1
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
2
|
Wang Q, Lin Z, Wang Z, Ye L, Xian M, Xiao L, Su P, Bi E, Huang YH, Qian J, Liu L, Ma X, Yang M, Xiong W, Zu Y, Pingali SR, Xu B, Yi Q. RARγ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood 2022; 139:59-72. [PMID: 34411225 DOI: 10.1182/blood.2020009856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-β response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.
Collapse
Affiliation(s)
- Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Zhijuan Lin
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhuo Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Enguang Bi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Yung-Hsing Huang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lintao Liu
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Xingzhe Ma
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, Texas; and
| | - Sai Ravi Pingali
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
3
|
Fleming JC, Woo J, Moutasim K, Hanley CJ, Frampton SJ, Wood O, Ward M, Woelk CH, Ottensmeier CH, Hafizi S, Kim D, Thomas GJ. CTEN Induces Tumour Cell Invasion and Survival and Is Prognostic in Radiotherapy-Treated Head and Neck Cancer. Cancers (Basel) 2020; 12:E2963. [PMID: 33066224 PMCID: PMC7602105 DOI: 10.3390/cancers12102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogenous disease treated with surgery and/or (chemo) radiotherapy, but up to 50% of patients with late-stage disease develop locoregional recurrence. Determining the mechanisms underpinning treatment resistance could identify new therapeutic targets and aid treatment selection. C-terminal tensin-like (CTEN) is a member of the tensin family, upregulated in several cancers, although its expression and function in HNSCC are unknown. We found that CTEN is commonly upregulated in HNSCC, particularly HPV-ve tumours. In vitro CTEN was upregulated in HPV-ve (n = 5) and HPV+ve (n = 2) HNSCC cell lines. Stable shRNA knockdown of CTEN in vivo significantly reduced tumour growth (SCC-25), and functional analyses in vitro showed that CTEN promoted tumour cell invasion, colony formation and growth in 3D-culture (SCC-25, Detroit 562). RNA sequencing of SCC-25 cells following CTEN siRNA knockdown identified 349 differentially expressed genes (logFC > 1, p < 0.05). Gene ontology analysis highlighted terms relating to cell locomotion and apoptosis, consistent with in vitro findings. A membrane-based antibody array confirmed that CTEN regulated multiple apoptosis-associated proteins, including HSP60 and cleaved caspase-3. Notably, in a mixed cohort of HPV+ve and HPV-ve HNSCC patients (n = 259), we found a significant, independent negative association of CTEN with prognosis, limited to those patients treated with (chemo)radiotherapy, not surgery, irrespective of human papillomavirus (HPV) status. These data show that CTEN is commonly upregulated in HNSCC and exerts several functional effects. Its potential role in modulating apoptotic response to therapy suggests utility as a predictive biomarker or radio-sensitising target.
Collapse
Affiliation(s)
- Jason C. Fleming
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
- Liverpool Head & Neck Centre, University of Liverpool, Liverpool L3 9GA, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Jeongmin Woo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (J.W.); (C.H.W.)
| | - Karwan Moutasim
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Christopher J. Hanley
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Steven J. Frampton
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Oliver Wood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Matthew Ward
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Christopher H. Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (J.W.); (C.H.W.)
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Christian H. Ottensmeier
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
- Liverpool Head & Neck Centre, University of Liverpool, Liverpool L3 9GA, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool CH63 4JY, UK
| | - Sassan Hafizi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Dae Kim
- St. George’s University Hospitals NHS Foundation Trust, Tooting, London SW17 0QT, UK;
| | - Gareth J. Thomas
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| |
Collapse
|
4
|
Su X, Gu X, Zhang Z, Li W, Wang X. Retinoic acid receptor gamma is targeted by microRNA-124 and inhibits neurite outgrowth. Neuropharmacology 2020; 163:107657. [PMID: 31170403 DOI: 10.1016/j.neuropharm.2019.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
During brain development, neurite outgrowth is required for brain development and is regulated by many factors. All-trans retinoic acid (RA) is an important regulator of cell growth and differentiation. MicroRNA-124 (miR-124), a brain-specific microRNA, has been implicated in stimulating neurite growth. In this study, we found that retinoic acid receptor gamma (RARG) expression was decreased, whereas miR-124 expression was increased during neural differentiation in mouse Neuroblastoma (N2a) Cells, P19 embryonal carcinoma (P19) cells, and mouse brain, as detected by immunoblotting or RT-qPCR. And we proved that miR-124 inhibited RARG expression by binding to the 3' UTR of RARG with a luciferase reporter assay. Upregulation of miR-124 (using miR-124 overexpressing plasmid and miR-124 mimic) led to a significant decrease in RARG protein in N2a cells and primary neurons. Therefore, we asked whether and how the miR-124/RARG axis regulates neuronal outgrowth, which is poorly understood. Strikingly, RARG knockdown by shRNA stimulated neurite growth in N2a cells and primary neurons, whereas RARG overexpression (without 3' UTR) inhibited neurite growth in N2a cells, P19 cells, and primary neurons. Furthermore, RARG knockdown could partially eliminate neurite outgrowth defects caused by the inhibitor of miR-124, while RARG overexpression could reverse the neurite outgrowth enhancing effect of the upregulation of miR-124. Collectively, the data reveal that miR-124/RARG axis is critical for neurite outgrowth. RARG emerges as a new target regulated by miR-124 that modulates neurite outgrowth, providing a novel context in which these two molecules function.
