1
|
Jiang H, Zhang W, Xu X, Yu X, Ji S. Decoding the genetic puzzle: Mutations in key driver genes of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189305. [PMID: 40158667 DOI: 10.1016/j.bbcan.2025.189305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Although pancreatic neuroendocrine tumors (PanNETs) are less common than other pancreatic tumors, they show significant differences in clinical behavior, genetics, and treatment responses. The understanding of the molecular pathways of PanNETs has gradually improved with advances in sequencing technology. Mutations in MEN1 (the most frequently varied gene) may result in the deletion of the tumor suppressor menin, affecting gene regulation, DNA repair, and chromatin modification. Changes in ATRX and DAXX involve chromatin remodeling, telomere stability and are associated with the alternative lengthening of telomeres (ALT) pathway and aggressive tumors. VHL mutations emphasize the roles of hypoxia and angiogenesis. Mutations in PTEN, TSC1/TSC2, and AKT1-3 often disrupt the mTOR pathway, complicating the genetic landscape of PanNETs. Understanding these genetic alterations and their impact on the PI3K/AKT/mTOR axis help to investigate new targeted therapies, which in turn can improve patient prognosis. This review aims to clarify PanNET pathogenesis through key mutations and their clinical relevance.
Collapse
Affiliation(s)
- Huanchang Jiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Brown MR, Soto-Feliciano YM. Menin: from molecular insights to clinical impact. Epigenomics 2025:1-17. [PMID: 40152985 DOI: 10.1080/17501911.2025.2485019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Menin, the protein product of the MEN1 gene, is essential for development and has been implicated in multiple different cancer types. These include leukemias and several different solid tumors, including neuroendocrine tumors. Menin interacts with many different protein partners and genomic loci in a context-dependent manner, implicating it in numerous cellular processes. The role of Menin varies across tumor types as well, acting as a tumor suppressor in some tissues and an oncogenic co-factor in others. Given the role of Menin in cancer, and particularly its oncogenic role in acute myeloid leukemia, the development of Menin inhibitors has been an expanding field over the past 10-15 years. Many inhibitors have been in clinical trials and one has recently received approval from the Food and Drug Administration (FDA). In this review, we explore the role of Menin in multiple cancer types, the development of Menin inhibitors and their clinical applications and what the focus of the field should be in the next 5-10 years to expand the use and efficacy of these drugs.
Collapse
Affiliation(s)
- Margaret R Brown
- Department is Biology, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yadira M Soto-Feliciano
- Department is Biology, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
3
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Xu J, Lou X, Wang F, Zhang W, Xu X, Ye Z, Zhuo Q, Wang Y, Jing D, Fan G, Chen X, Zhang Y, Zhou C, Chen J, Qin Y, Yu X, Ji S. MEN1 Deficiency-Driven Activation of the β-Catenin-MGMT Axis Promotes Pancreatic Neuroendocrine Tumor Growth and Confers Temozolomide Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308417. [PMID: 39041891 PMCID: PMC11425246 DOI: 10.1002/advs.202308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the guanine O6 position (O6-MG) and repairs DNA damage. High MGMT expression results in poor response to temozolomide (TMZ). However, the biological importance of MGMT and the mechanism underlying its high expression in pancreatic neuroendocrine tumors (PanNETs) remain elusive. Here, it is found that MGMT expression is highly elevated in PanNET tissues compared with paired normal tissues and negatively associated with progression-free survival (PFS) time in patients with PanNETs. Knocking out MGMT inhibits cancer cell growth in vitro and in vivo. Ectopic MEN1 expression suppresses MGMT transcription in a manner that depends on β-Catenin nuclear export and degradation. The Leucine 267 residue of MEN1 is crucial for regulating β-Catenin-MGMT axis activation and chemosensitivity to TMZ. Interference with β-Catenin re-sensitizes tumor cells to TMZ and significantly reduces the cytotoxic effects of high-dose TMZ treatment, and MGMT overexpression counteracts the effects of β-Catenin deficiency. This study reveals the biological importance of MGMT and a new mechanism by which MEN1 deficiency regulates its expression, thus providing a potential combinational strategy for treating patients with TMZ-resistant PanNETs.
Collapse
|
5
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
6
|
Kavazis C, Romanidis K, Pitiakoudis M, Kesisoglou I, Laskou S, Sapalidis K. The role of prophylactic parathyroidectomy during thyroidectomy for MTC in patients with MEN2A syndrome. Folia Med (Plovdiv) 2023; 65:720-727. [PMID: 38351753 DOI: 10.3897/folmed.65.e86749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 02/16/2024] Open
Abstract
AIM To define the role of prophylactic parathyroidectomy in the surgical treatment of medullary thyroid carcinoma (MTC) in multiple endocrine neoplasia type IIa (MEN2A) syndrome through a literature review.
Collapse
Affiliation(s)
- Christos Kavazis
- General University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | | | | | | |
Collapse
|
7
|
Huang X, Fu J, Zhang Q, Zhao J, Yao Z, Xia Q, Tang H, Xu A, He A, Liang S, Lu S, Li Y. Integrated treatment guided by RNA-seq-based endometrial receptivity assessment for infertility complicated by MEN1. Front Endocrinol (Lausanne) 2023; 14:1224574. [PMID: 37929040 PMCID: PMC10623411 DOI: 10.3389/fendo.2023.1224574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background Preimplantation genetic testing (PGT) serves as a tool to avoid genetic disorders in patients with known genetic conditions. However, once a selected embryo is transferred, implantation success is attained independent of embryo quality. Using PGT alone is unable to tackle implantation failure caused by endometrial receptivity (ER) abnormalities in these patients. Methods We validated our newly developed RNA-seq-based ER test (rsERT) in a retrospective cohort study including 511 PGT cycles and reported experience in treating an infertile female patient complicated by multiple endocrine neoplasia type 1 (MEN1). Results Significant improvement in the clinical pregnancy rate was found in the performed personalized embryo transfer (pET) group (CR, 69.7%; P = 0.035). In the rare MEN1 case, pET was done according to the prediction of the optimal time of window of implantation after unaffected blastocysts were obtained by PGT-M, which ultimately led to a healthy live birth. However, none of the mRNA variants identified in the patient showed a strong association with the MEN1 gene. Conclusions Applying the new rsERT along with PGT improved ART outcomes and brought awareness of the importance of the ER examination in MEN1 infertile female patients. MEN1-induced endocrine disorder rather than MEN1 mutation contributes to the ER abnormality. Trial Registration Reproductive Medicine Ethics Committee of Xiangya Hospital Registry No.: 2022010.
