1
|
Ye Y, Wang J, Izban MG, Ballard BR, Barsky SH. Initiation of tumor dormancy by the lymphovascular embolus. Oncotarget 2024; 15:726-740. [PMID: 39392391 PMCID: PMC11468568 DOI: 10.18632/oncotarget.28658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Cancer dormancy followed by recurrence remains an enigma in cancer biology. Since both local and systemic recurrences are thought to emanate from dormant micrometastasis which take origin from lymphovascular tumor emboli we wondered whether the process of dormancy might initiate within lymphovascular emboli. This study combines experimental studies with a patient-derived xenograft (PDX) of inflammatory breast cancer (Mary-X) that spontaneously forms spheroids in vitro and budding lymphovascular tumor emboli in vivo with observational studies utilizing tissue microarrays (TMAs) of human breast cancers. In the experimental studies, Mary-X during both lymphovascular emboli formation in vivo and spheroidgenesis in vitro exhibited decreased proliferation, a G0/G1 cell cycle arrest and decreased mTOR signaling. This induction of dormancy required calpain-mediated E-cadherin proteolysis and was mediated by decreased P13K signaling, resulting in decreased mTOR activity. In observational human breast cancer studies, increased E-cadherin immunoreactivity due to increased E-cad/NTF-1 but both decreased Ki-67 and mTOR activity was observed selectively and differentially within the lymphovascular tumor emboli. Both our experimental as well as observational studies indicate that in vivo lymphovascular tumor emboli and their in vitro spheroid equivalent initiate dormancy through these pathways.
Collapse
Affiliation(s)
- Yin Ye
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, Nashville, TN 37208, USA
| | - Justin Wang
- Department of Graduate Medical Education, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, Nashville, TN 37208, USA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, Nashville, TN 37208, USA
| | - Sanford H. Barsky
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
2
|
Rickard AG, Sannareddy DS, Bennion A, Patel P, Sauer SJ, Rouse DC, Bouchal S, Liu H, Dewhirst MW, Palmer GM, Devi GR. A Novel Preclinical Murine Model to Monitor Inflammatory Breast Cancer Tumor Growth and Lymphovascular Invasion. Cancers (Basel) 2023; 15:cancers15082261. [PMID: 37190189 DOI: 10.3390/cancers15082261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0-140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models.
Collapse
Affiliation(s)
- Ashlyn G Rickard
- Program of Medical Physics, Duke University, Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dorababu S Sannareddy
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra Bennion
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Pranalee Patel
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Scott J Sauer
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas C Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samantha Bouchal
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Harrison Liu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
| | - Gregory M Palmer
- Program of Medical Physics, Duke University, Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
| | - Gayathri R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
- Program in Cancer Risk, Detection, and Interception, Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
3
|
Geometric tumor embolic budding characterizes inflammatory breast cancer. Breast Cancer Res Treat 2023; 197:461-478. [PMID: 36473978 PMCID: PMC9734724 DOI: 10.1007/s10549-022-06819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery. METHODS This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli. RESULTS In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding. CONCLUSION Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and β-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC.
Collapse
|
4
|
Zhang M, Wu K, Wang M, Bai F, Chen H. CASP9 As a Prognostic Biomarker and Promising Drug Target Plays a Pivotal Role in Inflammatory Breast Cancer. Int J Anal Chem 2022; 2022:1043445. [PMID: 36199443 PMCID: PMC9527435 DOI: 10.1155/2022/1043445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is one of the most rare and aggressive subtypes of primary breast cancer (BC). Our study aimed to explore hub genes related to the pathogenesis of IBC, which could be considered as novel molecular biomarkers for IBC diagnosis and prognosis. Material and Methods. Two datasets from gene expression omnibus database (GEO) were selected. Enrichment analysis and protein-protein interaction (PPI) network for the DEGs were performed. We analyzed the prognostic values of hub genes in the Kaplan-Meier Plotter. Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD) was used to find candidate small molecules capable to reverse the gene status of IBC. Results 157 DEGs were selected in total. We constructed the PPI network with 154 nodes interconnected by 128 interactions. The KEGG pathway analysis indicated that the DEGs were enriched in apoptosis, pathways in cancer and insulin signaling pathway. PTEN, PSMF1, PSMC6, AURKB, FZR1, CASP9, CASP6, CASP8, BAD, AKR7A2, ZNF24, SSX2IP, SIGLEC1, MS4A4A, and VSIG4 were selected as hub genes based on the high degree of connectivity. Six hub genes (PSMC6, AURKB, CASP9, BAD, ZNF24, and SSX2IP) that were significantly associated with the prognosis of breast cancer. The expression of CASP9 protein was associated with prognosis and immune cells infiltration of breast cancer. CASP9- naringenin (NGE) is expected to be the most promising candidate gene-compound interaction for the treatment of IBC. Conclusion Taken together, CASP9 can be used as a prognostic biomarker and a novel therapeutic target in IBC.
Collapse
Affiliation(s)
- Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tanigawa K, Kiriya M, Hayashi Y, Shinden Y, Kijima Y, Natsugoe S, Sumimoto T, Morimoto-Kamata R, Yui S, Hama K, Yokoyama K, Nakamura Y, Suzuki K, Nojiri H, Inoue K, Karasawa K. Cathepsin G-induced malignant progression of MCF-7 cells involves suppression of PAF signaling through induced expression of PAFAH1B2. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159164. [PMID: 35462067 DOI: 10.1016/j.bbalip.2022.159164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Hayashi
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan; Department of Breast Surgery, School of Medicine, Fujita Health University, Toyooka-shi, Aichi 470-1192, Japan
| | - Shoji Natsugoe
- Department of Neurosurgery, Kajiki-Onsen Hospital, Aira-shi, Kagoshima 899-5241, Japan
| | - Takahiro Sumimoto
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita 879-5593, Japan
| | - Riyo Morimoto-Kamata
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yui
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Nakamura
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hisao Nojiri
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keizo Inoue
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ken Karasawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
6
|
Alonso-Miguel D, Valdivia G, Guerrera D, Perez-Alenza MD, Pantelyushin S, Alonso-Diez A, Beiss V, Fiering S, Steinmetz NF, Suarez-Redondo M, Vom Berg J, Peña L, Arias-Pulido H. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. J Immunother Cancer 2022; 10:jitc-2021-004044. [PMID: 35277459 PMCID: PMC8919457 DOI: 10.1136/jitc-2021-004044] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
BackgroundInflammatory mammary cancer (IMC), the counterpart of human inflammatory breast cancer (IBC), is the deadliest form of canine mammary tumors. IMC patients lack specific therapy and have poor outcomes. This proof-of-principle preclinical study evaluated the efficacy, safety, and effect on survival of neoadjuvant intratumoral (in situ) empty cowpea mosaic virus (eCPMV) immunotherapy in companion dogs diagnosed with IMC.MethodsTen IMC-bearing dogs were enrolled in the study. Five dogs received medical therapy, and five received weekly neoadjuvant in situ eCPMV immunotherapy (0.2–0.4 mg per injection) and medical therapy after the second eCPMV injection. Efficacy was evaluated by reduction of tumor growth; safety by hematological and biochemistry changes in blood and plasma; and patient outcome by survival analysis. eCPMV-induced immune changes in blood cells were analyzed by flow cytometry; changes in the tumor microenvironment were evaluated by CD3 (T lymphocytes), CD20 (B lymphocytes), FoxP3 (Treg lymphocytes), myeloperoxidase (MPO; neutrophils), Ki-67 (proliferation index, PI; tumor cell proliferation), and Cleaved Caspase-3 (CC-3; apoptosis) immunohistochemistry.ResultsTwo neoadjuvant in situ eCPMV injections resulted in tumor shrinkage in all patients by day 14 without systemic adverse events. Although surgery for IMC is generally not an option, reduction in tumor size allowed surgery in two IMC patients. In peripheral blood, in situ eCPMV immunotherapy was associated with a significant decrease of Treg+/CD8+ ratio and changes in CD8+Granzyme B+ T cells, which behave as a lagging predictive biomarker. In the TME, higher neutrophilic infiltration and MPO expression, lower tumor Ki-67 PI, increase in CD3+ lymphocytes, decrease in FoxP3+/CD3+ ratio (p<0.04 for all comparisons), and no changes in CC-3+ immunostainings were observed in post-treatment tumor tissues when compared with pretreatment tumor samples. eCPMV-treated IMC patients had a statistically significant (p=0.033) improved overall survival than patients treated with medical therapy.ConclusionsNeoadjuvant in situ eCPMV immunotherapy demonstrated anti-tumor efficacy and improved survival in IMC patients without systemic adverse effects. eCPMV-induced changes in immune cells point to neutrophils as a driver of immune response. Neoadjuvant in situ eCPMV immunotherapy could be a groundbreaking immunotherapy for canine IMC and a potential future immunotherapy for human IBC patients.
