1
|
Yu K, Tang Y, Wang C, Liu W, Hu M, Hu A, Kuang Y, Zacksenhaus E, Yu XZ, Xiao X, Ben-David Y. The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity. Int J Mol Sci 2024; 25:13426. [PMID: 39769192 PMCID: PMC11676164 DOI: 10.3390/ijms252413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo. Docking analysis demonstrated binding of these four compounds to FLI1, resulting in downregulation of its targets, induction of apoptosis, differentiation, and suppression of cell proliferation. Chemical composition analysis identified other compounds previously known having anti-tumor activity independent of the FLI1 blockade. Among these, Astragaloside-A (As-A) has marginal effect on cells in culture, but strongly inhibits leukemogenesis in vivo, likely through improvement of anti-tumor immunity. Indeed, both IDO1 and TDO2 were identified as targets of As-A, leading to suppression of tryptophane-mediated Kyn production and leukemia suppression. Moreover, As-A interacts with histamine decarboxylase (HDC), leading to suppression of anti-inflammatory genes TNF, IL1B/IL1A, TNFAIP3, and CXCR2, but not IL6. These results implicate HDC as a novel immune checkpoint mediator, induced in the tumor microenvironment to promote leukemia. Functional analysis of AM components may allow development of combination therapy with optimal anti-leukemia effect.
Collapse
Affiliation(s)
- Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yao Tang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Maoting Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
2
|
Li Y, Liang ZY, Wang HL. N6-methyl-2'-deoxyadenosine promotes self-renewal of BFU-E progenitor in erythropoiesis. iScience 2023; 26:106924. [PMID: 37283807 PMCID: PMC10239700 DOI: 10.1016/j.isci.2023.106924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Red blood cells supply the oxygen required for all human cells and are in demand for emerging blood-loss therapy. Here we identified N6-methyl-2'-deoxyadenosine (6mdA) as an agonist that promotes the hyperproliferation of burst-forming unit erythroid (BFU-E) progenitor cells. In addition, 6mdA represses the apoptosis of erythroid progenitor cells (EPCs). Combined use of with SCF and EPO enabled cultures of isolated BFU-E to be expanded up to 5,000-fold. Transcriptome analysis showed that 6mdA upregulates the expression of the EPC-associated factors c-Kit, Myb, and Gata2 and downregulates that of the erythroid maturation-related transcription factors Gata1, Spi1, and Klf1. Mechanistic studies suggested that 6mdA enhances and prolongs the activation of erythropoiesis-associated master gene c-Kit and its downstream signaling, leading to expansion and accumulation of EPCs. Collectively, we demonstrate that 6mdA can efficiently stimulate the EPC hyperproliferation and provide a new regenerative medicine recipe to improve ex vivo generation of red blood cells.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
3
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|
4
|
Ben-David Y, Gajendran B, Sample KM, Zacksenhaus E. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell Mol Life Sci 2022; 79:163. [PMID: 35412146 PMCID: PMC11072361 DOI: 10.1007/s00018-022-04160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.
Collapse
Affiliation(s)
- Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, Max Bell Research Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
5
|
Oncogenes, Proto-Oncogenes, and Lineage Restriction of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22189667. [PMID: 34575830 PMCID: PMC8470404 DOI: 10.3390/ijms22189667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.
Collapse
|
6
|
Ziyad S, Riordan JD, Cavanaugh AM, Su T, Hernandez GE, Hilfenhaus G, Morselli M, Huynh K, Wang K, Chen JN, Dupuy AJ, Iruela-Arispe ML. A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Rep 2019; 22:1211-1224. [PMID: 29386109 PMCID: PMC5828030 DOI: 10.1016/j.celrep.2018.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/05/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022] Open
Abstract
Given its role as the source of definitive hematopoietic cells, we sought to determine whether mutations initiated in the hemogenic endothelium would yield hematopoietic abnormalities or malignancies. Here, we find that endothelium-specific transposon mutagenesis in mice promotes hematopoietic pathologies that are both myeloid and lymphoid in nature. Frequently mutated genes included previously recognized cancer drivers and additional candidates, such as Pi4ka, a lipid kinase whose mutation was found to promote myeloid and erythroid dysfunction. Subsequent validation experiments showed that targeted inactivation of the Pi4ka catalytic domain or reduction in mRNA expression inhibited myeloid and erythroid cell differentiation in vitro and promoted anemia in vivo through a mechanism involving deregulation of AKT, MAPK, SRC, and JAK-STAT signaling. Finally, we provide evidence linking PI4KAP2, previously considered a pseudogene, to human myeloid and erythroid leukemia.
