1
|
Mançano ASF, Pina JG, Froes BR, Sciani JM. Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer's disease. Front Mol Biosci 2024; 11:1490275. [PMID: 39544403 PMCID: PMC11560772 DOI: 10.3389/fmolb.2024.1490275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss, attributed to amyloid-beta (Aβ) aggregation and accumulation. The autophagy-lysosomal pathway, including cathepsins B and D, is crucial for protein degradation and clearance, but it is impaired in some diseases. This review summarizes current knowledge on the dysregulation of this pathway in AD. Accumulating evidence suggests that Aβ overload impairs autophagy-lysosomal function and cathepsin activity, exacerbating Aβ accumulation and neurodegeneration. However, the precise mechanisms underlying these interactions remain elusive. Despite these challenges, targeting the lysosomal pathway emerges as a promising therapeutic strategy, and a comprehensive understanding of the autophagy-lysosomal system is essential to develop effective interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Juliana Mozer Sciani
- Laboratório de Produtos Naturais, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
2
|
Wongpan A, Panvongsa W, Krobthong S, Nutho B, Kanjanasirirat P, Jearawuttanakul K, Khumpanied T, Phlaetita S, Chabang N, Munyoo B, Tuchinda P, Ponpuak M, Borwornpinyo S, Chairoungdua A. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Sci Rep 2024; 14:22582. [PMID: 39343784 PMCID: PMC11439923 DOI: 10.1038/s41598-024-73186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) present a significant challenge due to its heterogeneity and limited treatment options, often resulting in severe side effects and poor survival rates with conventional chemoradiotherapy. Here, we investigated the anticancer activity of halogenated benzoate derivatives of cleistanthin A, ECDD-S16 and ECDD-S18, in HNSCC cells. Our findings revealed that ECDD-S18 exhibited remarkable cytotoxicity, surpassing that of cisplatin with minimal impact on normal and cisplatin-sensitive cells. Notably, ECDD-S18 induced apoptosis in a dose-dependent manner and effectively targeted vacuolar ATPase (V-ATPase), impairing lysosomal acidification. Intriguingly, ECDD-S18 inhibited autophagic flux, as evidenced by increased autophagosome but decreased autolysosome formation. Furthermore, proteomic analysis demonstrated downregulation of cathepsin D (CTSD), the lysosomal protease in ECDD-S18-treated HNSCC cells, concurrent with suppressed cell migration. ECDD-S18 also decreased expression of mesenchymal markers, suggesting inhibition of epithelial-mesenchymal transition (EMT). Importantly, cotreatment with ECDD-S18 and cisplatin enhanced the reduction in cell viability. Collectively, our results indicated that the anticancer activity of ECDD-S18 partly stems from its ability to disrupt lysosomal acidification and inhibit autophagy via targeted inhibition of V-ATPase. These findings underscore the therapeutic promise of ECDD-S18 in HNSCC treatment, either alone or in combination with existing drugs, while mitigating toxicity to normal cells.
Collapse
Affiliation(s)
- Anongnat Wongpan
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Wittaya Panvongsa
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Sureeporn Phlaetita
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Napason Chabang
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bamroong Munyoo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd., Ratchathewi, Bangkok, 10400, Thailand.
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand.
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
4
|
Desroys du Roure P, Lajoie L, Mallavialle A, Alcaraz LB, Mansouri H, Fenou L, Garambois V, Rubio L, David T, Coenon L, Boissière-Michot F, Chateau MC, Ngo G, Jarlier M, Villalba M, Martineau P, Laurent-Matha V, Roger P, Guiu S, Chardès T, Gros L, Liaudet-Coopman E. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer. J Immunother Cancer 2024; 12:e007135. [PMID: 38290768 PMCID: PMC10828871 DOI: 10.1136/jitc-2023-007135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) prognosis is poor. Immunotherapies to enhance the antibody-induced natural killer (NK) cell antitumor activity are emerging for TNBC that is frequently immunogenic. The aspartic protease cathepsin D (cath-D), a tumor cell-associated extracellular protein with protumor activity and a poor prognosis marker in TNBC, is a prime target for antibody-based therapy to induce NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This study investigated whether Fc-engineered anti-cath-D antibodies trigger ADCC, their impact on antitumor efficacy and tumor-infiltrating NK cells, and their relevance for combinatory therapy in TNBC. METHODS Cath-D expression and localization in TNBC samples were evaluated by western blotting, immunofluorescence, and immunohistochemistry. The binding of human anti-cath-D F1M1 and Fc-engineered antibody variants, which enhance (F1M1-Fc+) or prevent (F1M1-Fc-) affinity for CD16a, to secreted human and murine cath-D was analyzed by ELISA, and to CD16a by surface plasmon resonance and flow cytometry. NK cell activation was investigated by flow cytometry, and ADCC by lactate dehydrogenase release. The antitumor efficacy of F1M1 Fc-variants was investigated using TNBC cell xenografts in nude mice. NK cell recruitment, activation, and cytotoxic activity were analyzed in MDA-MB-231 cell xenografts by immunophenotyping and RT-qPCR. NK cells were depleted using an anti-asialo GM1 antibody. F1M1-Fc+ antitumor effect was assessed in TNBC patient-derived xenografts (PDXs) and TNBC SUM159 cell xenografts, and in combination with paclitaxel or enzalutamide. RESULTS Cath-D expression on the TNBC cell surface could be exploited to induce ADCC. F1M1 Fc-variants recognized human and mouse cath-D. F1M1-Fc+ activated NK cells in vitro and induced ADCC against TNBC cells and cancer-associated fibroblasts more efficiently than F1M1. F1M1-Fc- was ineffective. In the MDA-MB-231 cell xenograft model, F1M1-Fc+ displayed higher antitumor activity than F1M1, whereas F1M1-Fc- was less effective, reflecting the importance of Fc-dependent mechanisms in vivo. F1M1-Fc+ triggered tumor-infiltrating NK cell recruitment, activation and cytotoxic activity in MDA-MB-231 cell xenografts. NK cell depletion impaired F1M1-Fc+ antitumor activity, demonstrating their key role. F1M1-Fc+ inhibited growth of SUM159 cell xenografts and two TNBC PDXs. In combination therapy, F1M1-Fc+ improved paclitaxel and enzalutamide therapeutic efficacy without toxicity. CONCLUSIONS F1M1-Fc+ is a promising immunotherapy for TNBC that could be combined with conventional regimens, including chemotherapy or antiandrogens.