Collapse
Affiliation(s)
- Xiaohong Su
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xi Gu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiduo Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weipeng Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Arana L, Bayón-Cordero L, Sarasola LI, Berasategi M, Ruiz S, Alkorta I. Solid Lipid Nanoparticles Surface Modification Modulates Cell Internalization and Improves Chemotoxic Treatment in an Oral Carcinoma Cell Line. NANOMATERIALS 2019; 9:nano9030464. [PMID: 30897724 PMCID: PMC6474192 DOI: 10.3390/nano9030464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023]
Abstract
Solid lipid nanoparticles (SLN) present low toxicity, versatility to incorporate both lipophilic and hydrophilic drugs, controlled drug release and they are easy to scale-up. It is well known that the endocytosis pathway by which SLN are taken up and the subsequent subcellular distribution are crucial for the biological effect of the incorporated drug. In addition, interactions between SLN and cells depend on many factors, such as, the composition of nanoparticle surface. In this work different amounts of phosphatidylethanolamine polyethylene glycol (PE–PEG) were added to SLN composed of stearic acid, Epikuron 200 and sodium taurodeoxycholate. Characterization of obtained nanoparticle suspensions were performed by the analysis of particle size, polydispersity index, ζ-potential, cell toxicity and cell internalization pathway. We have observed that the presence of PE–PEG improves active cell internalization of the nanoparticles in an oral adenocarcinoma cell line, reducing non-specific internalization mechanisms. Finally, we have tested the effect of surface coating on the efficiency of incorporated drugs using all-trans retinoic acid as a model drug. We have observed that delivery of this drug into PE–PEG coated SLN increases its chemotoxic effect compared to non-coated SLN. Therefore, it can be concluded that surface modification with PE–PEG improves the efficiency and the specificity of the SLN-loaded drug.
Collapse
Affiliation(s)
- Lide Arana
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Laura Bayón-Cordero
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Laura Isabel Sarasola
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Miren Berasategi
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Sandra Ruiz
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain.
| |
Collapse
|
6
|
Metzler MA, Raja S, Elliott KH, Friedl RM, Tran NQH, Brugmann SA, Larsen M, Sandell LL. RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation. Development 2018; 145:dev.164822. [PMID: 29986869 DOI: 10.1242/dev.164822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the epithelial tissues of major salivary glands generate saliva and drain it into the oral cavity. For submandibular salivary glands (SMGs), the epithelial tissues arise during embryogenesis from naïve oral ectoderm adjacent to the base of the tongue, which begins to thicken, express SOX9 and invaginate into underlying mesenchyme. The developmental mechanisms initiating salivary gland development remain unexplored. In this study, we show that retinoic acid (RA) signaling activity at the site of gland initiation is colocalized with expression of retinol metabolic genes Rdh10 and Aldh1a2 in the underlying SMG mesenchyme. Utilizing a novel ex vivo assay for SMG initiation developed for this study, we show that RDH10 and RA are required for salivary gland initiation. Moreover, we show that the requirement for RA in gland initiation involves canonical signaling through retinoic acid receptors (RAR). Finally, we show that RA signaling essential for gland initiation is transduced specifically through RARα, with no contribution from other RAR isoforms. This is the first study to identify a molecular signal regulating mammalian salivary gland initiation.
Collapse
Affiliation(s)
- Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - N Q H Tran
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Uchibe K, Son J, Larmour C, Pacifici M, Enomoto-Iwamoto M, Iwamoto M. Genetic and pharmacological inhibition of retinoic acid receptor γ function promotes endochondral bone formation. J Orthop Res 2017; 35:1096-1105. [PMID: 27325507 PMCID: PMC6900928 DOI: 10.1002/jor.23347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
The nuclear retinoic acid receptors (RARs) play key roles in skeletal development and endochondral ossification. Previously, we showed that RARγ regulates chondrogenesis and that pharmacological activation of RARγ blocked heterotopic ossification (HO), pathology in which endochondral bone forms in soft tissues. Thus, we reasoned that pharmacological inhibition of RARγ should enhance endochondral ossification, leading to a potential therapeutic strategy for bone deficiencies. We created surgical bone defects in wild type and RARγ-null mice and monitored bone healing. Fibrous, cartilaginous, and osseous tissues formed in both groups by day 7, but more cartilaginous tissue formed in mutants within and around the defects compared to controls. Next, we implanted a mixture of Matrigel and rhBMP2 subdermally to induce ectopic endochondral ossification. Administration of RARγ antagonists significantly stimulated ectopic bone formation in wild type but not in RARγ-null mice. The antagonist-induced increases in bone formation were preceded by increases in cartilage formation and were accompanied by higher levels of phosphorylated Smad1/5/8 (pSmad1/5/8) compared to vehicle-treated control. Higher pSmad1/5/8 levels were also observed in cartilaginous tissues forming in healing bone defects in RARγ-null mice, and increases in pSmad1/5/8 levels and Id1-luc activity were observed in RARγ antagonist-treated chondrogenic cells in culture. Our data show that genetic or pharmacological interference with RARγ stimulates endochondral bone formation and does so at least in part by stimulating canonical BMP signaling. This pharmacologic strategy could represent a new tool to enhance endochondral bone formation in the setting of various orthopedic surgical interventions and other skeletal deficiencies. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1096-1105, 2017.