Collapse
Affiliation(s)
- Safiyyah Ziyad
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann M Cavanaugh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gloria E Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Georg Hilfenhaus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristine Huynh
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao X, Gajendran B, Xu D, Li Y, Wang C, Liu W, Wen M, Spaner D, Filmus J, Zacksenhaus E, Zhang Y, Hao X, Ben‐David Y. Novel flavagline‐like compounds with potent Fli‐1 inhibitory activity suppress diverse types of leukemia. FEBS J 2018; 285:4631-4645. [PMID: 30387554 DOI: 10.1111/febs.14690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jialei Song
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Jue Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Tangjingjun Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yao Yao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Dahai Xu
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - You‐Jun Li
- Department of Anatomy Norman Bethune College of Medicine Jilin University Changchun China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Min Wen
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - David Spaner
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Jorge Filmus
- Biology Platform Sunnybrook Research Institute Toronto Canada
| | - Eldad Zacksenhaus
- Department of Medicine University of Toronto Canada
- Division of Advanced Diagnostics Toronto General Research Institute University Health Network Toronto Canada
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenic Regulation College of Bioengineering and Faculty of Sciences Chongqing University China
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| | - Yaacov Ben‐David
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences Guiyang China
| |
Collapse
|
8
|
Xia L, Plachynta M, Liu T, Xiao X, Song J, Li X, Zhang M, Yao Y, Luo H, Hao X, Ben-David Y. Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo. Mol Clin Oncol 2016; 5:717-723. [PMID: 28101351 PMCID: PMC5228291 DOI: 10.3892/mco.2016.1059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
Medicinal formulas are a part of the complex discipline of traditional Chinese medicine that has been used for centuries in China and East Asia. These formulas predominantly consist of the extracts isolated from herbal plants, animal parts and medicinal minerals. The present study aimed to investigate the impact of 150 formulas, used as non-prescription drugs in China, on the treatment of cancer. A formula was identified, C54, commonly used to treat sore throats, which exhibited marked growth inhibition in vitro, associated with cell cycle arrest and apoptosis. Cytotoxicity was, in part, due to the ability of C54 to inhibit the expression and function of the transcription factor, Fli-1, leading to marked inhibition of leukemic cell growth in tissue culture. However, when injected into a model of leukemia initiated by Fli-1 activation, C54 only exhibited a limited tumor inhibition. C54 also did not suppress xenograft growth of the breast cancer cell line, MDA-MB-231, orthopedically transplanted into the mammary fat pad of severe combined immunodeficiency (SCID) mice. Notably, splenomegaly and accumulation of inflammatory CD11b+/Gr1+ monocytes were observed in the tumors and spleens of C54-treated mice. As inflammation is known to accelerate tumor progression, this immune response may counteract the cell-autonomous effect of C54, and account for its limited tumor inhibitory effect in vivo. Combining C54 with an anti-inflammatory drug may improve the potency of C54 for treatment of certain cancers. The present study has highlighted the complexity of Chinese medicinal compounds and the need to thoroughly analyze their systemic effects at high concentrations in vivo.
Collapse
Affiliation(s)
- Lei Xia
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China; Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Maksym Plachynta
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Tangjingjun Liu
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Xiao Xiao
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Jialei Song
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Xiaogang Li
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Mu Zhang
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Yao Yao
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Heng Luo
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China
| | - Xiaojiang Hao
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China; Department of Biological Sciences, Guiyang Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yaacov Ben-David
- Division of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, Guizhou 550008, P.R. China; Department of Biological Sciences, Guiyang Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
9
|
The ets transcription factor Fli-1 in development, cancer and disease. Oncogene 2014; 34:2022-31. [PMID: 24909161 PMCID: PMC5028196 DOI: 10.1038/onc.2014.162] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 12/13/2022]
Abstract
Friend Leukemia Virus Induced erythroleukemia-1 (Fli-1), an ETS transcription factor, was isolated a quarter century ago through a retrovirus mutagenesis screen. Fli-1 has since been recognized to play critical roles in normal development and homeostasis. For example, it transcriptionally regulates genes that drive normal hematopoiesis and vasculogenesis. Indeed, Fli-1 is one of 10 key regulators of hematopoietic stem/progenitor cell maintenance and differentiation. Aberrant expression of Fli-1 also underlies a number of virally induced leukemias, including Friend virus-induced erythroleukemia and various types of human cancers, and it is the target of chromosomal translocations in childhood Ewing’s sarcoma. Abnormal expression of Fli-1 is important in the aetiology of auto-immune diseases such as Systemic Lupus Erythematosus (SLE) and Systemic Sclerosis (SSc). These studies establish Fli-1 as a strong candidate for drug development. Despite difficulties in targeting transcription factors, recent studies identified small molecule inhibitors for Fli-1. Here we review past and ongoing research on Fli-1 with emphasis on its mechanistic function in autoimmune disease and malignant transformation. The significance of identifying Fli-1 inhibitors and their clinical applications for treatment of disease and cancer with deregulated Fli-1 expression are discussed.