Collapse
Affiliation(s)
- Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Diego Guerrera
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | | | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Veronique Beiss
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of NannoEngineering, University of California San Diego, La Jolla, California, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of NannoEngineering, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California, USA
| | - Maria Suarez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Hitchcock Health, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
| |
Collapse
|
7
|
Xie Q, Zhao S, Liu W, Cui Y, Li F, Li Z, Guo T, Yu W, Guo W, Deng W, Gu C. YBX1 Enhances Metastasis and Stemness by Transcriptionally Regulating MUC1 in Lung Adenocarcinoma. Front Oncol 2022; 11:702491. [PMID: 34976785 PMCID: PMC8714800 DOI: 10.3389/fonc.2021.702491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal expression of the transcription factor Y-box-binding protein-1 (YBX1) is associated with the proliferation, migration, aggressiveness, and stem-like properties of various cancers. These characteristics contribute to the tumorigenesis and metastasis of cancer. We found that the expression levels of Mucin-1 (MUC1) and YBX1 were positively correlated in lung adenocarcinoma cells and lung adenocarcinoma tissue. Our retrospective cohort study of 176 lung adenocarcinoma patients after surgery showed that low expression of both YBX1 and MUC1 was an independent predictor of the prognosis and recurrence of lung adenocarcinoma. In lung adenocarcinoma cells, the silencing/overexpression of YBX1 caused a simultaneous change in MUC1, and MUC1 overexpression partially reversed the decreased tumor cell migration, aggressiveness, and stemness caused by YBX1 silencing. Moreover, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays proved that MUC1 was the downstream target of YBX1 and that YBX1 bound to the -1480~-1476 position in the promoter region of MUC1 to regulate its transcription. Furthermore, in mouse xenograft models and a lung cancer metastasis model, MUC1, which is downstream of YBX1, partially reversed the decreased number and size of tumors caused by YBX1 silencing. In conclusion, our findings indicated a novel mechanism by which YBX1 promotes the stemness and metastasis of lung adenocarcinoma by targeting MUC1 and provided a combination approach for diagnosis different from traditional single tumor biomarkers to predict patient prognosis and provide clinical treatment targets.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenzhi Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Cui
- Zhongshan Hospital, Dalian University, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Lung Cancer Diagnosis and Treatment Center, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Lung Cancer Diagnosis, and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Zhang M, Ding C, Xu L, Feng S, Ling Y, Guo J, Liang Y, Zhou Z, Chen Y, Qiu H. A nomogram to predict risk of lymph node metastasis in early gastric cancer. Sci Rep 2021; 11:22873. [PMID: 34819570 PMCID: PMC8613278 DOI: 10.1038/s41598-021-02305-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Lymph node (LN) metastasis is known as one of the most important prognostic factors for early gastric cancer (EGC) patients. Patients without LNM normally have better prognosis. However, there is no evaluation criteria to accurately assess the possibility of LN metastasis. Therefore, this study aims to establish an effective nomogram for prognosis prediction. In this study, 285 EGC patients from January 2010 to December 2015 were enrolled. Pearson's Chi-Square (χ2) test (including continuity correction when appropriate) and logistics regression analyses was used to identify the risk factors for LN metastasis. The independent risk factors identified were then incorporated in a nomogram model. The predictive accuracy and discriminative ability of the nomogram were evaluated by receiver operating characteristic curve (ROC) and calibration curve. LN metastasis occurred in 59 (20.7%) EGC patients. And most of these patients were submucosal cancers (48/59). Chi-square test indicated lymphovascular emboli, carbohydrate antigen 19-9 (CA19-9), ulcer, tumor size, tumor infiltration and histological grade were the risk factors, and multivariate logistics analyses confirmed all these six factors were independent risk factors of LN metastasis, which were selected to construct the nomogram. The nomogram proved well calibrated and had good discriminative ability (C-index value: 0.842). The proposed nomogram could result in more-accurate risk prediction for EGC patients.
Collapse
Affiliation(s)
- Miaoquan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Lin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, 510080, Guangdong Province, China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, 510080, Guangdong Province, China
| | - Shoucheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yudong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jianrong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhiwei Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yingbo Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Haibo Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Gastric & Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Danilova NV, Mikhailov IA, Oleynikova NA, Malkov PG. [E-cadherin expression in tumor emboli in gastric cancer]. Arkh Patol 2021; 83:11-19. [PMID: 34041891 DOI: 10.17116/patol20218303111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the level of E-cadherin expression in tumor emboli, to compare it with expression in a tumor, to determine the dependence of E-cadherin expression in tumor emboli on the clinical and morphological characteristics of gastric cancer. MATERIAL AND METHODS We used samples of surgical material from 280 patients with a verified diagnosis of gastric cancer. E-cadherin expression was determined by immunohistochemical method. The results of the reactions were assessed semi-quantitatively and compared with the main clinical and morphological characteristics of gastric cancer (histological type according to the WHO classification 2019, histological type according to the classification of P. Lauren, clinical stage, depth of invasion (T), number of metastases in lymph nodes (N), presence or/absence of distant metastases (M), tumor localization in the stomach). RESULTS Among 280 cases of cancer, emboli were detected only in 67 cases, used for further analysis. The rest of the samples were excluded from the analysis, since emboli did not get into the sections during the cutting of immunohistochemical preparations. The expression of E-cadherin in tumor emboli was significantly higher (p<0.001) than in tumor tissue. At the same time, no cases identified where the level of E-cadherin decreased in emboli compared to the tumor. A significant increase in the expression of E-cadherin in tumor emboli compared to the primary tumor was noted for all histological types according to WHO 2019, for intermediate and diffuse types according to the P. Lauren classification (p<0.001). Comparison of expression in emboli and tumors for neoplasms with different depths of invasion (T), different stages and different localizations did not reveal statistically significant differences. An increase in the expression of E-cadherin in emboli compared to tumors was characterized by a higher level of significance in the presence of metastases (N1, N2, N3a, N3b; p<0.001) than in the absence of metastases (N0; p=0.016). CONCLUSION The study revealed a statistically significant increase in the expression of E-cadherin in tumor emboli compared to the primary tumor, which is evidence of its important role in maintaining the integrity of emboli and tumor dissemination.
Collapse
Affiliation(s)
- N V Danilova
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - P G Malkov
- Lomonosov Moscow State University, Moscow, Russia.,Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| |
Collapse
|
10
|
Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol 2021; 4:72. [PMID: 33452400 PMCID: PMC7811004 DOI: 10.1038/s42003-020-01590-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a clinically distinct and highly aggressive form of breast cancer with rapid onset and a strong propensity to metastasize. The molecular mechanisms underlying the aggressiveness and metastatic propensity of IBC are largely unknown. Herein, we report that decorin (DCN), a small leucine-rich extracellular matrix proteoglycan, is downregulated in tumors from patients with IBC. Overexpression of DCN in IBC cells markedly decreased migration, invasion, and cancer stem cells in vitro and inhibited tumor growth and metastasis in IBC xenograft mouse models. Mechanistically, DCN functioned as a suppressor of invasion and tumor growth in IBC by destabilizing E-cadherin and inhibiting EGFR/ERK signaling. DCN physically binds E-cadherin in IBC cells and accelerates its degradation through an autophagy-linked lysosomal pathway. We established that DCN inhibits tumorigenesis and metastasis in IBC cells by negatively regulating the E-cadherin/EGFR/ERK axis. Our findings offer a potential therapeutic strategy for IBC, and provide a novel mechanism for IBC pathobiology. Xiaoding Hu et al. find that expression of the proteoglycan decorin is decreased in patients with inflammatory breast cancer compared to normal breast tissue and some other types of breast cancer. They demonstrate that decorin acts as a tumor suppressor in cancer cells and human xenograft mouse models by destabilizing the E-cadherin-EGFR signaling axis, and their findings suggest potential therapeutic strategies for this aggressive breast cancer.
