1
|
Leprêtre F, Meneboo JP, Villenet C, Delestré L, Quesnel B, Shelley CS, Figeac M, Galiègue-Zouitina S. Full-length RNA-Seq of the RHOH gene in human B cells reveals new exons and splicing patterns. Sci Rep 2024; 14:28297. [PMID: 39550462 PMCID: PMC11569159 DOI: 10.1038/s41598-024-79307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
The RhoH protein is a member of the Ras superfamily of guanosine triphosphate-binding proteins. RhoH is an atypical Rho family member that is always GTP-bound and thus always activated. It is restrictively expressed in normal hematopoietic cells, where it is a negative regulator of cell growth and survival. We previously analyzed the RHOH gene structure and demonstrated that this gene is composed of 7 exons, one single encoding exon located at the 3' extremity of the gene, preceded by 6 noncoding exons. To further understand the transcription events associated with this gene, we performed full-length RNA-Seq on 12 B-cell lines. We identified new exons, new splice events and new splice sites, leading to the discovery of 38 RHOH mRNA molecules, 27 of which have never been described before. Here, we also describe new fusion transcripts. Moreover, our method allowed quantitative measurements of the different mRNA species relative to each other in relation to B-cell differentiation.
Collapse
Affiliation(s)
- Frédéric Leprêtre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France.
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | | - Bruno Quesnel
- CHU Lille, UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Université de Lille, 59000, Lille, France
| | | | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, 59000, Lille, France
| | | |
Collapse
|
2
|
Zhang Y, Li A, Li Y, Ouyang B, Wang X, Zhang L, Xu H, Gu Y, Lu X, Dong L, Yi H, Wang C. Clinicopathological and Molecular Characteristics of Rare EBV-associated Diffuse Large B-cell Lymphoma With IRF4 Rearrangement. Am J Surg Pathol 2024; 48:1341-1348. [PMID: 39172106 DOI: 10.1097/pas.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) is a rare form of aggressive B-cell lymphoma with limited molecular information reported regarding interferon regulatory factor 4 ( IRF4 ) status. Here, we presented 3 EBV-positive DLBCL cases with IRF4 rearrangement (EBV+DLBCL- IRF4 -R) verified by fluorescence in situ hybridization (FISH). Three patients, including 1 male and 2 females (median age: 64 y; range: 45 to 68 y), had normal immune function. During a median follow-up of 12 months (range: 0 to 24 mo), 2 patients succumbed to the disease, and 1 patient achieved complete response. Three tumors were present in the mediastinum, stomach, and thalamus, respectively. All three tumors exhibited DLBCL morphology and were identified as the non-germinal center B-cell subtype, with EBV-encoded small RNA positivity ranging from 70% to 80%. RNA sequencing was able to identify RHOH and IGH as fusion partners of IRF4 in two cases. No MYC and BCL2 rearrangements were detected in 3 cases by FISH and RNA sequencing. Next-generation sequencing revealed a low mutation burden, and only IRF4 was recurrently mutated in two EBV+DLBCL- IRF4 -R cases. Using the LymphGen 2.0 classifier, 1 case was classified as the MCD (including MYD88L265P and CD79B mutations) subtype. We report rare EBV+DLBCL- IRF4 -R that may enhance our understanding of the diverse spectrum of large B-cell lymphoma.
Collapse
MESH Headings
- Humans
- Interferon Regulatory Factors/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Female
- Middle Aged
- Aged
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/complications
- Gene Rearrangement
- In Situ Hybridization, Fluorescence
- Biomarkers, Tumor/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yuxiu Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
4
|
Poku R, Amissah F, Alan JK. PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. Small GTPases 2023; 14:1-13. [PMID: 37114375 PMCID: PMC10150613 DOI: 10.1080/21541248.2023.2202612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Rho proteins are part of the Ras superfamily, which function to modulate cytoskeletal dynamics including cell adhesion and motility. Recently, an activating mutation in Cdc42, a Rho family GTPase, was found in a patient sample of melanoma. Previously, our work had shown the PI3K was important downstream of mutationally active Cdc42. Our present study sought to determine whether PI3K was a crucial downstream partner for Cdc42 in a melanoma cells line with a BRAF mutation, which is the most common mutation in cutaneous melanoma. In this work we were able to show that Cdc42 contributes to proliferation, anchorage-independent growth, cell motility and invasion. Treatment with a pan-PI3K inhibitor was able to effectively ameliorate all these cancer phenotypes. These data suggest that PI3K may be an important target downstream of Cdc42 in melanoma.
Collapse
Affiliation(s)
- Rosemary Poku
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA
| | - Felix Amissah
- Department of Pharmaceutical Science, Ferris State University, Big Rapids, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Zhang Y, Li G, Zhao Y. Advances in the development of Rho GTPase inhibitors. Bioorg Med Chem 2023; 90:117337. [PMID: 37253305 DOI: 10.1016/j.bmc.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Rho guanosine triphosphatases (Rho GTPases), as members of the Ras superfamily, are GDP/GTP binding proteins that behave as molecular switches for the transduction of signals from external stimuli. Rho GTPases play essential roles in a number of cellular processes including cell cycle, cell polarity as well as cell migration. The dysregulations of Rho GTPases are related with various diseases, especially with cancers. Accumulating evidence supports that Rho GTPases play important roles in cancer development and progression. Rho GTPases become potential therapeutic targets for cancer therapy. And a number of inhibitors targeting Rho GTPases have been developed. In this review, we discuss their structural features, summarize their roles in cancer, and focus on the recent progress of their inhibitors, which are beneficial for the drug discovery targeting Rho GTPases.
Collapse
Affiliation(s)
- Yijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Horiguchi H, Xu H, Duvert B, Ciuculescu F, Yao Q, Sinha A, McGuinness M, Harris C, Brendel C, Troeger A, Chiarle R, Williams DA. Deletion of murine Rhoh leads to de-repression of Bcl-6 via decreased KAISO levels and accelerates a malignancy phenotype in a murine model of lymphoma. Small GTPases 2022; 13:267-281. [PMID: 34983288 PMCID: PMC8741284 DOI: 10.1080/21541248.2021.2019503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RHOH/TFF, a member of the RAS GTPase super family, has important functions in lymphopoiesis and proximal T cell receptor signalling and has been implicated in a variety of leukaemias and lymphomas. RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5' untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). Recent data suggest a correlation between RhoH expression and disease progression in Acute Myeloid Leukaemia (AML). However, the effects of RHOH mutations and translocations on RhoH expression and malignant transformation remain unknown. We found that aged Rhoh-/- (KO) mice had shortened lifespans and developed B cell derived splenomegaly with an increased Bcl-6 expression profile in splenocytes. We utilized a murine model of Bcl-6 driven DLBCL to further explore the role of RhoH in malignant behaviour by crossing RhohKO mice with Iµ-HABcl-6 transgenic (Bcl-6Tg) mice. The loss of Rhoh in Bcl-6Tg mice led to a more rapid disease progression. Mechanistically, we demonstrated that deletion of Rhoh in these murine lymphoma cells was associated with decreased levels of the RhoH binding partner KAISO, a dual-specific Zinc finger transcription factor, de-repression of KAISO target Bcl-6, and downregulation of the BCL-6 target Blimp-1. Re-expression of RhoH in RhohKOBcl-6Tg lymphoma cell lines reversed these changes in expression profile and reduced proliferation of lymphoma cells in vitro. These findings suggest a previously unidentified regulatory role of RhoH in the proliferation of tumour cells via altered BCL-6 expression. (250).