Collapse
|
10
|
Mizutani N, Kobayashi M, Sobue S, Ichihara M, Ito H, Tanaka K, Iwaki S, Fujii S, Ito Y, Tamiya-Koizumi K, Takagi A, Kojima T, Naoe T, Suzuki M, Nakamura M, Banno Y, Nozawa Y, Murate T. Sphingosine kinase 1 expression is downregulated during differentiation of Friend cells due to decreased c-MYB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1006-16. [DOI: 10.1016/j.bbamcr.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 12/19/2022]
|
11
|
Li YJ, Zhao X, Vecchiarelli-Federico LM, Li Y, Datti A, Cheng Y, Ben-David Y. Drug-mediated inhibition of Fli-1 for the treatment of leukemia. Blood Cancer J 2012; 2:e54. [PMID: 22829238 PMCID: PMC3270256 DOI: 10.1038/bcj.2011.52] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022] Open
Abstract
The Ets transcription factor, Fli-1 is activated in murine erythroleukemia and overexpressed in various human malignancies including Ewing's sarcoma, induced by the oncogenic fusion protein EWS/Fli-1. Recent studies by our group and others have demonstrated that Fli-1 plays a key role in tumorigenesis, and disrupting its oncogenic function may serve as a potential treatment option for malignancies associated with its overexpression. Herein, we describe the discovery of 30 anti-Fli-1 compounds, characterized into six functional groups. Treatment of murine and human leukemic cell lines with select compounds inhibits Fli-1 protein or mRNA expression, resulting in proliferation arrest and apoptosis. This anti-cancer effect was mediated, at least in part through direct inhibition of Fli-1 function, as anti-Fli-1 drug treatment inhibited Fli-1 DNA binding to target genes, such as SHIP-1 and gata-1, governing hematopoietic differentiation and proliferation. Furthermore, treatment with select Fli-1 inhibitors revealed a positive relationship between the loss of DNA-binding activity and Fli-1 phosphorylation. Accordingly, anti-Fli-1 drug treatment significantly inhibited leukemogenesis in a murine erythroleukemia model overexpressing Fli-1. This study demonstrates the ability of this drug-screening strategy to isolate effective anti-Fli-1 inhibitors and highlights their potential use for the treatment of malignancies overexpressing this oncogene.
Collapse
|
12
|
Fan C, Dong L, Zhu N, Xiong Y, Zhang J, Wang L, Shen Y, Zhang X, Chen M. Isolation of siRNA target by biotinylated siRNA reveals that human CCDC12 promotes early erythroid differentiation. Leuk Res 2012; 36:779-83. [PMID: 22269669 DOI: 10.1016/j.leukres.2011.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/06/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Erythroid differentiation is a tightly regulated multi-step process that has not been fully elucidated. We previously reported that a siRNA screened from random siRNA library, siRNA clone-67, induced erythroid differentiation in human erythroleukemia K-562cell line. Here we identified that human CCDC12 (coiled-coil domain containing 12) is a target of siRNA clone-67, by target capture with biotinylated siRNA. Over-expression of CCDC12 in K-562cell up-regulated the expression of CD235, ε-globin and γ-globin, accelerated cell growth, and slightly down-regulated the expression of GATA-2. Knockdown of CCDC12 slowed down the cell growth. These data indicate that CCDC12 is a new participant that promotes early erythroid differentiation.
Collapse
Affiliation(s)
- Cuiqing Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), National Laboratory of Medical Molecular Biology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fan C, Xiong Y, Zhu N, Lu Y, Zhang J, Wang S, Liang Z, Shen Y, Chen M. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation. Leuk Lymphoma 2011; 52:502-14. [DOI: 10.3109/10428194.2010.543712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 2010; 116:428-36. [PMID: 20445019 DOI: 10.1182/blood-2009-10-250217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV-infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K-dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.