Collapse
|
11
|
Schairer C, Hablas A, Eldein IAS, Gaafar R, Rais H, Mezlini A, Ayed FB, Ayoub WB, Benider A, Tahri A, Khouchani M, Aboulazm D, Karkouri M, Eissa S, Bastawisy AE, Yehia M, Gadalla SM, Swain SM, Merajver SD, Brown LM, Pfeiffer RM, Soliman AS. Risk factors for inflammatory and non-inflammatory breast cancer in North Africa. Breast Cancer Res Treat 2020; 184:543-558. [PMID: 32876910 PMCID: PMC10440960 DOI: 10.1007/s10549-020-05864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Studies of the etiology of inflammatory breast cancer (IBC), a rare but aggressive breast cancer, have been hampered by limited risk factor information. We extend previous studies by evaluating a broader range of risk factors. METHODS Between 2009 and 2015, we conducted a case-control study of IBC at six centers in Egypt, Tunisia, and Morocco; enrolled were 267 IBC cases and for comparison 274 non-IBC cases and 275 controls, both matched on age and geographic area to the IBC cases. We administered questionnaires and collected anthropometric measurements for all study subjects. We used multiple imputation methods to account for missing values and calculated odds ratios (ORs) and 95% confidence intervals (CIs) using polytomous logistic regression comparing each of the two case groups to the controls, with statistical tests for the difference between the coefficients for the two case groups. RESULTS After multivariable adjustment, a livebirth within the previous 2 years (OR 4.6; 95% CI 1.8 to 11.7) and diabetes (OR 1.8; 95% CI 1.1 to 3.0) were associated with increased risk of IBC, but not non-IBC (OR 0.9; 95% CI 0.3 to 2.5 and OR 0.9; 95% CI 0.5 to 1.6 for livebirth and diabetes, respectively). A family history of breast cancer, inflammatory-like breast problems, breast trauma, and low socioeconomic status were associated with increased risk of both tumor types. CONCLUSIONS We identified novel risk factors for IBC and non-IBC, some of which preferentially increased risk of IBC compared to non-IBC. Upon confirmation, these findings could help illuminate the etiology and aid in prevention of this aggressive cancer.
Collapse
Affiliation(s)
- Catherine Schairer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | - Ali Tahri
- Clinique Spécialisée Menara, Marrakech, Morocco
| | | | | | | | | | | | | | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandra M Swain
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- , 9609 Medical Center Drive, Rm 7E142, Bethesda, MD, 20892, USA.
| | - Amr S Soliman
- Medical School of the City University of New York, New York, USA
| |
Collapse
|
12
|
Hattori T, Ikegami Y, Matsuyama N, Hamakawa T, Maruyama T, Naiki-Ito A, Yasui T. Microscopic pulmonary tumor embolism from adenocarcinoma of the prostate. IJU Case Rep 2020; 3:161-165. [PMID: 32914059 PMCID: PMC7469864 DOI: 10.1002/iju5.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Microscopic pulmonary tumor embolisms from prostate cancer are extremely rare. In this case of prostate cancer, microscopic pulmonary tumor embolism developed during androgen deprivation therapy. CASE PRESENTATION A 56-year-old man was diagnosed with prostate cancer and underwent androgen deprivation therapy. Three months after starting treatment, he noticed shortness of breath and developed acute progressive dyspnea. He was diagnosed with pulmonary hypertension; however, the cause was not found. His dyspnea was progressive and he died 40 days after the onset of symptoms. Autopsy proved that the cause of pulmonary hypertension was microscopic pulmonary tumor emboli from prostate cancer. Furthermore, histology revealed differences in the androgen receptors in the prostate and emboli, with significantly greater Ki-67 expression in the emboli than in the prostate. CONCLUSION Prostate cancer proliferated in the pulmonary artery after hematogenous metastasis, caused vascular occlusion, and formed microscopic pulmonary tumor embolisms.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Department of Urology Nagoya City East Medical Center Nagoya Japan
| | - Yosuke Ikegami
- Department of Urology Nagoya City East Medical Center Nagoya Japan
| | - Nayuka Matsuyama
- Department of Urology Nagoya City East Medical Center Nagoya Japan
| | - Takashi Hamakawa
- Department of Urology Nagoya City East Medical Center Nagoya Japan
| | - Tetsuji Maruyama
- Department of Education and Research Center for Advanced Medicine Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Takahiro Yasui
- Department of Nephro-urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| |
Collapse
|
13
|
Gadde M, Phillips C, Ghousifam N, Sorace AG, Wong E, Krishnamurthy S, Syed A, Rahal O, Yankeelov TE, Woodward WA, Rylander MN. In vitro vascularized tumor platform for modeling tumor-vasculature interactions of inflammatory breast cancer. Biotechnol Bioeng 2020; 117:3572-3590. [PMID: 32648934 DOI: 10.1002/bit.27487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Inflammatory breast cancer (IBC), a rare form of breast cancer associated with increased angiogenesis and metastasis, is largely driven by tumor-stromal interactions with the vasculature and the extracellular matrix (ECM). However, there is currently a lack of understanding of the role these interactions play in initiation and progression of the disease. In this study, we developed the first three-dimensional, in vitro, vascularized, microfluidic IBC platform to quantify the spatial and temporal dynamics of tumor-vasculature and tumor-ECM interactions specific to IBC. Platforms consisting of collagen type 1 ECM with an endothelialized blood vessel were cultured with IBC cells, MDA-IBC3 (HER2+) or SUM149 (triple negative), and for comparison to non-IBC cells, MDA-MB-231 (triple negative). Acellular collagen platforms with endothelialized blood vessels served as controls. SUM149 and MDA-MB-231 platforms exhibited a significantly (p < .05) higher vessel permeability and decreased endothelial coverage of the vessel lumen compared to the control. Both IBC platforms, MDA-IBC3 and SUM149, expressed higher levels of vascular endothelial growth factor (p < .05) and increased collagen ECM porosity compared to non-IBCMDA-MB-231 (p < .05) and control (p < .01) platforms. Additionally, unique to the MDA-IBC3 platform, we observed progressive sprouting of the endothelium over time resulting in viable vessels with lumen. The newly sprouted vessels encircled clusters of MDA-IBC3 cells replicating a key feature of in vivo IBC. The IBC in vitro vascularized platforms introduced in this study model well-described in vivo and clinical IBC phenotypes and provide an adaptable, high throughput tool for systematically and quantitatively investigating tumor-stromal mechanisms and dynamics of tumor progression.
