1
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
2
|
Baralić K, Petkovski T, Piletić N, Marić Đ, Buha Djordjevic A, Antonijević B, Đukić-Ćosić D. Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. Int J Mol Sci 2024; 25:12333. [PMID: 39596398 PMCID: PMC11594668 DOI: 10.3390/ijms252212333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to explore the health impacts, mechanisms of toxicity, and key gene biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS) through in silico ADMET and toxicogenomic analysis. The following databases and tools were used: AdmetSAR (2.0), ADMETlab (2.0), Comparative Toxicogenomic Database, ToppGene Suite portal, Metascape (3.5), GeneMANIA server, and CytoHubba and CytoNCA Cytoscape (3.10.3) plug-ins. ADMET analysis showed that PFAS compounds pose risks of organ-specific toxicity, prolonged retention, and metabolic disruptions. Forty mutual genes were identified for all the tested PFAS. The mutual gene set was linked to disruption of lipid metabolism, particularly through nuclear receptors. The most important gene clusters identified were nuclear receptor signaling and PPAR signaling pathways, with kidney and liver diseases, diabetes, and obesity as the most significant related diseases. Phenotype data showed that PFAS compounds impact cell death, growth, inflammation, steroid biosynthesis, and thyroid hormone metabolism. Gene network analysis revealed that 52% of the 40 mutual genes showed co-expression, with co-localization as the next major interaction (18.23%). Eight key genes were extracted from the network: EHHADH, APOA2, MBL2, SULT2A1, FABP1, PPARA, PCK2, and PLIN2. These results highlight the need for further research to fully understand the health risks of PFAS mixtures.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (T.P.); (N.P.); (Đ.M.); (A.B.D.); (B.A.); (D.Đ.-Ć.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Mee MW, Faulkner S, Wood GA, Woods JP, Bienzle D, Coomber BL. Longitudinal Study of Transcriptomic Changes Occurring over Six Weeks of CHOP Treatment in Canine Lymphoma Identifies Prognostic Subtypes. Vet Sci 2024; 11:540. [PMID: 39591314 PMCID: PMC11599011 DOI: 10.3390/vetsci11110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The majority of canine lymphoma patients treated with the standard of care, the CHOP chemotherapy protocol, initially achieve remission but eventually relapse with a multi-drug-resistant phenotype. This study assesses gene expression profiles of canine lymphoma tumor cell populations using RNA-Seq data from 15 matched patient samples taken prior to treatment and again six weeks into treatment with CHOP. Two distinct clusters were present in the t-SNE dimensionality reduction of the gene expression profiles. There was a significant difference in progression-free survival (PFS) between the cluster groups, with a median of 43.5 days in a group of six patients and 185 days in another group of nine patients. Comparing the group with shorter PFS to the group with longer PFS, we identified 265 significantly enriched GO:BP terms in 3874 significantly up-regulated genes and 740 significantly enriched GO:BP terms in 3236 significantly down-regulated genes. Comparing the six-week timepoint against the initial timepoint, in the group with longer PFS, we identified 277 significantly enriched GO:BP terms in 413 significantly up-regulated genes and 222 significantly enriched GO:BP terms in 267 significantly down-regulated genes. In the group with shorter PFS, we only identified 27 significantly differentially expressed genes, for this comparison. We found DNA damage response genes to be enriched in the down-regulated genes in both comparisons. These results identify and characterize two transcriptionally distinct groups of canine lymphoma patients with significantly different responses to CHOP chemotherapy.
Collapse
Affiliation(s)
- Miles W. Mee
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sydney Faulkner
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J. Paul Woods
- Department of Clinical Studies and Mona Campbell Center for Animal Cancer, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brenda L. Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
5
|
Dong JH, Zhang RH, Zhao LL, Xue CY, Pan HY, Zhong XY, Zhou YL, Zhang XX. Identification and Quantification of Locus-Specific 8-Oxo-7,8-dihydroguanine in DNA at Ultrahigh Resolution Based on G-Triplex-Assisted Rolling Circle Amplification. Anal Chem 2024; 96:437-445. [PMID: 38150621 DOI: 10.1021/acs.analchem.3c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.
Collapse
Affiliation(s)
- Jia-Hui Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Run-Hong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling-Li Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100191, China
| | - Hui-Yu Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Ying Zhong
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201203, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Witt BL, Tollefsbol TO. Molecular, Cellular, and Technical Aspects of Breast Cancer Cell Lines as a Foundational Tool in Cancer Research. Life (Basel) 2023; 13:2311. [PMID: 38137912 PMCID: PMC10744609 DOI: 10.3390/life13122311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer comprises about 30% of all new female cancers each year and is the most common malignant cancer in women in the United States. Breast cancer cell lines have been harnessed for many years as a foundation for in vitro analytic studies to understand the use of cancer prevention and therapy. There has yet to be a compilation of works to analyze the pitfalls, novel discoveries, and essential techniques for breast cancer cell line studies in a scientific context. In this article, we review the history of breast cancer cell lines and their origins, as well as analyze the molecular pathways that pharmaceutical drugs apply to breast cancer cell lines in vitro and in vivo. Controversies regarding the origins of certain breast cancer cell lines, the benefits of utilizing Patient-Derived Xenograft (PDX) versus Cell-Derived Xenograft (CDX), and 2D versus 3D cell culturing techniques will be analyzed. Novel outcomes from epigenetic discovery with dietary compound usage are also discussed. This review is intended to create a foundational tool that will aid investigators when choosing a breast cancer cell line to use in multiple expanding areas such as epigenetic discovery, xenograft experimentation, and cancer prevention, among other areas.
Collapse
Affiliation(s)
- Brittany L. Witt
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
- Integrative Center for Aging Research, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Wang J, Wang X, Zhang M, Lang Y, Chen B, Ye Y, Bai Y, Ding S. The activation of spliced X-box binding protein 1 by isorhynchophylline therapy improves diabetic encephalopathy. Cell Biol Toxicol 2023; 39:2587-2613. [PMID: 36695953 DOI: 10.1007/s10565-022-09789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
The primary symptom of diabetic encephalopathy (DE), a kind of central diabetic neuropathy caused by diabetes mellitus (DM), is cognitive impairment. In addition, the tetracyclic oxindole alkaloid isorhynchophylline (IRN) helps lessen cognitive impairment. However, it is still unclear how IRN affects DM and DE and what mechanisms are involved. The effectiveness of IRN on brain insulin resistance was carefully examined in this work, both in vitro and in vivo. We found that IRN accelerates spliced form of X-box binding protein 1 (sXBP1) translocation into the nucleus under high glucose conditions in vitro. IRN also facilitates the nuclear association of pCREB with sXBP1 and the binding of regulatory subunits of phosphatidylinositol 3-kinase (PI3K) p85α or p85β with XBP1 to restore high glucose impairment. Also, IRN treatment improves high glucose-mediated impairment of insulin signaling, endoplasmic reticulum stress, and pyroptosis/apoptosis by depending on sXBP1 in vitro. In vivo studies suggested that IRN attenuates cognitive impairment, ameliorating peripheral insulin resistance, activating insulin signaling, inactivating activating transcription factor 6 (ATF6) and C/EBP homology protein (CHOP), and mitigating pyroptosis/apoptosis by stimulation of sXBP1 nuclear translocation in the brain. In summary, these data indicate that IRN contributes to maintaining insulin homeostasis by activating sXBP1 in the brain. Thus, IRN is a potent antidiabetic agent as well as an sXBP1 activator that has promising potential for the prevention or treatment of DE.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Xuebao Wang