Collapse
Affiliation(s)
- Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jiyeon Son
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Larmour
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Motomi Enomoto-Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
8
|
Kurtys E, Eisel ULM, Verkuyl JM, Broersen LM, Dierckx RAJO, de Vries EFJ. The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia. Neurochem Int 2016; 99:206-214. [PMID: 27465516 DOI: 10.1016/j.neuint.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/01/2016] [Accepted: 07/18/2016] [Indexed: 01/27/2023]
Abstract
Neuroinflammation is a common phenomenon in the pathology of many brain diseases. In this paper we explore whether selected vitamins and fatty acids known to modulate inflammation exert an effect on microglia, the key cell type involved in neuroinflammation. Previously these nutrients have been shown to exert anti-inflammatory properties acting on specific inflammatory pathways. We hypothesized that combining nutrients acting on converging anti-inflammatory pathways may lead to enhanced anti-inflammatory properties as compared to the action of a single nutrient. In this study, we investigated the anti-inflammatory effect of combinations of nutrients based on the ability to inhibit the LPS-induced release of nitric oxide and interleukin-6 from BV-2 cells. Results show that omega-3 fatty acids, vitamins A and D can individually reduce the LPS-induced secretion of the pro-inflammatory cytokines by BV-2 cells. Moreover, we show that vitamins A, D and omega-3 fatty acids (docosahexaenoic and eicosapentaenoic) at concentrations where they individually had little effect, significantly reduced the secretion of the inflammatory mediator, nitric oxide, when they were combined. The conclusion of this study is that combining different nutrients acting on convergent anti-inflammatory pathways may result in an increased anti-inflammatory efficacy.
Collapse
Affiliation(s)
- E Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J M Verkuyl
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - L M Broersen
- Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
9
|
Diaz P, Huang W, Keyari CM, Buttrick B, Price L, Guilloteau N, Tripathy S, Sperandio VG, Fronczek FR, Astruc-Diaz F, Isoherranen N. Development and Characterization of Novel and Selective Inhibitors of Cytochrome P450 CYP26A1, the Human Liver Retinoic Acid Hydroxylase. J Med Chem 2016; 59:2579-95. [PMID: 26918322 DOI: 10.1021/acs.jmedchem.5b01780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 CYP26 enzymes are responsible for all-trans-retinoic acid (atRA) clearance. Inhibition of CYP26 enzymes will increase endogenous atRA concentrations and is an attractive therapeutic target. However, the selectivity and potency of the existing atRA metabolism inhibitors toward CYP26A1 and CYP26B1 is unknown, and no selective CYP26A1 or CYP26B1 inhibitors have been developed. Here the synthesis and potent inhibitory activity of the first CYP26A1 selective inhibitors is reported. A series of nonazole CYP26A1 selective inhibitors was identified with low nM potency. The lead compound 3-{4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1,3-dioxolan-2-yl] phenyl}4-propanoic acid (24) had 43-fold selectivity toward CYP26A1 with an IC50 of 340 nM. Compound 24 and its two structural analogues also inhibited atRA metabolism in HepG2 cells, resulting in increased potency of atRA toward RAR activation. The identified compounds have potential to become novel treatments aiming to elevate endogenous atRA concentrations and may be useful as cotreatment with atRA to combat therapy resistance.