Collapse
Affiliation(s)
- Hiroto Horiguchi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beatrice Duvert
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Felicia Ciuculescu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Anja Troeger
- Division of Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA, USA,Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA, USA,CONTACT David A. Williams Division of Hematology/Oncology, Boston Children’s Hospital, 300 Longwood Ave. Karp 08125.3, Boston, MA02115, USA
| |
Collapse
|
7
|
Galiègue‐Zouitina S, Fu Q, Carton‐Latreche C, Poret N, Cheok M, Leprêtre F, Figeac M, Quesnel B, El Bouazzati H, Shelley CS. Bimodal expression of RHOH during myelomonocytic differentiation: Implications for the expansion of AML differentiation therapy. EJHAEM 2021; 2:196-210. [PMID: 35845268 PMCID: PMC9175762 DOI: 10.1002/jha2.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
RhoH is an unusual member of the Rho family of small GTP-binding proteins in that it lacks GTPase activity. Since the RhoH protein is constantly bound by GTP, it is constitutively active and controlled predominantly by changes in quantitative expression. Abnormal levels of RHOH gene transcripts have been linked to a range of malignancies including acute myeloid leukemia (AML). One of the hallmarks of AML is a block in the normal program of myeloid differentiation. Here we investigate how myeloid differentiation is controlled by the quantitative expression of RHOH. Our analysis demonstrates that increasingly mature myeloid cells express progressively lower levels of RHOH. However, as monocytic myeloid cells terminally differentiate into macrophages, RHOH expression is up-regulated. This up-regulation is not apparent in AML where myeloid differentiation is blocked at stages of low RHOH expression. Nevertheless, when the up-regulation of RHOH is forced, then terminal macrophage differentiation is induced and the Cdc42 and Wnt intracellular signalling pathways are repressed. These results indicate that RHOH induction is a driver of terminal differentiation and might represent a means of effecting AML differentiation therapy. The potential of this therapeutic strategy is supported by forced up-regulation of RHOH reducing the ability of AML cells to produce tumours in vivo.
Collapse
Affiliation(s)
- Sylvie Galiègue‐Zouitina
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Qiangwei Fu
- California Institute for Biomedical ResearchLa JollaCaliforniaUSA
| | - Céline Carton‐Latreche
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Nicolas Poret
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
| | - Meyling Cheok
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | - Frédéric Leprêtre
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Martin Figeac
- UMS 2014 ‐ US 41Plateau de Génomique Fonctionnelle et StructuraleLille UniversityLilleFrance
| | - Bruno Quesnel
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
- CHU LilleService des Maladies du SangLilleFrance
| | - Hassiba El Bouazzati
- JPARCUMRS 1172 InsermLille UniversityLilleFrance
- Place de VerdunInstitut pour la Recherche sur le Cancer de LilleLilleCedexFrance
- CantherUMR 1277 Inserm‐9020 CNRSLille UniversityLilleFrance
| | | |
Collapse
|
8
|
Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH, Amin-Nordin S. The Role of RhoH in TCR Signalling and Its Involvement in Diseases. Cells 2021; 10:950. [PMID: 33923951 PMCID: PMC8072805 DOI: 10.3390/cells10040950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
As an atypical member of the Rho family small GTPases, RhoH shares less than 50% sequence similarity with other members, and its expression is commonly observed in the haematopoietic lineage. To date, RhoH function was observed in regulating T cell receptor signalling, and less is known in other haematopoietic cells. Its activation may not rely on the standard GDP/GTP cycling of small G proteins and is thought to be constitutively active because critical amino acids involved in GTP hydrolysis are absent. Alternatively, its activation can be regulated by other types of regulation, including lysosomal degradation, somatic mutation and transcriptional repressor, which also results in an altered protein expression. Aberrant protein expression of RhoH has been implicated not only in B cell malignancies but also in immune-related diseases, such as primary immunodeficiencies, systemic lupus erythematosus and psoriasis, wherein its involvement may provide the link between immune-related diseases and cancer. RhoH association with these diseases involves several other players, including its interacting partner, ZAP-70; activation regulators, Vav1 and RhoGDI and other small GTPases, such as RhoA, Rac1 and Cdc42. As such, RhoH and its associated proteins are potential attack points, especially in the treatment of cancer and immune-related diseases.
Collapse
Affiliation(s)
- Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
10
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
RHO Family GTPases in the Biology of Lymphoma. Cells 2019; 8:cells8070646. [PMID: 31248017 PMCID: PMC6678807 DOI: 10.3390/cells8070646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
RHO GTPases are a class of small molecules involved in the regulation of several cellular processes that belong to the RAS GTPase superfamily. The RHO family of GTPases includes several members that are further divided into two different groups: typical and atypical. Both typical and atypical RHO GTPases are critical transducers of intracellular signaling and have been linked to human cancer. Significantly, both gain-of-function and loss-of-function mutations have been described in human tumors with contradicting roles depending on the cell context. The RAS family of GTPases that also belong to the RAS GTPase superfamily like the RHO GTPases, includes arguably the most frequently mutated genes in human cancers (K-RAS, N-RAS, and H-RAS) but has been extensively described elsewhere. This review focuses on the role of RHO family GTPases in human lymphoma initiation and progression.
Collapse
|
12
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
13
|
Fahmy UA. Augmentation of Fluvastatin Cytotoxicity Against Prostate Carcinoma PC3 Cell Line Utilizing Alpha Lipoic-Ellagic Acid Nanostructured Lipid Carrier Formula. AAPS PharmSciTech 2018; 19:3454-3461. [PMID: 30350252 DOI: 10.1208/s12249-018-1199-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023] Open
Abstract
Statins are commonly used in the middle-aged and elderly people for treatment of hyperlipidemia. Both alpha lipoic acid (ALA) and ellagic acid (EA) are natural antioxidants found in a normal diet. They can protect against cellular damage and induce cellular apoptosis in many types of cancer cells. Fluvastatin (FLV) was combined with ALA and EA in a nanostructured lipid carrier (NLC) formula. The prepared NLCs were imaged with a transmission electron microscope (TEM). Particle size and zeta potential and FLV entrapment efficiency (%EE) were measured, and the FLV release profile was constructed. Cellular viability, caspase-3 enzyme levels, and cellular cycle were analyzed. The prepared NLCs were spherical, with a size of 85.2 ± 4.1 nm, and had a zeta potential of - 25.1 ± 3.4 mV and a %EE of 98.2 ± 1.1%. FLV IC50 was decreased by half by the formula and by about 30% when compared with the three drugs together. According to cell-cycle analysis, treatment with FLV-ALA-EA NLCs caused a significant increase in pre-G1 phase by about 1.44-fold in comparison with FLV-ALA-EA. These findings demonstrate that ALA and EA induced cell death, which makes their combination with FLV a candidate for prostate cancer therapy.