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Baihui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yiru Ye
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Saidan Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Lou F, Zhang Y, Xu A, Gao T. Transcriptional responses of liver and spleen in Lota lota to polyriboinosinic polyribocytidylic acid. Front Immunol 2023; 14:1272393. [PMID: 37901224 PMCID: PMC10611466 DOI: 10.3389/fimmu.2023.1272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The cultured Lota lota can meet the market demand in the context of the decline of wild resources, but the disease in the high-density culture process also deserves attention. Therefore, understanding the immune regulation mechanisms of L. lota will be the basis for obtaining high benefits in artificial culture. Methods To explore the viral response mechanism of L. lota, RNA-seq was applied to identify the transcriptomic changes of the liver and spleen in L. lota by poly (I:C) stress. Results The DEGs (liver: 2186 to 3123; spleen 1542 to 2622) and up-regulated genes (liver: 1231 to 1776; spleen 769 to 1502) in the liver and spleen increased with the prolongation (12h to 48h) of poly (I:C)-stimulation time. This means L. lota needs to mobilize more functional genes in response to longer periods of poly (I:C)-stimulation. Despite the responses of L. lota to poly (I:C) showed tissue-specificity, we hypothesized that both liver and spleen of L. lota can respond to poly (I:C) challenge may be through promoting apoptosis of DNA-damaged cells, increasing the activity of immune-enhancing enzymes, and increasing energy supply based on DEGs annotation information. Conclusions Our results demonstrate the transcriptional responses of L. lota to poly (I:C)-stimulation, and these data provide the first resource on the genetic regulation mechanisms of L. lota against viruses. Furthermore, the present study can provide basic information for the prevention of viral diseases in L. lota artificial culture process.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China
| | - Anle Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
9
|
Sun W, Yang H, Cao L, Wu R, Ding B, Liu X, Wang X, Zhang Q. Effects of high-risk human papillomavirus infection on P53, pRb, and survivin in lung adenocarcinoma-a retrospective study. PeerJ 2023; 11:e15570. [PMID: 37520249 PMCID: PMC10386818 DOI: 10.7717/peerj.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023] Open
Abstract
Objective To observe the effects of high-risk human papillomavirus (HR-HPV) infection on P53, pRb, and survivin in lung adenocarcinoma (LUAD). Methods The cancerous and cancer-adjacent tissues of 102 patients with LUAD from January 2020 to April 2022 were selected for the study. HR-HPV infection was detected by flow fluorescence method, and P53, pRb, and survivin protein expression was detected by immunohistochemical staining method. Statistical analysis was performed to determine the differences in the HR-HPV infection and the expression of P53, pRb, and survivin proteins between LUAD tissues and cancer-adjacent tissues; the correlation between HR-HPV infection and P53, pRb, and survivin protein expression in cancer tissues; and the correlation between HR-HPV infection and clinicopathological features of LUAD. Results The infection rate of HR-HPV was higher in the LUAD tissues (28.43%) than in cancer-adjacent tissues (7.84%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin protein were higher in the LUAD group (33.33% and 67.16%, respectively) than in the cancer-adjacent group (3.92% and 11.73%, respectively), and the difference was statistically significant (P < 0.05). The positive rate of pRb protein was lower in the LUAD group (58.82%) than in the cancer-adjacent group (92.14%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin proteins were significantly higher in the HR-HPV LUAD group (58.62% and 86.21%, respectively) than in the non-HR-HPV LUAD group (41.38% and 67.12%, respectively), and the difference was statistically significant (P < 0.05). The expression rate of pRb protein was significantly lower in the HR-HPV LUAD group (37.93%) than in the non-HR-HPV LUAD group (67.12%), and the difference was statistically significant (P < 0.05). The expression of p53 and survivin protein was positively correlated with HR-HPV infection (r = 0.338 and 0.444, P < 0.05), whereas the expression of pRb protein was negatively correlated with HR-HPV infection (r = - 0.268, P < 0.05). HR-HPV infection was not associated with gender, age, and smoking in patients with LUAD (P > 0.05). HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD (P < 0.05). Conclusions HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD, which may be achieved by up-regulating p53 and survivin protein expression and down-regulating pRb protein expression.
Collapse
Affiliation(s)
- Wenwen Sun
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Hui Yang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lu Cao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Ruochen Wu
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Baoqi Ding
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xiaocui Liu
- Department of Histoloembryology, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinli Wang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Qiang Zhang
- Shandong First Medical University, Jinan, Shandong, Taian
| |
Collapse
|
10
|
Ye QL, Qi Y, Liu JJ, Hu YX, Lv Y, Lin B. First case of endometrial cancer after yolk sac tumor in a patient with Li-Fraumeni syndrome. BMC Womens Health 2023; 23:329. [PMID: 37344881 DOI: 10.1186/s12905-023-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is a rare autosomal dominant disease with high penetrance caused by a germline variant of TP53 gene. We report the first case of endometrial cancer after yolk sac tumor with LFS. CASE PRESENTATION The presented female patient underwent right adnexectomy at age 23 because of a yolk sac tumor of the ovary. At the age of 27, the patient was diagnosed with endometrial adenocarcinoma, received cytoreductive surgery and chemotherapy. Given that her personal cancer history along with a strong family history of cancer, her father passing away from lung cancer at age 48 and her grandmother dying of ovarian cancer at age 50, the patient was referred for genetic counseling and testing. Genetic screening revealed a heterozygous pathogenic TP53 c.844C > T, p.( R282 W) with NM_000546.5 variant, a class 5 (C5) variant. This is the first reported case of a yolk sac tumor accompanied by subsequent endometrial cancer that is associated with LFS. CONCLUSIONS We reported a first case of an endometrial cancer after yolk sac tumor patient with a tumor family history of harboring the germline TP53 pathogenic variation which expanded types of tumor that can be presented in patients with LFS. This case highlights the importance of genetic testing for patients with malignant tumors, as well as patients with a family history of malignant tumors. And our case highlights the necessity of screening for gynecologic tumor in LFS patients.
Collapse
Affiliation(s)
- Qiu-Lin Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yue-Xin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yuan Lv
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
11
|
Montero-Calle A, Garranzo-Asensio M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Poves C, Dziaková J, Sanz R, Díaz del Arco C, Pingarrón JM, Fernández-Aceñero MJ, Campuzano S, Barderas R. p53 and p63 Proteoforms Derived from Alternative Splicing Possess Differential Seroreactivity in Colorectal Cancer with Distinct Diagnostic Ability from the Canonical Proteins. Cancers (Basel) 2023; 15:cancers15072102. [PMID: 37046764 PMCID: PMC10092954 DOI: 10.3390/cancers15072102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53β, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms’ seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - Rebeca M. Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Víctor Ruiz-Valdepeñas Montiel
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain (M.J.F.-A.)