Collapse
Affiliation(s)
| | - Laurie Lajoie
- Université de Tours - INRAE, UMR1282, Infectiologie et Santé Publique (ISP), équipe BioMédicaments Anti-Parasitaires (BioMAP), Tours, France
| | - Aude Mallavialle
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | - Lindsay B Alcaraz
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | - Hanane Mansouri
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- RHEM, IRCM, Montpellier, France
| | - Lise Fenou
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | - Lucie Rubio
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | - Timothée David
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | - Loïs Coenon
- IRMB, University of Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
| | | | | | - Giang Ngo
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | - Martin Villalba
- IRMB, University of Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
| | - Pierre Martineau
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | - Pascal Roger
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- Department of Pathology, CHU Nîmes, Nimes, France
| | - Séverine Guiu
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Thierry Chardès
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- CNRS, Centre national de la recherche Scientifique, Paris, F-75016, France
| | - Laurent Gros
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
- CNRS, Centre national de la recherche Scientifique, Paris, F-75016, France
| | | |
Collapse
|
5
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
6
|
Kozak A, Mikhaylov G, Khodakivskyi P, Goun E, Turk B, Vasiljeva O. A New Cathepsin D Targeting Drug Delivery System Based on Immunoliposomes Functionalized with Lipidated Pepstatin A. Pharmaceutics 2023; 15:2464. [PMID: 37896224 PMCID: PMC10609775 DOI: 10.3390/pharmaceutics15102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cathepsin D is an aspartic protease and one of the most abundant proteases. It is overexpressed in many cancers and plays an important role in tumor development, progression, and metastasis. While it is a physiologically intracellular protein, cathepsin D is secreted into the extracellular matrix under pathological conditions, making it an appealing target for drug delivery systems. Here, we present the development and evaluation of a new delivery system for tumor targeting based on immunoliposomes functionalized with pepstatin A-a natural peptide inhibitor of cathepsin D. A lipid tail was added to pepstatin A, enabling its incorporation into the liposomal lipid bilayer. The successful targeting of cathepsin D was confirmed using recombinant cathepsin D and in tumor cell lines, showing the feasibility of this targeting approach and its potential for in vivo use in theragnostic applications.
Collapse
Affiliation(s)
- Andreja Kozak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- SwissLumix SARL, 1015 Lausanne, Switzerland
| | - Pavlo Khodakivskyi
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Elena Goun
- SwissLumix SARL, 1015 Lausanne, Switzerland
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Singh S, Maurya AK, Meena A, Mishra N, Luqman S. Myricitrin from bayberry as a potential inhibitor of cathepsin-D: Prospects for squamous lung carcinoma prevention. Food Chem Toxicol 2023; 179:113988. [PMID: 37586679 DOI: 10.1016/j.fct.2023.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Cathepsin-D (CATD) inhibitors' design and development drawn interest due to their potential therapeutic applications in managing different cancer types, including lung cancer. This study investigated myricitrin, a flavonol-3-O-rhamnoside, for its binding affinity to CATD. Molecular docking experiments revealed a strong binding affinity (-7.8 kcal/mol). Molecular dynamics (MD) simulation confirmed the complex's stability, while enzyme activity studies showed inhibitory concentration (IC50) of 35.14 ± 6.08 μM (in cell-free) and 16.00 ± 3.48 μM (in cell-based) test systems. Expression analysis indicated downregulation of CATD with a fold change of 1.35. Myricitrin demonstrated antiproliferative effects on NCIH-520 cells [IC50: 64.11 μM in Sulphorhodamine B (SRB), 24.44 μM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], but did not affect healthy CHANG cells. It also prolonged the G2/M phase (at 10 μM: 1.19-fold; at 100 μM: 1.13-fold) and increased sub-diploid population by 1.35-fold. Based on the analysis done using SwissADME program, it is predicted that myricitrin is not a cytochrome p450s (CYPs) inhibitor, followed the rule of Ghose and found not permeable to the blood-brain barrier (BBB) which suggests it as a safe molecule. In summary, the experimental findings may establish the foundation for myricitrin and its analogues to be used therapeutically in CATD-mediated lung cancer prevention.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akhilesh Kumar Maurya
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Shen Q, Pan X, Li Y, Li J, Zhang C, Jiang X, Liu F, Pang B. Lysosomes, curcumin, and anti-tumor effects: how are they linked? Front Pharmacol 2023; 14:1220983. [PMID: 37484013 PMCID: PMC10359997 DOI: 10.3389/fphar.2023.1220983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Curcumin is a natural active ingredient from traditional Chinese medicine (TCM) that has multi-target characteristics to exert extensive pharmacological activities and thus has been applied in the treatment of various diseases such as cancer, cardiovascular diseases, nervous system, and autoimmune disorders. As an important class of membranous organelles in the intracellular membrane system, lysosomes are involved in biological processes such as programmed cell death, cell metabolism, and immune regulation, thus affecting tumor initiation and progression. It has been shown that curcumin can modulate lysosomal function through the aforementioned pathways, thereby affecting tumor proliferation, invasion, metastasis, drug resistance, and immune function. This review briefly elaborated the regulatory mechanisms of lysosome biogenesis and summarized curcumin-related studies with its anti-tumor effect, providing a reference for the clinical application of curcumin and anti-tumor research targeting lysosomes.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Pan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Salardani M, Barcick U, Zelanis A. Proteolytic signaling in cancer. Expert Rev Proteomics 2023; 20:345-355. [PMID: 37873978 DOI: 10.1080/14789450.2023.2275671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Cancer is a disease of (altered) biological pathways, often driven by somatic mutations and with several implications. Therefore, the identification of potential markers of disease is challenging. Given the large amount of biological data generated with omics approaches, oncology has experienced significant contributions. Proteomics mapping of protein fragments, derived from proteolytic processing events during oncogenesis, may shed light on (i) the role of active proteases and (ii) the functional implications of processed substrates in biological signaling circuits. Both outcomes have the potential for predicting diagnosis/prognosis in diseases like cancer. Therefore, understanding proteolytic processing events and their downstream implications may contribute to advances in the understanding of tumor biology and targeted therapies in precision medicine. AREAS COVERED Proteolytic events associated with some hallmarks of cancer (cell migration and proliferation, angiogenesis, metastasis, as well as extracellular matrix degradation) will be discussed. Moreover, biomarker discovery and the use of proteomics approaches to uncover proteolytic signaling events will also be covered. EXPERT OPINION Proteolytic processing is an irreversible protein post-translational modification and the deconvolution of biological data resulting from the study of proteolytic signaling events may be used in both patient diagnosis/prognosis and targeted therapies in cancer.
