tamar Geiger
- Department of Proteomics and Signal Transductions, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Kevin Flynn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katrin Lorenz-Baath
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, 37232, USA Department of Medicine, Nashville Veterans Affairs Medical Center, Nashville, TN, 37232, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transductions, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
36
|
Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma. Nat Commun 2015; 6:5908. [PMID: 25569716 DOI: 10.1038/ncomms6908] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/19/2014] [Indexed: 01/01/2023] Open
Abstract
MALT1 is the only known paracaspase and is a critical mediator of B- and T-cell receptor signalling. The function of the MALT1 gene is subverted by oncogenic chimeric fusions arising from the recurrent t(11;18)(q21;q21) aberration, which is the most frequent translocation in mucosa-associated lymphoid tissue (MALT) lymphoma. API2-MALT1-positive MALT lymphomas manifest antibiotic resistance and aggressive clinical behaviour with poor clinical outcome. However, the mechanisms underlying API2-MALT1-induced MALT lymphomagenesis are not fully understood. Here we show that API2-MALT1 induces paracaspase-mediated cleavage of the tumour suppressor protein LIMA1. LIMA1 binding by API2-MALT1 is API2 dependent and proteolytic cleavage is dependent on MALT1 paracaspase activity. Intriguingly, API2-MALT1-mediated proteolysis generates a LIM domain-only (LMO)-containing fragment with oncogenic properties in vitro and in vivo. Importantly, primary MALT lymphomas harbouring the API2-MALT1 fusion uniquely demonstrate LIMA1 cleavage fragments. Our studies reveal a novel paracaspase-mediated oncogenic gain-of-function mechanism in the pathogenesis of MALT lymphoma.
Collapse
|
37
|
Shaw AT, Ou SHI, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371:1963-71. [PMID: 25264305 PMCID: PMC4264527 DOI: 10.1056/nejmoa1406766] [Citation(s) in RCA: 1439] [Impact Index Per Article: 143.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chromosomal rearrangements of the gene encoding ROS1 proto-oncogene receptor tyrosine kinase (ROS1) define a distinct molecular subgroup of non-small-cell lung cancers (NSCLCs) that may be susceptible to therapeutic ROS1 kinase inhibition. Crizotinib is a small-molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and another proto-oncogene receptor tyrosine kinase, MET. METHODS We enrolled 50 patients with advanced NSCLC who tested positive for ROS1 rearrangement in an expansion cohort of the phase 1 study of crizotinib. Patients were treated with crizotinib at the standard oral dose of 250 mg twice daily and assessed for safety, pharmacokinetics, and response to therapy. ROS1 fusion partners were identified with the use of next-generation sequencing or reverse-transcriptase-polymerase-chain-reaction assays. RESULTS The objective response rate was 72% (95% confidence interval [CI], 58 to 84), with 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached). Median progression-free survival was 19.2 months (95% CI, 14.4 to not reached), with 25 patients (50%) still in follow-up for progression. Among 30 tumors that were tested, we identified 7 ROS1 fusion partners: 5 known and 2 novel partner genes. No correlation was observed between the type of ROS1 rearrangement and the clinical response to crizotinib. The safety profile of crizotinib was similar to that seen in patients with ALK-rearranged NSCLC. CONCLUSIONS In this study, crizotinib showed marked antitumor activity in patients with advanced ROS1-rearranged NSCLC. ROS1 rearrangement defines a second molecular subgroup of NSCLC for which crizotinib is highly active. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).