Collapse
|
14
|
Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 2018; 9:203-215. [PMID: 27548350 PMCID: PMC5927519 DOI: 10.1080/21541248.2016.1218407] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/24/2022] Open
Abstract
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
15
|
Lin M, Lee PL, Chiu L, Chua C, Ban KHK, Lin AHF, Chan ZL, Chung TH, Yan B, Chng WJ. Identification of novel fusion transcripts in multiple myeloma. J Clin Pathol 2018; 71:708-712. [PMID: 29453220 DOI: 10.1136/jclinpath-2017-204961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
Abstract
AIMS Multiple myeloma (MM) is a heterogeneous disease characterised by genetically complex abnormalities. The classical mutational spectrum includes recurrent chromosomal aberrations and gene-level mutations. Recurrent translocations involving the IGH gene such as t(11;14), t(4;14) and t(14;16) are well known. However, the presence of complex genetic abnormalities raises the possibility that fusions other than the recurrent IGH translocations exist. We therefore employed a targeted RNA-sequencing panel to identify novel putative fusions in a local cohort of MM. METHODS Targeted RNA-sequencing was performed on 21 patient samples using the Illumina TruSight RNA Pan-Cancer Panel (comprising 1385 genes). Fusion calls were generated from the Illumina RNA-Sequencing Alignment software (V.1.0.0). These samples had conventional cytogenetic and fluorescence in situ hybridisation data for the common recurrent chromosomal abnormalities (t(11;14), t(4;14), t(14;16) and 17p13 deletion). The MMRF CoMMpass dataset was analysed using the TopHat-fusion pipeline. RESULTS A total of 10 novel fusions were identified by the TruSight RNA Pan-Cancer Panel. Two of these fusions, HGF/CACNA2D1 and SMC3/MXI1, were validated by reverse transcription PCR and Sanger sequencing as they involve genes that may have biological relevance in MM genesis. Four of these (MAP2K4/MAP2K4P1) are likely to be spurious secondary to misalignment of reads to a pseudogene. One record of the HGF/CACNA2D1 fusion was identified from the MMRF CoMMpass dataset. CONCLUSIONS The identification of novel fusions offers insights into the biology of MM and might have clinical relevance. Further functional studies are required to determine the biological and clinical relevance of these novel fusions.
Collapse
Affiliation(s)
- Mingxuan Lin
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Peak Ling Lee
- Department of Laboratory Medicine, Cytogenetics Laboratory, National University Health System, Singapore, Singapore
| | - Lily Chiu
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore
| | - Constance Chua
- Department of Laboratory Medicine, Cytogenetics Laboratory, National University Health System, Singapore, Singapore
| | - Kenneth H K Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adeline H F Lin
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Zit Liang Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore, Singapore.,Translational Centre for Development and Research, National University Health System, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Mino A, Troeger A, Brendel C, Cantor A, Harris C, Ciuculescu MF, Williams DA. RhoH participates in a multi-protein complex with the zinc finger protein kaiso that regulates both cytoskeletal structures and chemokine-induced T cells. Small GTPases 2016; 9:260-273. [PMID: 27574848 DOI: 10.1080/21541248.2016.1220780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RhoH is a haematopoietic -specific, GTPase-deficient Rho GTPase that plays an essential role in T lymphocyte development and haematopoietic cell migration. RhoH is known to interact with ZAP70 in T cell receptor (TCR) signaling and antagonize Rac GTPase activity. To further elucidate the molecular mechanisms of RhoH in T cell function, we carried out in vivo biotinylation and mass spectrometry analysis to identify new RhoH-interacting proteins in Jurkat T cells. We indentified Kaiso by streptavidin capture and confirmed the interaction with RhoH by co-immunoprecipitation. Kaiso is a 95 kDa dual-specific Broad complex, Trantrak, Bric-a-brac/Pox virus, Zinc finger (POZ-ZF) transcription factor that has been shown to regulate both gene expression and p120 catenin-associated cell-cell adhesions. We further showed that RhoH, Kaiso and p120 catenin all co-localize at chemokine-induced actin-containing cell protrusion sites. Using RhoH knockdown we demonstrated that Kaiso localization depends on RhoH function. Similar to the effect of RhoH deficiency, Kaiso down-regulation led to altered cell migration and actin-polymerization in chemokine stimulated Jurkat cells. Interestingly, RhoH and Kaiso also co-localized to the nucleus in a time-dependent fashion after chemokine stimulation and with T cell receptor activation where RhoH is required for Kaiso localization. Based on these results and previous studies, we propose that extracellular microenvironment signals regulate RhoH and Kaiso to modulate actin-cytoskeleton structure and transcriptional activity during T cell migration.
Collapse
Affiliation(s)
- Akihisa Mino
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Anja Troeger
- b Department of Pediatric Hematology , Oncology and Stem Cell Transplantation, University Hospital Regensburg , Regensburg , Germany
| | - Christian Brendel
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Alan Cantor
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Chad Harris
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Marioara F Ciuculescu
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - David A Williams
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
17
|
Agabiti SS, Liang Y, Wiemer AJ. Molecular mechanisms linking geranylgeranyl diphosphate synthase to cell survival and proliferation. Mol Membr Biol 2016; 33:1-11. [PMID: 27537059 DOI: 10.1080/09687688.2016.1213432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Geranylgeranyl diphosphate is a 20-carbon isoprenoid phospholipid whose lipid moiety can be post-translationally incorporated into proteins to promote membrane association. The process of geranylgeranylation has been implicated in anti-proliferative effects of clinical agents that inhibit enzymes of the mevalonate pathway (i.e. statins and nitrogenous bisphosphonates) as well as experimental agents that deplete geranylgeranyl diphosphate. Inhibitors of geranylgeranyl diphosphate synthase are an attractive way to block geranylgeranylation because they possess a calcium-chelating substructure to allow localization to bone and take advantage of a unique position of the enzyme within the biosynthetic pathway. Here, we describe recent advances in geranylgeranyl diphosphate synthase expression and inhibitor development with a particular focus on the molecular mechanisms that link geranylgeranyl diphosphate to cell proliferation via geranylgeranylated small GTPases.
Collapse
Affiliation(s)
- Sherry S Agabiti
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Yilan Liang
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA
| | - Andrew J Wiemer
- a Department of Pharmaceutical Sciences , University of Connecticut , Storrs , CT , USA.,b Institute for Systems Genomics, University of Connecticut , Storrs , CT , USA
| |
Collapse
|
18
|
Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases 2016; 7:123-38. [PMID: 27104658 PMCID: PMC5003542 DOI: 10.1080/21541248.2016.1173767] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/28/2022] Open
Abstract
In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers.
Collapse
Affiliation(s)
- Andrew P. Porter
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alexandra Papaioannou
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- “Cellular and Genetic Etiology, Diagnosis and Treatment of Human Disease” Graduate Program, Medical School, University of Crete, Heraklion, Greece
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AKE, Welch HC, Timpson P. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment. Small GTPases 2015; 6:123-33. [PMID: 26103062 PMCID: PMC4601362 DOI: 10.4161/21541248.2014.973749] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.
