1
|
Liang X, Yadav SP, Batz ZA, Nellissery J, Swaroop A. Protein kinase CK2 modulates the activity of Maf-family bZIP transcription factor NRL in rod photoreceptors of mammalian retina. Hum Mol Genet 2023; 32:948-958. [PMID: 36226585 PMCID: PMC9991000 DOI: 10.1093/hmg/ddac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2022] Open
Abstract
Maf-family basic motif leucine zipper protein NRL specifies rod photoreceptor cell fate during retinal development and, in concert with homeodomain protein CRX and other regulatory factors, controls the expression of most rod-expressed genes including the visual pigment gene Rhodopsin (Rho). Transcriptional regulatory activity of NRL is modulated by post-translational modifications, especially phosphorylation, and mutations at specific phosphosites can lead to retinal degeneration. During our studies to elucidate NRL-mediated transcriptional regulation, we identified protein kinase CK2 in NRL-enriched complexes bound to Rho promoter-enhancer regions and in NRL-enriched high molecular mass fractions from the bovine retina. The presence of CK2 in NRL complexes was confirmed by co-immunoprecipitation from developing and adult mouse retinal extracts. In vitro kinase assay and bioinformatic analysis indicated phosphorylation of NRL at Ser117 residue by CK2. Co-transfection of Csnk2a1 cDNA encoding murine CK2 with human NRL and CRX reduced the bovine Rho promoter-driven luciferase expression in HEK293 cells and mutagenesis of NRL-Ser117 residue to Ala restored the reporter gene activity. In concordance, overexpression of CK2 in the mouse retina in vivo by electroporation resulted in reduction of Rho promoter-driven DsRed reporter expression as well as the transcript level of many phototransduction genes. Thus, our studies demonstrate that CK2 can phosphorylate Ser117 of NRL. Modulation of NRL activity by CK2 suggests intricate interdependence of transcriptional and signaling pathways in maintaining rod homeostasis.
Collapse
Affiliation(s)
- Xulong Liang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Sharda P Yadav
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Zachary A Batz
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
3
|
Krämer A, Kurz CG, Berger BT, Celik IE, Tjaden A, Greco FA, Knapp S, Hanke T. Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor. Eur J Med Chem 2020; 208:112770. [PMID: 32883634 DOI: 10.1016/j.ejmech.2020.112770] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Casein kinase 2 (CK2) is a constitutively expressed serine/threonine kinase that has a large diversity of cellular substrates. Thus, CK2 has been associated with a plethora of regulatory functions and dysregulation of CK2 has been linked to disease development in particular to cancer. The broad implications in disease pathology makes CK2 an attractive target. To date, the most advanced CK2 inhibitor is silmitasertib, which has been investigated in clinical trials for treatment of various cancers, albeit several off-targets for silmitasertib have been described. To ascertain the role of CK2 inhibition in cancer, other disease and normal physiology the development of a selective CK2 inhibitor would be highly desirable. In this study we explored the pyrazolo [1,5-a]pyrimidine hinge-binding moiety for the development of selective CK2 inhibitors. Optimization of this scaffold, which included macrocyclization, led to IC20 (31) a compound that displayed high in vitro potency for CK2 (KD = 12 nM) and exclusive selectivity for CK2. X-ray analysis revealed a canonical type-I binding mode for IC20 (31). However, the polar carboxylic acid moiety that is shared by many CK2 inhibitors including silmitasertib was required for potency but limits the cellular activity of IC20 (31) and the cellular IC50 dropped to the low micromolar range. In summary, IC20 (31) represents a highly selective and potent inhibitor of CK2, which can be used as a tool compound to study CK2 biology and potential new applications for the treatment of diseases.
Collapse
Affiliation(s)
- Andreas Krämer
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany; Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt Am Main, Germany
| | - Christian Georg Kurz
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Ibrahim Ethem Celik
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Francesco Aleksy Greco
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany; German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, Germany; Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, 60596, Frankfurt Am Main, Germany.
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Max-von-Laue-Straße 9, Goethe University Frankfurt, 60438, Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Straße 15, 60438, Frankfurt, Germany.
| |
Collapse
|
4
|
ShiYang X, Miao Y, Cui Z, Lu Y, Zhou C, Zhang Y, Xiong B. Casein kinase 2 modulates the spindle assembly checkpoint to orchestrate porcine oocyte meiotic progression. J Anim Sci Biotechnol 2020; 11:31. [PMID: 32292585 PMCID: PMC7140493 DOI: 10.1186/s40104-020-00438-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background CK2 (casein kinase 2) is a serine/threonine-selective protein kinase that has been involved in a variety of cellular processes such as DNA repair, cell cycle control and circadian rhythm regulation. However, its functional roles in oocyte meiosis have not been fully determined. Results We report that CK2 is essential for porcine oocyte meiotic maturation by regulating spindle assembly checkpoint (SAC). Immunostaining and immunoblotting analysis showed that CK2 was constantly expressed and located on the chromosomes during the entire oocyte meiotic maturation. Inhibition of CK2 activity by its selective inhibitor CX-4945 impaired the first polar body extrusion and arrested oocytes at M I stage, accompanied by the presence of BubR1 at kinetochores, indicative of activated SAC. In addition, we found that spindle/chromosome structure was disrupted in CK2-inhibited oocytes due to the weakened microtubule stability, which is a major cause resulting in the activation of SAC. Last, we found that the level DNA damage as assessed by γH2A.X staining was considerably elevated when CK2 was inhibited, suggesting that DNA damage might be another critical factor leading to the SAC activation and meiotic failure of oocytes. Conclusions Our findings demonstrate that CK2 promotes the porcine oocyte maturation by ensuring normal spindle assembly and DNA damage repair.
Collapse
Affiliation(s)
- Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
5
|
Shi J, Ruijtenbeek R, Pieters RJ. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2019; 28:814-824. [PMID: 29635275 DOI: 10.1093/glycob/cwy031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands.,PamGene International BV, HH's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| |
Collapse
|
6
|
Chiu ATG, Pei SLC, Mak CCY, Leung GKC, Yu MHC, Lee SL, Vreeburg M, Pfundt R, van der Burgt I, Kleefstra T, Frederic TMT, Nambot S, Faivre L, Bruel AL, Rossi M, Isidor B, Küry S, Cogne B, Besnard T, Willems M, Reijnders MRF, Chung BHY. Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin Genet 2018; 93:880-890. [PMID: 29240241 DOI: 10.1111/cge.13196] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022]
Abstract
Okur-Chung syndrome is a neurodevelopmental condition attributed to germline CSNK2A1 pathogenic missense variants. We present 8 unreported subjects with the above syndrome, who have recognizable dysmorphism, varying degrees of developmental delay and multisystem involvement. Together with 6 previously reported cases, we present a case series of 7 female and 7 male subjects, highlighting the recognizable facial features of the syndrome (microcephaly, hypertelorism, epicanthic fold, ptosis, arched eyebrows, low set ears, ear fold abnormality, broad nasal bridge and round face) as well as frequently occurring clinical features including neurodevelopmental delay (93%), gastrointestinal (57%), musculoskeletal (57%) and immunological (43%) abnormalities. The variants reported in this study are evolutionary conserved and absent in the normal population. We observed that the CSNK2A1 gene is relatively intolerant to missense genetic changes, and most variants are within the protein kinase domain. All except 1 variant reported in this cohort are spatially located on the binding pocket of the holoenzyme. We further provide key recommendations on the management of Okur-Chung syndrome. To conclude, this is the second case series on Okur-Chung syndrome, and an in-depth review of the phenotypic features and genomic findings of the condition with suggestions on clinical management.