Collapse
Affiliation(s)
- Alice T Shaw
- From the Massachusetts General Hospital Cancer Center (A.T.S., L.P.L., Z.Z., J.W.C., A.J.I.), Dana-Farber Cancer Institute (G.I.S.), and Beth Israel Deaconess Medical Center (D.B.C.) - all in Boston; University of California at Irvine, Irvine (S.-H.I.O.), and Pfizer Oncology, La Jolla (W.T., S.M.S., L.M.T., J.G.C., K.D.W.) - both in California; Seoul National University Hospital, Seoul, South Korea (Y.-J.B.); University of Colorado, Aurora (D.R.C., M.V.-G., R.C.D.); Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (B.J.S.); University of Chicago, Chicago (R.S.); Memorial Sloan Kettering Cancer Center, New York (G.J.R.); Karolinska Institutet, Stockholm (Z.Z.); and Rho, Chapel Hill, NC (P.S.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene 2014; 34:3582-92. [PMID: 25220418 DOI: 10.1038/onc.2014.289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the majority of recurrences are due to metastasis. However, the molecular mechanisms that regulate OS metastatic spread are largely unknown. In this study, we report that special AT-rich-binding protein 2 (SATB2) is highly expressed in OS cells and tumors. Short hairpin RNA-mediated knockdown of SATB2 (sh-SATB2) decreases migration and invasion of OS cells without affecting proliferation or viability. Microarray analysis identified genes that were differentially regulated by SATB2 including the actin-binding protein Epithelial Protein Lost In Neoplasm (EPLIN), which was upregulated in sh-SATB2 cells. Silencing EPLIN rescues the decreased invasion observed in sh-SATB2 cells. Pathway analyses of SATB2-regulated genes revealed enrichment of those involved in cytoskeleton dynamics, and increased stress fiber formation was detected in cells with SATB2 knockdown. Furthermore, sh-SATB2 cells exhibit increased RhoA, decreased Rac1 and increased phosphorylation of focal adhesion kinase (FAK) and paxillin. These findings identify SATB2 as a novel regulator of OS invasion, in part via effects on EPLIN and the cytoskeleton.
Collapse
|
39
|
Furukawa D, Chijiwa T, Matsuyama M, Mukai M, Matsuo EI, Nishimura O, Kawai K, Suemizu H, Hiraoka N, Nakagohri T, Yasuda S, Nakamura M. Zinc finger protein 185 is a liver metastasis-associated factor in colon cancer patients. Mol Clin Oncol 2014; 2:709-713. [PMID: 25054034 DOI: 10.3892/mco.2014.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023] Open
Abstract
LIM domain proteins are involved in several fundamental biological processes, including cell lineage specification, cytoskeleton organization and organ development. Zinc finger protein 185 (ZNF185) is one of the LIM domain proteins considered to be involved in the regulation of cellular differentiation and/or proliferation. However, the detailed functions and properties of ZNF185 in the multistep process of cancer biology have not yet been elucidated. In this study, we analyzed the association between ZNF185 and the clinicopathological characteristics of colon cancer, such as patient age and gender, histological type, lymphatic and venous involvement, T and N status, liver metastasis and stage. ZNF185 protein expression was immunohistochemically analyzed and ZNF185 was detected in the cancer cells of 78 of the 87 colon cancer patients. The correlation between ZNF185 and histological type was significant (P=0.010, G-test). ZNF185 expression was also significantly correlated with liver metastasis (P=0.030, G-test). A multivariate analysis using the Cox proportional hazards model was performed among cause-specific survival rate, ZNF185 expression and clinicopathological characteristics. Histological type, liver metastasis and ZNF185 expression were found to be independent prognostic indicators (P=0.028, P<0.0001 and P=0.036, respectively). Therefore, ZNF185 expression was found to be an independent indicator of liver metastasis and prognosis in patients with colon cancer.
Collapse
Affiliation(s)
- Daisuke Furukawa
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tsuyoshi Chijiwa
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Masahiro Matsuyama
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masaya Mukai
- Department of Surgery, Tokai University Hachioji Hospital, Hachioji, Tokyo 192-0032, Japan
| | - Ei-Ichi Matsuo
- Global Application Development Center, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Osamu Nishimura
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan
| | - Kenji Kawai
- Pathological Analysis Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Seiei Yasuda
- Department of Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masato Nakamura
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
40
|
Tsurumi H, Harita Y, Kurihara H, Kosako H, Hayashi K, Matsunaga A, Kajiho Y, Kanda S, Miura K, Sekine T, Oka A, Ishizuka K, Horita S, Hattori M, Hattori S, Igarashi T. Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells. Kidney Int 2014; 86:548-57. [PMID: 24694988 DOI: 10.1038/ki.2014.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 01/16/2023]
Abstract
Mesangial cell migration, regulated by several growth factors, is crucial after glomerulopathy and during glomerular development. Directional migration requires the establishment of a polarized cytoskeletal arrangement, a process regulated by coordinated actin dynamics and focal adhesion turnover at the peripheral ruffles in migrating cells. Here we found high expression of the actin cross-linking protein EPLIN (epithelial protein lost in neoplasm) in mesangial cells. EPLIN was localized in mesangial angles, which consist of actin-containing microfilaments extending underneath the capillary endothelium, where they attach to the glomerular basement membrane. In cultured mesangial cells, EPLIN was localized in peripheral actin bundles at focal adhesions and formed a protein complex with paxillin. The MEK-ERK (extracellular signal-regulated kinase) cascade regulated EPLIN-paxillin interaction and induced translocalization of EPLIN from focal adhesion sites to peripheral ruffles. Knockdown of EPLIN in mesangial cells enhanced platelet-derived growth factor-induced focal adhesion disassembly and cell migration. Furthermore, EPLIN expression was decreased in mesangial proliferative nephritis in rodents and humans in vivo. These results shed light on the coordinated actin remodeling in mesangial cells during restorative remodeling. Thus, changes in expression and localization of cytoskeletal regulators underlie phenotypic changes in mesangial cells in glomerulonephritis.