Collapse
Affiliation(s)
- Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana , 32 Campus Drive, Missoula, Montana 59812, United States.,DermaXon LLC , 32 Campus Drive, Missoula, Montana 59812, United States
| | - Weize Huang
- Department of Pharmaceutics, University of Washington , 1959 NE Pacific Street, Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| | - Charles M Keyari
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana , 32 Campus Drive, Missoula, Montana 59812, United States
| | - Brian Buttrick
- Department of Pharmaceutics, University of Washington , 1959 NE Pacific Street, Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| | - Lauren Price
- Department of Pharmaceutics, University of Washington , 1959 NE Pacific Street, Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| | | | - Sasmita Tripathy
- Department of Pharmaceutics, University of Washington , 1959 NE Pacific Street, Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| | - Vanessa G Sperandio
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana , 32 Campus Drive, Missoula, Montana 59812, United States
| | - Frank R Fronczek
- Chemistry Department, Louisiana State University , 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States
| | - Fanny Astruc-Diaz
- DermaXon LLC , 32 Campus Drive, Missoula, Montana 59812, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington , 1959 NE Pacific Street, Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Is PPARbeta/delta a Retinoid Receptor? PPAR Res 2011; 2007:73256. [PMID: 18274629 PMCID: PMC2233979 DOI: 10.1155/2007/73256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 11/21/2007] [Indexed: 12/11/2022] Open
Abstract
The broad ligand-binding characteristic of PPARβ/δ has long hampered identification of physiologically-meaningful ligands for the receptor. The observations that the activity of PPARβ/δ is supported by fatty acid binding protein 5 (FABP5), which directly delivers ligands from the cytosol to the receptor, suggest that bona fide PPARβ/δ ligands both activate the receptor, and trigger the nuclear translocation of FABP5. Using these criteria, it was recently demonstrated that all-trans-retinoic acid (RA), the activator of the classical retinoic acid receptor RAR, also serves as a ligand for PPARβ/δ. Partitioning of RA between its two receptors was found to be regulated by FABP5, which delivers it to PPARβ/δ, and cellular RA binding protein II (CRABP-II), which targets it to RAR. Consequently, RA activates PPARβ/δ in cells that display a high FABP5/CRABP-II expression ratio. It remains to be clarified whether compounds other than RA may also serve as endogenous activators for this highly promiscuous protein.
Collapse
|
12
|
Acquafreda T, Nunes FD, Soprano DR, Soprano KJ. Expression of homeobox genes in oral squamous cell carcinoma cell lines treated with all-trans retinoic acid. J Cell Biochem 2011; 111:1437-44. [PMID: 20830740 DOI: 10.1002/jcb.22871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on day 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling.
Collapse
Affiliation(s)
- Thais Acquafreda
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
13
|
Penning TM, Lerman C. Genomics of Smoking Exposure and Cessation: Lessons for Cancer Prevention and Treatment: Fig. 1. Cancer Prev Res (Phila) 2008; 1:80-3. [DOI: 10.1158/1940-6207.capr-08-0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Abstract
Retinoids (retinol [vitamin A] and its biologically active metabolites) are essential signaling molecules that control various developmental pathways and influence the proliferation and differentiation of a variety of cell types. The physiological actions of retinoids are mediated primarily by the retinoic acid receptors alpha, beta, and gamma (RARs) and rexinoid receptors alpha, beta, and gamma. Although mutations in RARalpha, via the PML-RARalpha fusion proteins, result in acute promyelocytic leukemia, RARs have generally not been reported to be mutated or part of fusion proteins in carcinomas. However, the retinoid signaling pathway is often compromised in carcinomas. Altered retinol metabolism, including low levels of lecithin:retinol acyl trasferase and retinaldehyde dehydrogenase 2, and higher levels of CYP26A1, has been observed in various tumors. RARbeta(2) expression is also reduced or is absent in many types of cancer. A greater understanding of the molecular mechanisms by which retinoids induce cell differentiation, and in particular stem cell differentiation, is required in order to solve the issue of retinoid resistance in tumors, and thereby to utilize RA and synthetic retinoids more effectively in combination therapies for human cancer.
Collapse
Affiliation(s)
- Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|
15
|
Abstract
Studies utilizing experimental animals, epidemiological approaches, cellular models, and clinical trials all provide evidence that retinoic acid and some of its synthetic derivatives (retinoids) are useful pharmacological agents in cancer therapy and prevention. In this chapter, we first review the current knowledge of retinoic acid receptors (RARs) and their role in mediating the actions of retinoic acid. We then focus on a discussion of RARalpha and acute promyelocytic leukemia followed by a discussion of the role of RARs, in particular RARbeta expression, in other cancer types. Loss of normal RAR function in the presence of physiological levels of RA (either due to alterations in the protein structure or level of expression) is associated with a variety of different cancers. In some cases treatment with pharmacological doses of RA can be effective.