| | - José Manuel Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | | | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
- Correspondence:
| |
Collapse
|
12
|
Rehman AU, Khurshid B, Ali Y, Rasheed S, Wadood A, Ng HL, Chen HF, Wei Z, Luo R, Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin Drug Discov 2023; 18:315-333. [PMID: 36715303 PMCID: PMC10149343 DOI: 10.1080/17460441.2023.2171396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Protein-protein interactions (PPIs) are intriguing targets for designing novel small-molecule inhibitors. The role of PPIs in various infectious and neurodegenerative disorders makes them potential therapeutic targets . Despite being portrayed as undruggable targets, due to their flat surfaces, disorderedness, and lack of grooves. Recent progresses in computational biology have led researchers to reconsider PPIs in drug discovery. AREAS COVERED In this review, we introduce in-silico methods used to identify PPI interfaces and present an in-depth overview of various computational methodologies that are successfully applied to annotate the PPIs. We also discuss several successful case studies that use computational tools to understand PPIs modulation and their key roles in various physiological processes. EXPERT OPINION Computational methods face challenges due to the inherent flexibility of proteins, which makes them expensive, and result in the use of rigid models. This problem becomes more significant in PPIs due to their flexible and flat interfaces. Computational methods like molecular dynamics (MD) simulation and machine learning can integrate the chemical structure data into biochemical and can be used for target identification and modulation. These computational methodologies have been crucial in understanding the structure of PPIs, designing PPI modulators, discovering new drug targets, and predicting treatment outcomes.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Zhejiang, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao, Shandong, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, Graduate Program in Chemical and Materials Physics, University of California Irvine, Irvine, California, USA
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, Zhejiang, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Badr HA, Sayed SA, Obiedallah M. Eco-friendly synthesis of silver nanoparticles using Eisenia bicyclis seaweed, their antimicrobial and anticancer activities. Lett Appl Microbiol 2023; 76:ovad002. [PMID: 36695424 DOI: 10.1093/lambio/ovad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Silver nanoparticle (AgNPs) production with antibacterial and antitumor properties is an important application in the medical field. This study introduces a novel organism that can be used for the large-scale production of AgNPs. The edible brown alga Eisenia bicyclis was used as a reducing agent to biosynthesize stable AgNPs. In this study, we achieved producing 50 mg AgNPs using only 1 g dried E. bicyclis seaweed. AgNP biosynthesis was performed at optimized conditions of a reaction temperature of 90°C, a seaweed extract concentration of 0.4%, and an AgNO3 concentration of 0.5 mM within 20 min, and the results showed that the formed nanoparticles are spherical and monodispersed with an average size 18.5 ± 1.2 nm. The antibacterial activity of biosynthesized AgNPs was evaluated against some human clinical pathogens. Results showed that AgNPs had antibacterial activity against all tested bacterial strains, with the appearance of a clear zone equal to or larger than positive controls. Also, there was a concentration-dependent growth inhibition of in vitro cultured breast cancer cells treated with AgNPs and overexpression of p53 and Bax, and underexpression of Bcl-2. AgNPs synthesized by this method provide a potential source for antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Hoida Ali Badr
- Botany and Microbiology Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Sherif A Sayed
- Clinical Pathology Department, Faculty of Medicine, Sohag University, 82524 Sohag, Egypt
| | - Marwa Obiedallah
- Botany and Microbiology Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| |
Collapse
|
14
|
Recombinant human p53 adenovirus injection combined with Bortezomib inhibits proliferation and promotes apoptosis in multiple myeloma. Leuk Res 2023; 127:107041. [PMID: 36801701 DOI: 10.1016/j.leukres.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a B-cell malignancy characterized by abnormal proliferation of clonal plasma cells in the bone marrow, the incidence of which has further increased in recent years. In multiple myeloma, wild-type functional p53 is often inactivated or dysregulated. Therefore, this study aimed to investigate the role of p53 knockdown or overexpression in multiple myeloma and the therapeutic effect of recombinant adenovirus-p53 (rAd-p53) in combination with Bortezomib. METHODS SiRNA p53 and rAd-p53 were used to knock down and overexpress p53. RT-qPCR was used to detect gene expression, and western blotting (WB) was used to detect protein expression levels. We also constructed wild-type multiple myeloma cell line-MM1S cell xenograft tumor models and explored the effects of siRNA-p53, rAd-p53, and Bortezomib on multiple myeloma in vivo and in vitro. H&E staining and KI67 immunohistochemical staining were used to assess the anti-myeloma effects of recombinant adenovirus and Bortezomib in vivo. RESULTS The designed siRNA p53 effectively led to the knockdown of the p53 gene, while rAd-p53 could significantly achieve p53 overexpression. p53 gene inhibited MM1S cell proliferation and promoted apoptosis of wild-type multiple myeloma cell line MM1S. P53 gene inhibited tumor proliferation in vitro by promoting p21 expression and reducing cell cycle protein B1 expression of MM1S. P53 gene overexpression could inhibit tumor growth in vivo. Injection of rAd-p53 in tumor models inhibited tumor development through p21- and cyclin B1-mediated cell proliferation and apoptosis regulation. CONCLUSIONS We found that overexpression of p53 inhibits MM tumor cell survival and proliferation in vivo and in vitro. Furthermore, the combination of rAd-p53 and Bortezomib significantly improved the efficacy, which provides a new possibility for more effective treatment of MM.
Collapse
|
15
|
Fu J, Tong Y, Xu Z, Li Y, Zhao Y, Wang T, Li C, Cang S. Impact of TP53 Mutations on EGFR-Tyrosine Kinase Inhibitor Efficacy and Potential Treatment Strategy. Clin Lung Cancer 2023; 24:29-39. [PMID: 36117108 DOI: 10.1016/j.cllc.2022.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND We investigated the impact of factors that influence TP53 mutations on the efficacy of EGFR-tyrosine kinase inhibitors and potential treatment strategies. MATERIALS AND METHODS Tumor samples were collected to screen gene mutations by next-generation sequencing, as well as the patients' baseline characteristics. The overall response to treatment with TKIs was evaluated based on interval computed tomography scans at each follow-up time point. A Fisher's exact test and log-rank test were used to determine the statistical differences in this study. RESULTS A total of 1134 clinical samples were collected from NSCLC patients, and TP53mut was identified in 644 cases and EGFRmut in 622 cases. A low frequency of TP53mut or more than 50% EGFR co-mutation rate were related to the prognosis of TKI-treated patients. In addition, TP53mut in the region outside of the DB domain had the strongest correlation with TKI resistance, whereas various types of mutations in the DB domain only had an impact on PFS. A grouping study of EGFR-TKI-based treatment revealed that EGFR-TKIs with chemotherapy were associated with more significant survival benefits for patients with prognostic TP53mut, whereas EGFR-TKI therapy was favorable for TP53wt patients. Furthermore, TP53mut could shorten the time to the relapse of postoperative patients, who will also likely respond well to EGFR-TKIs with chemotherapy. CONCLUSION Various characteristics of TP53mut affect the prognosis of TKI-treated patients to varying degrees. EGFR-TKIs with chemotherapy were benefit for patients' survival with prognostic TP53mut, which provides an important reference for treatment management of EGFRmut patients.
Collapse
Affiliation(s)
- Jing Fu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yuyang Tong
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ziguang Xu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Yaonan Li
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Ya Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Tao Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan Province, China.
| |
Collapse
|
16
|
Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 ( TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Int J Mol Sci 2022; 23:ijms232415499. [PMID: 36555140 PMCID: PMC9779389 DOI: 10.3390/ijms232415499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.
Collapse
|
17
|
Aboelwafa HR, Ramadan RA, Ibraheim SS, Yousef HN. Modulation Effects of Eugenol on Nephrotoxicity Triggered by Silver Nanoparticles in Adult Rats. BIOLOGY 2022; 11:biology11121719. [PMID: 36552229 PMCID: PMC9774980 DOI: 10.3390/biology11121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The use of silver nanoparticles (AgNPs) is expanding. This study evaluates the modulator effect of eugenol (Eug) on AgNP-induced nephrotoxicity in rats. Sixty male rats were separated into six groups: control, Eug, AgNPs low-dose, AgNPs high-dose, Eug + AgNPs low-dose, and Eug + AgNPs high-dose. After 30 days, kidney function, antioxidative and proinflammatory status, histopathological, histomorphometrical, and immunohistochemical assessments were performed. AgNPs markedly induced oxidative stress in renal tissues, characterized by increased levels of blood urea nitrogen, creatinine, uric acid, kidney injury molecule-1, the total oxidant capacity, malondialdehyde, tumor necrosis factor-alpha (TNF-α), and interleukin-6, as well as decreased levels of the total antioxidant capacity, superoxide dismutase, catalase, reduced glutathione, and glutathione peroxidase. Moreover, the normal renal architecture was destroyed, and the thickness of the renal capsules, cortex, and medulla, alongside the diameter and quantity of the normal Malpighian corpuscles and the proximal and distal convoluted tubules were decreased. Immunoreactivity for P53, caspase-3, and TNF-α reactive proteins were significantly increased; however, Bcl-2 immunoreactivity was decreased. Eug reversed most biochemical, histological, histomorphometrical, and immunohistochemical changes in AgNP-treated animals. This study demonstrated that nephrotoxicity in AgNP-treated rats was mitigated by an Eug supplementation. Eug's antioxidant, antiapoptotic, and anti-inflammatory capabilities were the key in modulating AgNPs nephrotoxicity.
Collapse
|
18
|
Lufkin L, Samanta A, Baker D, Lufkin S, Schulze J, Ellis B, Rose J, Lufkin T, Kraus P. Glis1 and oxaloacetate in nucleus pulposus stromal cell somatic reprogramming and survival. Front Mol Biosci 2022; 9:1009402. [PMID: 36406265 PMCID: PMC9671658 DOI: 10.3389/fmolb.2022.1009402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Regenerative medicine aims to repair degenerate tissue through cell refurbishment with minimally invasive procedures. Adipose tissue (FAT)-derived stem or stromal cells are a convenient autologous choice for many regenerative cell therapy approaches. The intervertebral disc (IVD) is a suitable target. Comprised of an inner nucleus pulposus (NP) and an outer annulus fibrosus (AF), the degeneration of the IVD through trauma or aging presents a substantial socio-economic burden worldwide. The avascular nature of the mature NP forces cells to reside in a unique environment with increased lactate levels, conditions that pose a challenge to cell-based therapies. We assessed adipose and IVD tissue-derived stromal cells through in vitro transcriptome analysis in 2D and 3D culture and suggested that the transcription factor Glis1 and metabolite oxaloacetic acid (OAA) could provide NP cells with survival tools for the harsh niche conditions in the IVD.