Collapse
Affiliation(s)
- Haruko Tsurumi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, The University of Tokushima, Tokushima, Japan
| | - Kenji Hayashi
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Atsuko Matsunaga
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sekine
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyonobu Ishizuka
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Shigeru Horita
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Seisuke Hattori
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Igarashi
- 1] Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [2] National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
41
|
von Holstein SL. Tumours of the lacrimal gland. Epidemiological, clinical and genetic characteristics. Acta Ophthalmol 2013; 91 Thesis 6:1-28. [PMID: 24893972 DOI: 10.1111/aos.12271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumours of the lacrimal gland are rare, but the prognosis may be grave. To date, no population-based incidence and distribution data on lacrimal gland tumours exist. In addition, almost nothing is known about the genetic profile of epithelial tumours of the lacrimal gland. We collected specimens and clinical files on all biopsied lacrimal gland lesions in Denmark over a 34-year period and re-evaluated the diagnosis to provide updated population-based incidence rates and epidemiological characteristics. Clinical data regarding symptoms, clinical examinations, treatment and follow-up were collected for patients with adenoid cystic carcinoma (ACC), pleomorphic adenoma (PA), carcinoma ex pleomorphic adenoma (Ca-ex-PA) and mucoepidermoid carcinoma (MEC). Using RT-PCR, FISH, immunohistochemistry, Q-PCR and high-resolution array-based comparative genomic hybridization (arrayCGH) we explored the genetic characteristics including copy number alterations (CNA) in ACC, PA, Ca-ex-PA and MEC. The incidence of biopsied lacrimal gland lesions was 1.3/1,000,000/year, and ~50% were neoplastic lesions. Of these, 55% were malignant tumours with epithelial tumours as the most frequent. The overall incidence was increasing, and this was caused by an increase in biopsied non-neoplastic lesions. We found that 10/14 ACCs either expressed the MYB-NFIB fusion gene and/or had rearrangements of MYB. All ACCs expressed the MYB protein. ACC was characterized by recurrent copy number losses involving 6q, 12q and 17q and gains involving 19q, 8q and 11q. ArrayCGH revealed an apparently normal genomic profile in 11/19 PAs. The remaining 8 PAs had recurrent copy number losses involving 1p, 6q, 8q and 13q and gain involving 9p. PA expressed PLAG1 in all tumours whereas only 2/29 tumours expressed HMGA2. Ca-ex-PA was characterized by recurrent copy number gain involving 22q. PLAG1 was expressed in 3/5 Ca-ex-PA whereas none of these tumours expressed HMGA2. MEC expressed the CRTC1-MAML2, and this fusion was found to be tumour-specific for lacrimal gland MEC. In conclusion, lacrimal gland lesions that require pathological evaluation are rare in the Danish population, and the incidence rate of biopsied benign lesions is increasing. Epithelial tumours of the lacrimal gland are molecularly very similar to their salivary gland counterparts in the expression of the tumour-specific fusion genes and in their genomic imbalances as demonstrated by arrayCGH. MYB-NFIB is a useful biomarker for ACC and MYB, and its downstream target genes may be potential therapeutic targets for these tumours.