Collapse
Affiliation(s)
- Dianne Robert Soprano
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
16
|
Youssef EM, Lotan D, Issa JP, Wakasa K, Fan YH, Mao L, Hassan K, Feng L, Lee JJ, Lippman SM, Hong WK, Lotan R. Hypermethylation of the retinoic acid receptor-beta(2) gene in head and neck carcinogenesis. Clin Cancer Res 2004; 10:1733-42. [PMID: 15014026 DOI: 10.1158/1078-0432.ccr-0989-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Retinoic acid receptor-beta(2) (RAR-beta(2)) expression is suppressed in oral premalignant lesions and head and neck squamous cell carcinomas (HNSCCs). This study was conducted to determine whether RAR-beta(2) gene expression in such lesions can be silenced by promoter methylation. EXPERIMENTAL DESIGN RAR-beta(2) methylation was analyzed in DNA samples from 22 pairs of primary HNSCC and adjacent normal epithelium, 124 samples of oral leukoplakia, and 18 HNSCC cell lines using methylation-specific PCR. RAR-beta(2) promoter was methylated in 67, 56, and 53% of HNSCC tumors, HNSCC cell lines, and microdissected oral leukoplakia specimens, respectively. RAR-beta(2) hypermethylation was confirmed by sodium bisulfite-PCR combined with restriction enzyme digestion analysis and by random cloning and sequencing of bisulfite-treated DNA isolates. RESULTS Significantly higher RAR-beta(2) hypermethylation levels were found in tumor tissue compared with adjacent normal tissue (P = 0.002). RAR-beta(2) methylation in the cell lines was correlated with loss of RAR-beta(2) expression (P = 0.013) and inversely related to the presence of mutated p53 (P = 0.025). The demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) restored RAR-beta(2) inducibility by all-trans-retinoic acid (ATRA) in some of the cell lines, which posses a methylated RAR-beta(2) promoter. In some cell lines, this effect was associated with increased growth inhibition after combined treatment with 5-aza-CdR and ATRA. CONCLUSIONS RAR-beta(2) silencing by methylation is an early event in head and neck carcinogenesis; 5-Aza-CdR can restore RAR-beta(2) inducibility by ATRA in most cell lines, and the combination of 5-aza-CdR and ATRA is more effective in growth inhibition than single agents.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Division
- Cell Line, Tumor
- Cloning, Molecular
- DNA Methylation
- DNA Primers
- DNA, Neoplasm/genetics
- Female
- Gene Silencing
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Leukoplakia, Oral/genetics
- Leukoplakia, Oral/pathology
- Male
- Middle Aged
- Molecular Sequence Data
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Polymerase Chain Reaction
- Precancerous Conditions/genetics
- Precancerous Conditions/pathology
- Promoter Regions, Genetic/genetics
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Emile M Youssef
- Departments of Thoracic/Head and Neck Medical Oncology,The University of Texas, MD Anderson Cancer Center, Houston, Texas 77345, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen CF, Goyette P, Lohnes D. RARgamma acts as a tumor suppressor in mouse keratinocytes. Oncogene 2004; 23:5350-9. [PMID: 15094780 DOI: 10.1038/sj.onc.1207682] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 11/09/2022]
Abstract
All-trans retinoic acid (RA), the principle biologically active form of vitamin A, is essential for many developmental process as well as homeostasis in the adult. Many lines of evidence also suggest that RA, acting through the RA receptors (RARs), can also suppress growth of tumors of diverse origin. To assess directly the role of the RARs in a model of epidermal tumorigenesis, we investigated the incidence of tumor formation using keratinocytes lacking specific RAR types. Our data suggest that loss of RARgamma, but not RARalpha, predisposed keratinocytes to v-Ha-Ras-induced squamous cell carcinoma. We also found that ablation of RARgamma, but not RARalpha, abolished RA-induced cell cycle arrest and apoptosis in these keratinocytes. Reconstitution of receptor expression into RAR-null cells restored sensitivity to RA, and reversed the tumorigenic potential of receptor-deficient keratinocytes. These data strongly support a tumor suppressor effect for the RARs, in particular endogenous RARgamma, in murine keratinocytes.
Collapse
Affiliation(s)
- Chang Feng Chen
- Division of Experimental Medicine, McGill University, Quebec, Canada
| | | | | |
Collapse
|
18
|
Li R, Faria TN, Boehm M, Nabel EG, Gudas LJ. Retinoic acid causes cell growth arrest and an increase in p27 in F9 wild type but not in F9 retinoic acid receptor β2 knockout cells. Exp Cell Res 2004; 294:290-300. [PMID: 14980522 DOI: 10.1016/j.yexcr.2003.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/10/2003] [Indexed: 11/16/2022]
Abstract
We have previously shown that an F9 teratocarcinoma retinoic acid receptor beta(2) (RARbeta(2)) knockout cell line exhibits no growth arrest in response to all-trans-retinoic acid (RA), whereas F9 wild type (Wt), F9 RARalpha(-/-), and F9 RARgamma(-/-) cell lines do growth arrest in response to RA. To examine the role of RARbeta(2) in growth inhibition, we analyzed the cell cycle regulatory proteins affected by RA in F9 Wt and F9 RARbeta(2)(-/-) cells. Flow microfluorimetry analyses revealed that RA treatment of F9 Wt cells greatly increased the percentage of cells in the G1/G0 phase of the cell cycle. In contrast, RA did not alter the cell cycle distribution profile of RARbeta(2)(-/-) cells. In F9 Wt cells, cyclin D1, D3, and cyclin E protein levels decreased, while cyclin D2 and p27 levels increased after RA treatment. Compared to the F9 Wt cells, the F9 RARbeta(2)(-/-) cells exhibited lower levels of cyclins D1, D2, D3, and E in the absence of RA, but did not exhibit further changes in the levels of these cell cycle regulators after RA addition. Since RA significantly increased the level of p27 protein (approximately 24-fold) in F9 Wt as compared to the F9 RARbeta(2)(-/-) cells, we chose to study p27 in greater detail. The p27 mRNA level and the rate of p27 protein synthesis were increased in RA-treated F9 Wt cells, but not in F9 RARbeta(2)(-/-) cells. Moreover, RA increased the half-life of p27 protein in F9 Wt cells. Reduced expression of RARbeta(2) is associated with the process of carcinogenesis and RARbeta(2) can mediate the growth arrest induced by RA in a variety of cancer cells. Using both genetic and molecular approaches, we have identified some of the molecular mechanisms, such as the large elevation of p27, through which RARbeta(2) mediates these growth inhibitory effects of RA in F9 cells.