Collapse
Affiliation(s)
- Murilo Salardani
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| |
Collapse
|
10
|
Zhao J, Zhang JQ, Li TT, Qiao S, Jiang SL. Promoting liver cancer cell apoptosis effect of Tribulus terrestris L. via reducing sphingosine level was confirmed by network pharmacology with metabolomics. Heliyon 2023; 9:e17612. [PMID: 37416661 PMCID: PMC10320314 DOI: 10.1016/j.heliyon.2023.e17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tribulus terrestris L. (TT) is one of the most common Chinese herbs and distributes in various regions in China. TT was first documented to treat breast cancer in Shen-Nong-Ben-Cao-Jing. However, the pharmacological activities of TT extract on liver cancer have not been reported. In this study, we investigated its anti-liver cancer activity and underlying mechanism. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to obtain the active ingredients and the targets of TT. Genecards database was employed to acquire TT targets in liver cancer. Furthermore, Venny 2.1, Cytoscape 3.8.2, DAVID 6.8 software were utilized to analyze the relationship between TT and liver cancer. In vivo experiment: The animal model of liver cancer was established by injection of H22 cells into Balb/c mice. After five days, drugs were intragastrically administered to the mice daily for 10 days. Body weight, tumor size and tumor weight were recorded. Tumor inhibitory rate was calculated. Protein levels were examined by Western blotting. Pathological changes of liver cancer tissues were evaluated by HE and Tunel staining. Metabolomics study: LC-MS was used to analyze different metabolites between model and TTM groups. Results 12 active ingredients of TT, 127 targets of active ingredients, 17,378 targets of liver cancer, and 125 overlapping genes were obtained. And then, 118 items of GO biological processes (BP), 54 items of GO molecular function (MF), 35 items of GO cellular component (CC) and 128 pathways of KEGG were gotten (P < 0.05). Moreover, 47 differential metabolites were affirmed and 66 pathways of KEGG (P < 0.05) were obtained. In addition, after TT and sorafenib treatment, tumor size was markedly reduced, respectively, compared with model group. Tumor weight was significantly decreased and tumor inhibitory rate was more than 44% in TTM group. After TT treatment, many adipocytes, cracks between tumor cells and apoptosis were found. The levels of pro-Cathepsin B, Cathepsin B, Bax, Bax/Bcl2, Caspase3 and Caspase7 were markedly increased, but the level of Bcl2 was significantly reduced after TT treatment. Conclusion TT has a broad range of effects on various signaling pathways and biological processes, including the regulation of apoptosis. It exhibits antitumor activity in an animal model of liver cancer and activates the apoptotic pathway by decreasing Sph level. This study provides valuable information regarding the potential use of TT extract in the treatment of liver cancer and highlights the importance of investigating the underlying molecular mechanisms of traditional medicines for the development of new therapeutic drugs in liver cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jia-Qi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Tan-Tan Li
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Shu-Long Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, China
| |
Collapse
|
11
|
Mustafa A, Elkhamisy F, Arghiani N, Pranjol MZI. Potential crosstalk between pericytes and cathepsins in the tumour microenvironment. Biomed Pharmacother 2023; 164:114932. [PMID: 37236029 DOI: 10.1016/j.biopha.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer remains a formidable global health challenge, and as such, investigators are constantly exploring underlying mechanisms that drive its progression. One area of interest is the role of lysosomal enzymes, such as cathepsins, in regulating cancer growth and development in the tumour microenvironment (TME). Pericytes, a key component of vasculature, play a key role in regulating blood vessel formation in the TME, have been shown to be influenced by cathepsins and their activity. Although cathepsins such as cathepsins D and L have been shown to induce angiogenesis, currently no direct link is known between pericytes and cathepsins interaction. This review aims to shed light on the potential interplay between pericytes and cathepsins in the TME, highlighting the possible implications for cancer therapy and future research directions.