Collapse
Affiliation(s)
- Leon Lufkin
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States,The Clarkson School, Clarkson University, Potsdam, NY, United States
| | - Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - DeVaun Baker
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Sina Lufkin
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | | | - Benjamin Ellis
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Jillian Rose
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States,*Correspondence: Petra Kraus,
| |
Collapse
|
19
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Babamohamadi M, Babaei E, Ahmed Salih B, Babamohammadi M, Jalal Azeez H, Othman G. Recent findings on the role of wild-type and mutant p53 in cancer development and therapy. Front Mol Biosci 2022; 9:903075. [PMID: 36225257 PMCID: PMC9549909 DOI: 10.3389/fmolb.2022.903075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The p53 protein is a tumor suppressor encoded by the TP53 gene and consists of 393 amino acids with four main functional domains. This protein responds to various cellular stresses to regulate the expression of target genes, thereby causing DNA repair, cell cycle arrest, apoptosis, metabolic changes, and aging. Mutations in the TP53 gene and the functions of the wild-type p53 protein (wtp53) have been linked to various human cancers. Eight TP53 gene mutations are located in codons, constituting 28% of all p53 mutations. The p53 can be used as a biomarker for tumor progression and an excellent target for designing cancer treatment strategies. In wild-type p53-carrying cancers, abnormal signaling of the p53 pathway usually occurs due to other unusual settings, such as high MDM2 expression. These differences between cancer cell p53 and normal cells have made p53 one of the most important targets for cancer treatment. In this review, we have dealt with various issues, such as the relative contribution of wild-type p53 loss of function, including transactivation-dependent and transactivation-independent activities in oncogenic processes and their role in cancer development. We also discuss the role of p53 in the process of ferroptosis and its targeting in cancer treatment. Finally, we focus on p53-related drug delivery systems and investigate the challenges and solutions.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- *Correspondence: Esmaeil Babaei,
| | - Burhan Ahmed Salih
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Iraq
- Department of Medical Laboratory Technology, AlQalam University College, Kirkuk, Iraq
| | - Mahshid Babamohammadi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hewa Jalal Azeez
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Goran Othman
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Iraq
- Department of Medical Laboratory Technology, AlQalam University College, Kirkuk, Iraq
| |
Collapse
|
21
|
The Ameliorative Role of Eugenol against Silver Nanoparticles-Induced Hepatotoxicity in Male Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3820848. [PMID: 36124089 PMCID: PMC9482543 DOI: 10.1155/2022/3820848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
Background Silver nanoparticles (AgNPs) utilization is becoming increasingly popular. The existing investigation evaluates the ameliorative impact of eugenol (Eug) against the toxic influences of AgNPs on rats' liver. Methods Sixty adult male rats were enrolled equally into control, Eug (100 mg kg−1 orally), AgNPs-low dose (1 mg kg−1 i.p), AgNPs-high dose (2 mg kg−1 i.p), Eug + AgNPs-low dose (100 mg kg−1 orally + 1 mg kg−1 i.p), and Eug + AgNPs high dose (100 mg kg−1 orally + 2 mg kg−1 i.p). All the groups were treated daily for 30 days, subsequently serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total protein, total albumin, lactate dehydrogenase (LDH), total oxidative capacity (TOC), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), total antioxidant capacity (TAC), and interleukin 6 (IL-6) levels were measured; hepatic tissues superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) levels were evaluated; histopathology and histomorphometry were documented in the liver of all groups; and Bcl-2, P53, Caspase-3, and TNF-α reactive proteins were also immunohistochemically detected. Results AgNPs significantly triggered oxidative stress in hepatic tissues, characterized by elevated levels of AST, ALT, ALP, LDH, TOC, MDA, TNF-α, and IL-6 correlating with considerable decline in total protein, total albumin, TAC, SOD, CAT, GSH, and GPx. These changes were paralleled with histopathological alterations remarkable by devastation of the ordinary hepatic structure, with decrease in the numbers of normal hepatocytes, elevation in the numbers of necrotic hepatocytes, periportal and centrilobular inflammatory cells, deteriorated Kupffer cells, and dilated/congested central and portal veins. Alongside, a marked diminution in Bcl-2 immunoreactivity and a significant elevation in P53, Caspase-3, and TNF-α immunoreactivities were recorded. Supplementation of AgNPs-treated animals with Eug reversed most of the biochemical, histopathological, and immunohistochemical changes. Conclusion This study proposed that Eug has an ameliorative effect against AgNPs-induced hepatotoxicity.
Collapse
|
22
|
Interdiction in the Early Folding of the p53 DNA-Binding Domain Leads to Its Amyloid-Like Misfolding. Molecules 2022; 27:molecules27154810. [PMID: 35956758 PMCID: PMC9370011 DOI: 10.3390/molecules27154810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this article, we investigate two issues: (a) the initial contact formation events along the folding pathway of the DNA-binding domain of the tumor suppressor protein p53 (core p53); and (b) the intermolecular events leading to its conversion into a prion-like form upon incubation with peptide P8(250-257). In the case of (a), the calculations employ the sequential collapse model (SCM) to identify the segments involved in the initial contact formation events that nucleate the folding pathway. The model predicts that there are several possible initial non-local contacts of comparative stability. The most stable of these possible initial contacts involve the protein segments 159AMAIY163 and 251ILTII255, and it is the only native-like contact. Thus, it is predicted to constitute “Nature’s shortcut” to the native structure of the core domain of p53. In the case of issue (b), these findings are then combined with experimental evidence showing that the incubation of the core domain of p53 with peptide P8(250-257), which is equivalent to the native protein segment 250PILTIITL257, leads to an amyloid conformational transition. It is explained how the SCM predicts that P8(250-257) effectively interdicts in the formation of the most stable possible initial contact and, thereby, disrupts the subsequent normal folding. Interdiction by polymeric P8(250-257) seeds is also studied. It is then hypothesized that enhanced folding through one or several of the less stable contacts could play a role in P8(250-257)-promoted core p53 amyloid misfolding. These findings are compared to previous results obtained for the prion protein. Experiments are proposed to test the hypothesis presented regarding core p53 amyloid misfolding.
Collapse
|
23
|
Chatterjee C, Singh SK. Peptide and protein chemistry approaches to study the tumor suppressor protein p53. Org Biomol Chem 2022; 20:5500-5509. [PMID: 35786742 PMCID: PMC10112546 DOI: 10.1039/d2ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor suppressor and master gene regulator protein p53 has been the subject of intense investigation for several decades due to its mutation in about half of all human cancers. However, mechanistic studies of p53 in cells are complicated by its many dynamic binding partners and heterogeneous post-translational modifications. The design of therapeutics that rescue p53 functions in cells requires a mechanistic understanding of its protein-protein interactions in specific protein complexes and identifying changes in p53 activity by diverse post-translational modifications. This review highlights the important roles that peptide and protein chemistry have played in biophysical and biochemical studies aimed at elucidating p53 regulation by several key binding partners. The design of various peptide inhibitors that rescue p53 function in cells and new opportunities in targeting p53-protein interactions are discussed. In addition, the review highlights the importance of a protein semisynthesis approach to comprehend the role of site-specific PTMs in p53 regulation.