Collapse
|
15
|
Enrichment of Sca1+ hematopoietic progenitors in polycythemic mice inhibits leukemogenesis. Blood 2009; 114:1831-41. [PMID: 19584401 DOI: 10.1182/blood-2008-11-187419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polycythemia vera (PV) is a myeloproliferative disorder characterized by a pronounced increase in the number of erythroid cells. However, despite this aberrant proliferation, the incidence of erythroleukemia is paradoxically rare in PV patients. In this study, we show that the progression of Friend virus-induced erythroleukemia is delayed in a mouse model of primary familial congenital polycythemia in which the wild-type Epo-receptor (EpoR) gene is replaced with a truncated human EPOR gene. Herein, we show that these mice exhibit enrichment of Sca1(+)/cKit(-) progenitors and several mature immune cells, such as dendritic cells and macrophages. In cotransplantation experiments, Sca1(+)/cKit(-) progenitors inhibit the tumorigenicity of Sca1(-)/cKit(+) erythroleukemic cells. A cell line established from Sca1(+)/cKit(-) progenitors is also capable of inhibiting leukemic proliferation in culture and in mice. This phenomenon of leukemic inhibition, also detected in the serum of PV patients, is partially attributed to increased nitric oxide secretion. In addition, the administration of erythropoietin into leukemic mice induces a polycythemia-like state associated with the expansion of Sca1(+)/cKit(-) progenitors and derivative immune cells, thereby inhibiting leukemia progression. This study indicates that a combination therapy incorporating the enrichment of Sca1(+)/cKit(-) progenitors may serve as a novel approach for the treatment of leukemia.
Collapse
|
16
|
Spi-1 and Fli-1 directly activate common target genes involved in ribosome biogenesis in Friend erythroleukemic cells. Mol Cell Biol 2009; 29:2852-64. [PMID: 19289502 DOI: 10.1128/mcb.01435-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spi-1 and Fli-1 are ETS transcription factors recurrently deregulated in mouse erythroleukemia induced by Friend viruses. Since they share the same core DNA binding site, we investigated whether they may contribute to erythroleukemia by common mechanisms. Using inducible knockdown, we demonstrated that Fli-1 contributes to proliferation, survival, and differentiation arrest of erythroleukemic cells harboring an activated fli-1 locus. Similarly, we used inducible Fli-1 knockdown and either hexamethylenebisacetamide (HMBA)- or small interfering RNA-mediated Spi-1 knockdown to investigate their respective contributions in erythroleukemic cells harboring an activated spi-1 locus. In these cells, simple or double knockdown of both Spi-1 and Fli-1 additively contributed to induce proliferation arrest and differentiation. Transcriptome profiling revealed that virtually all transcripts affected by both Fli-1 knockdown and HMBA are affected in an additive manner. Among these additively downregulated transcripts, more than 20% encode proteins involved in ribosome biogenesis, and conserved ETS binding sites are present in their gene promoters. Through chromatin immunoprecipitation, we demonstrated the association of Spi-1 and Fli-1 on these promoters in Friend erythroleukemic cells. These data lead us to propose that the oncogenicity of Spi-1, Fli-1, and possibly other ETS transcription factors may involve their ability to stimulate ribosome biogenesis.
Collapse
|
17
|
Cui JW, Vecchiarelli-Federico LM, Li YJ, Wang GJ, Ben-David Y. Continuous Fli-1 expression plays an essential role in the proliferation and survival of F-MuLV-induced erythroleukemia and human erythroleukemia. Leukemia 2009; 23:1311-9. [PMID: 19282832 DOI: 10.1038/leu.2009.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Erythroleukemia induced by Friend Murine Leukemia Virus (F-MuLV) serves as a powerful tool for the study of multistage carcinogenesis and hematological malignancies in mice. Fli-1, a proto-oncogene and member of the Ets family, is activated through viral integration in F-MuLV-induced erythroleukemia, and is the most critical event in the induction of this disease. Fli-1 aberrant regulation is also observed in human malignancies, including Ewing's sarcoma, which is often linked to expression of the EWS/Fli-1 fusion oncoprotein. Here we examined the effects of Fli-1 inhibition to further elucidate its role in these pathological occurrences. The constitutive suppression of Fli-1, through RNA interference (RNAi), inhibits growth and induces death in F-MuLV-induced erythroleukemia cells. Expression of a dominant negative protein Engrailed (En)/Fli-1 reduces proliferation of EWS/Fli-1-transformed NIH-3T3 cells, and both F-MuLV-induced and human erythroleukemia cells. F-MuLV-induced erythroleukemia cells also display increased apoptosis, associated with reduced expression of bcl-2, a known fli-1 target gene. Introduction of En/Fli-1 into an F-MuLV-infected erythroblastic cell line induces differentiation, as shown by increased alpha-globin expression. These results suggest, for the first time, an essential role for continuous Fli-1 overexpression in the maintenance and survival of the malignant phenotype in murine and human erythroleukemias.