Collapse
Affiliation(s)
- A Mustafa
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - F Elkhamisy
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - N Arghiani
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - M Z I Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
12
|
Kumar AA, Vine KL, Ranson M. Recent Advances in Targeting the Urokinase Plasminogen Activator with Nanotherapeutics. Mol Pharm 2023. [PMID: 37119285 DOI: 10.1021/acs.molpharmaceut.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The aberrant proteolytic landscape of the tumor microenvironment is a key contributor of cancer progression. Overexpression of urokinase plasminogen activator (uPA) and/or its associated cell-surface receptor (uPAR) in tumor versus normal tissue is significantly associated with worse clinicopathological features and poorer patient survival across multiple cancer types. This is linked to mechanisms that facilitate tumor cell invasion and migration, via direct and downstream activation of various proteolytic processes that degrade the extracellular matrix─ultimately leading to metastasis. Targeting uPA has thus long been considered an attractive anticancer strategy. However, poor bioavailability of several uPA-selective small-molecule inhibitors has limited early clinical progress. Nanodelivery systems have emerged as an exciting method to enhance the pharmacokinetic (PK) profile of existing chemotherapeutics, allowing increased circulation time, improved bioavailability, and targeted delivery to tumor tissue. Combining uPA inhibitors with nanoparticle-based delivery systems thus offers a remarkable opportunity to overcome existing PK challenges associated with conventional uPA inhibitors, while leveraging potent candidates into novel targeted nanotherapeutics for an improved anticancer response in uPA positive tumors.
Collapse
Affiliation(s)
- Ashna A Kumar
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
13
|
Alcaraz LB, Mallavialle A, Mollevi C, Boissière-Michot F, Mansouri H, Simony-Lafontaine J, Laurent-Matha V, Chardès T, Jacot W, Turtoi A, Roger P, Guiu S, Liaudet-Coopman E. SPARC in cancer-associated fibroblasts is an independent poor prognostic factor in non-metastatic triple-negative breast cancer and exhibits pro-tumor activity. Int J Cancer 2023; 152:1243-1258. [PMID: 36346290 PMCID: PMC10099777 DOI: 10.1002/ijc.34345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and lacks specific targeted therapeutic agents. The current mechanistic evidence from cell-based studies suggests that the matricellular protein SPARC has a tumor-promoting role in TNBC; however, data on the clinical relevance of SPARC expression/secretion by tumor and stromal cells in TNBC are limited. Here, we analyzed by immunohistochemistry the prognostic value of tumor and stromal cell SPARC expression in 148 patients with non-metastatic TNBC and long follow-up (median: 5.4 years). We also quantified PD-L1 and PD-1 expression. We detected SPARC expression in tumor cells (42.4%), cancer-associated fibroblasts (CAFs; 88.1%), tumor-associated macrophages (77.1%), endothelial cells (75.2%) and tumor-infiltrating lymphocytes (9.8%). Recurrence-free survival was significantly lower in patients with SPARC-expressing CAFs. Multivariate analysis showed that SPARC expression in CAFs was an independent prognostic factor. We also detected tumor and stromal cell SPARC expression in TNBC cytosols, and in patient-derived xenografts and cell lines. Furthermore, we analyzed publicly available single-cell mRNA sequencing data and found that in TNBC, SPARC is expressed by different CAF subpopulations, including myofibroblasts and inflammatory fibroblasts that are involved in tumor-related processes. We then showed that fibroblast-secreted SPARC had a tumor-promoting role by inhibiting TNBC cell adhesion and stimulating their motility and invasiveness. Overall, our study demonstrates that SPARC expression in CAFs is an independent prognostic marker of poor outcome in TNBC. Patients with SPARC-expressing CAFs could be eligible for anti-SPARC targeted therapy.
Collapse
Affiliation(s)
| | | | - Caroline Mollevi
- Biometry Unit, ICM, University of Montpellier, Montpellier, France.,Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM, Montpellier, France
| | | | - Hanane Mansouri
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France.,RHEM, IRCM, Montpellier, France
| | | | | | - Thierry Chardès
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | - William Jacot
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France.,Translational Research Unit, ICM, Montpellier, France.,Department of Medical Oncology, ICM, Montpellier, France
| | - Andrei Turtoi
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France
| | - Pascal Roger
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France.,Department of Pathology, CHU, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM U1194, Univ Montpellier, ICM, Montpellier, France.,Department of Medical Oncology, ICM, Montpellier, France
| | | |
Collapse
|
14
|
Lysosomes as a Target of Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24032176. [PMID: 36768500 PMCID: PMC9916765 DOI: 10.3390/ijms24032176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Lysosomes are organelles containing acidic hydrolases that are responsible for lysosomal degradation and the maintenance of cellular homeostasis. They play an important role in autophagy, as well as in various cell death pathways, such as lysosomal and apoptotic death. Various agents, including drugs, can induce lysosomal membrane permeability, resulting in the translocation of acidic hydrolases into the cytoplasm, which promotes lysosomal-mediated death. This type of death may be of great importance in anti-cancer therapy, as both cancer cells with disturbed pathways leading to apoptosis and drug-resistant cells can undergo it. Important compounds that damage the lysosomal membrane include lysosomotropic compounds, antihistamines, immunosuppressants, DNA-damaging drugs, chemotherapeutics, photosensitizers and various plant compounds. An interesting approach in the treatment of cancer and the search for ways to overcome the chemoresistance of cancer cells may also be combining lysosomotropic compounds with targeted modulators of autophagy to induce cell death. These compounds may be an alternative in oncological treatment, and lysosomes may become a promising therapeutic target for many diseases, including cancer. Understanding the functional relationships between autophagy and apoptosis and the possibilities of their regulation, both in relation to normal and cancer cells, can be used to develop new and more effective anticancer therapies.