Collapse
Affiliation(s)
- Marina Pajic
- a The Kinghorn Cancer Center; Cancer Division; Garvan Institute of Medical Research ; Sydney , Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
INTRODUCTION Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression, and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed "undruggable" because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. AREAS COVERED This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, that is, RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases, and posttranslational modifications at a molecular level. EXPERT OPINION To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small-molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| |
Collapse
|
21
|
Knittel G, Metzner M, Beck-Engeser G, Kan A, Ahrends T, Eilat D, Huppi K, Wabl M. Insertional hypermutation in mineral oil-induced plasmacytomas. Eur J Immunol 2014; 44:2785-801. [PMID: 24975032 PMCID: PMC4165787 DOI: 10.1002/eji.201344322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 06/24/2014] [Indexed: 01/07/2023]
Abstract
Unless stimulated by a chronic inflammatory agent, such as mineral oil, plasma cell tumors are rare in young BALB/c mice. This raises the questions: What do inflammatory tissues provide to promote mutagenesis? And what is the nature of mutagenesis? We determined that mineral oil-induced plasmacytomas produce large amounts of endogenous retroelements--ecotropic and polytropic murine leukemia virus and intracisternal A particles. Therefore, plasmacytoma formation might occur, in part, by de novo insertion of these retroelements, induced or helped by the inflammation. We recovered up to ten de novo insertions in a single plasmacytoma, mostly in genes with common retroviral integration sites. Additional integrations accompany tumor evolution from a solid tumor through several generations in cell culture. The high frequency of de novo integrations into cancer genes suggests that endogenous retroelements are coresponsible for plasmacytoma formation and progression in BALB/c mice.
Collapse
Affiliation(s)
- Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Gabriele Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Ada Kan
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Konrad Huppi
- National Cancer Institute, Genetics Branch, Gene Silencing Section, Bethesda, MD 20892
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414
| |
Collapse
|
22
|
Orgaz JL, Herraiz C, Sanz-Moreno V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases 2014; 5:e29019. [PMID: 25036871 DOI: 10.4161/sgtp.29019] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rho GTPases are involved in the acquisition of all the hallmarks of cancer, which comprise 6 biological capabilities acquired during the development of human tumors. The hallmarks include proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis programs, as defined by Hanahan and Weinberg. (1) Controlling these hallmarks are genome instability and inflammation. Emerging hallmarks are reprogramming of energy metabolism and evading immune destruction. To give a different view to the readers, we will not be focusing on invasion, metastasis, or cytoskeletal remodeling, but we will review here how Rho GTPases contribute to other hallmarks of cancer with a special emphasis on malignant transformation.
Collapse
Affiliation(s)
- Jose L Orgaz
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| | - Cecilia Herraiz
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| | - Victoria Sanz-Moreno
- Randall Division of Cell and Molecular Biophysics; New Hunt's House; Guy's Campus; King's College London; London, UK
| |
Collapse
|
23
|
Abstract
Rho GTPases are a family of small GTPases, which play an important role in the regulation of the actin cytoskeleton. Not surprisingly, Rho GTPases are crucial for cell migration and therefore highly important for cancer cell invasion and the formation of metastases. In addition, Rho GTPases are involved in growth and survival of tumor cells, in the interaction of tumor cells with their environment, and they are vital for the cancer supporting functions of the tumor stroma. Recent research has significantly improved our understanding of the regulation of Rho GTPase activity, the specificity of Rho GTPases, and their function in tumor stem cells and tumor stroma. This review summarizes these novel findings and tries to define challenging questions for future research.
Collapse
Affiliation(s)
- Hui Li
- University of Copenhagen, BRIC, BMI, 2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Troeger A, Chae HD, Senturk M, Wood J, Williams DA. A unique carboxyl-terminal insert domain in the hematopoietic-specific, GTPase-deficient Rho GTPase RhoH regulates post-translational processing. J Biol Chem 2013; 288:36451-62. [PMID: 24189071 DOI: 10.1074/jbc.m113.505727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that was first identified as a hypermutable gene in human B lineage lymphomas. RhoH remains in a constitutively active state and thus its effects are regulated by expression levels or post-translational modifications. Similar to other small GTPases, intracellular localization of RhoH is dependent upon the conserved "CAAX" box and surrounding sequences within the carboxyl (C) terminus. However, RhoH also contains a unique C-terminal "insert" domain of yet undetermined function. RhoH serves as adaptor molecule in T cell receptor signaling and RhoH expression correlates with the unfavorable prognostic marker ZAP70 in human chronic lymphocytic leukemia. Disease progression is attenuated in a Rhoh(-/-) mouse model of chronic lymphocytic leukemia and treatment of primary human chronic lymphocytic leukemia cells with Lenalidomide results in reduced RhoH protein levels. Thus, RhoH is a potential therapeutic target in B cell malignancies. In the current studies, we demonstrate that deletion of the insert domain (LFSINE) results in significant cytoplasmic protein accumulation. Using inhibitors of degradation pathways, we show that LFSINE regulates lysosomal RhoH uptake and degradation via chaperone-mediated autophagy. Whereas the C-terminal prenylation site is critical for ZAP70 interaction, subcellular localization and rescue of the Rhoh(-/-) T cell defect in vivo, the insert domain appears dispensable for these functions. Taken together, our findings suggest that the insert domain regulates protein stability and activity without otherwise affecting RhoH function.
Collapse
Affiliation(s)
- Anja Troeger
- From the Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
25
|
Abstract
The Rho family of GTPases (members of the Ras superfamily) are best known for their roles in regulating cytoskeletal dynamics. It is also well established that misregulation of Rho proteins contributes to tumorigenesis and metastasis. Unlike Ras proteins, which are frequently mutated in cancer (around 30%), Rho proteins themselves are generally not found to be mutated in cancer. Rather, misregulation of Rho activity in cancer was thought to occur by overexpression of these proteins or by misregulation of molecules that control Rho activity, such as activation or overexpression of GEFs and inactivation or loss of GAPs or GDIs. Recent studies, enabled by next-generation tumor exome sequencing, report activating point mutations in Rho GTPases as driver mutations in melanoma, as well as breast, and head and neck cancers. The Rac1(P29L) mutation identified in these tumor studies was previously identified by our lab as an activating Rac mutation in C. elegans neuronal development, highlighting the conserved nature of this mutation. Furthermore, this finding supports the relevance of studying Rho GTPases in model organisms such as C. elegans to study the mechanisms that underlie carcinogenesis. This review will describe the recent findings that report activating Rho mutations in various cancer types, moving Rho GTPases from molecules misregulated in cancer to mutagenic targets that drive tumorigenesis.