Collapse
Affiliation(s)
- J-W Cui
- Department of Molecular and Cellular Biology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | | | | | |
Collapse
|
18
|
Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N, Wang GJ, Ben-David Y. Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 2007; 110:2631-40. [PMID: 17586726 DOI: 10.1182/blood-2006-10-053850] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a newly discovered class of posttranscriptional regulatory noncoding small RNAs. Recent evidence has shown that miRNA misexpression correlates with progression of various human cancers. Friend erythroleukemia has been used as an excellent system for the identification and characterization of oncogenes and tumor suppressor genes involved in neoplastic transformation. Using this model, we have isolated a novel integration site designated Fli-3, from a Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. The Fli-3 transcription unit is a murine homologue of the human gene C13orf25 that includes a region encoding the mir-17-92 miRNA cluster. C13orf25 is the target gene of 13q31 chromosomal amplification in human B-cell lymphomas and other malignancies. The erythroleukemias that have acquired either insertional activation or amplification of Fli-3 express higher levels of the primary or mature miRNAs derived from mir-17-92. The ectopic expression of Fli-3 in an erythroblastic cell line switches erythropoietin (Epo)-induced differentiation to Epo-induced proliferation through activation of the Ras and PI3K pathways. Such a response is associated with alteration in the expression of several regulatory factors, such as Spi-1 and p27 (Kip1). These findings highlight the potential of the Fli-3 encoding mir-17-92 in the development of erythroleukemia and its important role in hematopoiesis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Differentiation/drug effects
- Cell Line
- Cell Proliferation/drug effects
- Erythropoietin/pharmacology
- Friend murine leukemia virus/genetics
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- MicroRNAs/genetics
- Multigene Family
- Mutagenesis, Insertional/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
- Viral Proteins/isolation & purification
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Jiu-Wei Cui
- Department of Molecular and Cellular Biology, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Khalaf WF, White H, Wenning MJ, Orazi A, Kapur R, Ingram DA. K-Ras is essential for normal fetal liver erythropoiesis. Blood 2005; 105:3538-41. [PMID: 15644420 DOI: 10.1182/blood-2004-05-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn vitro studies suggest that Ras activation is necessary for erythroid cell development. However, genetic inactivation of the Ras isoforms H-Ras, N-Ras, and K-Ras in mice reportedly did not affect adult or fetal erythropoiesis, though K-Ras-/- embryos were anemic. Given these discrepancies, we performed a more detailed analysis of fetal erythropoiesis in K-Ras-/- embryos. Day-13.5 K-Ras-/- embryos were pale with a marked reduction of mature erythrocytes in their fetal livers. The frequency and number of both early (erythroid burst-forming unit [BFU-E]) and late erythroid progenitors (erythroid colony-forming unit [CFU-E]) were reduced in K-Ras-/- fetal livers compared with wild-type controls and displayed a delay in terminal erythroid cell maturation. Further, K-Ras-/- hematopoietic progenitors had reduced proliferation in response to erythropoietin and Kit ligand compared with control cells. Thus, these studies identify K-Ras as a unique Ras isoform that is essential for regulating fetal erythropoiesis in vivo.
Collapse
Affiliation(s)
- Waleed F Khalaf
- Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, 1044 W Walnut St R4/470, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The Ets transcription factor, Fli-1, has been shown to play a pivotal role in the induction and progression of Friend Murine Leukemia Virus (F-MuLV)-induced erythroleukemia, with its overexpression leading to erythroblast survival, proliferation, and inhibition of terminal differentiation. P53 inactivation is an additional genetic alteration that occurs in late-stage leukemic progression associated with in vivo and in vitro immortalization. Since p53 protein expression levels are low, to undetectable, in primary erythroleukemic cells that express elevated levels of Fli-1, we investigated the potential regulation of p53 by Fli-1. We assessed whether the overexpression of Fli-1 could partially regulate p53 via modulation of its well-established regulator, MDM2. In this paper, we demonstrate that the promoter of MDM2 contains a consensus binding site for Fli-1 that is bound by this transcription factor in vitro and in vivo, resulting in MDM2 transcriptional regulation. We further substantiate these observations in vivo by demonstrating a positive correlation in the expression of Fli-1 and MDM2, and a negative correlation with p53 in leukemic tissues obtained from mice with Friend Disease. These observations depict a significant function of Fli-1 overexpression in the indirect control of p53, evidently capable of leading to an increasingly aggressive erythroleukemic clone in vivo.