Collapse
Affiliation(s)
- Xi Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Jing Fu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Zhongyuan Yao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Qiuping Xia
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Hongying Tang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Aizhuang Xu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| | - Aihua He
- Department of Reproductive Medicine Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaolin Liang
- National Comprehensive Utilization of Science and Technology Information Resources and Public Service Center, Scientific and Technical Information (STI)-Zhilian Research Institute for Innovation and Digital Health, Beijing, China
- ”Mobile Health” Ministry of Education-China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha, China
- Institute for Six-sector Economy, Fudan University, Shanghai, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics Company, Ltd., Suzhou, Jiangsu, China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Women’s Reproductive Health in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
8
|
Liu T, Li R, Sun L, Xu Z, Wang S, Zhou J, Wu X, Shi K. Menin orchestrates hepatic glucose and fatty acid uptake via deploying the cellular translocation of SIRT1 and PPARγ. Cell Biosci 2023; 13:175. [PMID: 37740216 PMCID: PMC10517496 DOI: 10.1186/s13578-023-01119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Menin is a scaffold protein encoded by the Men1 gene, which interacts with various transcriptional proteins to activate or repress cellular processes and is a key mediator in multiple organs. Both liver-specific and hepatocyte-specific Menin deficiency promotes high-fat diet-induced liver steatosis in mice, as well as insulin resistance and type 2 diabetic phenotype. The potential link between Menin and hepatic metabolism homeostasis may provide new insights into the mechanism of fatty liver disease. RESULTS Disturbance of hepatic Menin expression impacts metabolic pathways associated with non-alcoholic fatty liver disease (NAFLD), including the FoxO signaling pathway, which is similar to that observed in both oleic acid-induced fatty hepatocytes model and biopsied fatty liver tissues, but with elevated hepatic Menin expression and inhibited FABP1. Higher levels of Menin facilitate glucose uptake while restraining fatty acid uptake. Menin targets the expression of FABP3/4/5 and also CD36 or GK, PCK by binding to their promoter regions, while recruiting and deploying the cellular localization of PPARγ and SIRT1 in the nucleus and cytoplasm. Accordingly, Menin binds to PPARγ and/or FoxO1 in hepatocytes, and orchestrates hepatic glucose and fatty acid uptake by recruiting SIRT1. CONCLUSION Menin plays an orchestration role as a transcriptional activator and/or repressor to target downstream gene expression levels involved in hepatic energy uptake by interacting with the cellular energy sensor SIRT1, PPARγ, and/or FoxO1 and deploying their translocations between the cytoplasm and nucleus, thereby maintaining metabolic homeostasis. These findings provide more evidence suggesting Menin could be targeted for the treatment of hepatic steatosis, NAFLD or metabolic dysfunction-associated fatty liver disease (MAFLD), and even other hepatic diseases.
Collapse
Affiliation(s)
- Tingjun Liu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Ranran Li
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Lili Sun
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Zhongjin Xu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Shengxuan Wang
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Jingxuan Zhou
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Xuanning Wu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Kerong Shi
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China.
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Duan S, Sheriff S, Elvis-Offiah UB, Witten BL, Sawyer TW, Sundaresan S, Cierpicki T, Grembecka J, Merchant JL. Clinically Defined Mutations in MEN1 Alter Its Tumor-suppressive Function Through Increased Menin Turnover. CANCER RESEARCH COMMUNICATIONS 2023; 3:1318-1334. [PMID: 37492626 PMCID: PMC10364643 DOI: 10.1158/2767-9764.crc-22-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Loss of the tumor suppressor protein menin is a critical event underlying the formation of neuroendocrine tumors (NET) in hormone-expressing tissues including gastrinomas. While aberrant expression of menin impairs its tumor suppression, few studies explore the structure-function relationship of clinical multiple endocrine neoplasia, type 1 (MEN1) mutations in the absence of a complete LOH at both loci. Here, we determined whether clinical MEN1 mutations render nuclear menin unstable and lead to its functional inactivation. We studied the structural and functional implications of two clinical MEN1 mutations (R516fs, E235K) and a third variant (A541T) recently identified in 10 patients with gastroenteropancreatic (GEP)-NETs. We evaluated the subcellular localization and half-lives of the mutants and variant in Men1-null mouse embryo fibroblast cells and in hormone-expressing human gastric adenocarcinoma and NET cell lines. Loss of menin function was assessed by cell proliferation and gastrin gene expression assays. Finally, we evaluated the effect of the small-molecule compound MI-503 on stabilizing nuclear menin expression and function in vitro and in a previously reported mouse model of gastric NET development. Both the R516fs and E235K mutants exhibited severe defects in total and subcellular expression of menin, and this was consistent with reduced half-lives of these mutants. Mutated menin proteins exhibited loss of function in suppressing tumor cell proliferation and gastrin expression. Treatment with MI-503 rescued nuclear menin expression and attenuated hypergastrinemia and gastric hyperplasia in NET-bearing mice. Clinically defined MEN1 mutations and a germline variant confer pathogenicity by destabilizing nuclear menin expression. Significance We examined the function of somatic and germline mutations and a variant of MEN1 sequenced from gastroenteropancreatic NETs. We report that these mutations and variant promote tumor cell growth and gastrin expression by rendering menin protein unstable and prone to increased degradation. We demonstrate that the menin-MLL (mixed lineage leukemia) inhibitor MI-503 restores menin protein expression and function in vitro and in vivo, suggesting a potential novel therapeutic approach to target MEN1 GEP-NETs.
Collapse
Affiliation(s)
- Suzann Duan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sulaiman Sheriff
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Uloma B. Elvis-Offiah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Brandon L. Witten
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Travis W. Sawyer
- Department of Optical Sciences, University of Arizona Wyant College of Optical Sciences, Tucson, Arizona
| | - Sinju Sundaresan
- Department of Physiology, Midwestern University, Downers Grove, Illinois
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
10
|
Kaur G, Prajapat M, Singh H, Sarma P, Bhadada SK, Shekhar N, Sharma S, Sinha S, Kumar S, Prakash A, Medhi B. Investigating the novel-binding site of RPA2 on Menin and predicting the effect of point mutation of Menin through protein-protein interactions. Sci Rep 2023; 13:9337. [PMID: 37291166 PMCID: PMC10250348 DOI: 10.1038/s41598-023-35599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Protein-protein interactions (PPIs) play a critical role in all biological processes. Menin is tumor suppressor protein, mutated in multiple endocrine neoplasia type 1 syndrome and has been shown to interact with multiple transcription factors including (RPA2) subunit of replication protein A (RPA). RPA2, heterotrimeric protein required for DNA repair, recombination and replication. However, it's still remains unclear the specific amino acid residues that have been involved in Menin-RPA2 interaction. Thus, accurately predicting the specific amino acid involved in interaction and effects of MEN1 mutations on biological systems is of great interests. The experimental approaches for identifying amino acids in menin-RPA2 interactions are expensive, time-consuming, and challenging. This study leverages computational tools, free energy decomposition and configurational entropy scheme to annotate the menin-RPA2 interaction and effect on menin point mutation, thereby proposing a viable model of menin-RPA2 interaction. The menin-RPA2 interaction pattern was calculated on the basis of different 3D structures of menin and RPA2 complexes, constructed using homology modeling and docking strategy, generating three best-fit models: Model 8 (- 74.89 kJ/mol), Model 28 (- 92.04 kJ/mol) and Model 9 (- 100.4 kJ/mol). The molecular dynamic (MD) was performed for 200 ns and binding free energies and energy decomposition analysis were calculated using Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) in GROMACS. From binding free energy change, model 8 of Menin-RPA2 exhibited most negative binding energy of - 205.624 kJ/mol, followed by model 28 of Menin-RPA2 with - 177.382 kJ/mol. After S606F point mutation in Menin, increase of BFE (ΔGbind) by - 34.09 kJ/mol in Model 8 of mutant Menin-RPA2 occurs. Interestingly, we found a significant reduction of BFE (ΔGbind) and configurational entropy by - 97.54 kJ/mol and - 2618 kJ/mol in mutant model 28 as compared the o wild type. Collectively, this is the first study to highlight the configurational entropy of protein-protein interactions thereby strengthening the prediction of two significant important interaction sites in menin for the binding of RPA2. These predicted sites could be vulnerable for structural alternation in terms of binding free energy and configurational entropy after missense mutation in menin.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, AIIMS, Guwahati, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Saurabh Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Shweta Sinha
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Research Block B, 4th Floor, Lab No 4044, Chandigarh, 160012, India.
| |
Collapse
|
11
|
Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, Chan KL, Bell CC, Gilan O, Chan YC, Popp S, Gough DJ, Eckersley-Maslin MA, Dawson SJ, Lehner PJ, Sutherland KD, Ernst P, McGeehan GM, Lam EYN, Burr ML, Dawson MA. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat Cell Biol 2023; 25:258-272. [PMID: 36635503 PMCID: PMC7614190 DOI: 10.1038/s41556-022-01056-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2022] [Indexed: 01/14/2023]
Abstract
Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.