Collapse
Affiliation(s)
- Jamie K Alan
- Central Michigan University College of Medicine; Mt. Pleasant, MI USA
| | - Erik A Lundquist
- Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| |
Collapse
|
26
|
Troeger A, Williams DA. Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 2013; 319:2375-83. [PMID: 23850828 PMCID: PMC3997055 DOI: 10.1016/j.yexcr.2013.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/26/2023]
Abstract
The small guanosine triphosphotases (GTPases) Rho proteins are members of the Ras-like superfamily. Similar to Ras, most Rho GTPases cycle between active GTP-bound, and inactive GDP-bound conformations and act as molecular switches that control multiple cellular functions. While most Rho GTPases are expressed widely, the expression of Rac2 and RhoH are restricted to hematopoietic cells. RhoH is an atypical GTPase that lacks GTPase activity and remains in the active conformation. The generation of mouse knock-out lines has led to new understanding of the functions of both of these proteins in blood cells. The phenotype of these mice also led to the identification of mutations in human RAC2 and RHOH genes and the role of these proteins in immunodeficiency diseases. This review outlines the basic biology of Rho GTPases, focusing on Rac and RhoH and summarizes human diseases associated with mutations of these genes.
Collapse
Affiliation(s)
- Anja Troeger
- Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstreet 5, 40225 Duesseldorf, Germany
| | | |
Collapse
|
27
|
Davis SJ, Sheppard KE, Pearson RB, Campbell IG, Gorringe KL, Simpson KJ. Functional analysis of genes in regions commonly amplified in high-grade serous and endometrioid ovarian cancer. Clin Cancer Res 2013; 19:1411-21. [PMID: 23362323 DOI: 10.1158/1078-0432.ccr-12-3433] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Ovarian cancer has the highest mortality rate of all the gynecologic malignancies and is responsible for approximately 140,000 deaths annually worldwide. Copy number amplification is frequently associated with the activation of oncogenic drivers in this tumor type, but their cytogenetic complexity and heterogeneity has made it difficult to determine which gene(s) within an amplicon represent(s) the genuine oncogenic driver. We sought to identify amplicon targets by conducting a comprehensive functional analysis of genes located in the regions of amplification in high-grade serous and endometrioid ovarian tumors. EXPERIMENTAL DESIGN High-throughput siRNA screening technology was used to systematically assess all genes within regions commonly amplified in high-grade serous and endometrioid cancer. We describe the results from a boutique siRNA screen of 272 genes in a panel of 18 ovarian cell lines. Hits identified by the functional viability screen were further interrogated in primary tumor cohorts to determine the clinical outcomes associated with amplification and gene overexpression. RESULTS We identified a number of genes as critical for cellular viability when amplified, including URI1, PAK4, GAB2, and DYRK1B. Integration of primary tumor gene expression and outcome data provided further evidence for the therapeutic use of such genes, particularly URI1 and GAB2, which were significantly associated with survival in 2 independent tumor cohorts. CONCLUSION By taking this integrative approach to target discovery, we have streamlined the translation of high-resolution genomic data into preclinical in vitro studies, resulting in the identification of a number of genes that may be specifically targeted for the treatment of advanced ovarian tumors.
Collapse
Affiliation(s)
- Sally J Davis
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, Fieschi C, Lim A, Abhyankar A, Gineau L, Mueller-Fleckenstein I, Schmidt M, Taieb A, Krueger J, Abel L, Tangye SG, Orth G, Williams DA, Casanova JL, Jouanguy E. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest 2012; 122:3239-47. [PMID: 22850876 DOI: 10.1172/jci62949] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genetic disorder characterized by increased susceptibility to specific human papillomaviruses, the betapapillomaviruses. These EV-HPVs cause warts and increase the risk of skin carcinomas in otherwise healthy individuals. Inactivating mutations in epidermodysplasia verruciformis 1 (EVER1) or EVER2 have been identified in most, but not all, patients with autosomal recessive EV. We found that 2 young adult siblings presenting with T cell deficiency and various infectious diseases, including persistent EV-HPV infections, were homozygous for a mutation creating a stop codon in the ras homolog gene family member H (RHOH) gene. RHOH encodes an atypical Rho GTPase expressed predominantly in hematopoietic cells. Patients' circulating T cells contained predominantly effector memory T cells, which displayed impaired TCR signaling. Additionally, very few circulating T cells expressed the β7 integrin subunit, which homes T cells to specific tissues. Similarly, Rhoh-null mice exhibited a severe overall T cell defect and abnormally small numbers of circulating β7-positive cells. Expression of the WT, but not of the mutated RHOH, allele in Rhoh-/- hematopoietic stem cells corrected the T cell lymphopenia in mice after bone marrow transplantation. We conclude that RHOH deficiency leads to T cell defects and persistent EV-HPV infections, suggesting that T cells play a role in the pathogenesis of chronic EV-HPV infections.
Collapse
Affiliation(s)
- Amandine Crequer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ortiz-Sanchez JM, Nichols SE, Sayyah J, Brown JH, McCammon JA, Grant BJ. Identification of potential small molecule binding pockets on Rho family GTPases. PLoS One 2012; 7:e40809. [PMID: 22815826 PMCID: PMC3397943 DOI: 10.1371/journal.pone.0040809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/13/2012] [Indexed: 12/28/2022] Open
Abstract
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.
Collapse
Affiliation(s)
- Juan Manuel Ortiz-Sanchez
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (JMO-S); (BJG)
| | - Sara E. Nichols
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Jacqueline Sayyah
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| | - Barry J. Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JMO-S); (BJG)
| |
Collapse
|
30
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
31
|
Kyrkou A, Soufi M, Bahtz R, Ferguson C, Bai M, Parton RG, Hoffmann I, Zerial M, Fotsis T, Murphy C. RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 2012; 32:1831-42. [PMID: 22665057 DOI: 10.1038/onc.2012.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously identified a Rho protein, RhoD, which localizes to the plasma membrane and the early endocytic compartment. Here, we show that a GTPase-deficient mutant of RhoD, RhoDG26V, causes hyperplasia and perturbed differentiation of the epidermis, when targeted to the skin of transgenic mice. In vitro, gain-of-function and loss-of-function approaches revealed that RhoD is involved in the regulation of G1/S-phase progression and causes overduplication of centrosomes. Centriole overduplication assays in aphidicolin-arrested p53-deficient U2OS cells, in which the cell and the centrosome cycles are uncoupled, revealed that the effects of RhoD and its mutants on centrosome duplication and cell cycle are independent. Enhancement of G1/S-phase progression was mediated via Diaph1, a novel effector of RhoD, which we have identified using a two-hybrid screen. These results indicate that RhoD participates in the regulation of cell-cycle progression and centrosome duplication.
Collapse
Affiliation(s)
- A Kyrkou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 2012; 119:4708-18. [PMID: 22474251 DOI: 10.1182/blood-2011-12-395939] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Trafficking of B-cell chronic lymphocytic leukemia (CLL) cells to the bone marrow and interaction with supporting stromal cells mediates important survival and proliferation signals. Previous studies have demonstrated that deletion of Rhoh led to a delayed disease onset in a murine model of CLL. Here we assessed the impact of RhoH on homing, migration, and cell-contact dependent interactions of CLL cells. Rhoh(-/-) CLL cells exhibited reduced marrow homing and subsequent engraftment. In vitro migration toward the chemokines CXCL12 and CXCL13 and cell-cell interactions between Rhoh(-/-) CLL cells and the supporting microenvironment was reduced. In the absence of RhoH the distribution of phosphorylated focal adhesion kinase, a protein known to coordinate activation of the Rho GTPases RhoA and Rac, appeared less polarized in chemokine-stimulated Rhoh(-/-) CLL cells, and activation and localization of RhoA and Rac was dysregulated leading to defective integrin function. These findings in the Rhoh(-/-) CLL cells were subsequently demonstrated to closely resemble changes in GTPase activation observed in human CLL samples after in vitro and in vivo treatment with lenalidomide, an agent with known influence on microenvironment protection, and suggest that RhoH plays a critical role in prosurvival CLL cell-cell and cell-microenvironment interactions with this agent.