Collapse
Affiliation(s)
- Rong Li
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
19
|
A new one-pot synthesis of all E-retinoic acid via a new enaminodiester synthon. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Abstract
Retinoids have been shown to inhibit the growth of many human tumor cells. Although the exact molecular mechanism of retinoid-mediated growth suppression remains known, the importance of the retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been in established a number of tumor cell models. We wanted to determine if modulation of RAR/RXR function would alter the retinoid sensitivity of oral squamous carcinoma cells (SCCs). Growth of SCCs was significantly suppressed by treatment with either all-trans retinoic acid (RA) or the synthetic, conformationally restricted RAR-gamma-selective retinoids SR 11254 and SR 11389. In contrast, stable oral SCC clones that constitutively overexpressed the mouse dominant negative mutant, RAR-beta (R269Q), were shown to exhibit reduced RAR/RXR transcriptional transactivation function and reduced sensitivity to growth inhibition by RA, SR 11254 and SR 11389. Likewise, the RAR-gamma antagonist SR 11253 was found to block the ability of SR 11254 and SR 11389 to inhibit SCC growth. These results indicate that modulation of RAR function through the use of either an RAR-gamma-selective antagonist or a pan-RAR dominant negative mutant significantly alters the growth inhibitory response of oral SCCs to retinoids.
Collapse
Affiliation(s)
- Kenneth J Soprano
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
21
|
Xu Q, Konta T, Furusu A, Nakayama K, Lucio-Cazana J, Fine LG, Kitamura M. Transcriptional induction of mitogen-activated protein kinase phosphatase 1 by retinoids. Selective roles of nuclear receptors and contribution to the antiapoptotic effect. J Biol Chem 2002; 277:41693-700. [PMID: 12186877 DOI: 10.1074/jbc.m207095200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (t-RA) inhibits hydrogen peroxide (H(2)O(2))-induced apoptosis by inhibiting the c-Jun N-terminal kinase (JNK)-activator protein 1 (AP-1) pathway. In this report, we examined the involvement of mitogen-activated protein kinase phosphatase 1 (MKP-1) in suppression of JNK and the antiapoptotic effect of t-RA and the roles of nuclear receptors in the regulation of MKP-1 by t-RA. We found that not only t-RA, but also a selective agonist of retinoic acid receptor (RAR), a selective agonist of retinoid X receptor (RXR), and a pan-agonist of RAR and RXR all induced MKP-1 at the transcriptional level. Activation of RAR was required for all of these triggering effects, but activation of RXR was required only for the RXR agonist-induced MKP-1 expression. Among the three RAR subtypes, RARalpha and RARgamma, but not RARbeta, mediated the t-RA-induced MKP-1 expression. The antiapoptotic effect of t-RA on H(2)O(2)-induced apoptosis in several cell types was correlated with the inducibility of MKP-1 by t-RA. Inhibition of MKP-1 by vanadate enhanced JNK phosphorylation and attenuated the antiapoptotic effect of t-RA. Furthermore, overexpression of MKP-1 inhibited H(2)O(2)-induced JNK phosphorylation and apoptosis. To our knowledge, this is the first to demonstrate that 1) MKP-1 is inducible by retinoids at the transcriptional level, 2) RXR and individual RAR subtypes have different roles in this process, and 3) the induced MKP-1 plays a significant role in mediating both JNK inhibition and the antiapoptotic effect of t-RA in oxidative stress.