Collapse
Affiliation(s)
- Christina E Sparbier
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Juliana Gomez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nishi Kumari
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ali Motazedian
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Popp
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Melanie A Eckersley-Maslin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Ernst
- Section of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
- Department of Anatomical Pathology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
Crabtree JS. Epigenetic Regulation in Gastroenteropancreatic Neuroendocrine Tumors. Front Oncol 2022; 12:901435. [PMID: 35747820 PMCID: PMC9209739 DOI: 10.3389/fonc.2022.901435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms are a rare, diverse group of neuroendocrine tumors that form in the pancreatic and gastrointestinal tract, and often present with side effects due to hormone hypersecretion. The pathogenesis of these tumors is known to be linked to several genetic disorders, but sporadic tumors occur due to dysregulation of additional genes that regulate proliferation and metastasis, but also the epigenome. Epigenetic regulation in these tumors includes DNA methylation, chromatin remodeling and regulation by noncoding RNAs. Several large studies demonstrate the identification of epigenetic signatures that may serve as biomarkers, and others identify innovative, epigenetics-based targets that utilize both pharmacological and theranostic approaches towards the development of new treatment approaches.
Collapse
|
13
|
Gorbacheva A, Eremkina A, Goliusova D, Krupinova J, Mokrysheva N. The role of menin in bone pathology. Endocr Connect 2022; 11:EC-21-0494.R2. [PMID: 35148273 PMCID: PMC8942318 DOI: 10.1530/ec-21-0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.
Collapse
Affiliation(s)
- Anna Gorbacheva
- Endocrinology Research Center, Moscow, Russian Federation
- Correspondence should be addressed to A Gorbacheva:
| | - Anna Eremkina
- Endocrinology Research Center, Moscow, Russian Federation
| | | | | | | |
Collapse
|
14
|
Hassan A, Khalaily N, Kilav-Levin R, Nechama M, Volovelsky O, Silver J, Naveh-Many T. Molecular Mechanisms of Parathyroid Disorders in Chronic Kidney Disease. Metabolites 2022; 12:metabo12020111. [PMID: 35208186 PMCID: PMC8878033 DOI: 10.3390/metabo12020111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that induces morbidity and mortality in patients. How CKD stimulates the parathyroid to increase parathyroid hormone (PTH) secretion, gene expression and cell proliferation remains an open question. In experimental SHP, the increased PTH gene expression is post-transcriptional and mediated by PTH mRNA–protein interactions that promote PTH mRNA stability. These interactions are orchestrated by the isomerase Pin1. Pin1 participates in conformational change-based regulation of target proteins, including mRNA-binding proteins. In SHP, Pin1 isomerase activity is decreased, and thus, the Pin1 target and PTH mRNA destabilizing protein KSRP fails to bind PTH mRNA, increasing PTH mRNA stability and levels. An additional level of post-transcriptional regulation is mediated by microRNA (miRNA). Mice with parathyroid-specific knockout of Dicer, which facilitates the final step in miRNA maturation, lack parathyroid miRNAs but have normal PTH and calcium levels. Surprisingly, these mice fail to increase serum PTH in response to hypocalcemia or uremia, indicating a role for miRNAs in parathyroid stimulation. SHP often leads to parathyroid hyperplasia. Reduced expressions of parathyroid regulating receptors, activation of transforming growth factor α-epidermal growth factor receptor, cyclooxygenase 2-prostaglandin E2 and mTOR signaling all contribute to the enhanced parathyroid cell proliferation. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. This review summarizes the current knowledge on the mechanisms that stimulate the parathyroid cell at multiple levels in SHP.
Collapse
Affiliation(s)
- Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Nareman Khalaily
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Rachel Kilav-Levin
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- Nursing, Jerusalem College of Technology, Jerusalem 91160, Israel
| | - Morris Nechama
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- Pediatric Nephrology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (M.N.); (O.V.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Justin Silver
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
| | - Tally Naveh-Many
- Minerva Center for Bone and Mineral Research, Nephrology Services, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel; (A.H.); (N.K.); (R.K.-L.); (J.S.)
- The Wohl Institute for Translational Medicine, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence:
| |
Collapse
|
15
|
Havasi A, Sur D, Cainap SS, Lungulescu CV, Gavrilas LI, Cainap C, Vlad C, Balacescu O. Current and New Challenges in the Management of Pancreatic Neuroendocrine Tumors: The Role of miRNA-Based Approaches as New Reliable Biomarkers. Int J Mol Sci 2022; 23:1109. [PMID: 35163032 PMCID: PMC8834851 DOI: 10.3390/ijms23031109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are rare tumors; however, their incidence greatly increases with age, and they occur more frequently among the elderly. They represent 5% of all pancreatic tumors, and despite the fact that low-grade tumors often have an indolent evolution, they portend a poor prognosis in an advanced stages and undifferentiated tumors. Additionally, functional pancreatic neuroendocrine tumors greatly impact quality of life due to the various clinical syndromes that result from abnormal hormonal secretion. With limited therapeutic and diagnostic options, patient stratification and selection of optimal therapeutic strategies should be the main focus. Modest improvements in the management of pancreatic neuroendocrine tumors have been achieved in the last years. Therefore, it is imperative to find new biomarkers and therapeutic strategies to improve patient survival and quality of life, limiting the disease burden. MicroRNAs (miRNAs) are small endogenous molecules that modulate the expression of thousands of genes and control numerous critical processes involved in tumor development and progression. New data also suggest the implication of miRNAs in treatment resistance and their potential as prognostic or diagnostic biomarkers and therapeutic targets. In this review, we discusses the current and new challenges in the management of PanNETs, including genetic and epigenetic approaches. Furthermore, we summarize the available data on miRNAs as potential prognostic, predictive, or diagnostic biomarkers and discuss their function as future therapeutic targets.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
- MedEuropa Radiotherapy Center, 410191 Oradea, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | - Simona Sorana Cainap
- Department of Mother and Child, Pediatric Cardiology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | | | - Laura-Ioana Gavrilas
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy “Iuliu Hatieganu”, 23 Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Calin Cainap
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | - Catalin Vlad
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34–36, Republicii Street, 400015 Cluj-Napoca, Romania;
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta’’, 400015 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Duan S, Rico K, Merchant JL. Gastrin: From Physiology to Gastrointestinal Malignancies. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab062. [PMID: 35330921 PMCID: PMC8788842 DOI: 10.1093/function/zqab062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
Abetted by widespread usage of acid-suppressing proton pump inhibitors (PPIs), the mitogenic actions of the peptide hormone gastrin are being revisited as a recurring theme in various gastrointestinal (GI) malignancies. While pathological gastrin levels are intricately linked to hyperplasia of enterochromaffin-like cells leading to carcinoid development, the signaling effects exerted by gastrin on distinct cell types of the gastric mucosa are more nuanced. Indeed, mounting evidence suggests dichotomous roles for gastrin in both promoting and suppressing tumorigenesis. Here, we review the major upstream mediators of gastrin gene regulation, including inflammation secondary to Helicobacter pylori infection and the use of PPIs. We further explore the molecular biology of gastrin in GI malignancies, with particular emphasis on the regulation of gastrin in neuroendocrine neoplasms. Finally, we highlight tissue-specific transcriptional targets as an avenue for targetable therapeutics.