Collapse
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Comprehensive omics studies of p53 mutants in human cancer. Brief Funct Genomics 2022; 22:97-108. [PMID: 35809339 DOI: 10.1093/bfgp/elac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
The p53 is the master regulator of the cell known for regulating a large array of cellular processes. Inactivation of p53 by missense mutations is one of the leading causes of cancer. Some of these mutations endow p53 with selective oncogenic functions to promote tumor progression. Due to the vast array of mutations found in p53, the experimental studies showing the role of different mutant p53 as an oncogene are also expanding. In this review, we discuss the oncogenic roles of different p53 mutants at the cellular level identified by multi-omics tools. We discuss some of the therapeutic studies to tackle p53 mutants and their downstream targets identified by omics. We also highlight the future prospective and scope of further studies of downstream p53 targets by omics.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
25
|
Usuda K, Niida Y, Ishikawa M, Iwai S, Yamagata A, Iijima Y, Motono N, Yamada S, Uramoto H. Genomics of Tumor Origin and Characteristics for Adenocarcinoma and Malignant Pleural Mesothelioma: A Case Report. Front Oncol 2022; 12:858094. [PMID: 35664766 PMCID: PMC9160749 DOI: 10.3389/fonc.2022.858094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
A female underwent a right middle lobectomy for a pulmonary adenocarcinoma (AD). She eventually died of a right malignant pleural mesothelioma (MPM; sarcomatoid type) 4 years and 7 months after the removal of the AD even though she did not have any history of asbestos exposure, smoking, or radiation exposure. Her chest CT revealed multiple pulmonary nodules and bilateral pleural effusion with a right pleural tumor directly invading into the abdominal cavity. The genomics of tumor origin and characteristics were examined for the AD and the MPM. As a result, 50 somatic variants were detected in the AD, and 29 somatic variants were detected in the MPM. The variants which were common in both the AD and the MPM were not present, which suggested that the AD and the MPM had occurred independently in different origins. The MPM had two driver oncogenes of TP53 and EP300, but the AD did not. Two driver oncogenes of TP53 and EP300 were hypothesized to make the MPM aggressive. The speed at which the MPM progressed without the patient having a history of asbestos exposure, smoking, or radiation exposure was alarming.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan.,Department of Rehabilitation Medicine, Shimada Hospital, Fukui, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Genomic Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Aika Yamagata
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
26
|
Hassin O, Nataraj NB, Shreberk-Shaked M, Aylon Y, Yaeger R, Fontemaggi G, Mukherjee S, Maddalena M, Avioz A, Iancu O, Mallel G, Gershoni A, Grosheva I, Feldmesser E, Ben-Dor S, Golani O, Hendel A, Blandino G, Kelsen D, Yarden Y, Oren M. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat Commun 2022; 13:2800. [PMID: 35589715 PMCID: PMC9120190 DOI: 10.1038/s41467-022-30481-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Avioz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
27
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
29
|
Detection and Quantification of Tp53 and p53-Anti-p53 Autoantibody Immune Complex: Promising Biomarkers in Early Stage Lung Cancer Diagnosis. BIOSENSORS 2022; 12:bios12020127. [PMID: 35200387 PMCID: PMC8870326 DOI: 10.3390/bios12020127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Lung cancer is a leading cause of death worldwide, claiming nearly 1.80 million lives in 2020. Screening with low-dose computed tomography (LDCT) reduces lung cancer mortality by about 20% compared to standard chest X-rays among current or heavy smokers. However, several reports indicate that LDCT has a high false-positive rate. In this regard, methods based on biomarker detection offer excellent potential for developing noninvasive cancer diagnostic tests to complement LDCT for detecting stage 0∼IV lung cancers. Herein, we have developed a method for detecting and quantifying a p53-anti-p53 autoantibody complex and the total p53 antigen (wild and mutant). The LOD for detecting Tp53 and PIC were 7.41 pg/mL and 5.74 pg/mL, respectively. The detection ranges for both biomarkers were 0–7500 pg/mL. The known interfering agents in immunoassays such as biotin, bilirubin, intra-lipid, and hemoglobin did not detect Tp53 and PIC, even at levels that were several folds higher levels than their normal levels. Furthermore, the present study provides a unique report on this preliminary investigation using the PIC/Tp53 ratio to detect stage I–IV lung cancers. The presented method detects lung cancers with 81.6% sensitivity and 93.3% specificity. These results indicate that the presented method has high applicability for the identification of lung cancer patients from the healthy population.
Collapse
|
30
|
Li H, Fang H, Chang L, Qiu S, Ren X, Cao L, Bian J, Wang Z, Guo Y, Lv J, Sun Z, Wang T, Li B. TC2N: A Novel Vital Oncogene or Tumor Suppressor Gene In Cancers. Front Immunol 2021; 12:764749. [PMID: 34925334 PMCID: PMC8674203 DOI: 10.3389/fimmu.2021.764749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein–protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Hanyang Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Qiu
- Department of Biobank, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaojun Ren
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinda Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Guo
- Department of Breast Surgery, The Affiliated Hospital Changchun University of Chinese Medicine, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Tiejun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Tiejun Wang, ; Bingjin Li,
| |
Collapse
|
31
|
Rath S, Jagadeb M, Bhuyan R. Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma. Genomics Inform 2021; 19:e46. [PMID: 35012289 PMCID: PMC8752987 DOI: 10.5808/gi.21062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.
Collapse
Affiliation(s)
- Sonali Rath
- Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
| | - Manaswini Jagadeb
- Department of Bioinformatics, Centre for Post Graduate Studies, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Ruchi Bhuyan
- Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
- Department of Oral Pathology and Microbiology and Department of Medical Research Health Sciences, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be) University, Bhubaneswar 751003, India
| |
Collapse
|
32
|
Yadav UP, Ansari AJ, Arora S, Joshi G, Singh T, Kaur H, Dogra N, Kumar R, Kumar S, Sawant DM, Singh S. Design, synthesis and anticancer activity of 2-arylimidazo[1,2-a]pyridinyl-3-amines. Bioorg Chem 2021; 118:105464. [PMID: 34785441 DOI: 10.1016/j.bioorg.2021.105464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
A series of imido-heterocycle compounds were designed, synthesized, characterized, and evaluated for the anticancer potential using breast (MCF-7 and MDA-MB-231), pancreatic (PANC-1), and colon (HCT-116 and HT-29) cancer cell lines and normal cells, while normal cells showed no toxicity. Among the screened compounds, 4h exhibited the best anticancer potential with IC50 values ranging from 1 to 5.5 μM. Compound 4h caused G2/M phase arrest and apoptosis in all the cell lines except MDA-MB-231 mammosphere formation was inhibited. In-vitro enzyme assay showed selective topoisomerase IIα inhibition by compound 4h, leading to DNA damage as observed by fluorescent staining. Cell signalling studies showed decreased expression of cell cycle promoting related proteins while apoptotic proteins were upregulated. Interestingly MDA-MB-231 cells showed only cytostatic effects upon treatment with compound 4h due to defective p53 status. Toxicity study using overexpression of dominant-negative mutant p53 in MCF-7 cells (which have wild type functional p53) showed that anticancer potential of compound 4h is positively correlated with p53 expression.
Collapse
Affiliation(s)
- Umesh Prasad Yadav
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India; Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Arshad J Ansari
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Harsimrat Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India
| | - Nilambra Dogra
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh 160014, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151401, India.
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India.
| | - Devesh M Sawant
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer 305817, India.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
33
|
Shao C, Anand V, Andreeff M, Battula VL. Ganglioside GD2: a novel therapeutic target in triple-negative breast cancer. Ann N Y Acad Sci 2021; 1508:35-53. [PMID: 34596246 DOI: 10.1111/nyas.14700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by lack of hormone receptor expression and is known for high rates of recurrence, distant metastases, and poor clinical outcomes. TNBC cells lack targetable receptors; hence, there is an urgent need for targetable markers for the disease. Breast cancer stem-like cells (BCSCs) are a fraction of cells in primary tumors that are associated with tumorigenesis, metastasis, and resistance to chemotherapy. Targeting BCSCs is thus an effective strategy for preventing cancer metastatic spread and sensitizing tumors to chemotherapy. The CD44hi CD24lo phenotype is a well-established phenotype for identification of BCSCs, but CD44 and CD24 are not targetable markers owing to their expression in normal tissues. The ganglioside GD2 has been shown to be upregulated in primary TNBC tumors compared with normal breast tissue and has been shown to identify BCSCs. In this review, we discuss GD2 as a BCSC- and tumor-specific marker in TNBC; epithelial-to-mesenchymal transition and the signaling pathways that are upstream and downstream of GD2 and the role of these pathways in tumorigenesis and metastasis in TNBC; direct and indirect approaches for targeting GD2; and ongoing clinical trials and treatments directed against GD2 as well as future directions for these strategies.