Collapse
|
42
|
von Holstein SL, Fehr A, Persson M, Therkildsen MH, Prause JU, Heegaard S, Stenman G. Adenoid cystic carcinoma of the lacrimal gland: MYB gene activation, genomic imbalances, and clinical characteristics. Ophthalmology 2013; 120:2130-8. [PMID: 23725736 DOI: 10.1016/j.ophtha.2013.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To investigate genetic alterations in lacrimal gland adenoid cystic carcinomas (ACCs) with emphasis on the MYB-NFIB fusion oncogene and its downstream targets, MYB rearrangements, and copy number alterations in relation to clinical data and survival. DESIGN Experimental study. PARTICIPANTS AND CONTROLS Fourteen patients with primary lacrimal gland ACC were included. As a control, we also studied the expression of MYB-NFIB in 19 non-ACC lacrimal gland tumors. METHODS The expression and identity of MYB-NFIB fusion transcripts were studied using reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequence analyses. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the expression of MYB/MYB-NFIB target genes. High-resolution array-based comparative genomic hybridization (arrayCGH) and fluorescence in situ hybridization were used to study copy number alterations and MYB rearrangements. MAIN OUTCOME MEASURES mRNA or protein expression of MYB-NFIB, MYB, and its down stream targets; copy number alterations; and genomic rearrangements. RESULTS The median age of the patients was 43 years (equal gender distribution), and the median time of survival was 8.6 years. The MYB-NFIB fusion was expressed in 7 of 14 ACCs. In contrast, all non-ACC tumors were fusion-negative. All 13 ACCs tested stained positive for the MYB protein, and for the MYB targets KIT and BCL2, 12 were positive for MYC and CCNE1, and 9 were positive for CCNB1. Rearrangements of MYB were detected in 8 of 13 cases, including 2 cases with gain of an apparently intact MYB gene. The arrayCGH analysis revealed recurrent copy number alterations with losses involving 6q23-q27, 12q12-q14.1, and 17p13.3-p12, and gains involving 19q12, 19q13.31-qter, 8q24.13-q24.21, 11q12.3-q14.1, and 6q23.3. Neither MYB-NFIB fusion nor any copy number alteration correlated with survival. CONCLUSIONS Lacrimal gland ACCs are frequently positive for the MYB-NFIB fusion, overexpress MYB and its downstream targets, and have genomic profiles characterized by losses involving 6q, 12q, and 17p, and gains involving 19q, 8q, and 11q. Our findings show that lacrimal gland ACCs are genetically and clinically similar to their salivary gland counterparts and that MYB-NFIB is a clinically useful diagnostic biomarker for ACC. Our data also suggest that MYB and its downstream targets are potential therapeutic targets for these tumors. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Sarah L von Holstein
- Eye Pathology Section, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Denmark; Sahlgrenska Cancer Center, Department of Pathology, University of Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang S, Wang X, Iqbal S, Wang Y, Osunkoya AO, Chen Z, Chen Z, Shin DM, Yuan H, Wang YA, Zhau HE, Chung LWK, Ritenour C, Kucuk O, Wu D. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. J Biol Chem 2013; 288:1469-79. [PMID: 23188829 PMCID: PMC3548460 DOI: 10.1074/jbc.m112.438341] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of EGF receptors has been associated with hormone-refractory and metastatic prostate cancer (PCa). However, the molecular mechanism for EGF signaling in promoting PCa metastasis remains elusive. Using experimental models of PCa metastasis, we demonstrated that EGF could induce robust epithelial-mesenchymal transition (EMT) and increase invasiveness. Interestingly, EGF was found to be capable of promoting protein turnover of epithelial protein lost in neoplasm (EPLIN), a putative suppressor of EMT and tumor metastasis. Mechanistic study revealed that EGF could activate the phosphorylation, ubiquitination, and degradation of EPLIN through an extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent signaling cascade. Pharmacological inhibition of the ERK1/2 pathway effectively antagonized EGF-induced EPLIN degradation. Two serine residues, i.e. serine 362 and serine 604, were identified as putative ERK1/2 phosphorylation sites in human EPLIN, whose point mutation rendered resistance to EGF-induced protein turnover. This study elucidated a novel molecular mechanism for EGF regulation of EMT and invasiveness in PCa cells, indicating that blockade of EGF signaling could be beneficial in preventing and retarding PCa metastasis at early stages.