Collapse
Affiliation(s)
- Suzann Duan
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Karen Rico
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
17
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Zahran F, Mohamad A, Zein N. Bee venom ameliorates cardiac dysfunction in diabetic hyperlipidemic rats. Exp Biol Med (Maywood) 2021; 246:2630-2644. [PMID: 34550826 DOI: 10.1177/15353702211045924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High levels of blood glucose and lipids are well-known risk factors for heart diseases. Bee venom is a natural product that has a potent hypoglycemic, hypolipidemic, anti-inflammatory, and antioxidant effects. The current study aimed to determine the bee venom effects on cardiac dysfunction compared to combined therapy of metformin and atorvastatin in diabetic hyperlipidemic rats. The median lethal dose of bee venom was estimated, and then 50 adult male albino rats were categorized into five groups. One group was fed a standard diet and served as a negative control, while the other groups were given nicotinamide and streptozotocin injections to induce type 2 diabetes. After confirming diabetes, the rats were fed a high-fat diet for four weeks. The four groups were divided as follows: one group served as a positive control, whereas the other three groups were treated with bee venom (0.5 mg/kg), bee venom (1.23 mg/kg), and combined therapy of metformin (60 mg/kg) and atorvastatin (10 mg/kg), respectively, for four weeks. Upon termination of the experiment, blood samples and heart tissue were obtained. Administration of bee venom using both doses (0.5 and 1.23 mg/kg) and combined therapy of metformin and atorvastatin revealed a significant decrease in the concentrations of glucose, total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, troponin I, creatine kinase, and lactate dehydrogenase activities. Moreover, a significant decrease had been detedcted in malondialdehyde, nuclear factor-kappa-β levels, and relative mRNA expression of vascular cell adhesion molecule-1 and galectin-3 in heart tissue compared to the positive control (P < 0.0001). Furthermore, there was a significant increase in bodyweight levels of insulin, high-density lipoprotein cholesterol, and total antioxidant capacity in heart tissue compared to the positive control (P < 0.0001). The results indicate that bee venom can ameliorate cardiac dysfunction through attenuating oxidative stress and downregulating the NF-κβ signaling pathway.
Collapse
Affiliation(s)
- Faten Zahran
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Alaa Mohamad
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Nabila Zein
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
19
|
Rendina D, De Filippo G, Merlotti D, Di Stefano M, Mingiano C, Giaquinto A, Evangelista M, Bo M, Arpino S, Faraonio R, Strazzullo P, Gennari L. Increased Prevalence of Nephrolithiasis and Hyperoxaluria in Paget Disease of Bone. J Clin Endocrinol Metab 2020; 105:5896000. [PMID: 32827434 DOI: 10.1210/clinem/dgaa576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Nephrolithiasis (NL) and primary hyperparathyroidism (HPTH) are metabolic complications of Paget disease of bone (PDB), but recent data regarding their prevalence in PDB patients are lacking. OBJECTIVES Study 1: To compare the prevalence of primary HPTH and NL in 708 patients with PDB and in 1803 controls. Study 2: To evaluate the prevalence of NL-metabolic risk factors in 97 patients with PDB and NL, 219 PDB patients without NL, 364 NL patients without PDB, and 219 controls, all of them without HPTH. DESIGN Cross-sectional multicentric study. SETTING Italian referral centers for metabolic bone disorders. PARTICIPANTS Patients with PDB from the Associazione Italiana malati di osteodistrofia di Paget registry. Participants in the Olivetti Heart and the Siena Osteoporosis studies. MAIN OUTCOME MEASURES HPTH; NL; NL-metabolic risk factors. RESULTS Patients with PDB showed higher prevalence of primary HPTH and NL compared with controls (P < 0.01). The NL recurrence occurs more frequently in patients with polyostotic PDB. About one-half of patients with PDB but without NL showed 1 or more NL-related metabolic risk factors. The hyperoxaluria (HyperOx) prevalence was higher in patients with PDB and NL compared with patients with NL but without PDB and in patients with PDB without NL compared with controls (P = 0.01). Patients with PDB and HyperOx showed a longer lapse of time from the last aminobisphosphonate treatment. CONCLUSIONS NL and HPTH are frequent metabolic complication of PDB. The NL occurrence should be evaluated in patients with PDB, particularly in those with polyostotic disease and/or after aminobisphosphonate treatment to apply an adequate prevention strategy.
Collapse
Affiliation(s)
- Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert-Debré, Service d'Endocrinologie et Diabétologie Pédiatrique, Paris, France
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Marco Di Stefano
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Torino, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alfonso Giaquinto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Evangelista
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mario Bo
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Torino, Italy
| | - Sergio Arpino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
21
|
Chou CW, Tan X, Hung CN, Lieberman B, Chen M, Kusi M, Mitsuya K, Lin CL, Morita M, Liu Z, Chen CL, Huang THM. Menin and Menin-Associated Proteins Coregulate Cancer Energy Metabolism. Cancers (Basel) 2020; 12:E2715. [PMID: 32971831 PMCID: PMC7564175 DOI: 10.3390/cancers12092715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.
Collapse
Affiliation(s)
- Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
| | - Brandon Lieberman
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (C.-W.C.); (X.T.); (C.-N.H.); (B.L.); (M.C.); (M.K.); (K.M.); (C.-L.L.); (M.M.); (Z.L.)