Collapse
Affiliation(s)
- Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Caleb Phillips
- Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas
| | - Neda Ghousifam
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Enoch Wong
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Anum Syed
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Omar Rahal
- M.D. Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.,Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas.,Departments of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas.,Department of Oncology, The University of Texas at Austin, Austin, Texas.,Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| | - Wendy A Woodward
- M.D. Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Marissa N Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.,Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas.,Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
14
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
15
|
Inflammatory Breast Cancer: Diagnostic, Molecular and Therapeutic Considerations. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Huang L, Ji H, Yin L, Niu X, Wang Y, Liu Y, Xuan Q, Li L, Zhang H, Zhou X, Li J, Cui C, Yang Y, An W, Zhang Q. High Expression of Plakoglobin Promotes Metastasis in Invasive Micropapillary Carcinoma of the Breast via Tumor Cluster Formation. J Cancer 2019; 10:2800-2810. [PMID: 31258788 PMCID: PMC6584935 DOI: 10.7150/jca.31411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Invasive micropapillary carcinoma of the breast (IMPC) is a rare subtype of breast cancer that has a high frequency of lymph node (LN) involvement and metastasis to distant organs. IMPC is characterized by distinct histomorphology and unfavorable prognosis when compared with invasive ductal carcinoma no special type (IDC-NST). However, the underlying molecular mechanisms remain unclear. We reported here that plakoglobin, as a key component in cell adhesion, can promote collective metastasis through facilitating IMPC clusters formation. In comparing the clinicopathological features of 451 IMPC patients and 282 IDC-NST patients, our results showed that tumor emboli were significantly higher in IMPC patients and were associated with a high frequency of metastasis. Both in vitro and in vivo data showed overexpression of plakoglobin in both the cell membrane and the cytoplasm of IMPC clusters. When plakoglobin was knocked down in IMPC cell models, the tumor cell clusters were depolymerized. Using mouse models, we validated the metastatic potential of tumor clusters was higher than single cells in vivo. Further analysis showed that higher expression of plakoglobin was able to promote activation of the PI3K/Akt/Bcl-2 pathway, which might protect the clusters from anoikis. Our data indicate that plakoglobin promotes tumor cluster formation in IMPC and downregulates apoptosis in the cell clusters through activation of PI3K/Akt/Bcl-2 signaling. These results provide a convincing rationale for the high metastatic propensity seen in IMPC.
Collapse
Affiliation(s)
- Lan Huang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yang Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Qijia Xuan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Liru Li
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoping Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jingtong Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chengwei Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
17
|
Cserni G, Charafe-Jauffret E, van Diest P. Inflammatory breast cancer: The pathologists' perspective. Eur J Surg Oncol 2018; 44:1128-1134. [DOI: 10.1016/j.ejso.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
|
18
|
Kai K, Iwamoto T, Zhang D, Shen L, Takahashi Y, Rao A, Thompson A, Sen S, Ueno NT. CSF-1/CSF-1R axis is associated with epithelial/mesenchymal hybrid phenotype in epithelial-like inflammatory breast cancer. Sci Rep 2018; 8:9427. [PMID: 29930294 PMCID: PMC6013474 DOI: 10.1038/s41598-018-27409-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare subtype of breast cancer, accounting for 8–10% of breast cancer-associated deaths in the US. Clinical hallmarks of IBC include tumor emboli in lymphatic vessels and E-cadherin overexpression, which supports a type of metastasis referred to as cell cluster-based metastasis, prevalent in IBC. In contrast, we previously reported epithelial-to-mesenchymal transition (EMT)-based progression of IBC, utilizing in vivo xenografts and in vitro Matrigel culture models. To address these two contradictory concepts of IBC metastasis, we used Matrigel culture to induce EMT in a panel of IBC cells. Results revealed Matrigel culture induced vimentin expression in SUM149 and SUM190 IBC cells at the transcriptional and protein levels while maintaining the expression of E-cadherin, a phenomenon referred to as partial EMT. Transcriptional profiling revealed that expression of colony-stimulating factor 1 (CSF-1) was induced in Matrigel culture. When the receptor tyrosine kinase of CSF-1 (CSF-1R) was inhibited by CSF-1R inhibitor BLZ945, the partial EMT was reversed in a dose-dependent manner, indicating that the CSF-1/CSF-1R axis plays a key role in controlling partial EMT. This observation may help reconcile the two contradictory theories of IBC metastasis, EMT vs cell cluster-based metastasis.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Takayuki Iwamoto
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Dongwei Zhang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuko Takahashi
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alastair Thompson
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
19
|
Martín-Ruiz A, Peña L, González-Gil A, Díez-Córdova LT, Cáceres S, Illera JC. Effects of indole-3-carbinol on steroid hormone profile and tumor progression in a mice model of canine inflammatory mammarycancer. BMC Cancer 2018; 18:626. [PMID: 29866056 PMCID: PMC5987405 DOI: 10.1186/s12885-018-4518-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Indole-3-carbinol, derived from Cruciferous vegetables is an estrogen receptor antagonist considered a preventive agent that is naturally present in diet. There are no previous studies on its effects in human inflammatory breast cancer or canine inflammatory mammary cancer that is the most aggressive type of breast cancer. Methods The aim of this study was to analyze the effect of indole-3-carbinol on a SCID mice xenograft model of canine inflammatory mammary cancer, using equivalent human oral dose as a preventive therapy in humans for 3 weeks. Results Indole-3-carbinol treatment decreased tumor proliferation and increased apoptosis, although tumor embolization and liver metastasis were observed in some animals. There was a characteristic subpopulation of lipid-rich cells and increased contents of select steroid hormones in tumor homogenates and serum. Conclusions Our data reveal for the first time that the ingestion of indole-3-carbinol, as administered, diminishes proliferation and increases apoptosis of tumor cells in an experimental model of inflammatory breast cancer, although this effect could not be enough to avoid the appearance of tumor embolization and metastasis. Future clinical trials will be needed to clarify the usefulness of indole-3-carbinol in this cancer and to understand the molecular mechanisms involved.
Collapse
Affiliation(s)
- Asunción Martín-Ruiz
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Alfredo González-Gil
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Lucía Teresa Díez-Córdova
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Sara Cáceres
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Chebouti I, Kasimir-Bauer S, Buderath P, Wimberger P, Hauch S, Kimmig R, Kuhlmann JD. EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget 2018; 8:48820-48831. [PMID: 28415744 PMCID: PMC5564727 DOI: 10.18632/oncotarget.16179] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/27/2017] [Indexed: 01/10/2023] Open
Abstract
Background Assuming that tumor cell dissemination requires a shift to a mesenchymal phenotype, we analyzed the incidence of epithelial-to-mesenchymal-transition (EMT)-like circulating tumor cells (CTCs) in ovarian cancer patients and inquired, how their molecular phenotypes respond to platinum-based chemotherapy and influence outcome. Results Before surgery, overall detection rate for epithelial CTCs was 18%. EMT-like CTCs were more frequently observed (30%) and were mutually exclusive to epithelial CTCs in the majority of patients (82%). After chemotherapy, EMT-like CTCs increased up to 52%, accompanied by the “de novo” emergence of PI3Kα+/Twist+ EMT-like CTCs. Before surgery, PI3K+ EMT-like CTCs in combination with epithelial CTCs indicated decreased OS (p = 0.02) and FIGO I-III patients with residual tumor burden after surgery were more likely to be positive for EMT-like CTCs after chemotherapy (p = 0.02). In the latter group, epithelial CTCs alone significantly correlated with decreased PFS and OS (p = 0.02, p = 0.002), supported by an additional inclusion of PI3K+ CTCs (OS, p = 0.001). Materials and Methods Blood samples of 91 ovarian cancer patients before surgery and 31 matched samples after adjuvant chemotherapy were evaluated for CTCs with the AdnaTest ovarian cancer and EMT-1, analyzing the epithelial-associated transcripts EpCAM, Muc-1 and CA125 and the EMT-associated transcripts PI3Kα, Akt-2 and Twist. Conclusions Platinum-based chemotherapy seems to select for EMT-like CTCs in ovarian cancer patients and provokes a shift towards PI3Kα and Twist expressing CTCs, which may reflect clonal tumor evolution towards therapy resistance. It has to be determined, whether this CTC subgroup may serve as a biomarker to identify patients at high risk.