Collapse
Affiliation(s)
- Amandine H L Truong
- Department of Medical Biophysics, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Ontario, Canada M4N 3M5
| | | | | | | |
Collapse
|
21
|
Lewis JL, Marley SB, Ojo M, Gordon MY. Opposing effects of PI3 kinase pathway activation on human myeloid and erythroid progenitor cell proliferation and differentiation in vitro. Exp Hematol 2004; 32:36-44. [PMID: 14725899 DOI: 10.1016/j.exphem.2003.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate 1) the effects of lineage-specific cytokines (G-CSF and EPO) combined with ligands for different classes of cytokine receptors (common beta chain, gp130, and tyrosine kinase) on proliferation by human myeloid and erythroid progenitor cells; and 2) the signal transduction pathways associated with combinatorial cytokine actions. PATIENTS AND METHODS CFU-GM and BFU-E were cloned in vitro. Secondary colony formation by replated CFU-GM and subcolony formation by BFU-E provided measures of progenitor cell proliferation. Studies were performed in the presence of cytokine combinations with and without signal transduction inhibitors. RESULTS Proliferation by CFU-GM and BFU-E was enhanced synergistically when common beta chain receptor cytokines (IL-3 or GM-CSF) were combined with G-CSF or EPO, but not with gp130 receptor cytokines (LIF or IL-6) or tyrosine kinase receptor cytokines (SCF, HGF, Flt-3 ligand, or PDGF). Delayed addition studies with G-CSF+IL-3 and EPO+IL-3 demonstrated that synergy required the presence of both cytokines from the initiation of the culture. The Jak2-specific inhibitor, AG490, abrogated the effect of combining IL-3 with EPO but had no effect on the enhanced CFU-GM proliferation stimulated by IL-3+G-CSF. The PI3 kinase inhibitors LY294002 and wortmannin substituted for G-CSF in combination with IL-3 since proliferation in the presence of LY294002/wortmannin+IL-3 was enhanced to the same extent as in the presence of G-CSF+IL-3. In contrast, LY294002 and wortmannin inhibited proliferation in the presence of EPO and in the presence of EPO+IL-3. CONCLUSION 1) IL-3 may activate different signal transduction pathways when combined with G-CSF and when combined with EPO; 2) different signal transducing intermediates regulate erythroid and myeloid progenitor cell proliferation; and 3) inhibition of the PI3 kinase pathway suppresses myeloid progenitor cell differentiation and thereby increases proliferation.
Collapse
Affiliation(s)
- John L Lewis
- LRF Centre for Adult Leukaemia, Department of Hematology, Faculty of Medicine, Imperial College, London, England, UK
| | | | | | | |
Collapse
|
22
|
Dazy S, Damiola F, Parisey N, Beug H, Gandrillon O. The MEK-1/ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene 2003; 22:9205-16. [PMID: 14681680 DOI: 10.1038/sj.onc.1207049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Making decisions between self-renewal and differentiation is a central ability of stem cells. Elucidation of molecular networks governing this decision is therefore of prime importance. A model of choice to explore this question is represented by chicken erythroid progenitors, in which self-renewal versus differentiation as well as progenitor maturation are regulated by external factor combinations. We used this system to study whether similar or different signalling pathways were involved in the self-renewal of early, immature or more mature erythroid progenitors. We show that a transforming growth factor (TGF)-alpha-activated Ras/MEK-1/ERK1/2 pathway is strictly required for immature self-renewing cells but becomes fully dispensable when those cells are induced to differentiate. Consequently, pharmacological inhibition of this pathway led to spontaneous differentiation, only dependent on the presence of survival signals. Conversely, ectopic expression of a constitutive form of MEK-1 stimulates renewal and arrests differentiation process. Finally, we demonstrate that the ERK/MAPK signalling pathway is required in early but not in late primary erythroid progenitors, which can be turned into each other by different growth factor combinations specifically driving their renewal. To the best of our knowledge, this is the first description of a central role of ERK/MAPK signalling in regulating progenitor plasticity in the same cell type under different environmental conditions.
Collapse
Affiliation(s)
- Sébastien Dazy
- Laboratoire Signalisations et identités cellulaires, Centre de Génétique Moléculaire et Cellulaire CNRS UMR 5534, Université Claude Bernard Lyon 1, bât Grégoire Mendel, 16 rue Dubois, 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
More than a century has elapsed since the appearance of the modern descriptions of polycythemia vera (PV). During this time, much has been learned regarding disease pathogenesis and PV-associated molecular aberrations. New information has allowed amendments to traditional diagnostic criteria. Phlebotomy remains the cornerstone treatment of PV, whereas myelosuppressive agents may augment the benefit of using phlebotomy for thrombosis prevention in high-risk patients. Excessive aspirin use is contraindicated in PV, although the use of lower-dose aspirin has been shown to be safe and effective in alleviating microvascular symptoms including erythromelalgia and headaches. Recent studies have shown the utility of selective serotonin receptor antagonists for treating PV-associated pruritus. Nevertheless, many questions remain unanswered. What is the specific genetic mutation or altered molecular pathway that is causally related to the disease? In the absence of a specific molecular marker, how is a working diagnosis of PV made? What evidence supports current practice in the management of PV? This article summarizes both old and new information on PV; proposes a modern diagnostic algorithm to formulate a working diagnosis; and provides recommendations for patient management, relying whenever possible on an evidence-based approach.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA.