Collapse
Affiliation(s)
- A T G Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - S L C Pei
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - C C Y Mak
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - G K C Leung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - M H C Yu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - S L Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - M Vreeburg
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - T M-T Frederic
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - S Nambot
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - L Faivre
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - A-L Bruel
- INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - M Rossi
- Service de Génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,INSERM, UMR-S 957, Nantes, France
| | - S Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - B Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - T Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - M Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Montpellier, France
| | - M R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Hong X, Huang H, Qiu X, Ding Z, Feng X, Zhu Y, Zhuo H, Hou J, Zhao J, Cai W, Sha R, Hong X, Li Y, Song H, Zhang Z. Targeting posttranslational modifications of RIOK1 inhibits the progression of colorectal and gastric cancers. eLife 2018; 7:e29511. [PMID: 29384474 PMCID: PMC5815853 DOI: 10.7554/elife.29511] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
RIOK1 has recently been shown to play important roles in cancers, but its posttranslational regulation is largely unknown. Here we report that RIOK1 is methylated at K411 by SETD7 methyltransferase and that lysine-specific demethylase 1 (LSD1) reverses its methylation. The mutated RIOK1 (K411R) that cannot be methylated exhibits a longer half-life than does the methylated RIOK1. FBXO6 specifically interacts with K411-methylated RIOK1 through its FBA domain to induce RIOK1 ubiquitination. Casein kinase 2 (CK2) phosphorylates RIOK1 at T410, which stabilizes RIOK1 by antagonizing K411 methylation and impeding the recruitment of FBXO6 to RIOK1. Functional experiments demonstrate the RIOK1 methylation reduces the tumor growth and metastasis in mice model. Importantly, the protein levels of CK2 and LSD1 show an inverse correlation with FBXO6 and SETD7 expression in human colorectal cancer tissues. Together, this study highlights the importance of a RIOK1 methylation-phosphorylation switch in determining colorectal and gastric cancer development.
Collapse
Affiliation(s)
- Xuehui Hong
- Longju Medical Research CenterKey Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical CollegeZunyiChina
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - He Huang
- Department of Histology and EmbryologyXiangya School of Medicine, Central South UniversityChangshaChina
- Digestive Cancer LaboratorySecond Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Xingfeng Qiu
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Zhijie Ding
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Xing Feng
- Department of Radiation Oncology, Cancer Institute of New JerseyRutgers UniversityNew BrunswickUnited States
| | - Yuekun Zhu
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Huiqin Zhuo
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jingjing Hou
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Jiabao Zhao
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Wangyu Cai
- Department of Gastrointestinal SurgeryZhongshan Hospital of Xiamen UniversityXiamenChina
- Institute of Gastrointestinal OncologyMedical College of Xiamen UniversityXiamenChina
- Xiamen Municipal Key Laboratory of Gastrointestinal OncologyXiamenChina
| | - Ruihua Sha
- Department of Digestive DiseaseHongqi Hospital, Mudanjiang Medical UniversityMudanjiangChina
| | - Xinya Hong
- Department of Medical Imaging and UltrasoundZhongshan Hospital of Xiamen UniversityXiamenFujian, China
| | - Yongxiang Li
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongjiang Song
- Department of General SurgeryThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhiyong Zhang
- Longju Medical Research CenterKey Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical CollegeZunyiChina
- Department of Surgery, Robert-Wood-Johnson Medical School University HospitalRutgers University, The State University of New JerseyNew BrunswickUnited States
| |
Collapse
|
8
|
Lin F, Cao SB, Ma XS, Sun HX. Inhibition of casein kinase 2 blocks G 2/M transition in early embryo mitosis but not in oocyte meiosis in mouse. J Reprod Dev 2017; 63:319-324. [PMID: 28367932 PMCID: PMC5481635 DOI: 10.1262/jrd.2016-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly conserved, ubiquitously expressed serine/threonine protein kinase with hundreds of substrates. The role of CK2 in the G2/M transition of oocytes, zygotes, and 2-cell embryos was studied in mouse by enzyme activity inhibition using the specific inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB). Zygotes and 2-cell embryos were arrested at G2 phase by TBB treatment, and DNA damage was increased in the female pronucleus of arrested zygotes. Further developmental ability of arrested zygotes was reduced, but that of arrested 2-cell embryos was not affected after releasing from inhibition. By contrast, the G2/M transition in oocytes was not affected by TBB. These results indicate that CK2 activity is essential for mitotic G2/M transition in early embryos but not for meiotic G2/M transition in oocytes.
Collapse
Affiliation(s)
- Fei Lin
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shi-Bing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Xiang Sun
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
9
|
Liu Y, Amin EB, Mayo MW, Chudgar NP, Bucciarelli PR, Kadota K, Adusumilli PS, Jones DR. CK2α' Drives Lung Cancer Metastasis by Targeting BRMS1 Nuclear Export and Degradation. Cancer Res 2016; 76:2675-86. [PMID: 26980766 DOI: 10.1158/0008-5472.can-15-2888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is decreased in non-small cell lung cancer (NSCLC) and other solid tumors, and its loss correlates with increased metastases. We show that BRMS1 is posttranslationally regulated by TNF-induced casein kinase 2 catalytic subunit (CK2α') phosphorylation of nuclear BRMS1 on serine 30 (S30), resulting in 14-3-3ε-mediated nuclear exportation, increased BRMS1 cytosolic expression, and ubiquitin-proteasome-induced BRMS1 degradation. Using our in vivo orthotopic mouse model of lung cancer metastases, we found that mutation of S30 in BRMS1 or the use of the CK2-specific small-molecule inhibitor CX4945 abrogates CK2α'-induced cell migration and invasion and decreases NSCLC metastasis by 60-fold. Analysis of 160 human NSCLC specimens confirmed that tumor CK2α' and cytoplasmic BRMS1 expression levels are associated with increased tumor recurrence, metastatic foci, and reduced disease-free survival. Collectively, we identify a therapeutically exploitable posttranslational mechanism by which CK2α-mediated degradation of BRMS1 promotes metastases in lung cancer. Cancer Res; 76(9); 2675-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elianna B Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marty W Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Neel P Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter R Bucciarelli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyuichi Kadota
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York.
| |
Collapse
|
10
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. mBio 2015; 6:e00354-15. [PMID: 25944859 PMCID: PMC4436068 DOI: 10.1128/mbio.00354-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Legionella pneumophila, the etiological agent of legionellosis, replicates within phagocytic cells. Crucial to biogenesis of the replicative vacuole is the Dot/Icm type 4 secretion system, which translocates a large number of effectors into the host cell cytosol. Among them is LegK2, a protein kinase that plays a key role in Legionella infection. Here, we identified the actin nucleator ARP2/3 complex as a target of LegK2. LegK2 phosphorylates the ARPC1B and ARP3 subunits of the ARP2/3 complex. LegK2-dependent ARP2/3 phosphorylation triggers global actin cytoskeleton remodeling in cells, and it impairs actin tail formation by Listeria monocytogenes, a well-known ARP2/3-dependent process. During infection, LegK2 is addressed to the Legionella-containing vacuole surface and inhibits actin polymerization on the phagosome, as revealed by legK2 gene inactivation. Consequently, LegK2 prevents late endosome/lysosome association with the phagosome and finally contributes to remodeling of the bacterium-containing phagosome into a replicative niche. The inhibition of actin polymerization by LegK2 and its effect on endosome trafficking are ARP2/3 dependent since it can be phenocopied by a specific chemical inhibitor of the ARP2/3 complex. Thus, LegK2-ARP2/3 interplay highlights an original mechanism of bacterial virulence with an unexpected role in local actin remodeling that allows bacteria to control vesicle trafficking in order to escape host defenses. IMPORTANCE Deciphering the individual contribution of each Dot/Icm type 4 secretion system substrate to the intracellular life-style of L. pneumophila remains the principal challenge in understanding the molecular basis of Legionella virulence. Our finding that LegK2 is a Dot/Icm effector that inhibits actin polymerization on the Legionella-containing vacuole importantly contributes to the deciphering of the molecular mechanisms evolved by Legionella to counteract the endocytic pathway. Indeed, our results highlight the essential role of LegK2 in preventing late endosomes from fusing with the phagosome. More generally, this work is the first demonstration of local actin remodeling as a mechanism used by bacteria to control organelle trafficking. Further, by characterizing the role of the bacterial protein kinase LegK2, we reinforce the concept that posttranslational modifications are key strategies used by pathogens to evade host cell defenses.