Collapse
Affiliation(s)
- Claire Shao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Patel SA, Lloyd MR, Cerny J, Shi Q, Simin K, Ediriwickrema A, Hutchinson L, Miron PM, Higgins AW, Ramanathan M, Gerber JM. Clinico-genomic profiling and clonal dynamic modeling of TP53-aberrant myelodysplastic syndrome and acute myeloid leukemia. Leuk Lymphoma 2021; 62:3348-3360. [PMID: 34496723 DOI: 10.1080/10428194.2021.1957869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
TP53-aberrant myelodysplastic syndrome and acute myeloid leukemia have dismal outcomes. Here, we define the clinico-genomic landscape of TP53 disruptions in 40 patients and employ clonal dynamic modeling to map the mutational hierarchy against clinical outcomes. Most TP53 mutations (45.2%) localized to the L3 loop or LSH motif of the DNA-binding domain. TP53 disruptions had high co-occurrence with mutations in epigenetic regulators, spliceosome machinery, and cohesin complex and low co-occurrence with mutations in proliferative signaling genes. Ancestral and descendant TP53 mutations constituted measurable residual disease and fueled relapse. High mutant TP53 gene dosage predicted low durability of remission. The median overall survival (OS) was 280 days. Hypomethylating agent-based therapy served as an effective bridge to transplant, leading to improved median OS compared to patients who did not receive a transplant (14.7 vs. 5.1 months). OS was independent of the genomic location of TP53 disruption, which has implications for rational therapeutic design.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine-Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maxwell R Lloyd
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jan Cerny
- Department of Medicine-Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qiming Shi
- Department of Medicine-Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Population & Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karl Simin
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Asiri Ediriwickrema
- Division of Hematology, Department of Medicine, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Lloyd Hutchinson
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Patricia M Miron
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anne W Higgins
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Muthalagu Ramanathan
- Department of Medicine-Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan M Gerber
- Department of Medicine-Hematology & Oncology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
35
|
Symphony of the DNA flexibility and sequence environment orchestrates p53 binding to its responsive elements. Gene 2021; 803:145892. [PMID: 34375633 DOI: 10.1016/j.gene.2021.145892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022]
Abstract
The p53 tumor suppressor protein maintains the genome fidelity and integrity by modulating several cellular activities. It regulates these events by interacting with a heterogeneous set of response elements (REs) of regulatory genes in the background of chromatin configuration. At the p53-RE interface, both the base readout and torsional-flexibility of DNA account for high-affinity binding. However, DNA structure is an entanglement of a multitude of physicochemical features, both local and global structure should be considered for dealing with DNA-protein interactions. The goal of current research work is to conceptualize and abstract basic principles of p53-RE binding affinity as a function of structural alterations in DNA such as bending, twisting, and stretching flexibility and shape. For this purpose, we have exploited high throughput in-vitro relative affinity information of responsive elements and genome binding events of p53 from HT-Selex and ChIP-Seq experiments respectively. Our results confirm the role of torsional flexibility in p53 binding, and further, we reveal that DNA axial bending, stretching stiffness, propeller twist, and wedge angles are intimately linked to p53 binding affinity when compared to homeodomain, bZIP, and bHLH proteins. Besides, a similar DNA structural environment is observed in the distal sequences encompassing the actual binding sites of p53 cistrome genes. Additionally, we revealed that p53 cistrome target genes have unique promoter architecture, and the DNA flexibility of genomic sequences around REs in cancer and normal cell types display major differences. Altogether, our work provides a keynote on DNA structural features of REs that shape up the in-vitro and in-vivo high-affinity binding of the p53 transcription factor.
Collapse
|
36
|
Biembengut ÍV, Silva ILZ, Souza TDACBD, Shigunov P. Cytoplasmic FMR1 interacting protein (CYFIP) family members and their function in neural development and disorders. Mol Biol Rep 2021; 48:6131-6143. [PMID: 34327661 DOI: 10.1007/s11033-021-06585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022]
Abstract
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of development. CYFIP1, similar to CYFIP2, acts in the WAVE regulatory complex (WRC) and plays a role in actin dynamics through the activation of the Arp2/3 complex and in a posttranscriptional regulatory complex with the fragile X mental retardation protein (FMRP). Previous reports have shown that CYFIP1 and CYFIP2 may play roles in posttranscriptional regulation in different ways. While CYFIP1 is involved in translation initiation via the 5'UTR, CYFIP2 may regulate mRNA expression via the 3'UTR. In addition, this CYFIP protein family is involved in neural development and maturation as well as in different neural disorders, such as intellectual disabilities, autistic spectrum disorders, and Alzheimer's disease. In this review, we map diverse studies regarding the functions, regulation, and implications of CYFIP proteins in a series of molecular pathways. We also highlight mutations and their structural effects both in functional studies and in neural diseases.
Collapse
Affiliation(s)
- Ísis Venturi Biembengut
- Carlos Chagas Institute-FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775, CIC, Curitiba, Paraná, 81830-010, Brazil
| | | | | | - Patrícia Shigunov
- Carlos Chagas Institute-FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775, CIC, Curitiba, Paraná, 81830-010, Brazil.
| |
Collapse
|
37
|
Kuchur OA, Kuzmina DO, Dukhinova MS, Shtil AA. The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development. Acta Naturae 2021; 13:65-76. [PMID: 34707898 PMCID: PMC8526179 DOI: 10.32607/actanaturae.11247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/24/2020] [Indexed: 12/05/2022] Open
Abstract
Survival mechanisms are activated in tumor cells in response to therapeutic ionizing radiation. This reduces a treatment's effectiveness. The p53, p63, and p73 proteins belonging to the family of proteins that regulate the numerous pathways of intracellular signal transduction play a key role in the development of radioresistance. This review analyzes the p53-dependent and p53-independent mechanisms involved in overcoming the resistance of tumor cells to radiation exposure.
Collapse
Affiliation(s)
- O. A. Kuchur
- ITMO University, Saint-Petersburg, 191002 Russia
| | | | | | - A. A. Shtil
- ITMO University, Saint-Petersburg, 191002 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
38
|
Zhang W, Sun X, Zhou A, Li M. When Fluorescent Sensing Meets Electrochemical Amplifying: A Powerful Platform for Gene Detection with High Sensitivity and Specificity. Anal Chem 2021; 93:7781-7786. [PMID: 34019763 DOI: 10.1021/acs.analchem.1c01404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ultrasensitive and ultraselective detection of the gene requires emergency development to meet the medical demands and infectious disease control. Herein we report a versatile and scalable method based on electrochemical-chemical-cyclic amplification (EC-CA) and fluorescence detection for ultrasensitive gene sensing. The EC-CA is achieved by an electro-Fenton reaction (EFR). The hydroxyl radicals generated at EFR are trapped by terephthalic acid to form highly fluorescent 2-hydroxyterephthalic acid, which can be sensitively detected by a fluorescence spectrophotometer. The method is the first to be able to amplify the signal and reduce the noise simultaneously by using the conventional analytical methods directly. This described method can be used for reliable Fe3+ quantification in the range from 0.1 nM to 0.08 mM. The calculated limit of detection (LOD) is 0.02 nM. Then, hepatitis B virus (HBV) and p53 gene were detected by this proposed method through introducing the Fe3O4 nanoparticles into the gene hybridization system. The LODs for HBV and p53 gene even topped out at 2.6 pM and 1.7 fM, respectively. We demonstrated that the finally recorded signal was triply amplified through the EC cycle, Fe3O4 nanoparticles, and sensitive fluorescence detection. At the same time, the background signal arisen from matrix effects and readout noise was effectively suppressed. This method shows it is simple, convenient, and operational through the detection of Fe3+, HBV, and the p53 gene in blood samples, respectively. We believe our method will make a significant, near-term impact on the development of high-sensitivity methods that are versatile and scalable.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.,Wannan Medical College, Department of Pharmacy, Wuhu 241002, China
| | - Xiuxiu Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Ani Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Maoguo Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
39
|
Mazar J, Gordon C, Naga V, Westmoreland TJ. The Killing of Human Neuroblastoma Cells by the Small Molecule JQ1 Occurs in a p53-Dependent Manner. Anticancer Agents Med Chem 2021; 20:1613-1625. [PMID: 32329693 PMCID: PMC7527568 DOI: 10.2174/1871520620666200424123834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
Background MYCN amplification is a prognostic biomarker associated with poor prognosis of neuroblastoma in children. The overall survival of children with MYCN-amplified neuroblastoma has only marginally improved within the last 20 years. The Bromodomain and Extra-Terminal motif (BET) inhibitor, JQ1, has been shown to downregulate MYCN in neuroblastoma cells. Objective To determine if JQ1 downregulation of MYCN in neuroblastomas can offer a target- specific therapy for this, difficult to treat, pediatric cancer. Methods Since MYCN-amplified neuroblastoma accounts for as much as 40 to 50 percent of all high-risk cases, we compared the effect of JQ1 on both MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines and investigated its mechanism of action. Results In this study, we show that JQ1 can specifically target MYCN for downregulation, though this effect is not specific to only MYCN-amplified cells. And although we can confirm that the loss of MYCN alone can induce apoptosis, the exogenous rescue of MYCN expression can abrogate much of this cytotoxicity. More fascinating, however, was the discovery that the JQ1-induced knockdown of MYCN, which led to the loss of the human double minute 2 homolog (HDM2) protein, also led to the accumulation of tumor protein 53 (also known as TP53 or p53), which ultimately induced apoptosis. Likewise, the knockdown of p53 also blunted the cytotoxic effects of JQ1. Conclusion These data suggest a mechanism of action for JQ1 cytotoxicity in neuroblastomas and offer a possible prognostic target for determining its efficacy as a therapeutic.