Collapse
Affiliation(s)
- Issam Chebouti
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
23
|
Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, Giles FJ, Cristofanilli M. Developmental therapeutics for inflammatory breast cancer: Biology and translational directions. Oncotarget 2017; 8:12417-12432. [PMID: 27926493 PMCID: PMC5355355 DOI: 10.18632/oncotarget.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America
| | - Cesar A Santa-Maria
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Giovanna Rossi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - William J Gradishar
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Massimo Cristofanilli
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| |
Collapse
|
24
|
Morimoto-Kamata R, Yui S. Insulin-like growth factor-1 signaling is responsible for cathepsin G-induced aggregation of breast cancer MCF-7 cells. Cancer Sci 2017; 108:1574-1583. [PMID: 28544544 PMCID: PMC5543509 DOI: 10.1111/cas.13286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Cathepsin G (CG), a neutrophil serine protease, induces cell migration and multicellular aggregation of human breast cancer MCF-7 cells in a process that is dependent on E-cadherin and CG enzymatic activity. While these tumor cell aggregates can cause tumor emboli that could represent intravascular growth and extravasation into the surrounding tissues, resulting in metastasis, the molecular mechanism underlying this process remains poorly characterized. In this study, we aimed to identify the signaling pathway that is triggered during CG-mediated stimulation of cell aggregation. Screening of a library of compounds containing approximately 90 molecular-targeting drugs revealed that this process was suppressed by the insulin-like growth factor-1 (IGF-1) receptor (IGF-1R)-specific kinase inhibitor OSI-906, as well as the multikinase inhibitors axitinib and sunitinib. Antibody array analysis, which is capable of detecting tyrosine phosphorylation of 49 distinct receptor tyrosine kinases, and the results of immunoprecipitation studies indicated that IGF-1R is phosphorylated in response to CG treatment. Notably, IGF-1R neutralization via treatment with a specific antibody or silencing of IGF-1R expression through siRNA transfection suppressed cell aggregation. Furthermore, CG treatment of MCF-7 cells resulted in increased release of IGF-1 into the medium for 24 h, while antibody-mediated IGF-1 neutralization partially prevented CG-induced cell aggregation. These results demonstrate that autocrine IGF-1 signaling is partly responsible for the cell aggregation induced by CG.
Collapse
Affiliation(s)
- Riyo Morimoto-Kamata
- Department of Pharma-Sciences, Laboratory of Host Defense, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Satoru Yui
- Department of Pharma-Sciences, Laboratory of Host Defense, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
Metastases claim more than 90% of cancer-related patient deaths and are usually seeded by a subset of circulating tumor cells shed off from the primary tumor. In circulation, circulating tumor cells are found both as single cells and as clusters of cells. The clusters of circulating tumor cells, although many fewer in number, possess much higher metastatic potential as compared to that of individual circulating tumor cells. In this review, we highlight recent insights into molecular mechanisms that can enable the formation of these clusters—(a) hybrid epithelial/mesenchymal phenotype of cells that couples their ability to migrate and adhere, and (b) intercellular communication that can spatially coordinate the cluster formation and provide survival signals to cancer cells. Building upon these molecular mechanisms, we also offer a possible mechanistic understanding of why clusters are endowed with a higher metastatic potential. Finally, we discuss the highly aggressive Inflammatory Breast Cancer as an example of a carcinoma that can metastasize via clusters and corroborates the proposed molecular mechanisms.
Collapse
|
26
|
Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C. Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn 2017; 247:432-450. [PMID: 28407379 DOI: 10.1002/dvdy.24506] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms supporting their metastatic competence. Developmental Dynamics 247:432-450, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Emilie Francart
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Justine Lambert
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Aline M Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, and Translational Research Institute Brisbane, and University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Morgane Bourcy
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S 903, University of Reims Champagne-Ardenne, Biopathology Laboratory, CHU of Reims, Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| |
Collapse
|
27
|
Mutational studies on single circulating tumor cells isolated from the blood of inflammatory breast cancer patients. Breast Cancer Res Treat 2017; 163:219-230. [PMID: 28271309 PMCID: PMC5410214 DOI: 10.1007/s10549-017-4176-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/25/2017] [Indexed: 12/13/2022]
Abstract
Purpose The molecular characterization of circulating tumor cells (CTCs) is critical to identify the key drivers of cancer metastasis and devising therapeutic approaches, particularly for inflammatory breast cancer (IBC) which is usually diagnosed at advance stages and progresses rapidly. Methods Genomic alterations in tumor tissue samples were studied using Foundation One™. Single CTCs were isolated using CellSearch followed by single-cell isolation by DEPArray™. Samples with 20 or more CTCs were chosen to isolate single CTCs using the DEPArray™. Results Genomic alterations were studied in primary tumor or metastatic sites from 32 IBC patients. Genes with high-frequency mutations were as follows: TP53 (69%), RB1 (16%), PIK3CA (13%), and also ErbB2 (3%). At least once during treatment, CTCs were detected in 26 patients with metastatic IBC, in two patients with locally advanced IBC, and four patients had no detectable CTCs. Per 7.5 mL of blood, fifteen patients (47%) had ≥20 CTCs and six of them were chosen at random to isolate single CTCs. These cells were tested for the presence of TP53, RB1, PIK3CA, and/or ErbB2 mutations previously found in matching tissue biopsies. The isolated CTCs showed the same mutations as primary or metastatic tumor samples. Intra-patient CTC heterogeneity was found by the presence of different CTC subclones, with some CTCs harboring different combinations of mutated and wild-type genes. Conclusions Our results indicate that CTCs could represent a non-invasive source of cancer cells from which to determine genetic markers as the disease progresses and identify potential therapeutic targets in IBC patients. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4176-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Carvalho S, Reis CA, Pinho SS. Cadherins Glycans in Cancer: Sweet Players in a Bitter Process. Trends Cancer 2016; 2:519-531. [PMID: 28741480 DOI: 10.1016/j.trecan.2016.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 01/23/2023]
Abstract
Cadherins are key components in tissue morphogenesis and architecture, contributing to the establishment of cohesive cell adhesion. Reduced cellular adhesiveness as a result of cadherin dysfunction is a defining feature of cancer. During tumor development and progression, major changes in the glycan repertoire of cancer cells take place, affecting the stability, trafficking, and cell-adhesion properties of cadherins. Importantly, the different glycoforms of cadherins are promising biomarkers, with potential clinical application to improve the management of patients, and constitute targets for the development of new therapies. This review discusses the most recent insights on the impact of glycan structure on the regulation of cadherin function in cancer, and provides a perspective on how cadherin glycans constitute tumor biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Sandra Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal; Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Salomé S Pinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-465 Porto, Portugal; Medical Faculty, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
29
|
Sarli G, Preziosi R, De Tolla L, Brunetti B, Benazzi C. E-Cadherin Immunoreactivity in Canine Mammary Tumors. J Vet Diagn Invest 2016; 16:542-7. [PMID: 15586569 DOI: 10.1177/104063870401600608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The reduction or loss of E-cadherin (E-cad), a calcium-dependent epithelial cell adhesion molecule, has been associated with tumor dedifferentiation and invasiveness. The immunohistochemical pattern of E-cad expression was evaluated in formalin-fixed and paraffin-embedded sections of 6 normal mammary glands, 3 dysplasias, 12 benign tumors (8 benign mixed tumors, 4 adenomas), and 60 malignant tumors (12 stage 0, 29 stage I, 19 stage II) of the canine mammary gland. E-cadherin expression was classified as membranous, when on cell–cell boundaries, or as cytoplasmic, when in the form of a diffuse cytoplasmic staining. In addition, the percentage of E-cad–positive epithelial neoplastic cells was graded by a semiquantitative method, categorizing cases into a reduced (or -) type group, when showing less than 25% positivity, a reduced (or +/-) type group, when showing 25–75% positivity, and a preserved (or +) type group, when more than 75% positive cells were present. In the normal mammary gland, E-cad expression was evident in epithelial luminal cells. A stronger positivity was revealed in ductular than in alveolar luminal cells. The myoepithelial cells showed inconsistent, weak cytoplasmic positivity in the normal gland as well as in mammary tumors. In normal glands and benign and malignant noninvasive tumors, E-cad expression was mainly membranous and preserved in most of the epithelial cells. In stage I tumors, both membranous (38%) and cytoplasmic (62%) positivity were well represented, as well as preserved type (55%) and reduced type (45%) tumors. All stage II malignant tumors showed the highest frequency of cytoplasmic positivity (79%) and reduced type (62%) tumors.