Collapse
|
12
|
Moreira-Ramos S, Rojas DA, Montes M, Urbina F, Miralles VJ, Maldonado E. Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe. FEBS J 2014; 282:491-503. [PMID: 25410910 DOI: 10.1111/febs.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/13/2014] [Accepted: 11/19/2014] [Indexed: 11/27/2022]
Abstract
In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA analogue element called the HomolD box. The HomolD-binding protein Rrn7 forms a complex with the RNA polymerase II machinery. Despite the importance of ribosome biogenesis to cell survival, the mechanisms involved in the regulation of transcription of eukaryotic RPGs are unknown. In this study, we identified Rrn7 as a new substrate of the pleiotropic casein kinase 2 (CK2), which is a regulator of basal transcription. Recombinant Rrn7 from S. pombe, which is often used as a model organism for studying eukaryotic transcription, interacted with CK2 in vitro and in vivo. Furthermore, CK2-mediated phosphorylation of Rrn7 inhibited its HomolD-directed transcriptional activity and ability to bind to an oligonucleotide containing a HomolD box in vitro. Mutation of Rrn7 at Thr67 abolished these effects, indicating that this residue is a critical CK2 phosphorylation site. Finally, Rrn7 interacted with the regulatory subunit of CK2 in vivo, inhibition of CK2 in vivo potentiated ribosomal protein gene transcription, and chromatin immunoprecipitation analyses identified that the catalytic subunit of CK2 was associated with the rpk5 gene promoter in S. pombe. Taken together, these data suggest that CK2 inhibits ribosomal protein gene transcription in S. pombe via phosphorylation of Rrn7 at Thr67.
Collapse
|
13
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
14
|
Structural and functional insights into the regulation mechanism of CK2 by IP6 and the intrinsically disordered protein Nopp140. Proc Natl Acad Sci U S A 2013; 110:19360-5. [PMID: 24218616 DOI: 10.1073/pnas.1304670110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase CK2 is a ubiquitous kinase that can phosphorylate hundreds of cellular proteins and plays important roles in cell growth and development. Deregulation of CK2 is related to a variety of human cancers, and CK2 is regarded as a suppressor of apoptosis; therefore, it is a target of anticancer therapy. Nucleolar phosphoprotein 140 (Nopp140), which is an intrinsically disordered protein, interacts with CK2 and inhibits the latter's catalytic activity in vitro. Interestingly, the catalytic activity of CK2 is recovered in the presence of d-myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6). IP6 is widely distributed in animal cells, but the molecular mechanisms that govern its cellular functions in animal cells have not been completely elucidated. In this study, the crystal structure of CK2 in complex with IP6 showed that the lysine-rich cluster of CK2 plays an important role in binding to IP6. The biochemical experiments revealed that a Nopp140 fragment (residues 568-596) and IP6 competitively bind to the catalytic subunit of CK2 (CK2α), and phospho-Ser574 of Nopp140 significantly enhances its interaction with CK2α. Substitutions of K74E, K76E, and K77E in CK2α significantly reduced the interactions of CK2α with both IP6 and the Nopp140-derived peptide. Our study gives an insight into the regulation of CK2. In particular, our work suggests that CK2 activity is inhibited by Nopp140 and reactivated by IP6 by competitive binding at the substrate recognition site of CK2.
Collapse
|
15
|
The Role of Protein Kinase CK2 in Cyclosporine-Induced Nephropathy in Rats. Transplant Proc 2013; 45:756-62. [DOI: 10.1016/j.transproceed.2012.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/13/2012] [Indexed: 11/24/2022]
|
16
|
Liu SS, Zheng HX, Jiang HD, He J, Yu Y, Qu YP, Yue L, Zhang Y, Li Y. Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation. J Biomed Sci 2012; 19:49. [PMID: 22548824 PMCID: PMC3546425 DOI: 10.1186/1423-0127-19-49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/01/2012] [Indexed: 01/07/2023] Open
Abstract
Background In the present study we identified a novel gene, Homo Sapiens Chromosome 1 ORF109 (c1orf109, GenBank ID: NM_017850.1), which encodes a substrate of CK2. We analyzed the regulation mode of the gene, the expression pattern and subcellular localization of the predicted protein in the cell, and its role involving in cell proliferation and cell cycle control. Methods Dual-luciferase reporter assay, chromatin immunoprecipitation and EMSA were used to analysis the basal transcriptional requirements of the predicted promoter regions. C1ORF109 expression was assessed by western blot analysis. The subcellular localization of C1ORF109 was detected by immunofluorescence and immune colloidal gold technique. Cell proliferation was evaluated using MTT assay and colony-forming assay. Results We found that two cis-acting elements within the crucial region of the c1orf109 promoter, one TATA box and one CAAT box, are required for maximal transcription of the c1orf109 gene. The 5′ flanking region of the c1orf109 gene could bind specific transcription factors and Sp1 may be one of them. Employing western blot analysis, we detected upregulated expression of c1orf109 in multiple cancer cell lines. The protein C1ORF109 was mainly located in the nucleus and cytoplasm. Moreover, we also found that C1ORF109 was a phosphoprotein in vivo and could be phosphorylated by the protein kinase CK2 in vitro. Exogenous expression of C1ORF109 in breast cancer Hs578T cells induced an increase in colony number and cell proliferation. A concomitant rise in levels of PCNA (proliferating cell nuclear antigen) and cyclinD1 expression was observed. Meanwhile, knockdown of c1orf109 by siRNA in breast cancer MDA-MB-231 cells confirmed the role of c1orf109 in proliferation. Conclusions Taken together, our findings suggest that C1ORF109 may be the downstream target of protein kinase CK2 and involved in the regulation of cancer cell proliferation.
Collapse
Affiliation(s)
- Shan-shan Liu
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xavier CP, Rastetter RH, Blömacher M, Stumpf M, Himmel M, Morgan RO, Fernandez MP, Wang C, Osman A, Miyata Y, Gjerset RA, Eichinger L, Hofmann A, Linder S, Noegel AA, Clemen CS. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration. Sci Rep 2012; 2:241. [PMID: 22355754 PMCID: PMC3268813 DOI: 10.1038/srep00241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023] Open
Abstract
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
- Present address: Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Raphael H. Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Mirko Himmel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Reginald O. Morgan
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Conan Wang
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Asiah Osman
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, 92121, USA
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
18
|
Ren K, Xiang S, He F, Zhang W, Ding X, Wu Y, Yang L, Zhou J, Gao X, Zhang J. CK2 phosphorylates AP-2α and increases its transcriptional activity. BMB Rep 2011; 44:490-5. [DOI: 10.5483/bmbrep.2011.44.7.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
About the role of CK2 in plant signal transduction. Mol Cell Biochem 2011; 356:233-40. [DOI: 10.1007/s11010-011-0970-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022]
|
20
|
Lin YC, Hung MS, Lin CK, Li JM, Lee KD, Li YC, Chen MF, Chen JK, Yang CT. CK2 inhibitors enhance the radiosensitivity of human non-small cell lung cancer cells through inhibition of stat3 activation. Cancer Biother Radiopharm 2011; 26:381-8. [PMID: 21711111 DOI: 10.1089/cbr.2010.0917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CK2 interacts and phosphorylates >300 proteins, including Stat3, and is linked to a number of human cancers. Constitutively activated Stat3 has been reported in 50% of human lung cancers. Inhibition of CK2 activity can induce apoptosis and suppression of Stat3 activation in cancer cells. This study examined the effects of CK2 inhibitors on growth inhibition of lung cancer cells and the therapeutic potential on lung cancer. The CK2 inhibitor and radiation both suppressed cancer cell growth in a dose-dependent manner. Besides, the cytotoxic effect of irradiation could be augmented by CK2 inhibitors (p<0.05, two-way analysis of variance and Tukey's Honestly Significant Difference). Moreover, the growth inhibition of CK2 inhibitor and irradiation was both associated with suppression of Stat3 activation. Taken together, inhibition of CK2 activity appears to be a promising treatment strategy for non-small cell lung cancer and CK2 inhibition results in reduced Stat3 activation. Our data warrant further effort to develop CK2-targeted radiosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011; 2:126-31. [PMID: 21765978 PMCID: PMC3135859 DOI: 10.4331/wjbc.v2.i6.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 02/05/2023] Open
Abstract
The Ikaros gene encodes a zinc finger, DNA-binding protein that regulates gene transcription and chromatin remodeling. Ikaros is a master regulator of hematopoiesis and an established tumor suppressor. Moderate alteration of Ikaros activity (e.g. haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells. This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia. The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation. Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization. As a consequence, the ability of Ikaros to regulate cell cycle progression, chromatin remodeling, target gene expression, and thymocyte differentiation are controlled by CK2. In addition, hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitin-mediated degradation. Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization. Thus, the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor. This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.