Collapse
|
33
|
Luo H, Dong Z, Zou J, Zeng Q, Wu D, Liu L. Down-regulation of RhoE is associated with progression and poor prognosis in hepatocellular carcinoma. J Surg Oncol 2011; 105:699-704. [PMID: 22213123 DOI: 10.1002/jso.23019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/04/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND RhoE is an atypical member of Rho GTPases family, which is a crucial regulator of cytoskeletal dynamics, cell cycle progression, and cell proliferation. Previous studies have reported that RhoE was aberrantly expressed in several human cancers, but the role of RhoE in hepatocellular carcinoma (HCC) remained poor understood. OBJECTIVES This study investigated the expression of RhoE and its clinical significance on the outcome of patients with HCC. METHODS The expression of RhoE was examined in HCC patients and then the prognostic impact of the RhoE expression status was evaluated by univariate and multivariate analysis. RESULTS RhoE was down-regulated in HCC cell lines and tissues compared with normal hepatocyte line (HL-7702) and non-cancerous liver tissues. The expression of RhoE was significantly negatively associated with serum AFP (P = 0.013) and tumor grade (P = 0.016). Furthermore, the patients with low expression of RhoE had a shorter survival (P = 0.002) than those with high expression. Univariate and multivariate analysis showed that RhoE expression was a significant and independent prognostic predictor for HCC patients (P = 0.016). CONCLUSIONS RhoE, down-regulated in patients with HCC, could serve as an independent prognostic predictor for patients with HCC.
Collapse
Affiliation(s)
- Hesan Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
RhoH is a member of the Rho family of small GTP-binding proteins that lacks GTPase activity. Since RhoH is constantly bound by GTP, it is thought to be constitutively active and controlled predominantly by changes in quantitative expression. RhoH is produced specifically in haematopoietic cells and aberrant expression has been linked to various forms of leukaemia. Transcription of the RHOH gene is the first level at which the quantitative levels of the RhoH protein are regulated. Previous studies have demonstrated that RHOH gene transcription is initiated by three distinct promoter regions designated P1, P2 and P3 that define the 5' end of exons 1, 2 and 4 respectively. In the present study we report that the P3 promoter is largely responsible for RHOH gene transcription in the B-lymphocytic cell line Raji. The P3 promoter contains a minimal promoter region and a repressor region extending from -236 to +67 and +68 to +245 respectively, relative to the 5' end of exon 4. Chromatin immunoprecipitation demonstrated that two AP1 (activator protein 1) sites in the minimal promoter region bind JunD. When JUND is overexpressed, the endogenous RHOH gene is repressed; however, when JUND is inhibited, expression of endogenous RHOH is induced both in the Raji cell line and AML (acute myeloid leukaemia) cells. In the HCL (hairy cell leukaemia) cell line JOK-1, induction of RHOH increases expression of the α isoform of protein kinase C. This downstream target of RHOH is also induced in AML cells by JUND inhibition. Collectively, these data indicate that JunD is an inhibitor of RHOH gene expression.
Collapse
|
35
|
Tervonen TA, Partanen JI, Saarikoski ST, Myllynen M, Marques E, Paasonen K, Moilanen A, Wohlfahrt G, Kovanen PE, Klefstrom J. Faulty epithelial polarity genes and cancer. Adv Cancer Res 2011; 111:97-161. [PMID: 21704831 DOI: 10.1016/b978-0-12-385524-4.00003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epithelial architecture is formed in tissues and organs when groups of epithelial cells are organized into polarized structures. The epithelial function and integrity as well as signaling across the epithelial layer is orchestrated by apical junctional complexes (AJCs), which are landmarks for PAR/CRUMBS and lateral SCRIB polarity modules and by dynamic interactions of the cells with underlying basement membrane (BM). These highly organized epithelial architectures are demolished in cancer. In all advanced epithelial cancers, malignant cells have lost polarity and connections to the basement membrane and they have become proliferative, motile, and invasive. Clearly, loss of epithelial integrity associates with tumor progression but does it contribute to tumor development? Evidence from studies in Drosophila and recently also in vertebrate models have suggested that even the oncogene-driven enforced cell proliferation can be conditional, dependant on the influence of cell-cell or cell-microenvironment contacts. Therefore, loss of epithelial integrity may not only be an obligate consequence of unscheduled proliferation of malignant cells but instead, malignant epithelial cells may need to acquire capacity to break free from the constraints of integrity to freely and autonomously proliferate. We discuss how epithelial polarity complexes form and regulate epithelial integrity, highlighting the roles of enzymes Rho GTPases, aPKCs, PI3K, and type II transmembrane serine proteases (TTSPs). We also discuss relevance of these pathways to cancer in light of genetic alterations found in human cancers and review molecular pathways and potential pharmacological strategies to revert or selectively eradicate disorganized tumor epithelium.
Collapse
|
36
|
Andrade VCC, Vettore AL, Panepucci RA, Almeida MSS, Yamamoto M, De Carvalho F, Caballero OL, Zago MA, Colleoni GWB. Number of expressed cancer/testis antigens identifies focal adhesion pathway genes as possible targets for multiple myeloma therapy. Leuk Lymphoma 2010; 51:1543-9. [PMID: 20528248 DOI: 10.3109/10428194.2010.491136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Considering that the importance of cancer/testis (CT) antigens in multiple myeloma (MM) biology is still under investigation, the present study aimed to: (1) identify genes differentially expressed in MM using microarray analysis of plasma cell samples, separated according to the number of expressed CTs; (2) examine possible pathways related to MM pathogenesis; (3) validate the expression of candidate genes by quantitative real-time PCR (RQ-PCR). Three samples predominantly positive (>6 expressed), including the U266 cell line, and three samples predominantly negative (0 or 1 expressed CT for the 13 analyzed CT antigens), were submitted for microarray analysis. Validation by RQ-PCR from 24 MM samples showed that the ITGA5 gene was downregulated in predominantly positive (>6 expressed CTs, p = 0.0030) and in tumor versus normal plasma cells (p = 0.0182). The RhoD gene was overexpressed in tumor plasma cells when compared to normal plasma cells (p = 0.0339). Results of the microarray analysis corroborate the hypothesis that MM could be separated into predominantly positive and predominantly negative expression. The differential expression of ITGA5 and RhoD suggests disruption of the focal adhesion pathway in MM and offers a new target field to be explored in this disease.