Collapse
Affiliation(s)
- Joseph Mazar
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Caleb Gordon
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Varun Naga
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | | |
Collapse
|
40
|
Perez JJ, Perez RA, Perez A. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Front Mol Biosci 2021; 8:681617. [PMID: 34095231 PMCID: PMC8173110 DOI: 10.3389/fmolb.2021.681617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions (PPIs) mediate a large number of important regulatory pathways. Their modulation represents an important strategy for discovering novel therapeutic agents. However, the features of PPI binding surfaces make the use of structure-based drug discovery methods very challenging. Among the diverse approaches used in the literature to tackle the problem, linear peptides have demonstrated to be a suitable methodology to discover PPI disruptors. Unfortunately, the poor pharmacokinetic properties of linear peptides prevent their direct use as drugs. However, they can be used as models to design enzyme resistant analogs including, cyclic peptides, peptide surrogates or peptidomimetics. Small molecules have a narrower set of targets they can bind to, but the screening technology based on virtual docking is robust and well tested, adding to the computational tools used to disrupt PPI. We review computational approaches used to understand and modulate PPI and highlight applications in a few case studies involved in physiological processes such as cell growth, apoptosis and intercellular communication.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat, Spain
| | - Alberto Perez
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Doulabi MSH, Moghaddam RG, Ghasemian R, Salehzadeh A. Association between p53 and p21 genes polymorphisms and ulcerative colitis in an Iranian population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Shao W, Hao ZY, Chen YF, Du J, He Q, Ren LL, Gao Y, Song N, Song Y, He H, Wang YZ. OIP5-AS1 specifies p53-driven POX transcription regulated by TRPC6 in glioma. J Mol Cell Biol 2021; 13:409-421. [PMID: 33508123 PMCID: PMC8436707 DOI: 10.1093/jmcb/mjab001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) control an array of expressed genes. However, the specifics of how a gene is expressed in time and space as controlled by a TF remain largely unknown. Here, in TRPC6-regulated proline oxidase 1 (POX) transcription in human glioma, we report that OIP5-AS1, a long noncoding RNA, determines the specificity of p53-driven POX expression. The OIP5-AS1/p53 complex via its 24 nucleotides binds to the POX promoter and is necessary for POX expression but not for p21 transcription. An O-site in the POX promoter to which OIP5-AS1 binds was identified that is required for OIP5-AS1/p53 binding and POX transcription. Blocking OIP5-AS1 binding to the O-site inhibits POX transcription and promotes glioma development. Thus, the OIP5-AS1/O-site module decides p53-controlled POX expression as regulated by TRPC6 and affects glioma development.
Collapse
Affiliation(s)
- Wei Shao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhen-Yu Hao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yi-Fei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Qian He
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Liang-Liang Ren
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Nan Song
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yan Song
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hua He
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yi-Zheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
43
|
Aberrant Splicing Events and Epigenetics in Viral Oncogenomics: Current Therapeutic Strategies. Cells 2021; 10:cells10020239. [PMID: 33530521 PMCID: PMC7910916 DOI: 10.3390/cells10020239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Global cancer incidence and mortality are on the rise. Although cancer is fundamentally a non-communicable disease, a large number of cancers are known to have a viral aetiology. A high burden of infectious agents (Human immunodeficiency virus (HIV), human papillomavirus (HPV), hepatitis B virus (HBV)) in certain Sub-Saharan African countries drives the rates of certain cancers. About one-third of all cancers in Africa are attributed to infection. Seven viruses have been identified with carcinogenic characteristics, namely the HPV, HBV, Hepatitis C virus (HCV), Epstein–Barr virus (EBV), Human T cell leukaemia virus 1 (HTLV-1), Kaposi’s Sarcoma Herpesvirus (KSHV), and HIV-1. The cellular splicing machinery is compromised upon infection, and the virus generates splicing variants that promote cell proliferation, suppress signalling pathways, inhibition of tumour suppressors, alter gene expression through epigenetic modification, and mechanisms to evade an immune response, promoting carcinogenesis. A number of these splice variants are specific to virally-induced cancers. Elucidating mechanisms underlying how the virus utilises these splice variants to maintain its latent and lytic phase will provide insights into novel targets for drug discovery. This review will focus on the splicing genomics, epigenetic modifications induced by and current therapeutic strategies against HPV, HBV, HCV, EBV, HTLV-1, KSHV and HIV-1.
Collapse
|
44
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
45
|
Katte RH, Chou RH, Yu C. Pentamidine inhibit S100A4 - p53 interaction and decreases cell proliferation activity. Arch Biochem Biophys 2020; 691:108442. [PMID: 32649952 DOI: 10.1016/j.abb.2020.108442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Metastasis-associated S100A4 protein is a small calcium-binding protein typically overexpressed in several tumor forms, and it is widely accepted that S100A4 plays a significant role in the metastasis of cancer. Tumor suppressor p53 is one of the S100A4's main targets. Previous reports show that through p53, S100A4 regulates collagen expression and cell proliferation. When S100A4 interacts with p53, the S100A4 destabilizes wild type p53. In the current study, based on 1H-15N HSQC NMR experiments and HADDOCK results, S100A4 interacts with the intrinsically unstructured transactivation domain (TAD) of the protein p53 and the pentamidine molecules in the presence of calcium ions. Our results suggest that the p53 TAD and pentamidine molecules share similar binding sites on the S100A4 protein. This observation indicates that a competitive binding mechanism can interfere with the binding of S100A4-p53 and increase the level of p53. Also, we compare different aspects of p53 activity in the WST-1 test using MCF 7 cells. We found that the presence of a pentamidine molecule results in higher p53 activity, which is also reflected in less cell proliferation. Collectively, our results indicate that disrupting the S100A4-p53 interaction would prevent cancer progression, and thus S100A4-p53 inhibitors provide a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Revansiddha H Katte
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
46
|
Yan B, Claxton D, Huang S, Qiu Y. AML chemoresistance: The role of mutant TP53 subclonal expansion and therapy strategy. Exp Hematol 2020; 87:13-19. [PMID: 32569759 DOI: 10.1016/j.exphem.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized by the proliferation and accumulation of myeloid blast cells in the bone marrow, which eventually lead to hematopoietic failure. Chemoresistance presents as a major burden for therapy of AML patients. p53 is the most important tumor suppressor protein that regulates cellular response to various stress. It is also important for hematopoietic stem cell development and hematopoiesis. Mutation or deletion of TP53 has been found to be linked to cancer progression, therapy-related resistance, and poor prognosis. TP53 mutation occurs in less than 10% of AML patients; however, it represents a subset of AML with therapy resistance and poor outcome. In addition, there is a subgroup of patients with low-frequency TP53 mutations. The percentage ranges from 1% to 3% of all AML patients. These patients have outcomes comparable to those of the high-frequency TP53 mutation patients. TP53-mutated clones isolated from the parental cells exhibit a survival advantage under drug treatment compared with cells with wild-type TP53, and have a higher population of leukemia stem cell (LSC) marker-positive cells, a characteristic of chemo-resistant cells. Therefore, low-frequency TP53 mutation, which is currently underappreciated, is an important prognosis factor for AML patients. Epigenetic drugs, such as hypomethylating agent and histone deacetylase inhibitors, have been found effective in targeting TP53-mutated AML. Histone deacetylase inhibitors can preferentially target the TP53-mutated subpopulation by reactivating p53-targeted genes and by eradicating LSC marker-positive cells. Therefore, combined treatment with epigenetic drugs may represent a new therapeutic strategy for treatments of TP53-mutated AML.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA
| | - Suming Huang
- Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA; Department of Pediatrics, Pennsylvania State University College of Medicine Hershey, PA
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA; Penn State Cancer Institute, Pennsylvania State University College of Medicine Hershey, PA.