Collapse
Affiliation(s)
- Chunhua Song
- Chunhua Song, Zhanjun Li, Sinisa Dovat, Department of Pediatrics, Pennsylvania State University, College of Medicine, Hershey, PA 17033-0850, United States
| | | | | | | | | |
Collapse
|
22
|
Barrett RMA, Colnaghi R, Wheatley SP. Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle 2011; 10:538-48. [PMID: 21252625 DOI: 10.4161/cc.10.3.14758] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study we report that the protein kinase CK2 phosphorylates survivin specifically on threonine 48 (T48) within its BIR domain, and that T48 is critical to both the mitotic and anti-apoptotic roles of survivin. Interestingly, during mitosis T48 mutants localise normally, but are unable to support cell growth when endogenous survivin is removed by siRNA. In addition, while overexpression of survivin normally confers inhibition of TRAIL-mediated apoptosis, this protection is abolished by mutation of T48. Furthermore in interphase cells depletion of endogenous survivin causes redistribution of T48 mutants from the cytoplasm to the nucleus and treatment of cells expressing survivin-GFP with the CK2 inhibitor TBB phenocopies this nuclear redistribution. Finally, we show T48 mutants have increased affinity for borealin, and that this association and cell proliferation can be restored by introduction of a second mutation at T97. To our knowledge these data are the first to identify T48 as a key regulatory site on survivin, and CK2 as a mediator of its mitotic and anti-apoptotic functions.
Collapse
Affiliation(s)
- Rachel M A Barrett
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
23
|
Thiazolidinediones prevent PDGF-BB-induced CREB depletion in pulmonary artery smooth muscle cells by preventing upregulation of casein kinase 2 alpha' catalytic subunit. J Cardiovasc Pharmacol 2010; 55:469-80. [PMID: 20147842 DOI: 10.1097/fjc.0b013e3181d64dbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The transcription factor CREB is diminished in smooth muscle cells (SMCs) in remodeled, hypertensive pulmonary arteries (PAs) in animals exposed to chronic hypoxia. Forced depletion of cyclic adenosine monophosphate response element binding protein (CREB) in PA SMCs stimulates their proliferation and migration in vitro. Platelet-derived growth factor (PDGF) produced in the hypoxic PA wall promotes CREB proteasomal degradation in SMCs via phosphatidylinositol-3-kinase/Akt signaling, which promotes phosphorylation of CREB at 2 casein kinase 2 (CK2) sites. Here we tested whether thiazolidinediones, agents that inhibit hypoxia-induced PA remodeling, attenuate SMC CREB loss. METHODS Depletion of CREB and changes in casein kinase 2 catalytic subunit expression and activity were measured in PA SMC treated with PDGF. PA remodeling and changes in medial PA CREB and casein kinase 2 levels were evaluated in lung sections from rats exposed to hypoxia for 21 days. RESULTS We found that the thiazolidinedione rosiglitazone prevented PA remodeling and SMC CREB loss in rats exposed to chronic hypoxia. Likewise, the thiazolidinedione troglitazone blocked PA SMC proliferation and CREB depletion induced by PDGF in vitro. Thiazolidinediones did not repress Akt activation by hypoxia in vivo or by PDGF in vitro. However, PDGF-induced CK2 alpha' catalytic subunit expression and activity in PA SMCs, and depletion of CK2 alpha' subunit prevented PDGF-stimulated CREB loss. Troglitazone inhibited PDGF-induced CK2 alpha' subunit expression in vitro and rosiglitazone blocked induction of CK2 catalytic subunit expression by hypoxia in PA SMCs in vivo. CONCLUSION We conclude that thiazolidinediones prevent PA remodeling in part by suppressing upregulation of CK2 and loss of CREB in PA SMCs.
Collapse
|
24
|
Zhu D, Hensel J, Hilgraf R, Abbasian M, Pornillos O, Deyanat-Yazdi G, Hua XH, Cox S. Inhibition of protein kinase CK2 expression and activity blocks tumor cell growth. Mol Cell Biochem 2009; 333:159-67. [PMID: 19629644 DOI: 10.1007/s11010-009-0216-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/07/2009] [Indexed: 11/28/2022]
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous serine/threonine kinase. It is a multifunctional and pleiotropic protein kinase implicated in the regulation of cell proliferation, survival, and differentiation. Deregulation of CK2 is observed in a wide variety of tumors. It has been the focus of intensive research efforts to establish the cause-effect relationship between CK2 and neoplastic growth. Here, we further validate the role of CK2 in cancer cell growth using siRNA approach. We also screened a library of more than 200,000 compounds and identified several molecules, which inhibit CK2 with IC(50) < 1 microM. The binding mode of a representative compound with maize CK2 was determined. In addition, the cellular activity of the compounds was demonstrated by their inhibition of phosphorylation of PTEN Ser370 in HCT116 cells. Treatment of a variety of cancer cell lines with the newly identified CK2 inhibitor significantly blocked cell growth with IC(50)s as low as 300 nM.
Collapse
Affiliation(s)
- Dan Zhu
- Celgene Corporation, 4550 Towne Centre Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E. Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci Signal 2009; 2:ra26. [PMID: 19491384 DOI: 10.1126/scisignal.2000305] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Posttranslational modifications of clock proteins are crucial to generating proper circadian rhythms of the correct length and amplitude. Here, we show that the protein kinase CK2 (casein kinase 2) plays a role in regulating the mammalian circadian clock. We found that inhibiting CK2 activity resulted in a decrease in the amplitude and an increase in the period of oscillations in circadian gene expression. CK2 specifically bound and phosphorylated PERIOD2 (PER2) and collaborated with the protein kinase CKIepsilon to promote PER2 degradation. We also identified a CK2 phosphorylation site (serine-53) in PER2, whose phosphorylation played a role in fine-tuning circadian rhythms and regulating PER2 stability but was dispensable for the cooperative effect of CK2 and CKIepsilon. Thus, our study identifies CK2 as a regulatory element of mammalian circadian rhythms and uncovers a role for CK2 in PER2 degradation.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Najda-Bernatowicz A, Łebska M, Orzeszko A, Kopańska K, Krzywińska E, Muszyńska G, Bretner M. Synthesis of new analogs of benzotriazole, benzimidazole and phthalimide--potential inhibitors of human protein kinase CK2. Bioorg Med Chem 2009; 17:1573-8. [PMID: 19168362 DOI: 10.1016/j.bmc.2008.12.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/29/2008] [Accepted: 12/31/2008] [Indexed: 01/13/2023]
Abstract
New derivatives of 4,5,6,7-tetrabromo-1H-1,2,3-benzotriazole (TBBt), 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi), and N-substituted tetrabromophthalimides were synthesized and their effect on the activity of human protein kinase CK2 was examined. The most active were derivatives with N-hydroxypropyl substituents (IC(50) in 0.32-0.54 microM range) whereas derivatives of phthalimide were almost ineffective.
Collapse
|
27
|
Suzuki Y, Cluzeau J, Hara T, Hirasawa A, Tsujimoto G, Oishi S, Ohno H, Fujii N. Structure-activity relationships of pyrazine-based CK2 inhibitors: synthesis and evaluation of 2,6-disubstituted pyrazines and 4,6-disubstituted pyrimidines. Arch Pharm (Weinheim) 2008; 341:554-61. [PMID: 18763715 DOI: 10.1002/ardp.200700269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structurally related to the known CK2 inhibitors, 2,6-disubstituted pyrazine and 4,6-disubstituted pyrimidine derivatives were synthesized and their inhibitory activities toward CK2alpha and CK2alpha' were evaluated. Structure-activity relationship study has revealed that several pyrazine derivatives bearing a (pyrrol-3-yl)acetic acid and a monosubstituted aniline possess potent inhibitory activities.