Collapse
Affiliation(s)
- Valéria C C Andrade
- Discipline of Hematology and Hemotherapy, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chae HD, Siefring JE, Hildeman DA, Gu Y, Williams DA. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS One 2010; 5:e13970. [PMID: 21103055 PMCID: PMC2980477 DOI: 10.1371/journal.pone.0013970] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 01/26/2023] Open
Abstract
RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jamie E. Siefring
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Gu
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Porubsky S, Wang S, Kiss E, Dehmel S, Bonrouhi M, Dorn T, Luckow B, Brakebusch C, Gröne HJ. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection. Eur J Immunol 2010; 41:76-88. [PMID: 21182079 DOI: 10.1002/eji.201040420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/09/2010] [Accepted: 09/30/2010] [Indexed: 11/07/2022]
Abstract
Rhoh is a hematopoietic system-specific GTPase. Rhoh-deficient T cells have been shown to have a defect in TCR signaling manifested during their thymic development. Our aims were to investigate the phenotype of peripheral Rhoh-deficient T cells and to explore in vivo the potential benefit of Rhoh deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction revealed that the weaker alloreactivity was associated with a 85% lower cytotoxicity and a 50-80% lower cytokine release in Rhoh-deficient T cells without an influence on the secretion itself. Antigen uptake and presentation in DC were unaffected by Rhoh deficiency. These findings stress the importance of Rhoh for the function of peripheral T cells.
Collapse
Affiliation(s)
- Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8:23. [PMID: 20822528 PMCID: PMC2941746 DOI: 10.1186/1478-811x-8-23] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/07/2010] [Indexed: 12/29/2022] Open
Abstract
Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.
Collapse
Affiliation(s)
- Matteo Parri
- Department of Biochemical Sciences, University of Florence, Tuscany Tumor Institute and "Center for Research, Transfer and High Education DenoTHE", 50134 Florence, Italy.
| | | |
Collapse
|
40
|
Post-transplant lymphoproliferative disorders: role of viral infection, genetic lesions and antigen stimulation in the pathogenesis of the disease. Mediterr J Hematol Infect Dis 2009; 1:e2009018. [PMID: 21416004 PMCID: PMC3033173 DOI: 10.4084/mjhid.2009.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/09/2009] [Indexed: 12/13/2022] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLD) are a life-threatening complication of solid organ transplantation or, more rarely, hematopoietic stem cell transplantation. The majority of PTLD is of B-cell origin and associated with Epstein–Barr virus (EBV) infection. PTLD generally display involvement of extranodal sites, aggressive histology and aggressive clinical behavior. The molecular pathogenesis of PTLD involves infection by oncogenic viruses, namely EBV, as well as genetic or epigenetic alterations of several cellular genes. At variance with lymphoma arising in immunocompetent hosts, whose genome is relatively stable, a fraction of PTLD are characterized by microsatellite instability as a consequence of defects in the DNA mismatch repair mechanism. Apart from microsatellite instability, molecular alterations of cellular genes recognized in PTLD include alterations of cMYC, BCL6, TP53, DNA hypermethylation, and aberrant somatic hypermutation of protooncogenes. The occurrence of IGV mutations in the overwhelming majority of PTLD documents that malignant transformation targets germinal centre (GC) B-cells and their descendants both in EBV–positive and EBV–negative cases. Analysis of phenotypic markers of B-cell histogenesis, namely BCL6, MUM1 and CD138, allows further distinction of PTLD histogenetic categories. PTLD expressing the BCL6+/MUM1+/-/CD138− profile reflect B-cells actively experiencing the GC reaction, and comprise diffuse large B-cell lymphoma (DLBCL) centroblastic and Burkitt lymphoma. PTLD expressing the BCL6−/MUM1+/CD138− phenotype putatively derive from B-cells that have concluded the GC reaction, and comprise the majority of polymorphic PTLD and a fraction of DLBCL immunoblastic. A third group of PTLD is reminiscent of post-GC and preterminally differentiated B-cells that show the BCL6−/MUM1+/CD138+ phenotype, and are morphologically represented by either polymorphic PTLD or DLBCL immunoblastic.
Collapse
|
41
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
42
|
Sanchez-Aguilera A, Rattmann I, Drew DZ, Müller LUW, Summey V, Lucas DM, Byrd JC, Croce CM, Gu Y, Cancelas JA, Johnston P, Moritz T, Williams DA. Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia 2009; 24:97-104. [PMID: 19847197 PMCID: PMC3869226 DOI: 10.1038/leu.2009.217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that functions as a regulator of thymocyte development and T-cell receptor signaling by facilitating localization of zeta-chain-associated protein kinase 70 (ZAP70) to the immunological synapse. Here we investigated the function of RhoH in the B-cell lineage. B-cell receptor (BCR) signaling was intact in Rhoh(-/-) mice. Because RhoH interacts with ZAP70, which is a prognostic factor in B-cell chronic lymphocytic leukemia (CLL), we analyzed the mRNA levels of RhoH in primary human CLL cells and showed a 2.3-fold higher RhoH expression compared with normal B cells. RhoH expression in CLL positively correlated with the protein levels of ZAP70. Deletion of Rhoh in a murine model of CLL (Emu-TCL1(Tg) mice) significantly delayed the accumulation of CD5(+)IgM(+) leukemic cells in peripheral blood and the leukemic burden in the peritoneal cavity, bone marrow and spleen of Rhoh(-/-) mice compared with their Rhoh(+/+) counterparts. Phosphorylation of AKT and ERK in response to BCR stimulation was notably decreased in Emu-TCL1(Tg);Rhoh(-/-) splenocytes. These data suggest that RhoH has a function in the progression of CLL in a murine model and show RhoH expression is altered in human primary CLL samples.
Collapse
Affiliation(s)
- A Sanchez-Aguilera
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai SL, Chien AJ, Moon RT. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 2009; 19:532-45. [PMID: 19365405 DOI: 10.1038/cr.2009.41] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wnt/beta-catenin regulates cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival, and adhesion. Beta-catenin-independent Wnt pathways have been proposed to regulate cell polarity and migration, including metastasis. In this review, we discuss the possible roles of both beta-catenin-dependent and -independent signaling pathways in tumor progression, with an emphasis on their regulation of Rho-family GTPases, cytoskeletal remodeling, and relationships with cell-cell adhesion and cilia/ciliogenesis.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
44
|
Rho GTPase function in tumorigenesis. Biochim Biophys Acta Rev Cancer 2009; 1796:91-8. [PMID: 19327386 DOI: 10.1016/j.bbcan.2009.03.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 02/07/2023]
Abstract
Malignant tumor cells display uncontrolled proliferation, loss of epithelial cell polarity, altered interactions with neighboring cells and the surrounding extracellular matrix, and enhanced migratory properties. Proteins of the Rho GTPase family regulate all these processes in cell culture and, for that reason, Rho GTPases, their regulators, and their effectors have been suggested to control tumor formation and progression in humans. However, while the tumor-relevant functions of Rho GTPases are very well documented in vitro, we are only now beginning to assess their contribution to cancer in human patients and in animal models. This review will give a very brief overview of Rho GTPase function in general and then focus on in vivo evidence for a role of Rho GTPases in malignant tumors, both in human patients and in genetically modified mice.