| |
Collapse
|
22
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
23
|
Yang X, Zhan P, Feng S, Ji H, Tian W, Wang M, Cheng C, Song B. SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. Oncol Rep 2020; 44:1851-1862. [PMID: 32901876 PMCID: PMC7551351 DOI: 10.3892/or.2020.7750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) occurs in nearly all human genes and abnormal AS has a close association with cancer. Serine and arginine-rich splicing factor 6 (SRSF6), a canonical member of the serine/arginine-rich protein family, has been characterized as an important regulator of AS. However, the role of SRSF6 in regulating AS in cancers has remained to be fully elucidated. In the present study, the median expression of SRSF6 in tumors was determined to be higher compared with that in matched normal tissues in 13 out of 16 cancer types from The Cancer Genome Atlas. To investigate the biological effects of SRSF6 overexpression, an SRSF6-overexpression model of HeLa cells was constructed and it was revealed that SRSF6 overexpression resulted in significantly higher apoptosis and lower proliferation compared to control cells. Transcriptome analysis indicated that overexpression of SRSF6 in cancer cells induced large-scale changes in transcriptional expression levels and AS. Two groups of cervical cancer tumor samples in which SRSF6 was differentially expressed were then selected to analyze potential SRSF6-regulated AS. It was determined that the pattern of SRSF6-regulated AS in clinical samples was similar to that in cancer cells and AS genes were enriched in DNA damage response (DDR) pathways, including DNA repair and double-strand break repair via homologous recombination. Furthermore, AS events regulated by SRSF6 were validated using reverse transcription-quantitative PCR. The present results highlighted that SRSF6 is able to trigger the activation of DDR pathways via regulation of AS to influence cancer progression. These results markedly expand the current understanding of the mechanisms underlying SRSF6-mediated gene regulation and suggest the potential use of SRSF6 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Zhan
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuqiang Feng
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - He Ji
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenjie Tian
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mengdi Wang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bin Song
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
24
|
Naveh-Many T, Volovelsky O. Parathyroid Cell Proliferation in Secondary Hyperparathyroidism of Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124332. [PMID: 32570711 PMCID: PMC7352987 DOI: 10.3390/ijms21124332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that correlates with morbidity and mortality in uremic patients. It is characterized by high serum parathyroid hormone (PTH) levels and impaired bone and mineral metabolism. The main mechanisms underlying SHP are increased PTH biosynthesis and secretion as well as increased glandular mass. The mechanisms leading to parathyroid cell proliferation in SHP are not fully understood. Reduced expressions of the receptors for calcium and vitamin D contribute to the disinhibition of parathyroid cell proliferation. Activation of transforming growth factor-α-epidermal growth factor receptor (TGF-α-EGFR), nuclear factor kappa B (NF-kB), and cyclooxygenase 2- prostaglandin E2 (Cox2-PGE2) signaling all correlate with parathyroid cell proliferation, underlining their roles in the development of SHP. In addition, the mammalian target of rapamycin (mTOR) pathway is activated in parathyroid glands of experimental SHP rats. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. Mice with parathyroid-specific deletion of all miRNAs have a muted increase in serum PTH and fail to increase parathyroid cell proliferation when challenged by CKD, suggesting that miRNA is also necessary for the development of SHP. This review summarizes the current knowledge on the mechanisms of parathyroid cell proliferation in SHP.
Collapse
Affiliation(s)
- Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Nephrology Services, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Oded Volovelsky
- The Wohl Institute for Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Pediatric Nephrology Unit and Research Lab, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-26777213
| |
Collapse
|
25
|
Torre M, Alexandrescu S, Dubuc AM, Ligon AH, Hornick JL, Meredith DM. Characterization of molecular signatures of supratentorial ependymomas. Mod Pathol 2020; 33:47-56. [PMID: 31375768 DOI: 10.1038/s41379-019-0329-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
Ependymomas show poor correlation between World Health Organization grade and clinical outcome. A subgroup of supratentorial ependymomas are characterized by C11orf95-RELA fusions, presumed to be secondary to chromothripsis of chromosome 11, resulting in constitutive activation of the NF-κB signaling pathway and overexpression of cyclin D1, p65, and L1 cell adhesion molecule (L1CAM). These RELA-fused ependymomas are recognized as a separate, molecularly defined World Health Organization entity and might be associated with poor clinical outcome. In this study, we show that immunohistochemistry for NF-κB signaling components, such as L1CAM, p65, and cyclin D1, can help distinguish RELA-fused from non-RELA-fused supratentorial ependymomas. Furthermore, these three markers can reliably differentiate RELA-fused ependymomas from a variety of histologic mimics. Lastly, we report that RELA-fused ependymomas may be associated with different chromosomal copy number changes and molecular alterations compared to their non-RELA-fused counterparts, providing additional insight into the genetic pathogenesis of these tumors and potential targets for directed therapies.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Azra H Ligon
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Abstract
Pancreatic neuroendocrine tumors are rare tumors of the pancreas originating from the islets of the Langerhans. These tumors comprise 1% to 3% of all newly diagnosed pancreatic cancers every year and have a unique heterogeneity in clinical presentation. Whole-genome sequencing has led to an increased understanding of the molecular biology of these tumors. In this review, we will summarize the current knowledge of the signaling pathways involved in the tumorigenesis of pancreatic neuroendocrine tumors as well as the major studies targeting these pathways at preclinical and clinical levels.
Collapse
|
27
|
Cinque L, Pugliese F, Salcuni AS, Scillitani A, Guarnieri V. Molecular pathogenesis of parathyroid tumours. Best Pract Res Clin Endocrinol Metab 2018; 32:891-908. [PMID: 30477753 DOI: 10.1016/j.beem.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parathyroid tumors represent an elusive endocrine neoplasia, which lead to primary hyperparathyroidism, pHPT, a common endocrine calcium disorder characterized by hypercalcemia and normal-high parathormone secretion. Parathyroid tumours are benign adenomas or multiple glands hyperplasia in the vast majority (>99% of cases), while malignant neoplasms are rare (less than 1%). Despite pHPT is a common disorder, our knowledge about the genetic predisposition and molecular pathophysiology is limited to the familial syndromic forms of parathyroid tumour, that, however, represent not more than the 10% of all the cases; instead, the pathophysiology of sporadic forms remains an open field, although data about epigenetic mechanisms or private genes have been supposed. Here we present an overview of more recent acquisitions about the genetic causes along with their molecular mechanisms of benign, but also, malignant parathyroid tumours either in sporadic and familial presentation.
Collapse
Affiliation(s)
- Luigia Cinque
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| | - Flavia Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | | | - Alfredo Scillitani
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | - Vito Guarnieri
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| |
Collapse
|
28
|
Abstract
Several familial forms of primary hyperparathyroidism (PHTP) have been discovered over the past 25 years, and molecular test for their risk assessment has been widely increasing. These syndromic and non-syndromic forms have received benefits from the identification of the responsible genes whose mutations account for the genetic susceptibility to develop parathyroid tumours as also other endocrine and nonendocrine tumours. In recent years, care options have been made available to patients and families with hereditary PHPT, and the process of systematically assessing the genetic risk has been becoming increasingly important. The aim of this review is to help health providers not frequently dealing with genetic testing use, introducing general concepts with regard to genetic diagnosis issues. The role and the practical usefulness of DNA-based diagnosis in patients affected by different forms of "congenital" PHPT is described, closely looking on why, when and how genetic testing should be performed in these subjects and their relatives. Moreover, this review will provide some practical suggestions and recommendations concerning on how to deal with a suspected or known case of familial PHPT.
Collapse
Affiliation(s)
- Falchetti Alberto
- EndOsmet, Villa Donatello Private Hospital, Firenze, Italy; Villa Alba Clinic, Villa Maria Group, Bologna, Italy.
| |
Collapse
|
29
|
Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, Lin H, Hu Y, Wu D, Shi M, Xie W, Sun H, Shao Z, Li H, Zhang K, Mo W, Huang TY, Xue M, Yuan Z, Zhang X, Bu G, Xu H, Xu Q, Zhang J. Menin Deficiency Leads to Depressive-like Behaviors in Mice by Modulating Astrocyte-Mediated Neuroinflammation. Neuron 2018; 100:551-563.e7. [DOI: 10.1016/j.neuron.2018.08.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/04/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
|
30
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
31
|
Li JWY, Hua X, Reidy-Lagunes D, Untch BR. MENIN loss as a tissue-specific driver of tumorigenesis. Mol Cell Endocrinol 2018; 469:98-106. [PMID: 28965973 PMCID: PMC8064664 DOI: 10.1016/j.mce.2017.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
The MEN1 gene encodes MENIN, a tumor suppressor that plays a role in multiple cellular processes. Germline and somatic mutations in MEN1 have been identified in hereditary and sporadic tumors of neuroendocrine origins suggesting context-specific functions. In this review, we focus on the development of mutational Men1 in vivo models, the known cellular activities of MENIN and efforts to identify vulnerabilities in tumors with MENIN loss.