Collapse
Affiliation(s)
- Qihe Xu
- Department of Medicine, Royal Free and University College Medical School, University College London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Klaassen I, Braakhuis BJM. Anticancer activity and mechanism of action of retinoids in oral and pharyngeal cancer. Oral Oncol 2002; 38:532-42. [PMID: 12167430 DOI: 10.1016/s1368-8375(01)00118-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Retinoids are the natural and synthetic derivatives of vitamin A. Epidemiological studies indicate that a low intake of vitamin A is associated with an increased risk of squamous cancer. In vitro studies on cancer cells show that exposure to retinoids results in the inhibition of growth, by blocking the cell cycle or by inducing apoptosis. With respect to the clinical efficacy of retinoids some positive effects have been observed in early stage oral and oropharyngeal cancer. Administration of retinoids has been shown to elicit responses in leukoplakia, a premalignant lesion of the oral mucosa that frequently develops into invasive cancer. Furthermore, it has been possible with a retinoid, 13-cis-retinoic acid, to delay or inhibit the development of second primary tumors in patients who have been curatively treated for a first primary tumor in the oral cavity or oropharynx. Recent trials, however, failed to show protective effects on the development of second primary tumors. Because of the short duration of the response, the intrinsic resistance to retinoids and the toxic side effects, the treatment with this class of compounds has not become a standard therapy. Recent studies have shed light on how preneoplastic and neoplastic cells defend themselves against the growth inhibiting action of retinoids. An increased retinoid breakdown and an inactivation of nuclear retinoid receptor appear to be the cause of acquired or intrinsic resistance. This knowledge can be used to develop novel tumor-selective strategies. This review gives an update on the role of retinoids in oral and oropharyngeal cancer and their precursor lesions. The focus will be on the anticancer activity, the mechanism of action and future directions.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Section Tumor Biology, Department of Otolaryngology/Head and Neck Surgery, Vrije Universiteit Medical Center, PO Box 7057, The, Amsterdam, Netherlands
| | | |
Collapse
|
23
|
Le Q, Soprano DR, Soprano KJ. Profiling of retinoid mediated gene expression in synchronized human SCC cells using Atlas human cDNA expression arrays. J Cell Physiol 2002; 190:345-55. [PMID: 11857450 DOI: 10.1002/jcp.10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While retinoids have been demonstrated to inhibit growth of many tumor cells, including SCC cells, the molecular mechanism by which retinoids suppress growth has not been elucidated. We previously found that the growth of SCC cells was significantly inhibited by all-trans-retinoic acid (all-trans-RA) treatment, and this inhibition was dependent on the binding and activation of RARs. These nuclear receptors bind retinoids and alter the rate of transcription of specific genes. To identify targets of the activated RARs which mediate growth inhibition, we growth arrested SCC-25 cells in G-0 and examined the effect of all-trans-RA on synchronized SCC-25 cells. All-trans-RA inhibited G-1 progression in quiescent SCC-25 cells stimulated by FBS. More specifically, we found that the all-trans-RA execution point maps to mid/late G-1, 6 to 10 h after stimulation. Using this synchronized cell system, we examined the expression of cell cycle regulatory genes in quiescent SCC-25 cells stimulated with FBS and treated with all-trans-RA. We found few changes in expression of these genes which could account for all-trans-RA inhibition of SCC-25 cell growth. In order to compare the patterns of expression of a wider selection of genes in all-trans-RA treated and non-treated SCC-25 cells, we have used expression array technology. We successfully performed expression profiling experiments on the Atlas Human cDNA arrays which contain 1176 human genes. We have identified several up-regulated and several down-regulated gene expression changes mediated by all-trans-RA treatment in synchronized SCC-25 cells. This novel information will be useful in defining the mechanism by which retinoids suppress the growth of SCC cells.
Collapse
Affiliation(s)
- Quan Le
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
24
|
Peterson VJ, Barofsky E, Deinzer ML, Dawson MI, Feng KC, Zhang XK, Madduru MR, Leid M. Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change. Biochem J 2002; 362:173-81. [PMID: 11829754 PMCID: PMC1222374 DOI: 10.1042/0264-6021:3620173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apo and holo forms of retinoic acid receptors, and other nuclear receptors, display differential sensitivity to proteolytic digestion that likely reflects the distinct conformational states of the free and liganded forms of the receptor. We have developed a method for rapid peptide mapping of holo-retinoic acid receptor gamma that utilizes matrix-assisted laser-desorption-ionization time-of-flight MS to identify peptide fragments that are derived from the partially proteolysed holo-receptor. The peptide maps of retinoic acid receptor gamma bound by four different agonists were identical, suggesting that all four ligands induced a similar conformational change within the ligand-binding domain of the receptor. In all cases, this agonist-induced conformational change promoted the direct association of retinoic acid receptor gamma with the transcriptional co-activator p300 and inhibited interaction of the receptor with the nuclear receptor co-repressor. SR11253, a compound previously reported to exert mixed retinoic acid receptor gamma agonist/antagonist activities in cultured cells, was found to bind directly to, but only weakly altered the protease-sensitivity of, the receptor and failed to promote interaction of the receptor with p300 or induce dissociation of receptor-nuclear receptor co-repressor complexes. This technique should be generally applicable to other members of the nuclear receptor superfamily that undergo an induced structural alteration upon agonist or antagonist binding, DNA binding and/or protein-protein interaction.