Collapse
Affiliation(s)
- Yamato Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Loss of PTEN function may account for reduced proliferation pathway sensitivity to LY294002 in human prostate and bladder cancer cells. J Cancer Res Clin Oncol 2008; 135:303-11. [DOI: 10.1007/s00432-008-0465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
|
29
|
Moreno-Romero J, Espunya MC, Platara M, Ariño J, Martínez MC. A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:118-30. [PMID: 18363781 DOI: 10.1111/j.1365-313x.2008.03494.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 is an evolutionary conserved Ser/Thr phosphotransferase composed of two distinct subunits, alpha (catalytic) and beta (regulatory), that combine to form a tetrameric complex. Plant genomes contain multiple genes for each subunit, the expression of which gives rise to different active holoenzymes. In order to study the effects of loss of function of CK2 on plant development, we have undertaken a dominant-negative mutant approach. We generated an inactive catalytic subunit by site-directed mutagenesis of an essential lysine residue. The mutated open reading frame was cloned downstream of an inducible promoter, and stably transformed Arabidopsis thaliana plants and tobacco BY2 cells were isolated. Continuous expression of the CK2 kinase-inactive subunit did not prevent seed germination, but seedlings exhibited a strong phenotype, affecting chloroplast development, cotyledon expansion, and root and shoot growth. Prolonged induction of the transgene was lethal. Moreover, dark-germinated seedlings exhibited an apparent de-etiolated phenotype that was not caused by disruption of the light-signalling pathways. Short-term induction of the CK2 kinase-inactive subunit allowed plant survival, but root growth and lateral root formation were significantly affected. The expression pattern of CYCB1;1::GFP in the root meristems of mutant plants demonstrated an important decrease of mitotic activity, and expression of the CK2 kinase-inactive subunit in stably transformed BY2 cells provoked perturbation of the G1/S and G2 phases of the cell cycle. Our results are consistent with a model in which CK2 plays a key role in cell division and cell expansion, with compelling effects on Arabidopsis development.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Luo H, Li Y, Mu JJ, Zhang J, Tonaka T, Hamamori Y, Jung SY, Wang Y, Qin J. Regulation of intra-S phase checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3. J Biol Chem 2008; 283:19176-83. [PMID: 18442975 DOI: 10.1074/jbc.m802299200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Structure maintenance of chromosome 1 (SMC1) is phosphorylated by ataxia telangiectasia-mutated (ATM) in response to ionizing radiation (IR) to activate intra-S phase checkpoint. A role of CK2 in DNA damage response has been implicated in many previous works, but the molecular mechanism for its activation is not clear. In the present work, we report that SMC3 is phosphorylated at Ser-1067 and Ser-1083 in vivo. Ser-1083 phosphorylation is IR-inducible, depends on ATM and Nijmegen breakage syndrome 1 (NBS1), and is required for intra-S phase checkpoint. Interestingly, Ser-1067 phosphorylation is constitutive and is not induced by IR but also affects intra-S phase checkpoint. Phosphorylation of Ser-1083 is weakened in cells expressing S1067A mutant, suggesting interplay between Ser-1067 and Ser-1083 phosphorylation in DNA damage response. Consistently, small interfering RNA knockdown of CK2 leads to attenuated phosphorylation of Ser-1067 as well as intra-S phase checkpoint defect. Our data provide evidence that phosphorylation of a core cohesin subunit SMC3 by ATM plays an important role in DNA damage response and suggest that a constitutive phosphorylation by CK2 may affect intra-S phase checkpoint by modulating SMC3 phosphorylation by ATM.
Collapse
Affiliation(s)
- Hao Luo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a] [1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorg Med Chem Lett 2008; 18:619-23. [DOI: 10.1016/j.bmcl.2007.11.074] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/18/2007] [Accepted: 11/19/2007] [Indexed: 11/16/2022]
|
32
|
Too much of a good thing: The role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:33-47. [DOI: 10.1016/j.bbapap.2007.08.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
|
33
|
French AC, Luscher B, Litchfield DW. Development of a Stabilized Form of the Regulatory CK2β Subunit That Inhibits Cell Proliferation. J Biol Chem 2007; 282:29667-77. [PMID: 17681943 DOI: 10.1074/jbc.m706457200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of cancers are characterized by elevated expression of CK2 (formerly casein kinase II), which has been implicated as a key component in cell proliferation and transformation. Two lines of evidence, (a) deregulated expression of CK2 and (b) CK2beta ubiquitination and degradation of these in a proteasome-dependent manner prompted further investigation of the regulation of CK2beta protein stability. We demonstrate that mutating six surface-exposed lysine residues to arginine (6KR) to interfere with ubiquitin attachment can stabilize CK2beta. Examination of 6KR expression in cells revealed increased stability over time and increased its steady-state expression level compared with CK2beta. In cells, 6KR was no longer sensitive to proteasome inhibition but maintained an elevated expression level. In our studies, 6KR functioned as a normal CK2 regulatory subunit, because it participated in CK2beta dimerization, associated with catalytic subunits, was autophosphorylated, and formed active, stable CK2 tetramers. The physiological role of CK2beta stabilization was investigated in cell proliferation assays, which showed a significant decrease in proliferation in cells expressing 6KR compared with CK2beta. Overall, our results indicate that a stabilized form of CK2beta can be used to inhibit cell proliferation.
Collapse
Affiliation(s)
- Ashley C French
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
34
|
Nie Z, Perretta C, Erickson P, Margosiak S, Almassy R, Lu J, Averill A, Yager KM, Chu S. Structure-based design, synthesis, and study of pyrazolo[1,5-a][1,3,5]triazine derivatives as potent inhibitors of protein kinase CK2. Bioorg Med Chem Lett 2007; 17:4191-5. [PMID: 17540560 DOI: 10.1016/j.bmcl.2007.05.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/30/2022]
Abstract
The structure-based design, synthesis, and anticancer activity of novel inhibitors of protein kinase CK2 are described. Using pyrazolo[1,5-a][1,3,5]triazine as the core scaffold, a structure-guided series of modifications provided pM inhibitors with microM-level cytotoxic activity in cell-based assays with prostate and colon cancer cell lines.
Collapse
Affiliation(s)
- Zhe Nie
- Department of Medicinal Chemistry, Polaris Pharmaceuticals Inc., San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Assrir N, Filhol O, Galisson F, Lipinski M. HIRIP3 is a nuclear phosphoprotein interacting with and phosphorylated by the serine-threonine kinase CK2. Biol Chem 2007; 388:391-8. [PMID: 17391060 DOI: 10.1515/bc.2007.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The HIRIP3 protein had been identified from its interaction with the HIRA histone chaperone. Experiments using anti-peptide antisera indicated that this 556-aa protein is nuclear throughout the cell cycle and excluded from condensed chromatin during mitosis. Based on its electrophoretic migration and sensitivity to phosphatase treatment, endogenous HIRIP3 was found to be heavily phosphorylated. HIRIP3 can be phosphorylated in vitro by a recombinant form of the serine-threonine kinase CK2. Moreover, HIRIP3 protein was found to co-purify with a CK2 activity. Together, these data prompt us to propose HIRIP3 as a new member of the growing list of CK2 substrates with a possible role in chromatin metabolism.