Collapse
Affiliation(s)
- Janet W Y Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
32
|
Khatami F, Tavangar SM. Multiple Endocrine Neoplasia Syndromes from Genetic and Epigenetic Perspectives. Biomark Insights 2018; 13:1177271918785129. [PMID: 30013307 PMCID: PMC6043927 DOI: 10.1177/1177271918785129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are infrequent inherited disorders in which more than one endocrine glands develop noncancerous (benign) or cancerous (malignant) tumors or grow excessively without forming tumors. There are 3 famous and well-known forms of MEN syndromes (MEN 1, MEN 2A, and MEN 2B) and a newly documented one (MEN4). These syndromes are infrequent and occurred in all ages and both men and women. Usually, germ line mutations that can be resulted in neoplastic transformation of anterior pituitary, parathyroid glands, and pancreatic islets in addition to gastrointestinal tract can be an indicator for MEN1. The medullary thyroid cancer (MTC) in association with pheochromocytoma and/or multiple lesions of parathyroid glands with hyperparathyroidism can be pointer of MEN2 which can be subgrouped into the MEN 2A, MEN 2B, and familial MTC syndromes. There are no distinct biochemical markers that allow identification of familial versus nonfamilial forms of the tumors, but familial MTC usually happens at a younger age than sporadic MTC. The MEN1 gene (menin protein) is in charge of MEN 1 disease, CDNK1B for MEN 4, and RET proto-oncogene for MEN 2. The focus over the molecular targets can bring some hope for both diagnosis and management of MEN syndromes. In the current review, we look at this disease and responsible genes and their cell signaling pathway involved.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
34
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Kim B, Song TY, Jung KY, Kim SG, Cho EJ. Direct interaction of menin leads to ubiquitin-proteasomal degradation of β-catenin. Biochem Biophys Res Commun 2017; 492:128-134. [PMID: 28782520 DOI: 10.1016/j.bbrc.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Menin, encoded by the multiple endocrine neoplasia type 1 (MEN1) gene, is a tumor suppressor and transcription regulator. Menin interacts with various proteins as a scaffold protein and is proposed to play important roles in multiple physiological and pathological processes by controlling gene expression, proliferation, and apoptosis. The mechanisms underlying menin's suppression of tumorigenesis are largely elusive. In this study, we showed that menin was essential for the regulation of canonical Wnt/β-catenin signaling in cultured cells. The C-terminal domain of menin was able to directly interact with and promote ubiquitin-mediated degradation of β-catenin. We further revealed that overexpression of menin down-regulated the transcriptional activity of β-catenin and target gene expression. Moreover, menin efficiently inhibited β-catenin protein levels, transcriptional activity, and proliferation of human renal carcinoma cells with an activated β-catenin pathway. Taken together, our results provide novel molecular insights into the tumor suppressor activity of menin, which is partly mediated by proteasomal degradation of β-catenin and inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Byungho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea; C&C Research Laboratories, Discovery Research Center, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Tae-Yang Song
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Kwan Young Jung
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Seul Gi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
37
|
Cinque L, Sparaneo A, Cetani F, Coco M, Clemente C, Chetta M, Balsamo T, Battista C, Sanpaolo E, Pardi E, D'Agruma L, Marcocci C, Maiello E, Hendy GN, Cole DEC, Scillitani A, Guarnieri V. Novel association of MEN1 gene mutations with parathyroid carcinoma. Oncol Lett 2017; 14:23-30. [PMID: 28693130 PMCID: PMC5494910 DOI: 10.3892/ol.2017.6162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022] Open
Abstract
Inactivating mutations of the multiple endocrine neoplasia 1 (MEN1) gene cause MEN1 syndrome, characterized by primary hyperparathyroidism (pHPT), and parathyroid and gastro-entero-pancreatic pituitary tumors. At present, only 14 cases of malignant parathyroid tumor have been associated with the syndrome, with 6 cases carrying an inactivating mutation of the MEN1 gene. The present study presents the case of a 48-year-old female who presented with multigland pHPT and multiple pancreatic lesions. The patient underwent surgery several times for the excision of parathyroid hyperplasia, carcinoma and adenoma. The MEN1 gene was screened, revealing three variants (in cis) at the intron/exon 3 boundary (IVS2-3G>C, c.497A>T and c.499G>T) detected on the DNA of the proband, not shared by her relatives. RNA sequencing revealed that the IVS2-3C>G variant caused the skipping of the exon 3. Therefore, the present study reports on a novel rare association of MEN1 syndrome and parathyroid carcinoma. The reported splicing mutation was previously identified in subjects who always developed malignant lesions; thus, a possible genotype-phenotype association may be considered.
Collapse
Affiliation(s)
- Luigia Cinque
- Department of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Angelo Sparaneo
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Michelina Coco
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Celeste Clemente
- Department of Pathology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Massimiliano Chetta
- Laboratory of Molecular Medicine and Genomics, University of Salerno, I-84081 Baronissi, Italy
| | - Teresa Balsamo
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Claudia Battista
- Department of Endocrinology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Eliana Sanpaolo
- Department of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Leonardo D'Agruma
- Department of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University Hospital of Pisa, I-56124 Pisa, Italy
| | - Evaristo Maiello
- Department of Oncohematology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Geoffrey N Hendy
- Departments of Medicine, Physiology and Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada.,Experimental Therapeutics and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - David E C Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine and Genetics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Alfredo Scillitani
- Department of Endocrinology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| | - Vito Guarnieri
- Department of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo, Italy
| |
Collapse
|
38
|
Abstract
Despite its identification in 1997, the functions of the MEN1 gene-the main gene underlying multiple endocrine neoplasia type 1 syndrome-are not yet fully understood. In addition, unlike the RET-MEN2 causative gene-no hot-spot mutational areas or genotype-phenotype correlations have been identified. More than 1,300 MEN1 gene mutations have been reported and are mostly "private" (family specific). Even when mutations are shared at an intra- or inter-familial level, the spectrum of clinical presentation is highly variable, even in identical twins. Despite these inherent limitations for genetic counseling, identifying MEN1 mutations in individual carriers offers them the opportunity to have lifelong clinical surveillance schemes aimed at revealing MEN1-associated tumors and lesions, dictates the timing and scope of surgical procedures, and facilitates specific mutation analysis of relatives to define presymptomatic carriers.
Collapse
Affiliation(s)
- Alberto Falchetti
- EndOsMet Unit, Villa Donatello, Piazzale Donatello 2, Florence 50100, Italy; Hercolani Clinical Center, Via D'Azeglio 46, Bologna 40136, Italy
| |
Collapse
|
39
|
He X, Wang L, Yan J, Yuan C, Witze ES, Hua X. Menin localization in cell membrane compartment. Cancer Biol Ther 2016; 17:114-22. [PMID: 26560942 DOI: 10.1080/15384047.2015.1108497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Menin is encoded by the MEN1 gene, which is mutated in an inherited human syndrome, multiple endocrine neoplasia type 1(MEN1). Menin is primarily nuclear protein, acting as a tumor suppressor in endocrine organs, but as an oncogenic factor in the mixed lineage leukemia, in a tissue-specific manner. Recently, the crystal structures of menin with different binding partners reveal menin as a key scaffold protein that functionally interacts with various partners to regulate gene transcription in the nucleus. However, outside the nucleus, menin also regulates multiple signaling pathways that traverse the cell surface membrane. The precise nature regarding to how menin associates with the membrane fraction is poorly understood. Here we show that a small fraction of menin associates with the cell membrane fraction likely via serine palmitoylation. Moreover, the majority of the membrane-associated menin may reside inside membrane vesicles, as menin is protected from trypsin-mediated proteolysis, but disruption of the membrane fraction using detergent abolishes the detection. Consistently, cellular staining for menin also reveals the distribution of menin in the cell membrane and the punctate-like cell organelles. Our findings suggest that part of intracellular menin associates with the cell membrane peripherally as well as resides within the membrane vesicles.