Collapse
|
15
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
16
|
Go RE, Lee HK, Kim CW, Kim S, Choi KC. A fungicide, fenhexamid, is involved in the migration and angiogenesis in breast cancer cells expressing estrogen receptors. Life Sci 2022; 305:120754. [PMID: 35780843 DOI: 10.1016/j.lfs.2022.120754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Fenhexamid (Fen) is used to eradicate gray mold of fruits and vegetables leading to greater detection of its residual concentration in wine than other fungicides. Here, we further investigated the malign influence of Fen on the migration and angiogenesis via regulation of the estrogen receptor (ER) and phosphoinositide 3-kinase (PI3K) pathways in breast cancer models. ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells were exposed to 17β-estradiol (E2, 10-9 M), Fen (10-5 M and 10-7 M), ICI 182,780 (ICI; an ER antagonist, 10-8 M) or/and Pictilisib (Pic; a PI3K inhibitor, 10-7 M), and subsequently subjected to migration assay, live cell motility monitoring, trans-chamber assay, immunofluorescence, angiogenesis assay, tumor spheroid formation, and Western blot analysis. In MCF-7 cells, E2 and Fen induced cell migration by regulating the cell migration-related proteins. Although expressions of N-cadherin and Vimentin remained unchanged E2 and Fen induced the decrease of E-cadherin and Occludin in the immunofluorescence assay and Western blot analysis. In addition, Fen increased vessel formation in HUVEC cells. Furthermore, Fen treatment induced the formation of larger and denser tumor spheroids in MCF-7 cells. Western blot further confirmed the increased expressions of vascular endothelial growth factor (VEGF) and sex-determining region Y-box 2 (SOX2) after exposure to Fen. We conclude that Fen plays an important role as an endocrine-disrupting chemical in breast cancer migration and metastasis through the regulation of ER and PI3K signaling pathways.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Soochong Kim
- Laboratory of Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
17
|
Thakur C, Carruthers NJ, Zhang Q, Xu L, Fu Y, Bi Z, Qiu Y, Zhang W, Wadgaonkar P, Almutairy B, Guo C, Stemmer PM, Chen F. Depletion of Mdig Changes Proteomic Profiling in Triple Negative Breast Cancer Cells. Biomedicines 2022; 10:2021. [PMID: 36009568 PMCID: PMC9405604 DOI: 10.3390/biomedicines10082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancers are highly aggressive with an overall poor prognosis and limited therapeutic options. We had previously investigated the role of mdig, an oncogenic gene induced by some environmental risk factors, on the pathogenesis of breast cancer. However, a comprehensive analysis of the proteomic profile affected by mdig in triple-negative breast cancer has not been determined yet. Using label-free bottom-up quantitative proteomics, we compared wildtype control and mdig knockout MDA-MB-231 cells and identified the proteins and pathways that are significantly altered with mdig deletion. A total of 904 differentially expressed (p < 0.005) proteins were identified in the KO cells. Approximately 30 pathways and networks linked to the pathogenicity of breast cancer were either up- or downregulated, such as EIF2 signaling, the unfolded protein response, and isoleucine degradation I. Ingenuity Pathway Analysis established that the differentially expressed proteins have relevant biological actions in cell growth, motility, and malignancy. These data provide the first insight into protein expression patterns in breast cancer associated with a complete disruption of the mdig gene and yielded substantial information on the key proteins, biological processes, and pathways modulated by mdig that contribute to breast cancer tumorigenicity and invasiveness.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Nicholas J. Carruthers
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chunna Guo
- Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, 2309 Scott Hall, 540 E Canfield Ave, Detroit, MI 48202, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, The State University of New York, Lauterbur Drive, Stony Brook, NY 11794, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Ileiwat ZE, Tabish TA, Zinovkin DA, Yuzugulen J, Arghiani N, Pranjol MZI. The mechanistic immunosuppressive role of the tumour vasculature and potential nanoparticle-mediated therapeutic strategies. Front Immunol 2022; 13:976677. [PMID: 36045675 PMCID: PMC9423123 DOI: 10.3389/fimmu.2022.976677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
The tumour vasculature is well-established to display irregular structure and hierarchy that is conducive to promoting tumour growth and metastasis while maintaining immunosuppression. As tumours grow, their metabolic rate increases while their distance from blood vessels furthers, generating a hypoxic and acidic tumour microenvironment. Consequently, cancer cells upregulate the expression of pro-angiogenic factors which propagate aberrant blood vessel formation. This generates atypical vascular features that reduce chemotherapy, radiotherapy, and immunotherapy efficacy. Therefore, the development of therapies aiming to restore the vasculature to a functional state remains a necessary research target. Many anti-angiogenic therapies aim to target this such as bevacizumab or sunitinib but have shown variable efficacy in solid tumours due to intrinsic or acquired resistance. Therefore, novel therapeutic strategies such as combination therapies and nanotechnology-mediated therapies may provide alternatives to overcoming the barriers generated by the tumour vasculature. This review summarises the mechanisms that induce abnormal tumour angiogenesis and how the vasculature’s features elicit immunosuppression. Furthermore, the review explores examples of treatment regiments that target the tumour vasculature.
Collapse
Affiliation(s)
- Zakaria Elias Ileiwat
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| | - Md Zahidul I. Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul I. Pranjol,
| |
Collapse
|
19
|
Itch and autophagy-mediated NF-κB activation contributes to inhibition of cathepsin D-induced sensitizing effect on anticancer drugs. Cell Death Dis 2022; 13:552. [PMID: 35715412 PMCID: PMC9205942 DOI: 10.1038/s41419-022-05011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Inhibition of cathepsin D (Cat D) sensitizes cancer cells to anticancer drugs via RNF183-mediated downregulation of Bcl-xL expression. Although NF-κB activation is involved in the upregulation of RNF183 expression, the molecular mechanism of NF-κB activation by Cat D inhibition is unknown. We conducted this study to investigate the molecular mechanism underlying Cat D-mediated NF-κB activation. Interestingly, Cat D inhibition-induced IκB degradation in an autophagy-dependent manner. Knockdown of autophagy-related genes (ATG7 and Beclin1) and lysosome inhibitors (chloroquine and bafilomycin A1) blocked IκB degradation via Cat D inhibition. Itch induced K63-linked ubiquitination of IκB and then modulated the protein stability of IκB by Cat D inhibition. Inhibition of Cat D-mediated Itch activation was modulated by the JNK signaling pathway, and phosphorylated Itch could bind to IκB, resulting in polyubiquitination of IκB. Additionally, inhibition of Cat D increased autophagy flux via activation of the LKB1-AMPK-ULK1 pathway. Therefore, our results suggested that Cat D inhibition activated NF-κB signaling via degradation of autophagy-dependent IκB, which is associated with the upregulation of RNF183, an E3 ligase of Bcl-xL. Cat D inhibition enhances TRAIL-induced apoptosis through Bcl-xL degradation via upregulation of RNF183.