Collapse
Affiliation(s)
- Nadine Assrir
- Interactions Moléculaires et Cancer, UMR 8126 CNRS, Université Paris-Sud 11, Institut de Cancérologie Gustave-Roussy, F-94805 Villejuif Cedex, France
| | | | | | | |
Collapse
|
36
|
He H, Tan M, Pamarthy D, Wang G, Ahmed K, Sun Y. CK2 phosphorylation of SAG at Thr10 regulates SAG stability, but not its E3 ligase activity. Mol Cell Biochem 2006; 295:179-88. [PMID: 16874460 DOI: 10.1007/s11010-006-9287-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/10/2006] [Indexed: 01/07/2023]
Abstract
Sensitive to Apoptosis Gene (SAG), a RING component of SCF E3 ubiquitin ligase, was shown to be phosphorylated by protein kinase CK2 at the Thr10 residue. It is, however, unknown whether this phosphorylation is stress-responsive or whether the phosphorylation changes its E3 ubiquitin ligase activity. To address these, we made a specific antibody against the phosphor-SAG(Thr10). Transient transfection experiment showed that SAG was phosphorylated at Thr10 which can be significantly inhibited by TBB, a relatively specific inhibitor of protein kinase CK2. To determine whether this SAG phosphorylation is stress-responsive, we defined a chemical-hypoxia condition in which SAG and CK2 were both induced. Under this condition, we failed to detect SAG phosphorylation at Thr10, which was readily detected, however, in the presence of MG132, a proteasome inhibitor, suggesting that the phosphorylated SAG has undergone a rapid degradation. To further define this, we made two SAG mutants, SAG-T10A which abolishes the SAG phosphorylation and SAG-T10E, which mimics the constitutive SAG phosphorylation. The half-life study revealed that indeed, SAG-T10E has a much shorter protein half-life (2 h), as compared to wild-type SAG (10 h). Again, rapid degradation of SAG-T10E in cells can be blocked by MG132. Thus, it appears that CK2-induced SAG phosphorylation at Thr10 regulates its stability through a proteasome-dependent pathway. Immunocytochemistry study showed that SAG as well as its phosphorylation mutants, was mainly localized in nucleus and lightly in cytoplasm. Hypoxia condition did not change their sub-cellular localization. Finally, an in vitro ubiqutination assay showed that SAG mutation at Thr10 did not change its E3 ligase activity when complexed with cullin-1. These studies suggested that CK2 might regulate SAG-SCF E3 ligase activity through modulating SAG's stability, rather than its enzymatic activity directly.
Collapse
Affiliation(s)
- Hongbin He
- Division of Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, 4304 CCGC, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
37
|
Singh NN, Ramji DP. Transforming growth factor-beta-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2. Arterioscler Thromb Vasc Biol 2006; 26:1323-9. [PMID: 16601234 DOI: 10.1161/01.atv.0000220383.19192.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The cytokine transforming growth factor-beta (TGF-beta) and apolipoprotein E (apoE) play potent antiatherogenic roles. Despite such importance, the mechanisms underlying the regulation of apoE expression by TGF-beta have not been characterized and were therefore investigated. METHODS AND RESULTS Using THP-1 cell line as a model system, with key findings confirmed in primary cultures, we show that TGF-beta induces the expression of apoE, and this is prevented by pharmacological inhibitors of c-Jun N-terminal kinase (JNK), p38 kinase, and casein kinase 2 (CK2). In support for an important role for these pathways, TGF-beta activates JNK, p38 kinase, and CK2, and dominant-negative (DN) forms of these proteins inhibit the cytokine-induced apoE expression. TGF-beta also increases the phosphorylation and expression of c-Jun, a downstream target for JNK action and a component of activator protein-1 (AP-1), and DN c-Jun inhibits the induction of apoE expression in response to the cytokine. AP-1 DNA binding was also induced by TGF-beta, and the action of p38 kinase, JNK, and CK2 converged on the activation of c-Jun/AP-1. CONCLUSIONS These studies reveal a novel role for JNK, p38 kinase, CK2, and c-Jun/AP-1 in the TGF-beta-induced expression of apoE.
Collapse
Affiliation(s)
- Nishi N Singh
- School of Biosciences, Cardiff University, United Kingdom
| | | |
Collapse
|
38
|
Llorens F, Duarri A, Sarró E, Roher N, Plana M, Itarte E. The N-terminal domain of the human eIF2beta subunit and the CK2 phosphorylation sites are required for its function. Biochem J 2006; 394:227-36. [PMID: 16225457 PMCID: PMC1386020 DOI: 10.1042/bj20050605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CK2 (protein kinase CK2) is known to phosphorylate eIF2 (eukaryotic translation initiation factor 2) in vitro; however, its implication in this process in living cells has remained to be confirmed. The combined use of chemical inhibitors (emodin and apigenin) of CK2 together with transfection experiments with the wild-type of the K68A kinase-dead mutant form of CK2alpha evidenced the direct involvement of this protein kinase in eIF2beta phosphorylation in cultured HeLa cells. Transfection of HeLa cells with human wild-type eIF2beta or its phosphorylation site mutants showed Ser2 as the main site for constitutive eIF2beta phosphorylation, whereas phosphorylation at Ser67 seems more restricted. In vitro phosphorylation of eIF2beta also pointed to Ser2 as a preferred site for CK2 phosphorylation. Overexpression of the eIF2beta S2/67A mutant slowed down the rate of protein synthesis stimulated by serum, although less markedly than the overexpression of the Delta2-138 N-terminal-truncated form of eIF2beta (eIF2beta-CT). Mutation at Ser2 and Ser67 did not affect eIF2beta integrating into the eIF2 trimer or being able to complex with eIF5 and CK2alpha. The eIF2beta-CT form was also incorporated into the eIF2 trimer but did not bind to eIF5. Overexpression of eIF2beta slightly decreased HeLa cell viability, an effect that was more evident when overexpressing the eIF2beta S2/67A mutant. Cell death was particularly marked when overexpressing the eIF2beta-CT form, being detectable at doses where eIF2beta and eIF2beta S2/67A were ineffective. These results suggest that Ser2 and Ser67 contribute to the important role of the N-terminal region of eIF2beta for its function in mammals.
Collapse
Affiliation(s)
- Franc Llorens
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Ciències, Universitat Autònoma de Barcelona, Edifici Cs, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Lentz MR, Stevens SM, Raynes J, Elkhoury N. A phosphorylation map of the bovine papillomavirus E1 helicase. Virol J 2006; 3:13. [PMID: 16524476 PMCID: PMC1450263 DOI: 10.1186/1743-422x-3-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 03/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Papillomaviruses undergo a complex life cycle requiring regulated DNA replication. The papillomavirus E1 helicase is essential for viral DNA replication and plays a key role in controlling viral genome copy number. The E1 helicase is regulated at least in part by protein phosphorylation, however no systematic approach to phosphate site mapping has been attempted. We have utilized mass spectrometry of purified bovine papillomavirus E1 protein to identify and characterize new sites of phosphorylation. RESULTS Mass spectrometry and in silico sequence analysis were used to identify phosphate sites on the BPV E1 protein and kinases that may recognize these sites. Five new and two previously known phosphorylation sites were identified. A phosphate site map was created and used to develop a general model for the role of phosphorylation in E1 function. CONCLUSION Mass spectrometric analysis identified seven phosphorylated amino acids on the BPV E1 protein. Taken with three previously identified sites, there are at least ten phosphoamino acids on BPV E1. A number of kinases were identified by sequence analysis that could potentially phosphorylate E1 at the identified positions. Several of these kinases have known roles in regulating cell cycle progression. A BPV E1 phosphate map and a discussion of the possible role of phosphorylation in E1 function are presented.
Collapse
Affiliation(s)
- Michael R Lentz
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| | - Stanley M Stevens
- Proteomics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Joshua Raynes
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| | - Nancy Elkhoury
- Department of Biology, University of North Florida, 4567 St. Johns Bluff Rd., S., Jacksonville, FL 32224, USA
| |
Collapse
|
40
|
Zien P, Duncan JS, Skierski J, Bretner M, Litchfield DW, Shugar D. Tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) as selective inhibitors of protein kinase CK2: evaluation of their effects on cells and different molecular forms of human CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:271-80. [PMID: 16203192 DOI: 10.1016/j.bbapap.2005.07.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 01/19/2023]
Abstract
The development of selective cell-permeable inhibitors of protein kinase CK2 has represented an important advance in the field. However, it is important to not overlook the existence of discrete molecular forms of CK2 that arise from the presence of distinct isozymic forms, and the existence of the catalytic CK2 subunits as free subunits and in complexes with the regulatory CK2beta subunits and, possibly, other proteins. This review examines two recently developed, and presently widely applied, CK2 inhibitors, 4,5,6,7-tetrabromobenzotriazole (TBBt) and the related 4,5,6,7-tetrabromobenzimidazole (TBBz), the latter of which was previously shown to discriminate between different molecular forms of CK2 in yeast. We have shown, by spectrophotometric titration, that TBBt, with a pK(a) approximately 5, exists in solution at physiological pH almost exclusively (>99%) as the monoanion; whereas TBBz, with a pKa approximately 9, is predominantly (>95%) in the neutral form, both of obvious relevance to their modes of binding. In vitro, TBBt inhibits different forms of CK2 with Ki values ranging from 80 to 210 nM. TBBz better discriminates between CK2 forms, with Ki values ranging from 70 to 510 nM. Despite their general similar in vitro activities, TBBz is more effective than TBBt in inducing apoptosis and, to a lesser degree, necrosis, in transformed human cell lines. Finally, development of shRNA strategies for the selective knockdown of the CK2alpha and CK2alpha' isoforms reinforces the foregoing results, indicating that inhibition of CK2 leads to attenuation of proliferation.