Collapse
Affiliation(s)
- Xin He
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Lei Wang
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA.,d Department of Urology , Renmin Hospital of Wuhan University , Wuhan 430060 , Hubei , China
| | - Jizhou Yan
- b Department of Biology and Biotechnology , Shanghai Ocean University , 999 Hucheng Ring Rd Lingang New City, Shanghai , 201306 , China
| | - Chaoxing Yuan
- c The Proteomics and Systems Facility, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine , Philadelphia, 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Eric S Witze
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| | - Xianxin Hua
- a Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine , 421 Curie Blvd., Philadelphia , PA 19104 , USA
| |
Collapse
|
40
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
41
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016; 103:18-31. [PMID: 25592387 PMCID: PMC4497946 DOI: 10.1159/000371819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas are a common feature of a subset of endocrine neoplasia syndromes, which have otherwise highly variable disease manifestations. We provide here a review of the clinical features and human molecular genetics of multiple endocrine neoplasia (MEN) type 1 and 4 (MEN1 and MEN4, respectively) and Carney complex (CNC). MEN1, MEN4, and CNC are hereditary autosomal dominant syndromes that can present with pituitary adenomas. MEN1 is caused by inactivating mutations in the MEN1 gene, whose product menin is involved in multiple intracellular pathways contributing to transcriptional control and cell proliferation. MEN1 clinical features include primary hyperparathyroidism, pancreatic neuroendocrine tumours and prolactinomas as well as other pituitary adenomas. A subset of patients with pituitary adenomas and other MEN1 features have mutations in the CDKN1B gene; their disease has been called MEN4. Inactivating mutations in the type 1α regulatory subunit of protein kinase A (PKA; the PRKAR1A gene), that lead to dysregulation and activation of the PKA pathway, are the main genetic cause of CNC, which is clinically characterised by primary pigmented nodular adrenocortical disease, spotty skin pigmentation (lentigines), cardiac and other myxomas and acromegaly due to somatotropinomas or somatotrope hyperplasia.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
42
|
Cheng P, Wang YF, Li G, Yang SS, Liu C, Hu H, Jin G, Hu XG. Interplay between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of the Hedgehog signaling pathway. Cancer Lett 2015; 370:136-44. [PMID: 26454216 DOI: 10.1016/j.canlet.2015.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
Menin, the product of the Men1 gene, which is frequently mutated in pancreatic neuroendocrine tumors, acts as a chromatin-remodeling factor to modulate the transcription of cell cycle regulators by interacting with histone modification factors. However, the function of menin and its underlying mechanisms in pancreatic ductal adenocarcinoma remain unknown. Here, we found that menin inhibited pancreatic cancer cell growth in vitro and in vivo and that its expression was gradually lost during pancreatic carcinogenesis. Menin overexpression significantly activated the expression of the cyclin-dependent kinase (CDK) inhibitors p18 and p27, accompanied with a decrease in DNA methylation levels of p18 and p27 promoters. Mechanistically, we found that interaction of menin with DNA methyltransferase 1 (Dnmt1) competitively pulled down Dnmt1 from p18 and p27 promoters, leading to the downregulation of DNA methylation levels. Moreover, menin expression was suppressed by Dnmt1 downstream of the Hedgehog signaling pathway, and menin overexpression strongly antagonized the promotion effect of hedgehog signaling on pancreatic cancer cell proliferation. Taken together, the interaction between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of Hedgehog pathways with complex mutual modulation networks, suggesting that the Hedgehog/Dnmt1/menin axis is a potential molecular target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yun-Feng Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Gang Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Sheng-sheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Che Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hao Hu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Xian-Gui Hu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
43
|
Menin immunoreactivity in secretory granules of human pancreatic islet cells. Appl Immunohistochem Mol Morphol 2015; 22:748-55. [PMID: 25153502 DOI: 10.1097/pai.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protein product of the Multiple Endocrine Neoplasia Type I (MEN1) gene is thought to be involved in predominantly nuclear functions; however, immunohistochemical (IHC) analysis data on cellular localization are conflicting. To further investigate menin expression, we analyzed human pancreas (an MEN1 target organ) using IHC analyses and 6 antibodies raised against full-length menin or its peptides. In 10 normal pancreas specimens, 2 independently raised antibodies showed unexpected cytoplasmic immunoreactivity in peripheral cells in each islet examined (over 100 total across all 10 patients). The staining exhibited a distinct punctate pattern and subsequent immunoelectron microscopy indicated the target antigen was in secretory granules. Exocrine pancreas and pancreatic stroma were not immunoreactive. In MEN1 patients, unaffected islets stained similar to those in normal samples but with a more peripheral location of positive cells, whereas hyperplastic islets and tumorlets showed increased and diffuse cytoplasmic staining, respectively. Endocrine tumors from MEN1 patients were negative for menin, consistent with a 2-hit loss of a tumor suppressor gene. Secretory granule localization of menin in a subset of islet cells suggests a function of the protein unique to a target organ of familial endocrine neoplasia, although the IHC data must be interpreted with some caution because of the possibility of antibody cross-reaction. The identity, cellular trafficking, and role of this putative secretory granule-form of menin warrant additional investigation.
Collapse
|
44
|
Börnigen D, Moon YS, Rahnavard G, Waldron L, McIver L, Shafquat A, Franzosa EA, Miropolsky L, Sweeney C, Morgan XC, Garrett WS, Huttenhower C. A reproducible approach to high-throughput biological data acquisition and integration. PeerJ 2015; 3:e791. [PMID: 26157642 PMCID: PMC4493686 DOI: 10.7717/peerj.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/04/2015] [Indexed: 12/25/2022] Open
Abstract
Modern biological research requires rapid, complex, and reproducible integration of multiple experimental results generated both internally and externally (e.g., from public repositories). Although large systematic meta-analyses are among the most effective approaches both for clinical biomarker discovery and for computational inference of biomolecular mechanisms, identifying, acquiring, and integrating relevant experimental results from multiple sources for a given study can be time-consuming and error-prone. To enable efficient and reproducible integration of diverse experimental results, we developed a novel approach for standardized acquisition and analysis of high-throughput and heterogeneous biological data. This allowed, first, novel biomolecular network reconstruction in human prostate cancer, which correctly recovered and extended the NFκB signaling pathway. Next, we investigated host-microbiome interactions. In less than an hour of analysis time, the system retrieved data and integrated six germ-free murine intestinal gene expression datasets to identify the genes most influenced by the gut microbiota, which comprised a set of immune-response and carbohydrate metabolism processes. Finally, we constructed integrated functional interaction networks to compare connectivity of peptide secretion pathways in the model organisms Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Daniela Börnigen
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yo Sup Moon
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Gholamali Rahnavard
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Levi Waldron
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,City University of New York School of Public Health, Hunter College, New York, NY, USA
| | - Lauren McIver
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Afrah Shafquat
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Miropolsky
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
| | | | - Xochitl C Morgan
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
45
|
Pea A, Hruban RH, Wood LD. Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol 2015; 9:1407-19. [PMID: 26413978 PMCID: PMC4890468 DOI: 10.1586/17474124.2015.1092383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a common and deadly neoplasm of the pancreas. Although the importance of genetic alterations in PanNETs has been known for many years, recent comprehensive sequencing studies have greatly expanded our knowledge of neuroendocrine tumorigenesis in the pancreas. These studies have identified specific cellular processes that are altered in PanNETs, highlighted alterations with prognostic implications, and pointed to pathways for targeted therapies. In this review, we will discuss the genetic alterations that play a key role in PanNET tumorigenesis, with a specific focus on those alterations with the potential to change the way patients with these neoplasms are diagnosed and treated.