| |
Collapse
|
24
|
Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A, Verger A, Duterque-Coquillaud M, Morle F. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 2003; 23:1390-402. [PMID: 12556498 PMCID: PMC141137 DOI: 10.1128/mcb.23.4.1390-1402.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FLI-1 is an ETS family transcription factor which is overexpressed in Friend erythroleukemia and contributes to the blockage of differentiation of erythroleukemic cells. We show here that FLI-1 represses the transcriptional activity of the beta-globin gene promoter in MEL cells and interacts with two of its critical transactivators, GATA-1 and EKLF. Unexpectedly, FLI-1 enhances the stimulating activity of GATA-1 on a GATA-1-responsive promoter but represses that of EKLF on beta-globin and an EKLF-responsive artificial promoters. This repressive effect of FLI-1 requires the ETS DNA binding domain and its association with either the N- or C-terminal domain, which themselves interact with EKLF but not with GATA-1. Furthermore, the FLI-1 ETS domain alone behaves as an autonomous repression domain when linked to the Gal4 DNA binding domain. Taken together, these data indicate that FLI-1 represses EKLF-dependent transcription due to the repression activity of its ETS domain and its indirect recruitment to erythroid promoters by protein-protein interaction with EKLF. Reciprocally, we also show that EKLF itself represses the FLI-1-dependent megakaryocytic GPIX gene promoter, thus further suggesting that functional cross-antagonism between FLI-1 and EKLF might be involved in the control of the erythrocytic versus megakaryocytic differentiation of bipotential progenitors.
Collapse
Affiliation(s)
- Joëlle Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 2002; 30:990-1000. [PMID: 12225790 DOI: 10.1016/s0301-472x(02)00868-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Several transducing molecules, including JAK2, STAT5, MAP kinases, phosphatidylinositol 3-kinase (PI3K), phospholipase C-gamma1, and PKC are activated by interaction between erythropoietin (EPO) and the EPO receptor. The aim of this was to examine the relative involvement of PI3K in the development of glycophorin A (GPA)(+) erythroid cells from normal hematopoietic progenitor cells. MATERIALS AND METHODS CD34(+) hematopoietic progenitor cells or subpopulations obtained by FACS sorting were cultured in serum-free medium containing EPO with or without inhibitors for PI3K, p38, MEK, or PKC for various time periods before phenotypic analysis or detection of apoptosis by flow cytometry, cell cycle analysis, high-resolution tracking of cell division, Western blot analysis, or Akt kinase assay were performed. RESULTS The PI3K inhibitor LY294002 completely counteracted the EPO-induced proliferation of CD34(+) progenitor cells and CD34(+)CD71(+)CD45RA(-) erythroid progenitors. LY294002 also highly suppressed the expanded erythropoiesis induced by the combined action of EPO and stem cell factor. The profound inhibitory effect of LY294002 on proliferation was caused by its induction of cell cycle arrest in the G(0)/G(1) phase of the cell cycle. Some cells acquired GPA expression before they went through cell division. This was completely blocked by LY294002, implying an inhibitory effect on maturation. In addition, LY294002 completely blocked the viability-enhancing effect of EPO in CD34(+)CD71(+)CD45RA(-) erythroid progenitors. LY294002 and various inhibitors of PKC completely suppressed the EPO-induced increase in the activity of Akt kinase, a direct downstream target of PI3K. CONCLUSIONS Our results point to an important role for PI3K in mediating EPO-induced survival, proliferation, and possibly maturation of early erythroid progenitors.
Collapse
Affiliation(s)
- June Helen Myklebust
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
26
|
Chen C, Sytkowski AJ. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc. J Biol Chem 2001; 276:38518-26. [PMID: 11483613 DOI: 10.1074/jbc.m105702200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.