Collapse
|
20
|
Seo SU, Woo SM, Im SS, Jang Y, Han E, Kim SH, Lee H, Lee HS, Nam JO, Gabrielson E, Min KJ, Kwon TK. Cathepsin D as a potential therapeutic target to enhance anticancer drug-induced apoptosis via RNF183-mediated destabilization of Bcl-xL in cancer cells. Cell Death Dis 2022; 13:115. [PMID: 35121737 PMCID: PMC8816936 DOI: 10.1038/s41419-022-04581-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Cathepsin D (Cat D) is well known for its roles in metastasis, angiogenesis, proliferation, and carcinogenesis in cancer. Despite Cat D being a promising target in cancer cells, effects and underlying mechanism of its inhibition remain unclear. Here, we investigated the plausibility of using Cat D inhibition as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis. Inhibition of Cat D markedly enhanced anticancer drug-induced apoptosis in human carcinoma cell lines and xenograft models. The inhibition destabilized Bcl-xL through upregulation of the expression of RNF183, an E3 ligase of Bcl-xL, via NF-κB activation. Furthermore, Cat D inhibition increased the proteasome activity, which is another important factor in the degradation of proteins. Cat D inhibition resulted in p62-dependent activation of Nrf2, which increased the expression of proteasome subunits (PSMA5 and PSMB5), and thereby, the proteasome activity. Overall, Cat D inhibition sensitized cancer cells to anticancer drugs through the destabilization of Bcl-xL. Furthermore, human renal clear carcinoma (RCC) tissues revealed a positive correlation between Cat D and Bcl-xL expression, whereas RNF183 and Bcl-xL expression indicated inverse correlation. Our results suggest that inhibition of Cat D is promising as an adjuvant or sensitizer for enhancing anticancer drug-induced apoptosis in cancer cells.
Collapse
|
21
|
Liu YJ, Zhang T, Chen S, Cheng D, Wu C, Wang X, Duan D, Zhu L, Lou H, Gong Z, Wang XD, Ho MS, Duan S. The noncanonical role of the protease cathepsin D as a cofilin phosphatase. Cell Res 2021; 31:801-813. [PMID: 33514914 PMCID: PMC8249557 DOI: 10.1038/s41422-020-00454-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
Cathepsin D (cathD) is traditionally regarded as a lysosomal protease that degrades substrates in acidic compartments. Here we report cathD plays an unconventional role as a cofilin phosphatase orchestrating actin remodeling. In neutral pH environments, the cathD precursor directly dephosphorylates and activates the actin-severing protein cofilin independent of its proteolytic activity, whereas mature cathD degrades cofilin in acidic pH conditions. During development, cathD complements the canonical cofilin phosphatase slingshot and regulates the morphogenesis of actin-based structures. Moreover, suppression of cathD phosphatase activity leads to defective actin organization and cytokinesis failure. Our findings identify cathD as a dual-function molecule, whose functional switch is regulated by environmental pH and its maturation state, and reveal a novel regulatory role of cathD in actin-based cellular processes.
Collapse
Affiliation(s)
- Yi-Jun Liu
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Ting Zhang
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Sicong Chen
- grid.412465.0Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China
| | - Daxiao Cheng
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Cunjin Wu
- grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Xingyue Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Duo Duan
- grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Liya Zhu
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Huifang Lou
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Zhefeng Gong
- grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Xiao-Dong Wang
- grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China ,grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Margaret S. Ho
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Shumin Duan
- grid.13402.340000 0004 1759 700XDepartment of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 China ,grid.13402.340000 0004 1759 700XResearch Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
22
|
Alcaraz LB, Mallavialle A, David T, Derocq D, Delolme F, Dieryckx C, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Du Manoir S, Huesgen PF, Overall CM, Tartare-Deckert S, Jacot W, Chardès T, Guiu S, Roger P, Reinheckel T, Moali C, Liaudet-Coopman E. A 9-kDa matricellular SPARC fragment released by cathepsin D exhibits pro-tumor activity in the triple-negative breast cancer microenvironment. Am J Cancer Res 2021; 11:6173-6192. [PMID: 33995652 PMCID: PMC8120228 DOI: 10.7150/thno.58254] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/-knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.
Collapse
|
23
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
24
|
Maruyama K, Yoneda K, Sugita S, Yamamoto Y, Koike M, Peters C, Uchiyama Y, Nishida K. CTLA-2 Alpha Is a Potent Inhibitor of Angiogenesis in Murine Ocular Tissue. Antioxidants (Basel) 2021; 10:antiox10030456. [PMID: 33804126 PMCID: PMC8000157 DOI: 10.3390/antiox10030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/04/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-2 (CTLA-2) alpha has been reported to suppress the activities of cathepsin L (Cath L), which is deeply involved in angiogenesis. Therefore, we assessed whether CTLA-2 alpha plays a role in angiogenesis in ocular tissue. To establish models of corneal inflammation and experimental choroidal neovascularization (CNV), male C57BL/6J mice (n = 5) underwent corneal suture placement or laser-induced CNV, respectively. Mice were then injected with recombinant CTLA-2 alpha (1 µg) into the peritoneal cavity at day 0 and every 2 days after operation. In vitro experiments were performed to assess the inflammatory response by measuring TNF-alpha secretion in peritoneal cavity exudate cells (PECs) or the proliferation of mouse vascular endothelial cells (mVECs). CTLA-2 alpha treatment dramatically suppressed corneal angiogenesis, as well as laser-induced CNV. Moreover, CTLA-2 alpha inhibited the proliferation of mVECs in vitro, while CTLA-2 alpha abolishment was able to rescue proliferation. However, CTLA-2 alpha could not suppress cytokine secretion from inflammatory cells such as PECs. In summary, CTLA-2 alpha was able to suppress angiogenesis by suppressing endothelial cell proliferation. Further studies are needed to investigate its usefulness as a new antiangiogenic treatment for a variety of conditions, including age-related macular degeneration.