Collapse
Affiliation(s)
- Giuseppe Sarli
- Department of Veterinary Public Health and Animal Pathology, University of Bologna, Ozzano Emilia, 60066 Bologna, Italy
| | | | | | | | | |
Collapse
|
30
|
Salem I, Alsalahi M, Chervoneva I, Aburto LD, Addya S, Ott GR, Ruggeri BA, Cristofanilli M, Fernandez SV. The effects of CEP-37440, an inhibitor of focal adhesion kinase, in vitro and in vivo on inflammatory breast cancer cells. Breast Cancer Res 2016; 18:37. [PMID: 27009091 PMCID: PMC4806466 DOI: 10.1186/s13058-016-0694-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive type of advanced breast cancer with a poor prognosis. We recently found that focal adhesion kinase 1 (FAK1) is upregulated and phosphorylated (active) in IBC. In this study, we investigated the effect of CEP-37440, a dual inhibitor of FAK1 and anaplastic lymphoma kinase (ALK), using human IBC cell lines and preclinical models of IBC. METHODS Cell proliferation assays were performed in the presence of several concentrations of CEP-37440 using IBC and triple-negative breast cancer non-IBC cell lines. In vitro, we studied the expression of total FAK1, phospho-FAK1 (Tyr 397), total ALK and phospho-ALK (Tyr 1604). In vivo, we tested CEP-37440 using FC-IBC02, SUM149, and SUM190 IBC xenograft mouse models. RESULTS CEP-37440 at low concentration decreased the proliferation of the IBC cell lines FC-IBC02, SUM190, and KPL4, while not affecting the proliferation of normal breast epithelial cells. At higher concentration, CEP-37440 was also able to inhibit the proliferation of the IBC cell line MDA-IBC03 and the triple-negative non-IBC cell lines MDA-MB-231 and MDA-MB-468; the IBC cell line SUM149 showed a slight response to the drug. CEP-37440 decreased the cell proliferation of FC-IBC02, SUM190, and KPL4 by blocking the autophosphorylation kinase activity of FAK1 (Tyr 397). None of the cells evaluated expressed ALK. In vivo, after 7 weeks of CEP-37440 treatment, the SUM190, FC-IBC02, and SUM149 breast tumor xenografts were smaller in mice treated with 55 mg/kg bid CEP-37440 compared to the controls; the tumor growth inhibition (TGI) was 79.7 %, 33 %, and 23 %, respectively. None of the FC-IBC02 breast xenografts mice treated with CEP-37440 developed brain metastasis while 20 % of the mice in the control group developed brain metastasis. Expression array analyses in FC-IBC02 cells showed that CEP-37440 affects the expression of genes related to apoptosis, interferon signaling, and cytokines. CONCLUSIONS CEP-37440 is effective against some IBC cells that express phospho-FAK1 (Tyr 397), and its antiproliferative activity is related to its ability to decrease phospho-FAK1. Our results suggest that combinational therapies could be more effective than using CEP-37440 as a single agent.
Collapse
Affiliation(s)
- Israa Salem
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manal Alsalahi
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucy D Aburto
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sankar Addya
- Cancer Genomics Facility, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory R Ott
- Teva Branded Pharmaceutical Products R&D, West Chester, PA, USA
| | - Bruce A Ruggeri
- Teva Branded Pharmaceutical Products R&D, West Chester, PA, USA.,Present address: Incyte Pharmaceuticals, Wilmington, DE, USA
| | - Massimo Cristofanilli
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Present address: Department of Medicine - Hematology and Oncology, Robert H. Curie, Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Sandra V Fernandez
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Woodward WA. Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol 2016; 16:e568-e576. [PMID: 26545845 DOI: 10.1016/s1470-2045(15)00146-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Through the concerted efforts of many patients, health-care providers, legislators, and other supporters, the past decade has seen the development of the first clinics dedicated to the care of patients with inflammatory breast cancer in the USA and other countries. Together with social networking, advocacy, and education, a few specialised centres have had substantial increases in patient numbers (in some cases ten times higher), which has further expanded the community of science and advocacy and increased the understanding of the disease process. Although inflammatory breast cancer is considered rare, constituting only 2-4% of breast cancer cases, poor prognosis means that patients with the disease account for roughly 10% of breast cancer mortality annually in the USA. I propose that the unique presentation of inflammatory breast cancer might require specific, identifiable changes in the breast parenchyma that occur before the tumour-initiating event. This would make the breast tissue itself a tumour-promoting medium that should be treated as a component of the pathology in multidisciplinary treatment and should be further studied for complementary targets to inhibit the pathobiology that is specific to inflammatory breast cancer.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology and MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA. Molecular Mechanisms Underlying Lymphovascular Invasion in Invasive Breast Cancer. Pathobiology 2015; 82:113-23. [DOI: 10.1159/000433583] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells. Mol Cell Biochem 2014; 393:237-45. [PMID: 24771070 DOI: 10.1007/s11010-014-2066-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/12/2014] [Indexed: 12/30/2022]
Abstract
Cancer cell aggregation has been long known to facilitate metastatic potential of cancer cells. In addition, the presence of nitric oxide (NO) in cancer area may have a significant impact on aggregation behavior of the cells. We show herein that lung cancer H460 cells possessing high ability of anoikis resistance formed loose aggregates in detached condition. Importantly, NO treatment tightened the aggregates by enhancing cell-cell interaction via E-cadherin-dependent mechanism, and such E-cadherin contact increased anoikis resistance potential by up-regulating pro-survival signals of the cells including active ATP-dependent tyrosine kinase and extracellular-regulated protein kinases (ERK1/2). Since an increase of E-cadherin was frequently found in mesenchymal to epithelial transition (MET) process, we further tested the cells for MET markers and found that NO treatment of these cells significantly enhanced MET. As aggregation and MET of cancer cells may facilitate cancer metastasis by many means, the insights gained from the present study could benefit the deep understanding in the biology of cancer cell metastasis.
Collapse
|
34
|
Markiewicz A, Książkiewicz M, Wełnicka-Jaśkiewicz M, Seroczyńska B, Skokowski J, Szade J, Żaczek AJ. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLoS One 2014; 9:e93901. [PMID: 24709997 PMCID: PMC3977989 DOI: 10.1371/journal.pone.0093901] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/09/2014] [Indexed: 11/30/2022] Open
Abstract
Introduction Circulating tumor cells (CTCs) that present mesenchymal phenotypes can escape standard methods of isolation, thus limiting possibilities for their characterization. Whereas mesenchymal CTCs are considered to be more malignant than epithelial CTCs, factors responsible for this aggressiveness have not been thoroughly defined. This study analyzed the molecular profile related to metastasis formation potential of CTC-enriched blood fractions obtained by marker unbiased isolation from breast cancer patients without (N−) and with lymph nodes metastases (N+). Materials and Methods Blood samples drawn from 117 patients with early-stage breast cancer were enriched for CTCs using density gradient centrifugation and negative selection with anti-CD45 covered magnetic particles. In the resulting CTC-enriched blood fractions, expression of CK19, MGB1, VIM, TWIST1, SNAIL, SLUG, HER2, CXCR4 and uPAR was analyzed with qPCR. Results were correlated with patients' clinicopathological data. Results CTCs (defined as expression of either CK19, MGB1 or HER2) were detected in 41% (20/49) of N− and 69% (34/49) of N+ patients (P = 0.004). CTC-enriched blood fractions of N+ patients were more frequently VIM (P = 0.02), SNAIL (P = 0.059) and uPAR-positive (P = 0.03). Positive VIM, CXCR4 and uPAR status correlated with >3 lymph nodes involved (P = 0.003, P = 0.01 and P = 0.045, respectively). In the multivariate logistic regression MGB1 and VIM-positivity were independently related to lymph node involvement with corresponding overall risk of 3.2 and 4.2. Moreover, mesenchymal CTC-enriched blood fractions (CK19−/VIM+ and MGB1+ or HER2+) had 4.88 and 7.85-times elevated expression of CXCR4 and uPAR, respectively, compared with epithelial CTC-enriched blood fractions (CK19+/VIM− and MGB1+ or HER2+). Conclusions Tumors of N+ patients have superior CTC-seeding and metastatic potential compared with N- patients. These differences can be attributed to VIM, uPAR and CXCR4 expression, which endow tumor cells with particularly malignant phenotypes.