| |
Collapse
|
47
|
Yan B, Chen Q, Xu J, Li W, Xu B, Qiu Y. Low-frequency TP53 hotspot mutation contributes to chemoresistance through clonal expansion in acute myeloid leukemia. Leukemia 2020; 34:1816-1827. [PMID: 31988438 PMCID: PMC7597970 DOI: 10.1038/s41375-020-0710-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022]
Abstract
TP53 mutations (TP53mut) in AML patients associate with poor prognosis that may affect therapy and outcome. In addition to TP53 mut patients, TCGA AML patient sequencing data show that there are around 3% of patients have detectable low-frequency TP53mut reads. Importantly, these patients showed worse outcome as compared with the TP53 wild type (TP53wt) patients. We have studied the effect of low-frequency TP53mut in two AML cell lines, OCI-AML2 and MV4-11. Both cells have low-frequency single hotspot TP53mut. Interestingly, the resistant cells derived from both lines have homogeneous TP53mut. TP53mut clones isolated from the parental cells also show increased chemoresistance potential and have higher population of leukemia stem cell (LSC) maker positive cells, a characteristic of chemoresistant cells. When mixed with TP53wt cells, the TP53mut cells show survival advantage suggesting its potential to develop chemoresistance. We previously showed that histone deacetylase inhibitor Romidepsin can re-sensitize chemoresistant cells by eradicating LSC marker positive cells. Here we further show that Romidepsin can reactivate p53 targeted genes which are dysregulated in TP53mut cells and preferentially targets TP53mut subpopulation. Therefore, our study shows that low-frequency TP53mut is linked to chemoresistance and sheds light on therapeutic strategies for treatments on chemoresistance.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Qinwei Chen
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jianfeng Xu
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
48
|
Dong H, Lu B, Wang J, Xie J, Liu K, Jia L, Zhuang J. Polymerization-driven successive collapse of DNA dominoes enabling highly sensitive cancer gene diagnosis. Chem Commun (Camb) 2019; 55:14797-14800. [PMID: 31761905 DOI: 10.1039/c9cc07508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a novel fluorescence assay method by designing a polymerization-driven DNA dominoes collapse (PDDC) strategy, enabling highly sensitive detection of p53 gene (as a model analyte) and single nucleotide polymorphism analysis.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Witberg G, Lev E, Ber Y, Tabachnik T, Sela S, Belo I, Leshem-Lev D, Margel D. Vascular endothelium function among male carriers of BRCA 1&2 germline mutation. Oncotarget 2019; 10:5041-5051. [PMID: 31489114 PMCID: PMC6707947 DOI: 10.18632/oncotarget.27118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Breast cancer susceptibility genes 1&2 (BRCA1&2) mutations hinder DNA-repair. Germline mutations in these genes are known to cause cancer; however, they may have other consequences. In this study we evaluated for the first time, the effect of the BRCA mutations on the vascular endothelium of young healthy males. Results: The study included 82 participants (53 BRCA mutation positive-carriers and 29 negative-carriers). Subjects mean age was 40. There were no significant differences in the baseline characteristics of the two groups. BRCA-carriers had significantly higher levels of EPCs (fraction of CD34+/VEGF or CD133+/VEGF positive-cells) compared to non-carriers of the mutation (median 6.78[1.96,14.48]% vs. 1.46[0.65,6.18]%, p < 0.001, and median 7.17[1.70,16.69]% vs. 1.54[0.85,5.10]%, p < 0.001, respectively). This difference remained consistent after multivariate adjustment. We did not identify differences in endothelial function, endothelial damage markers and EPCs activity between the two groups. Methods: This was a prospective cohort study to test the association between BRCA status and possible endothelial alterations. The Study population included males, 18-50 years, with no cardiovascular morbidity, who were referred for BRCA screening. We tested the endothelial system by: Endothelial progenitor cells (EPC) production, endothelial function (EndoPAT2000), endothelial damage and related hormonal levels. We stratified the cohort by germline BRCA status and compared measurements between BRCA mutation positive- and negative-carriers. Conclusions: Male BRCA1&2 mutation positive-carriers had increased level of EPCs which may reflect a subclinical accumulative endothelial damage. These novel findings suggest that the effect of mutations in BRCA is not limited to increased cancer risk, but may affect the cardiovascular system.
Collapse
Affiliation(s)
- Guy Witberg
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Israel.,The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Lev
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Israel.,Department of Cardiology, Assuta Ashdod University Hospital, Ashdod, Israel.,Faculty of Medicine, Ben Gurion University, Be'er Sheva, Israel
| | - Yaara Ber
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Tzlil Tabachnik
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Sivan Sela
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Ira Belo
- Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| | - Dorit Leshem-Lev
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Israel.,The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Margel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Urology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
50
|
Du W, Hao X, Yuan Z, Wang Y, Zhang X, Liu J. Shikonin potentiates paclitaxel antitumor efficacy in esophageal cancer cells via the apoptotic pathway. Oncol Lett 2019; 18:3195-3201. [PMID: 31452796 PMCID: PMC6704285 DOI: 10.3892/ol.2019.10662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Shikonin is a natural naphthoquinone pigment that can suppress the growth of a number of cancer cell types. Paclitaxel is an antineoplastic chemotherapy drug, which is used for the treatment of various types of solid tumor cancer. However, acquired paclitaxel resistance results in the failure of therapy, and consequent metastasis and relapse. The aim of the present study was to investigate whether shikonin can sensitize esophageal cancer cells to paclitaxel-treatment and to elucidate the underlying mechanisms. The biological effects of these two agents on esophageal cancer cell lines KYSE270 and KYSE150 were investigated by MTT assay, cell cycle analysis, Annexin-V apoptosis assay, western blotting and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that shikonin could significantly increase the cell growth inhibition effect induced by paclitaxel in the examined cell lines (P<0.001). The addition of shikonin to paclitaxel promoted cancer cell mitotic arrest and induced significantly higher levels of cell apoptosis. Notably, the mRNA and protein levels of Bcl-2 were downregulated, while p53 was upregulated in KYSE270 and KYSE150 cells following combined treatment. In summary, shikonin can sensitize esophageal cancer cells to paclitaxel-treatment by promoting cell mitotic arrest and reinforcing the susceptibility of esophageal cancer cells to apoptosis induced by paclitaxel, which is potentially associated with altered levels of Bcl-2 and p53.
Collapse
Affiliation(s)
- Wenzhen Du
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaohong Hao
- Department of Hematology and Oncology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Zhili Yuan
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| | - Ying Wang
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xueguang Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Jie Liu
- Department of Gastroenterology, Yantai Yeda Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|