Collapse
Affiliation(s)
- Shumin Zhang
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xu Wang
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shareen Iqbal
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yanru Wang
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Adeboye O. Osunkoya
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, ,the Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Zhengjia Chen
- the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - Zhuo Chen
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dong M. Shin
- the Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hongwei Yuan
- the Department of Pathology, The Affiliated Hospital Inner Mongolia Medical College, Hohhot, Inner Mongolia Autonomous Region 10050, China
| | | | - Haiyen E. Zhau
- the Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Leland W. K. Chung
- the Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Chad Ritenour
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Omer Kucuk
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Daqing Wu
- From the Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, , To whom correspondence should be addressed: Dept. of Urology, Emory University School of Medicine, 1365 Clifton Rd., NE., Clinic B, B5107, Atlanta, GA 30322. Tel.: 404-778-4845; E-mail:
| |
Collapse
|
44
|
Persson M, Andrén Y, Moskaluk CA, Frierson HF, Cooke SL, Futreal PA, Kling T, Nelander S, Nordkvist A, Persson F, Stenman G. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer 2012; 51:805-17. [PMID: 22505352 DOI: 10.1002/gcc.21965] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/29/2012] [Indexed: 12/17/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) of the head and neck is a malignant tumor with poor long-term prognosis. Besides the recently identified MYB-NFIB fusion oncogene generated by a t(6;9) translocation, little is known about other genetic alterations in ACC. Using high-resolution, array-based comparative genomic hybridization, and massively paired-end sequencing, we explored genomic alterations in 40 frozen ACCs. Eighty-six percent of the tumors expressed MYB-NFIB fusion transcripts and 97% overexpressed MYB mRNA, indicating that MYB activation is a hallmark of ACC. Thirty-five recurrent copy number alterations (CNAs) were detected, including losses involving 12q, 6q, 9p, 11q, 14q, 1p, and 5q and gains involving 1q, 9p, and 22q. Grade III tumors had on average a significantly higher number of CNAs/tumor compared to Grade I and II tumors (P = 0.007). Losses of 1p, 6q, and 15q were associated with high-grade tumors, whereas losses of 14q were exclusively seen in Grade I tumors. The t(6;9) rearrangements were associated with a complex pattern of breakpoints, deletions, insertions, inversions, and for 9p also gains. Analyses of fusion-negative ACCs using high-resolution arrays and massively paired-end sequencing revealed that MYB may also be deregulated by other mechanisms in addition to gene fusion. Our studies also identified several down-regulated candidate tumor suppressor genes (CTNNBIP1, CASP9, PRDM2, and SFN) in 1p36.33-p35.3 that may be of clinical significance in high-grade tumors. Further, studies of these and other potential target genes may lead to the identification of novel driver genes in ACC.
Collapse
Affiliation(s)
- Marta Persson
- Sahlgrenska Cancer Center, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
46
|
Liu Y, Sanders AJ, Zhang L, Jiang WG. Expression Profile of Epithelial Protein Lost in Neoplasm-Alpha (EPLIN-α) in Human Pulmonary Cancer and Its Impact on SKMES-1 Cells <i>in vitro</i>. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jct.2012.324058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Chervin-Pétinot A, Courçon M, Almagro S, Nicolas A, Grichine A, Grunwald D, Prandini MH, Huber P, Gulino-Debrac D. Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J Biol Chem 2011; 287:7556-72. [PMID: 22194609 DOI: 10.1074/jbc.m111.328682] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adherens junctions are required for vascular endothelium integrity. These structures are formed by the clustering of the homophilic adhesive protein VE-cadherin, which recruits intracellular partners, such as β- and α-catenins, vinculin, and actin filaments. The dogma according to which α-catenin bridges cadherin·β-catenin complexes to the actin cytoskeleton has been challenged during the past few years, and the link between the VE-cadherin·catenin complex and the actin cytoskeleton remains unclear. Recently, epithelial protein lost in neoplasm (EPLIN) has been proposed as a possible bond between the E-cadherin·catenin complex and actin in epithelial cells. Herein, we show that EPLIN is expressed at similar levels in endothelial and epithelial cells and is located at interendothelial junctions in confluent cells. Co-immunoprecipitation and GST pulldown experiments provided evidence that EPLIN interacts directly with α-catenin and tethers the VE-cadherin·catenin complex to the actin cytoskeleton. In the absence of EPLIN, vinculin was delocalized from the junctions. Furthermore, suppression of actomyosin tension using blebbistatin triggered a similar vinculin delocalization from the junctions. In a Matrigel assay, EPLIN-depleted endothelial cells exhibited a reduced capacity to form pseudocapillary networks because of numerous breakage events. In conclusion, we propose a model in which EPLIN establishes a link between the cadherin·catenin complex and actin that is independent of actomyosin tension. This link acts as a mechanotransmitter, allowing vinculin binding to α-catenin and formation of a secondary molecular bond between the adherens complex and the cytoskeleton through vinculin. In addition, we provide evidence that the EPLIN clutch is necessary for stabilization of capillary structures in an angiogenesis model.