Collapse
Affiliation(s)
- Aleksandra Markiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Książkiewicz
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Barbara Seroczyńska
- Bank of Frozen Tissues and Genetic Specimens, Department of Medical Laboratory Diagnostics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jarosław Skokowski
- Bank of Frozen Tissues and Genetic Specimens, Department of Medical Laboratory Diagnostics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna J. Żaczek
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
35
|
Levine PH, Hoffman HJ, MacNeil A, Hashmi S, Yang SX, Hewitt S, Golen KLV, Swain SM. Prognostic Value of Lymphocyte Vascular Density and E-Cadherin in Inflammatory Breast Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.514139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Yeh ED, Jacene HA, Bellon JR, Nakhlis F, Birdwell RL, Georgian-Smith D, Giess CS, Hirshfield-Bartek J, Overmoyer B, Van den Abbeele AD. What Radiologists Need to Know about Diagnosis and Treatment of Inflammatory Breast Cancer: A Multidisciplinary Approach. Radiographics 2013; 33:2003-17. [DOI: 10.1148/rg.337135503] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Mu Z, Li H, Fernandez SV, Alpaugh KR, Zhang R, Cristofanilli M. EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:70. [PMID: 24294976 PMCID: PMC3850122 DOI: 10.1186/1756-9966-32-70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022]
Abstract
Introduction Inflammatory breast cancer (IBC) is the most metastatic variant of breast cancer with the poorest survival in all types of breast cancer patients and presently therapeutic targets for IBC are very limited. Enhancer of zeste homolog 2 (EZH2) is frequently expressed in human IBC and its expression positively correlates with worse clinical outcome. However, the molecular basis for EZH2 promoting IBC has not been explored. Here, we investigated the functional role of EZH2 in IBC cells by examining the effects of its knockdown on the formation of tumor spheroids and invasion of these cells in vitro and in vivo in an orthotopic xenograft model. Methods SUM149 and a new IBC cell line-FC-IBC-02 derived from pleural effusion fluid of an IBC patient were used in this study. Specific knockdown of EZH2 was performed using short hairpin RNA (shRNA) specific to the human EZH2 gene. Cell growth and the formation of tumor spheroids were examined in vitro. The effects of EZH2 knockdown on IBC cell migration and invasion were examined by a Boyden chamber assay. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. Results The results showed that EZH2 is expressed at higher levels in human IBC cell lines compared with normal human mammary epithelial cells, and the knockdown of EZH2 expression significantly suppressed cell growth and tumor spheroid formation of human IBC cells in vitro. In addition, EZH2 knockdown inhibited the migration and invasion of IBC cells. Significantly, EZH2 knockdown suppressed the angiogenesis and tumor growth of IBC cells in vivo. Conclusions Our results provide direct evidence that EZH2 is critical for the formation of tumor spheroids and invasion of human IBC cells and could be a potential target for developing novel therapeutic strategies for human IBC.
Collapse
|
38
|
Howard JD, Moriarty WF, Park J, Riedy K, Panova IP, Chung CH, Suh KY, Levchenko A, Alani RM. Notch signaling mediates melanoma-endothelial cell communication and melanoma cell migration. Pigment Cell Melanoma Res 2013; 26:697-707. [DOI: 10.1111/pcmr.12131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/11/2013] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | - Katherine Riedy
- Department of Dermatology; Boston University School of Medicine; Boston; MA; USA
| | - Izabela P. Panova
- Department of Dermatology; Boston University School of Medicine; Boston; MA; USA
| | | | - Kahp-Yang Suh
- School of Mechanical and Aerospace Engineering; Seoul National University; Seoul; South Korea
| | | | | |
Collapse
|
39
|
Fernandez SV, Robertson FM, Pei J, Aburto-Chumpitaz L, Mu Z, Chu K, Alpaugh RK, Huang Y, Cao Y, Ye Z, Cai KQ, Boley KM, Klein-Szanto AJ, Devarajan K, Addya S, Cristofanilli M. Inflammatory breast cancer (IBC): clues for targeted therapies. Breast Cancer Res Treat 2013; 140:23-33. [PMID: 23784380 PMCID: PMC4273486 DOI: 10.1007/s10549-013-2600-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/06/2013] [Indexed: 01/26/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive type of advanced breast cancer characterized by rapid proliferation, early metastatic development and poor prognosis. Since there are few preclinical models of IBC, there is a general lack of understanding of the complexity of the disease. Recently, we have developed a new model of IBC derived from the pleural effusion of a woman with metastatic secondary IBC. FC-IBC02 cells are triple negative and form clusters (mammospheres) in suspension that are strongly positive for E-cadherin, β-catenin and TSPAN24, all adhesion molecules that play an important role in cell migration and invasion. FC-IBC02 cells expressed stem cell markers and some, but not all of the characteristics of cells undergoing epithelial mesenchymal transition (EMT). Breast tumor FC-IBC02 xenografts developed quickly in SCID mice with the presence of tumor emboli and the development of lymph node and lung metastases. Remarkably, FC-IBC02 cells were able to produce brain metastasis in mice on intracardiac or intraperitoneal injections. Genomic studies of FC-IBC02 and other IBC cell lines showed that IBC cells had important amplification of 8q24 where MYC, ATAD2 and the focal adhesion kinase FAK1 are located. MYC and ATAD2 showed between 2.5 and 7 copies in IBC cells. FAK1, which plays important roles in anoikis resistance and tumor metastasis, showed 6–4 copies in IBC cells. Also, CD44 was amplified in triple-negative IBC cells (10–3 copies). Additionally, FC-IBC02 showed amplification of ALK and NOTCH3. These results indicate that MYC, ATAD2, CD44, NOTCH3, ALK and/or FAK1 may be used as potential targeted therapies against IBC.
Collapse
|
40
|
Bednarz-Knoll N, Alix-Panabières C, Pantel K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 2013; 31:673-87. [PMID: 22733306 DOI: 10.1007/s10555-012-9370-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current models suggest that at a certain but yet undefined time point of tumour development malignant cells with an aggressive phenotype start to disseminate via the blood stream into distant organs. This invasive phenotype appears to be associated with an epithelial-mesenchymal transition (EMT), which enables detachment of tumour cells from a primary site and migration. The reverse process of mesenchymal-epithelial transition (MET) might play a crucial role in the further steps of metastasis when circulating tumour cells (CTCs) settle down in distant organs and establish (micro-)metastasis. Nevertheless, the exact mechanisms and interplay of EMT and MET are only partially understood and their relevance in cancer patients is unclear. Research groups have just started to apply EMT-related markers in their studies on CTCs in cancer patients. In the present review, we summarize and discuss the current state of investigations on CTCs in the context of research on EMT/MET.
Collapse
Affiliation(s)
- Natalia Bednarz-Knoll
- Department of Tumour Biology, Center of Experimental Medicine, University Cancer Center Hamburg, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | |
Collapse
|
41
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
42
|
Lehman HL, Dashner EJ, Lucey M, Vermeulen P, Dirix L, Van Laere S, van Golen KL. Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Int J Cancer 2012; 132:2283-94. [PMID: 23129218 DOI: 10.1002/ijc.27928] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/10/2012] [Indexed: 12/11/2022]
Abstract
Inflammatory breast cancer (IBC) is the deadliest form of breast cancer, presenting as intralymphatic emboli. Emboli within the dermal lymphatic vessels are thought to contribute to rapid metastasis. The lack of appropriate in vitro models has made it difficult to accurately study how IBC emboli metastasize. To date, attempts at creating IBC tumor emboli in vitro have used 3D culture on a solid layer of Matrigel(TM) , which does not resemble the physical properties of the lymphatic system. Dermal lymphatic fluid produces oscillatory fluid shear forces and is 1.5-1.7-fold more viscous than water with a pH range of 7.5-7.7. We have established a method for forming tumor emboli by culturing the IBC cell lines in suspension with either polyethylene glycol- or hyaluronic acid-containing medium and oscillatory fluid shear forces. Non-IBC cells do not form emboli under identical conditions. In vitro IBC emboli were analyzed for expression of markers associated with patient emboli and their ability to undergo invasion. In a direct comparison, the in vitro IBC emboli closely resemble IBC patient emboli with respect to size, composition and E-cadherin expression. Further, cells from the emboli are able to invade in clusters via RhoC GTPase-dependent amoeboid movement. Invasion by clusters of IBC cells is disrupted by exposure to TGFβ. This study provides a biologically relevant in vitro model to accurately grow and study inflammatory breast cancer biology and metastasis.