Collapse
Affiliation(s)
- Antonio Pea
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center,Unit of Surgery B, The Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Ralph H. Hruban
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center
| | - Laura D. Wood
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD USA, The Sol Goldman Pancreatic Cancer Research Center
| |
Collapse
|
46
|
Lecoq AL, Kamenický P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol 2015; 11:43-54. [PMID: 25350067 DOI: 10.1038/nrendo.2014.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is ∼4%, but can increase to 8-20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
47
|
Lin W, Watanabe H, Peng S, Francis JM, Kaplan N, Pedamallu CS, Ramachandran A, Agoston A, Bass AJ, Meyerson M. Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol Cancer Res 2014; 13:689-98. [PMID: 25537453 DOI: 10.1158/1541-7786.mcr-14-0457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED The tumor suppressor gene MEN1 is frequently mutated in sporadic pancreatic neuroendocrine tumors (PanNET) and is responsible for the familial multiple endocrine neoplasia type 1 (MEN-1) cancer syndrome. Menin, the protein product of MEN1, associates with the histone methyltransferases (HMT) MLL1 (KMT2A) and MLL4 (KMT2B) to form menin-HMT complexes in both human and mouse model systems. To elucidate the role of methylation of histone H3 at lysine 4 (H3K4) mediated by menin-HMT complexes during PanNET formation, genome-wide histone H3 lysine 4 trimethylation (H3K4me3) signals were mapped in pancreatic islets using unbiased chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq). Integrative analysis of gene expression profiles and histone H3K4me3 levels identified a number of transcripts and target genes dependent on menin. In the absence of Men1, histone H3K27me3 levels are enriched, with a concomitant decrease in H3K4me3 within the promoters of these target genes. In particular, expression of the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) gene is subject to dynamic epigenetic regulation by Men1-dependent histone modification in a time-dependent manner. Decreased expression of IGF2BP2 in Men1-deficient hyperplastic pancreatic islets is partially reversed by ablation of RBP2 (KDM5A), a histone H3K4-specific demethylase of the jumonji, AT-rich interactive domain 1 (JARID1) family. Taken together, these data demonstrate that loss of Men1 in pancreatic islet cells alters the epigenetic landscape of its target genes. IMPLICATIONS Epigenetic profiling and gene expression analysis in Men1-deficient pancreatic islet cells reveals vital insight into the molecular events that occur during the progression of pancreatic islet tumorigenesis.
Collapse
Affiliation(s)
- Wenchu Lin
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts. High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu RD, Hefei, Anhui Province, 230031, P. R. China
| | - Hideo Watanabe
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shouyong Peng
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joshua M Francis
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Nathan Kaplan
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Chandra Sekhar Pedamallu
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Aruna Ramachandran
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
| |
Collapse
|
48
|
Lindberg BG, Oldenvi S, Steiner H. Medium from γ-irradiated Escherichia coli bacteria stimulates a unique immune response in Drosophila cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:392-400. [PMID: 24892816 DOI: 10.1016/j.dci.2014.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
It is well known that γ-irradiated, non-dividing bacteria can elicit potent immune responses in mammals. Compared to traditional heat or chemical inactivation of microbes, γ-irradiation likely preserves metabolic activity and antigenic features to a larger extent. We have previously shown that antimicrobial peptides are induced in Drosophila by peptidoglycan fragments secreted into the medium of exponentially growing bacterial cultures. In this study, we γ-irradiated Escherichiacoli cells at a dose that halted cell division. The temporal synthesis and release of peptidoglycan fragments were followed as well as the potential of bacterial supernatants to induce immune responses in Drosophila S2 cells. We demonstrate that peptidoglycan synthesis continues for several days post irradiation and that monomeric peptidoglycan is shed into the medium. Whole transcriptome analysis revealed a strong immune response against the bacterial medium. The response to medium taken directly post irradiation shows a large overlap to that of peptidoglycan. Medium from prolonged bacterial incubation does, however, stimulate a selective set of immune genes. A shift towards a stress response was instead observed with a striking induction of several heat shock proteins. Our findings suggest that γ-irradiated bacteria release elicitors that stimulate a novel response in Drosophila.
Collapse
Affiliation(s)
- Bo G Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Sandra Oldenvi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden
| | - Håkan Steiner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20 C, 106 91 Stockholm, Sweden.
| |
Collapse
|
49
|
Ma X, Guan Y, Hua X. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. J Diabetes 2014; 6:394-402. [PMID: 24725840 DOI: 10.1111/1753-0407.12161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is the primary incretin hormone secreted from the intestine upon uptake of food to stimulate insulin secretion from pancreatic β-cells. GLP-1 exerts its effects by binding to its G-protein coupled receptors and subsequently activating adenylate cyclase, leading to generation of cyclic adenosine monophosphate (cAMP). cAMP stimulates insulin secretion via activation of its effectors PKA and Epac2 in pancreatic β-cells. In addition to its insulinotropic effects, GLP-1 also preserves pancreatic β-cell mass by stimulating β-cell proliferation. Unlike the action of sulphonylureas in lowering blood glucose levels, action of GLP-1 is affected by and interplays with glucose levels. Due to such advantages, GLP-1-based therapeutics have been rapidly developed and used clinically for treatment of type 2 diabetes. However, molecular mechanisms underlying how GLP-1 potentiates diminished glucose-stimulated insulin secretion and β-cell proliferation under diabetic conditions are not well understood. Here, we review the actions of GLP-1 in regulation of insulin secretion and pancreatic β-cell proliferation.
Collapse
Affiliation(s)
- Xiaosong Ma
- Shenzhen University Diabetes Center, Shenzhen, China
| | | | | |
Collapse
|
50
|
Abstract
Menin, the product of the MEN1 gene, functions as a tumor suppressor and was first identified in 1997 due to its causative role in the endocrine tumor disorder multiple endocrine neoplasia, type 1 (MEN1). More recently, menin has been identified as a key player in pancreatic islet biology with the observation of an inverse relationship between menin levels and pancreatic islet proliferation. However, the factors regulating menin and the MEN1 gene in the pancreas are poorly understood. Here, we describe the regulation of menin by miR-24 and demonstrate that miR-24 directly decreases menin levels and impacts downstream cell cycle inhibitors in MIN6 insulinoma cells and in βlox5 immortalized β-cells. This regulation of menin impacts cell viability and proliferation in βlox5 cells. Furthermore, our data show a feedback regulation between miR-24 and menin that is present in the pancreas, suggesting that miR-24 regulates menin levels in the pancreatic islet.
Collapse
Affiliation(s)
- Jyothi Vijayaraghavan
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Elaine C Maggi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judy S Crabtree
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|