Collapse
Affiliation(s)
- Kazuichi Maruyama
- Department of Vision Informatics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan;
- Correspondence: ; Tel.: +81-6-6879-3456
| | - Kazuhito Yoneda
- Department of Ophthalmology, Kyoto Prefectural University Graduate School of Medicine, Kyoto 602-0841, Japan;
| | - Sunao Sugita
- RIKEN Center for Development Biology, Kobe 650-0047, Japan;
| | - Yoshimi Yamamoto
- Laboratory of Biochemistry and Radiation Biology, Department of Veterinary Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8511, Japan;
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79098 Freiburg, Germany;
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kohji Nishida
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan;
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
25
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
26
|
Kher M, Beri S, Rehan HS, Prakash A, Gupta LK. Effect of metformin and insulin combination on monocyte chemoattractant protein-1 and cathepsin-D in type 2 diabetes mellitus. Diabetes Metab Syndr 2020; 14:1703-1710. [PMID: 32911202 DOI: 10.1016/j.dsx.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Monocyte chemoattractant protein-1 (MCP-1) and cathepsin-D are progressively raised in type 2 diabetes mellitus (T2DM) with both non proliferative and proliferative retinal disease. This study aimed to evaluate the effect of antidiabetic medications on MCP-1 and cathepsin-D. METHODS 60 patients of T2DM without retinopathy and 60 of diabetic retinopathy were enrolled to receive metformin (500 mg-1000 mg) combined with either glimepiride (1 mg-2 mg) or insulin. The effect of antidiabetic medications on serum MCP-1 and cathepsin-D was assessed. RESULTS Mean MCP-1 (pg/ml) and cathepsin-D (ng/ml) levels were significantly lower in patients of T2DM with and without retinopathy treated with metformin + insulin (468.52 ± 272.84 vs 234.30 ± 180.58; p < 0.01 and 460.15 ± 128.52 vs 517.33 ± 213.49; p = 0.214) as compared to patients treated with metformin + glimepiride (1434.02 ± 105.27 vs 1256.27 ± 76.76; p < 0.01 and 1689.36 ± 752.57 vs 919.69 ± 675.05; p = < 0.01). No significant correlation of MCP-1 and cathepsin-D with HbA1c, fasting and post prandial blood glucose were found. CONCLUSION Patients treated with metformin and insulin combination had lower serum MCP-1 and cathepsin-D levels which suggests that this combination may be more effective in reducing the progression of diabetic retinopathy. (CTRI/2018/05/013601).
Collapse
Affiliation(s)
- Mohit Kher
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Sarita Beri
- Department of Ophthalmology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Harmeet S Rehan
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Anupam Prakash
- Department of Medicine, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India
| | - Lalit K Gupta
- Department of Pharmacology, Lady Hardinge Medical College & Smt. S.K. Hospital, New Delhi, 110 001, India.
| |
Collapse
|
27
|
Choi H, Ko Y, Lee CY. Pro-cathepsin D as a diagnostic marker in differentiating malignant from benign pleural effusion: a retrospective cohort study. BMC Cancer 2020; 20:825. [PMID: 32867726 PMCID: PMC7457471 DOI: 10.1186/s12885-020-07327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/20/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Malignant pleural effusion (MPE) causes substantial symptomatic burden in advanced malignancy. Although pleural fluid cytology is a commonly accepted gold standard of diagnosis, its low diagnostic yield is a challenge for clinicians. The aim of this study was to determine whether pro-cathepsin D can serve as a novel biomarker to discriminate between MPE and benign pleural effusion (BPE). METHODS This study included 81 consecutive patients with exudative pleural effusions who had underwent thoracentesis or pleural biopsy. Pleural fluid and serum were collected as a standard procedure for all individuals at the same time. The level of pro-cathepsin D was measured by the sandwich enzyme-linked immunosorbent assay method. RESULTS Though there were no significant differences in plasma pro-cathepsin D between the two groups, the level of pleural fluid pro-cathepsin D was significantly higher in the MPE group than the BPE group (0.651 versus 0.590 pg/mL, P = 0.034). The discriminative power of pleural fluid pro-cathepsin D for diagnosing MPE was moderate, with 81% sensitivity and 53% specificity at a pro-cathepsin D cut-off ≥0.596 pg/mL (area under the curve: 0.656). Positive and negative predictive values for MPE were 38 and 89%, respectively, with pro-cathepsin D cut-off value (> 0.596 pg/mL). CONCLUSIONS The level of pleural fluid pro-cathepsin D was found to be significantly higher in MPE than in BPE. Although results of this study could not support the sole use of pleural fluid pro-cathepsin D to diagnose MPE, pleural fluid pro-cathepsin D can be added to pre-existing diagnostic methods for ruling-in or ruling-out MPE.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.,Lung Research Institute of Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yousang Ko
- Lung Research Institute of Hallym University College of Medicine, Chuncheon, Republic of Korea.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Chang Youl Lee
- Lung Research Institute of Hallym University College of Medicine, Chuncheon, Republic of Korea. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| |
Collapse
|
28
|
Ferdoushi A, Li X, Griffin N, Faulkner S, Jamaluddin MFB, Gao F, Jiang CC, van Helden DF, Tanwar PS, Jobling P, Hondermarck H. Schwann Cell Stimulation of Pancreatic Cancer Cells: A Proteomic Analysis. Front Oncol 2020; 10:1601. [PMID: 32984024 PMCID: PMC7477957 DOI: 10.3389/fonc.2020.01601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs), the glial component of peripheral nerves, have been identified as promoters of pancreatic cancer (PC) progression, but the molecular mechanisms are unclear. In the present study, we aimed to identify proteins released by SCs that could stimulate PC growth and invasion. Proteomic analysis of human primary SC secretome was performed using liquid chromatography–tandem mass spectrometry, and a total of 13,796 unique peptides corresponding to 1,470 individual proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Metabolic and cell–cell adhesion pathways showed the highest levels of enrichment, a finding in line with the supportive role of SCs in peripheral nerves. We identified seven SC-secreted proteins that were validated by western blot. The involvement of these SC-secreted proteins was further demonstrated by using blocking antibodies. PC cell proliferation and invasion induced by SC-conditioned media were decreased using blocking antibodies against the matrix metalloproteinase-2, cathepsin D, plasminogen activator inhibitor-1, and galectin-1. Blocking antibodies against the proteoglycan biglycan, galectin-3 binding protein, and tissue inhibitor of metalloproteinases-2 decreased only the proliferation but not the invasion of PC cells. Together, this study delineates the secretome of human SCs and identifies proteins that can stimulate PC cell growth and invasion and therefore constitute potential therapeutic targets.