Collapse
|
45
|
Ambrogio C, Voena C, Manazza AD, Martinengo C, Costa C, Kirchhausen T, Hirsch E, Inghirami G, Chiarle R. The anaplastic lymphoma kinase controls cell shape and growth of anaplastic large cell lymphoma through Cdc42 activation. Cancer Res 2008; 68:8899-907. [PMID: 18974134 PMCID: PMC2596920 DOI: 10.1158/0008-5472.can-08-2568] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaplastic large cell lymphoma (ALCL) is a non-Hodgkin's lymphoma that originates from T cells and frequently expresses oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. The proliferation and survival of ALCL cells are determined by the ALK activity. Here we show that the kinase activity of the nucleophosmin (NPM)-ALK fusion regulated the shape of ALCL cells and F-actin filament assembly in a pattern similar to T-cell receptor-stimulated cells. NPM-ALK formed a complex with the guanine exchange factor VAV1, enhancing its activation through phosphorylation. VAV1 increased Cdc42 activity, and in turn, Cdc42 regulated the shape and migration of ALCL cells. In vitro knockdown of VAV1 or Cdc42 by short hairpin RNA, as well as pharmacologic inhibition of Cdc42 activity by secramine, resulted in a cell cycle arrest and apoptosis of ALCL cells. Importantly, the concomitant inhibition of Cdc42 and NPM-ALK kinase acted synergistically to induce apoptosis of ALCL cells. Finally, Cdc42 was necessary for the growth as well as for the maintenance of already established lymphomas in vivo. Thus, our data open perspectives for new therapeutic strategies by revealing a mechanism of regulation of ALCL cell growth through Cdc42.
Collapse
Affiliation(s)
- Chiara Ambrogio
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology, University of Torino, 10126 Torino, Italy
| | - Claudia Voena
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology, University of Torino, 10126 Torino, Italy
| | - Andrea D. Manazza
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
| | - Cinzia Martinengo
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
| | - Carlotta Costa
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy
| | - Tomas Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115-5701, USA
| | - Emilio Hirsch
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy
| | - Giorgio Inghirami
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology, University of Torino, 10126 Torino, Italy
- Department of Pathology and New York Cancer Center, New York University School of Medicine, New York, 10016 USA
| | - Roberto Chiarle
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, 10126 Torino, Italy
- Department of Biomedical Sciences and Human Oncology, University of Torino, 10126 Torino, Italy
| |
Collapse
|
46
|
Fueller F, Kubatzky KF. The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 2008; 6:6. [PMID: 18823547 PMCID: PMC2565660 DOI: 10.1186/1478-811x-6-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 01/25/2023] Open
Abstract
Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule in the NFκB, PI3 kinase and Map kinase pathways. The recent generation of RhoH knockout mice showed a defect in thymocyte selection and TCR signalling of thymic and peripheral T-cells. However, RhoH-deficient mice did not develop lymphomas or showed obvious defects in haematopoiesis.
Collapse
Affiliation(s)
- Florian Fueller
- Ruprecht-Karls-Universität Heidelberg, Hygiene Institut, Abteilung für Hygiene und Medizinische Mikrobiologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | | |
Collapse
|
47
|
Abstract
Rho GTPases are believed to make important contributions to the development and progression of human cancer, but direct evidence in the form of somatic mutations analogous to those affecting Ras has been lacking. A recent study in Genes & Development by Xue and colleagues (1439-1444) now provides in vivo evidence that DLC1, a negative regulator of Rho, is a tumor suppressor gene deleted almost as frequently as p53 in common cancers such as breast, colon, and lung.
Collapse
|
48
|
Suzuki H, Oda H. The atypical small GTPase RhoH : a novel role in T cell development. ACTA ACUST UNITED AC 2008; 31:37-46. [PMID: 18311041 DOI: 10.2177/jsci.31.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Small GTPases (G-proteins) play important roles in various signal transduction pathways by working as molecular switches. Among them, some of these GTPases don't have functional features of typical GTPases, therefore they are called "atypical GTPases". Recently, these less known atypical Rho GTPases have received increased attention. This review will focus on the novel aspects of biological function of atypical Rho GTPases, especially a newly found function of RhoH on signal transduction in T cell development.
Collapse
Affiliation(s)
- Harumi Suzuki
- Department of Pathology, Research Institute, International Medical Center of Japan
| | | |
Collapse
|
49
|
Mangia A, Chiarappa P, Tommasi S, Chiriatti A, Petroni S, Schittulli F, Paradiso A. Genetic heterogeneity by comparative genomic hybridization in BRCAx breast cancers. ACTA ACUST UNITED AC 2008; 182:75-83. [DOI: 10.1016/j.cancergencyto.2008.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 12/15/2022]
|
50
|
Williams DA, Zheng Y, Cancelas JA. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol 2008; 439:365-93. [PMID: 18374178 DOI: 10.1016/s0076-6879(07)00427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow engraftment in the context of hematopoietic stem cell and progenitor (HSC/P) transplantation is based on the ability of intravenously administered cells to lodge in the medullary cavity and be retained in the appropriate marrow space, a process referred to as homing. It is likely that homing is a multistep process, encompassing a sequence of highly regulated events that mimic the migration of leukocytes to inflammatory sites. In leukocyte biology, this process includes an initial phase of tethering and rolling of cells to the endothelium via E- and P-selectins, firm adhesion to the vessel wall via integrins that appear to be activated in an "inside-out" fashion, transendothelial migration, and chemotaxis through the extracellular matrix (ECM) to the inflammatory nidus. For HSC/P, the cells appear to migrate to the endosteal space of the bone marrow. A second phase of engraftment involves the subsequent interaction of specific HSC/P surface receptors, such as alpha(4)beta(1) integrin receptors with vascular cell-cell adhesion molecule-1 and fibronectin in the ECM, and interactions with growth factors that are soluble, membrane, or matrix bound. We have utilized knockout and conditional knockout mouse lines generated by gene targeting to study the role of Rac1 and Rac2 in blood cell development and function. We have determined that Rac is activated via stimulation of CXCR4 by SDF-1, by adhesion via beta(1) integrins, and via stimulation of c-kit by the stem cell factor-all of which involved in stem cell engraftment. Thus Rac proteins are key molecular switches of HSC/P engraftment and marrow retention. We have defined Rac proteins as key regulators of HSC/P cell function and delineated key unique and overlapping functions of these two highly related GTPases in a variety of primary hematopoietic cell lineages in vitro and in vivo. Further, we have begun to define the mechanisms by which each GTPase leads to specific functions in these cells. These studies have led to important new understanding of stem cell bone marrow retention and trafficking in the peripheral circulation and to the development of a novel small molecule inhibitor that can modulate stem cell functions, including adhesion, mobilization, and proliferation. This chapter describes the biochemical footprint of stem cell engraftment and marrow retention related to Rho GTPases. In addition, it reviews abnormalities of Rho GTPases implicated in human immunohematopoietic diseases and in leukemia/lymphoma.
Collapse
Affiliation(s)
- David A Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|