Collapse
|
48
|
Zhang S, Wang X, Osunkoya AO, Iqbal S, Chen Z, Müller S, Chen Z, Josson S, Coleman IM, Nelson PS, Wang YA, Wang R, Shin DM, Marshall FF, Kucuk O, Chung LWK, Zhau HE, Wu D, Wu D. EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 2011; 30:4941-52. [PMID: 21625216 PMCID: PMC3165108 DOI: 10.1038/onc.2011.199] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial mechanism for the acquisition of migratory and invasive capabilities by epithelial cancer cells. By conducting quantitative proteomics in experimental models of human prostate cancer (PCa) metastasis, we observed strikingly decreased expression of EPLIN (epithelial protein lost in neoplasm; or LIM domain and actin binding 1, LIMA-1) upon EMT. Biochemical and functional analyses demonstrated that EPLIN is a negative regulator of EMT and invasiveness in PCa cells. EPLIN depletion resulted in the disassembly of adherens junctions, structurally distinct actin remodeling and activation of β-catenin signaling. Microarray expression analysis identified a subset of putative EPLIN target genes associated with EMT, invasion and metastasis. By immunohistochemistry, EPLIN downregulation was also demonstrated in lymph node metastases of human solid tumors including PCa, breast cancer, colorectal cancer and squamous cell carcinoma of the head and neck. This study reveals a novel molecular mechanism for converting cancer cells into a highly invasive and malignant form, and has important implications in prognosis and treating metastasis at early stages.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O. Osunkoya
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA,Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shareen Iqbal
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhuo Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Susan Müller
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sajni Josson
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | | | - Ruoxiang Wang
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Fray F. Marshall
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA,Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E. Zhau
- Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Corresponding authors: Dr. Daqing Wu (), Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Dr. Haiyen E. Zhau (), Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA,Corresponding authors: Dr. Daqing Wu (), Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Dr. Haiyen E. Zhau (), Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
49
|
Sanders AJ, Martin TA, Ye L, Mason MD, Jiang WG. EPLIN is a Negative Regulator of Prostate Cancer Growth and Invasion. J Urol 2011; 186:295-301. [DOI: 10.1016/j.juro.2011.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Indexed: 01/14/2023]
Affiliation(s)
- Andrew J. Sanders
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff; United Kingdom
| | - Tracey A. Martin
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff; United Kingdom
| | - Lin Ye
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff; United Kingdom
| | - Malcolm D. Mason
- Department of Clinical Oncology, Cardiff University School of Medicine, Cardiff; United Kingdom
| | - Wen G. Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff; United Kingdom
| |
Collapse
|
50
|
Dyrsø T, Li J, Wang K, Lindebjerg J, Kølvraa S, Bolund L, Jakobsen A, Bruun-Petersen G, Li S, Crüger DG. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization. Cancer Genet 2011; 204:84-95. [PMID: 21504706 DOI: 10.1016/j.cancergencyto.2010.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/27/2010] [Accepted: 08/18/2010] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material comprised fresh samples from 40 MSS tumors and 20 MSI tumors obtained from 60 Danish CRC patients. We identified five small genomic regions (<15 megabases) exhibiting recurrent copy number loss, which, to our knowledge, have not been reported in previously published aCGH studies of CRC: 3p25.3, 3p21.2-p21.31, 5q13.2, 12q24.23-q24.31, and 12q24.23-q24.31. These regions contain several potentially important tumor suppressor genes that may play a role in a significant proportion of both sporadic MSS CRC and MSI CRC. Furthermore, the generated aCGH data are in support of the recently proposed classification of sporadic CRC into MSS CIN+, MSI CIN-, MSI CIN+, and MSS CIN- cancers.
Collapse
Affiliation(s)
- Thomas Dyrsø
- Department of Clinical Genetics, Vejle Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|