Collapse
Affiliation(s)
- C Chen
- Laboratory for Cell and Molecular Biology, Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
27
|
Barnache S, Mayeux P, Payrastre B, Moreau-Gachelin F. Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Blood 2001; 98:2372-81. [PMID: 11588033 DOI: 10.1182/blood.v98.8.2372] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the cell transformation processes leading to erythroleukemia, erythroid progenitors often become erythropoietin (Epo)-independent for their proliferation. The biochemical events that could lead an erythroleukemic cell to growth factor-independence were investigated using spi-1 transgenic poerythroblasts. Spi-1/PU.1 is a myeloid and B-cell transcription factor of the ETS family and is activated by insertional mutagenesis during Friend erythroleukemia. Its overexpression in proerythroblasts induces their differentiation arrest without altering their erythropoietin requirement for proliferation (HS1 cells). At a later step, genetic alterations most probably occur allowing spi-1 transgenic poerythroblasts to proliferate in the absence of erythropoietin (HS2 cells). The signaling transduction pathways in HS1 and HS2 proerythroblasts were analyzed. The authors have previously shown that the Jak/STAT pathway was not activated in Epo-independent cells, but remained sensitive to Epo stimulation. In the present study, it is shown that the Epo-independent proliferation of HS2 cells requires active phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. In these cells, PI3K was constitutively associated with the molecular adapters Grb2 and Gab1, and with the phosphatases SHP-2 and SHIP. Moreover, PI3K activity was correlated with the constitutive phosphorylation of serine-threonine protein kinase (AKT) in HS2 cells. Lastly, a constitutive activation of the MAPKs extracellular signal-regulated kinases (ERK1/2) in HS2 cells was observed that occurs in a PI3K-independent manner, but depends strictly on the activity of the protein kinase C (PKC). These results suggest that constitutive activations of PI3K/AKT and PKC/MAPK pathways can act in synergy to lead a proerythroblast to proliferate without Epo.
Collapse
Affiliation(s)
- S Barnache
- Inserm U528, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
28
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
29
|
von Lindern M, Deiner EM, Dolznig H, Parren-Van Amelsvoort M, Hayman MJ, Mullner EW, Beug H. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis. Oncogene 2001; 20:3651-64. [PMID: 11439328 DOI: 10.1038/sj.onc.1204494] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Revised: 03/21/2001] [Accepted: 04/02/2001] [Indexed: 12/24/2022]
Abstract
Primary erythroid progenitors can be expanded by the synergistic action of erythropoietin (Epo), stem cell factor (SCF) and glucocorticoids. While Epo is required for erythropoiesis in general, glucocorticoids and SCF mainly contribute to stress erythropoiesis in hypoxic mice. This ability of normal erythroid progenitors to undergo expansion under stress conditions is targeted by the avian erythroblastosis virus (AEV), harboring the oncogenes v-ErbB and v-ErbA. We investigated the signaling pathways required for progenitor expansion under stress conditions and in leukemic transformation. Immortal strains of erythroid progenitors, able to undergo normal, terminal differentiation under appropriate conditions, were established from fetal livers of p53-/- mice. Expression and activation of the EGF-receptor (HER-1/c-ErbB) or its mutated oncogenic version (v-ErbB) in these cells abrogated the requirement for Epo and SCF in expansion of these progenitors and blocked terminal differentiation. Upon inhibition of ErbB function, differentiation into erythrocytes occurred. Signal transducing molecules important for renewal induction, i.e. Stat5- and phosphoinositide 3-kinase (PI3K), are utilized by both EpoR/c-Kit and v/c-ErbB. However, while v-ErbB transformed cells and normal progenitors depended on PI3K signaling for renewal, c-ErbB also induces progenitor expansion by PI3K-independent mechanisms.
Collapse
Affiliation(s)
- M von Lindern
- Institute of Hematology, Erasmus Medical Centre Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Aberrant expression of the Fli-1 transcription factor following genetic mutation has been recognized as a seminal event in the initiation of certain types of malignant transformation. Indeed, the etiology of a number of virally induced leukemias, including Friend virus-induced erythroleukemia, has been associated with Fli-1 overexpression. The clinical relevance of Fli-1 becomes apparent in human Ewing's sarcoma in which Fli-1 is the target of a characteristic chromosomal translocation. As such, Fli-1 has generated considerable interest over the past several years for its role in malignant transformation and tumor progression. This review will present a synopsis of the current research on Fli-1 with emphasis on its function in malignant transformation. Moreover, the possible role of Fli-1 in cellular proliferation, differentiation and survival, as well as the recent development of transgenic and knock-out mice to investigate the function of Fli-1 will be discussed. Finally, the significance of identifying target genes that are regulated by Fli-1 and their role in cellular function will be reviewed.
Collapse
MESH Headings
- 3T3 Cells
- Adult
- Animals
- Apoptosis/genetics
- Bone Neoplasms/genetics
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Viral/genetics
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Friend murine leukemia virus/genetics
- Gene Duplication
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Helix-Loop-Helix Motifs
- Hematopoiesis/genetics
- Humans
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/virology
- Mice
- Mice, Knockout
- Multigene Family
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Organ Specificity
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-fli-1
- Proto-Oncogene Proteins
- RNA-Binding Protein EWS
- Sarcoma, Ewing/genetics
- Sequence Deletion
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- A H Truong
- Division of Cancer Biology Research, Sunnybrook and Women's College Health Sciences Centre & Toronto-Sunnybrook Regional Cancer Centre (TSRCC), 2075 Bayview Avenue, S-Wing, Room S216, Toronto, Ontario, Canada M4N 3M5
| | | |
Collapse
|