Collapse
Affiliation(s)
- Piotr Zien
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
41
|
Yamada M, Katsuma S, Adachi T, Hirasawa A, Shiojima S, Kadowaki T, Okuno Y, Koshimizu TA, Fujii S, Sekiya Y, Miyamoto Y, Tamura M, Yumura W, Nihei H, Kobayashi M, Tsujimoto G. Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proc Natl Acad Sci U S A 2005; 102:7736-41. [PMID: 15897466 PMCID: PMC1140418 DOI: 10.1073/pnas.0409818102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glomerulonephritis (GN) is a progressive inflammation that may be caused by a variety of underlying disorders. It is the primary cause of chronic renal failure and end-stage renal disease, which require dialysis and transplantation worldwide. Immunosuppressive therapy has been used to treat GN clinically, but this treatment has had insufficient therapeutic effects. Here, we show that protein kinase CK2 is a key molecule in the progression of GN. cDNA microarray analysis identified CK2alpha, the catalytic subunit of CK2, as a GN-related, differentially expressed gene. Overexpression of CK2alpha was noted in the proliferative glomerular lesions in rat GN models and in renal biopsy specimens from lupus nephritis or IgA nephropathy patients. Administration of either antisense oligodeoxynucleotide against CK2alpha or low molecular weight CK2-specific inhibitors effectively prevented the progression of renal pathology in the rat GN models. The resolution of GN by CK2 inhibition may result from its suppression of extracellular signal-regulated kinase-mediated cell proliferation, and its suppression of inflammatory and fibrotic processes that are enhanced in GN. Our results show that CK2 plays a critical role in the progression of immunogenic renal injury, and therefore, CK2 is a potential target for GN therapy.
Collapse
Affiliation(s)
- Masateru Yamada
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 1111 Tebiro Kamakura, Kanagawa 248-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pirrello O, Machev N, Schimdt F, Terriou P, Ménézo Y, Viville S. Search for mutations involved in human globozoospermia*. Hum Reprod 2005; 20:1314-8. [PMID: 15746197 DOI: 10.1093/humrep/deh799] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Globozoospermia is a severe form of teratozoospermia characterized by round-headed sperm with an absence of acrosomes. Family cases of globozoopermia suggest that this pathology has genetic origins, but the mode of inheritance remains unknown. So far, no responsible genes have been identified. Recently, a mouse lacking the casein kinase IIalpha' (encoded by the Csnk2a2 gene) was described. This mutant mouse presents a single phenotype reminiscent of that seen in human globozoospermia. Interestingly, the fission yeast orthologue (orb5) exhibits, when mutated, a spherical phenotype. Casein kinase II is a heterotetramer, composed of two catalytic subunits alpha or alpha' and two regulatory beta subunits (encoded by the Csnk2b gene). METHODS AND RESULTS Based on the evolution conservation, phenotypes observed in mouse and yeast mutant and the structure of casein kinase II, we analysed Csnk2a2 and Csnk2b genes in six patients with globozoospermia and 10 fertile controls. Genomic DNA was extracted from peripheral blood and PCR was performed to amplify Csnk2a2 and Csnk2b genes before sequencing. CONCLUSION No mutation was identified among these six patients. Further work is needed, with a larger patient data set, to identify putative genes involved in this form of male infertility.
Collapse
Affiliation(s)
- Olivier Pirrello
- Service de Biologie de la Reproduction Service de Gynécologie Obstétrique - SIHCUS-CMCO, CHU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Bronner C, Trotzier MA, Filhol O, Cochet C, Rochette-Egly C, Schöller-Guinard M, Klein JP, Mousli M. The Antiapoptotic Protein ICBP90 Is a Target for Protein Kinase 2. Ann N Y Acad Sci 2004; 1030:355-60. [PMID: 15659817 DOI: 10.1196/annals.1329.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein kinase 2 (casein kinase 2 [CK2]) is a protein serine/threonine kinase involved in cell proliferation with an expression that is dysregulated in tumors. ICBP90, a transcription factor exhibiting antiapoptotic properties, has several putative CK2 phosphorylation sites. The aim of the present study was to investigate whether ICBP90 could behave as a CK2 substrate. We observed that ICBP90 was more efficiently phosphorylated by the free CK2a subunit than by the heterotetrameric CK2 (alpha(2), beta(2)). Our results suggest that CK2 is an important regulator of the transcriptional activity of ICBP90 and therefore of the antiapoptotic properties of ICBP90. We propose that the "ICBP90 family" members may be substrates for CK2.
Collapse
Affiliation(s)
- Christian Bronner
- Institute National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S392, Faculté de Pharmacie, B.P. 60024, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mishra S, Reichert A, Cunnick J, Senadheera D, Hemmeryckx B, Heisterkamp N, Groffen J. Protein kinase CKIIalpha interacts with the Bcr moiety of Bcr/Abl and mediates proliferation of Bcr/Abl-expressing cells. Oncogene 2004; 22:8255-62. [PMID: 14614449 DOI: 10.1038/sj.onc.1207156] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Bcr protein was originally identified because of its fusion to Abl as a consequence of the Philadelphia chromosome translocation found in chronic myelogenous and acute lymphoblastic leukemias. The Bcr moiety is essential for the transforming activity of the Bcr/Abl oncogene. In search of physiologically relevant Bcr and Bcr/Abl-interacting proteins, we performed an interaction screen in yeast using the entire Bcr protein as bait. We here report that the alpha catalytic subunit of protein kinase CKII strongly and specifically forms a complex with Bcr in yeast in mouse lysates. The region in Bcr responsible for CKIIalpha binding was localized to residues 242-413. CKIIalpha was previously shown to be involved in leukemogenesis and tumorigenesis using different experimental approaches including mouse models. Inhibition of Bcr/Abl P190 in lymphoma cells from Bcr/Abl transgenic mice using imatinib reduced CKIIalpha activity. A highly selective inhibitor of CKIIalpha, 4,5,6,7-tetrabromo-2-benzotriazole, inhibited the growth of murine lymphoid cells with induced P210 Bcr/Abl expression and of P190 lymphoma cells. Our results demonstrate that CKIIalpha plays an important role in the proliferation of Bcr/Abl expressing cells, and suggests that inhibitors of CKIIalpha may have therapeutic potential in the treatment of Bcr/Abl-positive leukemia patients.
Collapse
Affiliation(s)
- Suparna Mishra
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, Ms#54, Childrens Hospital of Los Angeles Research Institute 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Escalier D, Silvius D, Xu X. Spermatogenesis of mice lacking CK2alpha': failure of germ cell survival and characteristic modifications of the spermatid nucleus. Mol Reprod Dev 2003; 66:190-201. [PMID: 12950107 DOI: 10.1002/mrd.10346] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Csnk2a2 encodes the CK2alpha'catalytic subunit of CK2 that is predominantly expressed in testis. Male mice in which Csnk2a2 has been disrupted were infertile and displayed oligozoospermia with an abnormal shape of the spermatid nucleus. In this study, Csnk2a2 null testes revealed extensive germ cell degenerative processes at all stages of spermatogenesis, including the first spermatogenesis wave. Nuclear envelope (NE) protrusions with loss of nuclear pores, swelling of the outer membrane, and disruption of the inner membrane were observed in cells ranging from spermatogonia to early spermatids. Most early round spermatids were depleted, and DNA-specific fluorescent dyes showed a large chromatin-free nuclear domain near the chromocenter. Spermatids that were not eliminated retained NE defects that could explain the acrosomal and nuclear abnormalities of Csnk2a2 null spermatozoa. Data suggest that CK2alpha' deficiency could impair the phosphorylation of nuclear proteins of male germ cells leading to a particular cell-death pathway characterized by NE protrusions and an unusual pattern of chromatin modifications in spermatids.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5, Paris, France.