Collapse
Affiliation(s)
- Valerie J Peterson
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Zou CP, Youssef EM, Zou CC, Carey TE, Lotan R. Differential effects of chromosome 3p deletion on the expression of the putative tumor suppressor RAR beta and on retinoid resistance in human squamous carcinoma cells. Oncogene 2001; 20:6820-7. [PMID: 11687961 DOI: 10.1038/sj.onc.1204846] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Revised: 07/09/2001] [Accepted: 07/17/2001] [Indexed: 11/09/2022]
Abstract
Retinoids' effects on cell growth and differentiation are mediated by nuclear retinoid receptors, which are ligand-activated transcription enhancing factors. Because the expression of the retinoic acid receptor beta (RARbeta) gene, which is located on chromosome 3p24, is diminished in premalignant and malignant tissues it has been proposed that it acts as a tumor suppressor. To test the hypothesis that RARbeta loss leads to retinoid resistance, we studied several karyotyped head and neck squamous carcinoma (HNSCC) cell lines (UMSCC-17A, -17B, -22A, -22B, and -38) with deletion of one chromosome 3p arm. RARbeta mRNA was neither detected nor induced by retinoic acid in these cells, whereas it was expressed and induced by retinoic acid in two other HNSCC cell lines (1483 and 183) without 3p deletion. Methylation of the RARbeta gene promoter was detected in the 17B and 22B cells that failed to express RARbeta but no methylation was found in 183A cells that did express RARbeta mRNA. Responsiveness of HNSCC cells to several retinoids in assays of growth inhibition and colony formation, was rank ordered as: 22B>1483>38>183>17B. Additionally, retinoid response elements were transactivated in 22B more efficiently than in 17B cells. These results indicate that loss of RARbeta expression does not necessarily lead to loss of growth inhibition by retinoids or to a block of retinoid signaling.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Division
- Chromosome Deletion
- Chromosomes, Human, Pair 3
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Promoter Regions, Genetic
- RNA, Neoplasm/biosynthesis
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Retinoids/pharmacology
- Transcriptional Activation
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C P Zou
- Gynecologic Oncology, Department of Obstetrics, Gynecology & Reproductive Science, The University of Texas, Medical School, Houston, Texas, TX 77030, USA
| | | | | | | | | |
Collapse
|
27
|
Klaassen I, Brakenhoff RH, Smeets SJ, Snow GB, Braakhuis BJ. Metabolism and growth inhibition of four retinoids in head and neck squamous normal and malignant cells. Br J Cancer 2001; 85:630-5. [PMID: 11506507 PMCID: PMC2364086 DOI: 10.1054/bjoc.2001.1952] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isotretinoin (13-cis-retinoic acid, 13cRA) has proven to be active in chemoprevention of head and neck squamous cell carcinoma (HNSCC). Moreover, both all-trans-retinoic acid (ATRA) and 13cRA induce objective responses in oral premalignant lesions. After binding of retinoids to retinoic acid receptors (RARs and RXRs) dimers are formed that are able to regulate the expression of genes involved in growth and differentiation. We compared the metabolism and level of growth inhibition of 13cRA with that of ATRA, 9cRA and retinol in four HNSCC cell lines and normal oral keratinocyte cultures (OKC). These retinoid compounds are known to bind with different affinities to the retinoic acid receptors. We observed that all retinoids were similar with respect to their capacity to induce growth inhibition. One HNSCC line could be ranked as sensitive, one as moderately sensitive and the remaining two were totally insensitive; OKC were moderately sensitive. The rate at which the cells were able to catabolize the retinoid was similar for all compounds. Retinoid metabolism in HNSCC cells resulted in a profile of metabolites that was unique for each retinoid. These metabolic profiles were different in OKC. Our findings indicate that differences in retinoid receptor selectivity of these retinoids do not influence the level of growth inhibition and rate of metabolism.
Collapse
Affiliation(s)
- I Klaassen
- Section Tumor Biology, Department of Otolaryngology/Head and Neck Surgery, University Hospital Vrije Universiteit, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Klaassen I, Brakenhoff RH, Smeets SJ, Snow GB, Braakhuis BJ. Expression of retinoic acid receptor gamma correlates with retinoic acid sensitivity and metabolism in head and neck squamous cell carcinoma cell lines. Int J Cancer 2001; 92:661-5. [PMID: 11340568 DOI: 10.1002/1097-0215(20010601)92:5<661::aid-ijc1251>3.0.co;2-o] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinoids, analogues of vitamin A, can reverse premalignant lesions and prevent second primary tumors in patients with head and neck squamous cell carcinoma (HNSCC). The effects of retinoids are mediated by retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which act as ligand-activated transcription factors. The regulation of cell growth, differentiation and retinoid metabolism in normal, premalignant and malignant cells by retinoids is thought to be a result of their effects on gene expression. We investigated mRNA expression of RARs (alpha, beta, and gamma) and RXR-beta by means of RNase protection and related this to retinoic acid (RA)-induced growth inhibition and RA turnover in four HNSCC cell lines (UM-SCC-14C, UM-SCC-22A, UM-SCC-35 and VU-SCC-OE). An RA-resistant subline of UM-SCC-35 was generated by exposure to increasing concentrations of RA for 8 months (designated UM-SCC-35R). RA turnover was determined on the basis of decreasing RA levels in the cells and culture medium after exposure to 1 microM RA. We found that RAR-gamma mRNA expression was strongly correlated with RA-induced growth inhibition (p = 0.016, R = 0.92) and RA turnover (p = 0.041, R = 0.86). RAR-beta transcript levels were reduced in three of five cell lines compared with normal mucosa, and these did not correlate with RA-induced growth inhibition and RA turnover. Expression of RAR-alpha and RXR-beta was not substantially altered in any of the cell lines. These findings suggest that in HNSCC cell lines RAR-gamma is the most important retinoid receptor for regulation of RA turnover rate and RA-induced growth inhibition.
Collapse
Affiliation(s)
- I Klaassen
- Section of Tumor Biology, Department of Otolaryngology/Head and Neck Surgery, University Hospital Vrije Universiteit, 1007 MB Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|