Collapse
Affiliation(s)
- Heather L Lehman
- Laboratory for Cytoskeletal Physiology, Department of Biological Sciences, The University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin's dark side: possible role in tumor progression. Biochim Biophys Acta Rev Cancer 2012; 1826:23-31. [PMID: 22440943 DOI: 10.1016/j.bbcan.2012.03.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
In the context of cancer, E-cadherin has traditionally been categorized as a tumor suppressor, given its essential role in the formation of proper intercellular junctions, and its downregulation in the process of epithelial-mesenchymal transition (EMT) in epithelial tumor progression. Germline or somatic mutations in the E-cadherin gene (CDH1) or downregulation by epigenetic mechanisms have been described in a small subset of epithelial cancers. However, recent evidence also points toward a promoting role of E-cadherin in several aspects of tumor progression. This includes preserved (or increased) E-cadherin expression in microemboli of inflammatory breast carcinoma, a possible "mesenchymal to epithelial transition" (MET) in ovarian carcinoma, collective cell invasion in some epithelial cancers, a recent association of E-cadherin expression with a more aggressive brain tumor subset, as well as the intriguing possibility of E-cadherin involvement in specific signaling networks in the cytoplasm and/or nucleus. In this review we address a lesser-known, positive role for E-cadherin in cancer.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
44
|
Analysis of Circulating Tumor Cells in Patients with Non-small Cell Lung Cancer Using Epithelial Marker-Dependent and -Independent Approaches. J Thorac Oncol 2012; 7:306-15. [DOI: 10.1097/jto.0b013e31823c5c16] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Martínez-Montemayor MM, Acevedo RR, Otero-Franqui E, Cubano LA, Dharmawardhane SF. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer. Nutr Cancer 2011; 63:1085-94. [PMID: 21888505 DOI: 10.1080/01635581.2011.601845] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.
Collapse
|
46
|
Saldova R, Reuben J, Abd Hamid U, Rudd P, Cristofanilli M. Levels of specific serum N-glycans identify breast cancer patients with higher circulating tumor cell counts. Ann Oncol 2011; 22:1113-1119. [DOI: 10.1093/annonc/mdq570] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
47
|
Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, Charpin C, Houvenaeghel G, Jacquemier J, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One 2011; 6:e16950. [PMID: 21339811 PMCID: PMC3037286 DOI: 10.1371/journal.pone.0016950] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. METHODOLOGY/FINDINGS Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent "complex" patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs. The percentage of genes whose mRNA expression correlated with CNAs was similar in both types for the gained genes, but ∼7-fold lower in IBCs for the lost genes. Integrated analysis identified 24 potential candidate IBC-specific genes. Their combined expression accurately distinguished IBCs and nIBCS in an independent validation set, and retained an independent prognostic value in a series of 1,781 nIBCs, reinforcing the hypothesis for a link with IBC aggressiveness. Consistent with the hyperproliferative and invasive phenotype of IBC these genes are notably involved in protein translation, cell cycle, RNA processing and transcription, metabolism, and cell migration. CONCLUSIONS Our results suggest a higher genomic instability of IBC. We established the first repertory of DNA copy number alterations in this tumor, and provided a list of genes that may contribute to its aggressiveness and represent novel therapeutic targets.
Collapse
Affiliation(s)
- Ismahane Bekhouche
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Pascal Finetti
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - José Adelaïde
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Anthony Ferrari
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Université de la Méditerranée, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Colette Charpin
- Université de la Méditerranée, Marseille, France
- Department of Pathology, Hôpital Nord, Marseille, France
| | | | - Jocelyne Jacquemier
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Ghislain Bidaut
- Bioinformatics, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Daniel Birnbaum
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Max Chaffanet
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - François Bertucci
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
48
|
Xiao Y, Ye Y, Zou X, Jones S, Yearsley K, Shetuni B, Tellez J, Barsky SH. The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene 2010; 30:287-300. [PMID: 20838375 DOI: 10.1038/onc.2010.405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory breast carcinoma (IBC) is characterized by exaggerated lymphovascular invasion (LVI), recapitulated in our human xenograft, MARY-X. This model exhibited lymphovascular emboli in vivo and corresponding spheroids in vitro. Owing to the morphological and gene profile resemblance of these spheroids to embryonal blastocysts, we wondered whether they might exhibit embryonic stem cell signaling. Specifically we investigated Notch and observed selective Notch 3 activation by expression profiling, reverse transcriptase- and real-time PCR, western blot and immunofluorescence in vitro, and immunohistochemistry in vivo. Notch 3 intracellular domain (N3icd) and six target genes, HES-5, HEY-1, c-Myc, Deltex-1, NRARP and PBX1, markedly increased in MARY-X. In addition, a significant percentage of MARY-X cells expressed aldehyde dehydrogenase (ALDH), a stem cell marker. Only the ALDH(+) cells were capable of secondary spheroidgenesis, tumorigenicity and self-renewal. Inhibiting Notch 3 activation in vitro with γ-secretase inhibitors (GSIs) or small interfering RNA resulted in a downregulation of Notch target genes, including CD133, and an induction of caspase 3-mediated apoptosis. Transfection of N3icd but not Notch 1 intracellular domain into normal human mammary epithelial cells resulted in increased expression of Notch target genes and induction of spheroidgenesis. GSI in vivo resulted in inhibitory but diffusion-limited effects on Notch 3 signaling, resulting in xenograft growth reduction. The lymphovascular emboli of human IBC exhibited dual N3icd and ALDH1 immunoreactivities independently of molecular subtype. This Notch 3 addiction of lymphovascular emboli might be exploited in future therapeutic strategies.
Collapse
Affiliation(s)
- Y Xiao
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM, Krishnamurthy S, Ferrari M, Gaspar R, Buchholz TA, Cristofanilli M, Marini F, Andreeff M, Woodward WA. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 2010; 5:e12180. [PMID: 20808935 PMCID: PMC2922340 DOI: 10.1371/journal.pone.0012180] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/26/2010] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as "mammospheres" in three-dimensional cultures. OBJECTIVE We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation. RESULTS We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC. CONCLUSIONS MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.
Collapse
Affiliation(s)
- Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lara Lacerda
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of NanoMedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Anshul Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bisrat G. Debeb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Travis Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Li Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Erika Spaeth
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wei Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - James M. Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mauro Ferrari
- Department of NanoMedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rogério Gaspar
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Thomas A. Buchholz
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Massimo Cristofanilli
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Frank Marini
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Andreeff
- Department of Stem Cell Transplant and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wendy A. Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vermeulen PB, van Golen KL, Dirix LY. Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 2010; 116:2748-54. [PMID: 20503405 DOI: 10.1002/cncr.25169] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This objective of the current review was to provide the reader with a comprehensive summary of the literature related to 3 important and inter-related features of the biology of inflammatory breast cancer (IBC): angiogenesis, lymphangiogenesis, and the formation of tumor emboli. Information derived from animal models of IBC as well as from translational studies using tissue samples of patients with IBC are discussed.
Collapse
Affiliation(s)
- Peter B Vermeulen
- Translational Cancer Research Group and Pathology Department, Cancer Center of the Saint-Augustinus Hospital, University of Antwerp, Wilrijk, Belgium.
| | | | | |
Collapse
|