| | | | | |
Collapse
|
46
|
Donella-Deana A, Cesaro L, Sarno S, Ruzzene M, Brunati AM, Marin O, Vilk G, Doherty-Kirby A, Lajoie G, Litchfield DW, Pinna LA. Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochem J 2003; 372:841-9. [PMID: 12628006 PMCID: PMC1223437 DOI: 10.1042/bj20021905] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 02/19/2003] [Accepted: 03/11/2003] [Indexed: 11/17/2022]
Abstract
Casein kinase-2 (CK2) is a pleiotropic and constitutively active serine/threonine protein kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits, whose regulation is still not well understood. In the present study, we show that the catalytic subunits of human CK2, but not the regulatory beta-subunits, are readily phosphorylated by the Src family protein tyrosine kinases Lyn and c-Fgr to a stoichiometry approaching 2 mol phosphotyrosine/mol CK2alpha with a concomitant 3-fold increase in catalytic activity. We also show that endogenous CK2alpha becomes tyrosine-phosphorylated in pervanadate-treated Jurkat cells. Both tyrosine phosphorylation and stimulation of activity are suppressed by the specific Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4- d ]pyrimidine. By comparison, mutations giving rise to inactive forms of CK2alpha do not abrogate and, in some cases, stimulate Lyn and c-Fgr-dependent tyrosine phosphorylation of CK2. Several radiolabelled phosphopeptides could be resolved by HPLC, following tryptic digestion of CK2alpha that had been phosphoradiolabelled by incubation with [(32)P]ATP and c-Fgr. The most prominent phosphopeptide co-migrates with a synthetic peptide encompassing the 248-268 sequence, phosphorylated previously by c-Fgr at Tyr(255) in vitro. The identification of Tyr(255) as a phosphorylated residue was also supported by MS sequencing of both the phosphorylated and non-phosphorylated 248-268 tryptic fragments from CK2alpha and by on-target phosphatase treatment. A CK2alpha mutant in which Tyr(255) was replaced by phenylalanine proved less susceptible to phosphorylation and refractory to stimulation by c-Fgr.
Collapse
Affiliation(s)
- Arianna Donella-Deana
- Dipartimento di Chimica Biologica and CRIBI, Centro Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Protein kinase CK2 (formerly known as casein kinase 2) was among the first protein kinases to be identified and characterized. Surprisingly, in spite of intense efforts, the regulation and cellular functions of CK2 remain obscure. However, recent data on its molecular structure, its signal-mediated intracellular dynamic localization and its unexpected function in cell survival have raised new interest in this enzyme. These studies reveal unique features of CK2 and highlight its importance in the transduction of survival signals.
Collapse
Affiliation(s)
- Thierry Buchou
- Inserm EMI 104, Département Réponse et Dynamique Cellulaire, CEA Grenoble, 38054 Grenoble Cedex 9, France
| | | |
Collapse
|
48
|
Ishihara K, Yamagishi N, Hatayama T. Protein kinase CK2 phosphorylates Hsp105 alpha at Ser509 and modulates its function. Biochem J 2003; 371:917-25. [PMID: 12558502 PMCID: PMC1223342 DOI: 10.1042/bj20021331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Revised: 11/22/2002] [Accepted: 01/31/2003] [Indexed: 11/17/2022]
Abstract
The 105 kDa heat-shock protein (Hsp) Hsp105 alpha is a mammalian stress protein that belongs to the HSP105/HSP110 family. We have shown previously that Hsp105 alpha exists as non-phosphorylated and phosphorylated forms in vivo, and is phosphorylated by protein kinase CK2 (CK2) in vitro. In this study, to elucidate the role of phosphorylation of Hsp105 alpha, we first analysed the site of phosphorylation of Hsp105 alpha by CK2. Peptide mapping analysis of Hsp105 alpha phosphorylated by CK2 and in vitro phosphorylation experiments using various deletion and substitution mutants of Hsp105 alpha revealed that Hsp105 alpha is phosphorylated at Ser(509) in the beta-sheet domain. Furthermore, Ser(509) in Hsp105 alpha was also phosphorylated in mammalian COS-7 cells, although other sites were phosphorylated as well. Next, we examined the effects of phosphorylation of Hsp105 alpha on its functions using CK2-phosphorylated Hsp105 alpha. Interestingly, Hsp105 alpha suppressed 70 kDa heat-shock cognate protein (Hsc70)-mediated protein folding, whereas the phosphorylation of Hsp105 alpha at Ser(509) abolished the inhibitory activity of Hsp105 alpha in vitro. In accordance with these findings, wild-type Hsp105 alpha, which was thought to be phosphorylated in vivo, had no effect on Hsp70-mediated refolding of heat-denatured luciferase, whereas a non-phosphorylatable mutant of Hsp105 alpha suppressed the Hsp70-mediated refolding of heat-denatured luciferase in mammalian cells. Thus it was suggested that CK2 phosphorylates Hsp105 alpha at Ser(509) and modulates the function of Hsp105 alpha. The regulation of Hsp105 alpha function by phosphorylation may play an important role in a variety of cellular events.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | |
Collapse
|
49
|
Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369:1-15. [PMID: 12396231 PMCID: PMC1223072 DOI: 10.1042/bj20021469] [Citation(s) in RCA: 976] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Revised: 10/21/2002] [Accepted: 10/23/2002] [Indexed: 01/07/2023]
Abstract
Protein kinase CK2 ('casein kinase II') has traditionally been classified as a messenger-independent protein serine/threonine kinase that is typically found in tetrameric complexes consisting of two catalytic (alpha and/or alpha') subunits and two regulatory beta subunits. Accumulated biochemical and genetic evidence indicates that CK2 has a vast array of candidate physiological targets and participates in a complex series of cellular functions, including the maintenance of cell viability. This review summarizes current knowledge of the structural and enzymic features of CK2, and discusses advances that challenge traditional views of this enzyme. For example, the recent demonstrations that individual CK2 subunits exist outside tetrameric complexes and that CK2 displays dual-specificity kinase activity raises new prospects for the precise elucidation of its regulation and cellular functions. This review also discusses a number of the mechanisms that contribute to the regulation of CK2 in cells, and will highlight emerging insights into the role of CK2 in cellular decisions of life and death. In this latter respect, recent evidence suggests that CK2 can exert an anti-apoptotic role by protecting regulatory proteins from caspase-mediated degradation. The mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action. Furthermore, this anti-apoptotic function of CK2 may contribute to its ability to participate in transformation and tumorigenesis.
Collapse
Affiliation(s)
- David W Litchfield
- Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
50
|
Miro FA, Llorens F, Roher N, Plana M, Gómez N, Itarte E. Persistent nuclear accumulation of protein kinase CK2 during the G1-phase of the cell cycle does not depend on the ERK1/2 pathway but requires active protein synthesis. Arch Biochem Biophys 2002; 406:165-72. [PMID: 12361704 DOI: 10.1016/s0003-9861(02)00461-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein kinase CK2 and phosphorylated ERK1/2 accumulated in nucleus after serum stimulation of quiescent HepG2 cells. Nonetheless, phospho-ERK1/2 accumulated mainly in the nuclease-extracted fraction (NE) whereas the increases in nuclear CK2 (either CK2alpha or CK2beta) occurred initially in the nuclease-resistant fraction (NR). Transient decreases in CK2 were observed in cytoplasm and NE in the first 3h but thereafter they either reverted (cytoplasm) or increased above the control (NE). CK2 levels in both NE and NR were high in cells arrested at G1/S. Maximal nuclear accumulation of CK2 was blocked by cycloheximide but little affected by PD98059, SB203580 or apigenin, all of which affected nuclear phopho-ERK1/2. Thus, nuclear accumulation of CK2 during G1 phase is independent of ERK1/2 pathway. Although this process may initially relay on intracellular redistribution of the preexisting enzyme, active protein synthesis is required to attain maximal nuclear CK2 levels.
Collapse
Affiliation(s)
- Francesc A Miro
- Departament de Bioquímica i Biologia Molecular, Unitats de Bioquímica de Ciències i de Veterinària, Universitat Autònoma de Barcelona, Campus de Bellaterra, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|