Collapse
Affiliation(s)
- Aysha Ferdoushi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Chen Chen Jiang
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| |
Collapse
|
29
|
Lebegge E, Arnouk SM, Bardet PMR, Kiss M, Raes G, Van Ginderachter JA. Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Front Immunol 2020; 11:1395. [PMID: 32733461 PMCID: PMC7363805 DOI: 10.3389/fimmu.2020.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decade, cancer immunotherapy has been steering immune responses toward cancer cell eradication. However, these immunotherapeutic approaches are hampered by the tumor-promoting nature of myeloid cells, including monocytes, macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly, the most primordial defense responses employed by myeloid cells against pathogens, such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis, actually seem to favor cancer progression. In this review, we discuss how rudimentary defense mechanisms deployed by myeloid cells can promote tumor progression.
Collapse
Affiliation(s)
- Els Lebegge
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M Arnouk
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Pauline M R Bardet
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
30
|
Kang J, Yu Y, Jeong S, Lee H, Heo HJ, Park JJ, Na HS, Ko DS, Kim YH. Prognostic role of high cathepsin D expression in breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920927838. [PMID: 32550865 PMCID: PMC7281710 DOI: 10.1177/1758835920927838] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: High cathepsin D has been associated with poor prognosis in breast cancer;
however, the results of many studies are controversial. Here, we assessed
the association between high cathepsin D levels and worse breast cancer
prognosis by conducting a meta-analysis. Methods: A comprehensive search strategy was used to search relevant literature in
PUBMED and EMBASE by September 2018. The meta-analysis was performed in
Review Manager 5.3 using hazard ratios (HRs) with 95% confidence intervals
(CIs). Results: A total of 15,355 breast cancer patients from 26 eligible studies were
included in this meta-analysis. Significant associations between elevated
high cathepsin D and poor overall survival (OS) (HR = 1.61, 95% CI:
1.35–1.92, p < 0.0001) and disease-free survival (DFS)
(HR = 1.52, 95% CI: 1.31–2.18, p < 0.001) were observed.
In the subgroup analysis for DFS, high cathepsin D was significantly
associated with poor prognosis in node-positive patients (HR = 1.38, 95% CI:
1.25–1.71, p < 0.00001), node-negative patients
(HR = 1.78, 95% CI: 1.39–2.27, p < 0.0001), early stage
patients (HR = 1.73, 95% CI: 1.34–2.23, p < 0.0001), and
treated with chemotherapy patients (HR = 1.60, 95% CI: 1.21–2.12,
p < 0.001). Interestingly, patients treated with
tamoxifen had a low risk of relapse when their cathepsin D levels were high
(HR = 0.71, 95% CI: 0.52–0.98, p = 0.04) and a high risk of
relapse when their cathepsin D levels were low (HR = 1.50, 95% CI:
1.22–1.85, p = 0.0001). Conclusions: Our meta-analysis suggests that high expression levels of cathepsin D are
associated with a poor prognosis in breast cancer. Based on our subgroup
analysis, we believe that cathepsin D can act as a marker for poor breast
cancer prognosis and also as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Junho Kang
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Yeuni Yu
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Seongdo Jeong
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hansong Lee
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Departmment of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Jun Park
- Departemt of Anesthesiology and Pain Medicine, Korea University College of Medicine, Anam Hospital, Seoul, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Republic of Korea
| |
Collapse
|
31
|
Mansouri H, Alcaraz LB, Mollevi C, Mallavialle A, Jacot W, Boissière-Michot F, Simony-Lafontaine J, Laurent-Matha V, Roger P, Liaudet-Coopman E, Guiu S. Co-Expression of Androgen Receptor and Cathepsin D Defines a Triple-Negative Breast Cancer Subgroup with Poorer Overall Survival. Cancers (Basel) 2020; 12:cancers12051244. [PMID: 32429078 PMCID: PMC7281089 DOI: 10.3390/cancers12051244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/21/2023] Open
Abstract
Background: In the triple-negative breast cancer (TNBC) group, the luminal androgen receptor subtype is characterized by expression of androgen receptor (AR) and lack of estrogen receptor and cytokeratin 5/6 expression. Cathepsin D (Cath-D) is overproduced and hypersecreted by breast cancer (BC) cells and is a poor prognostic marker. We recently showed that in TNBC, Cath-D is a potential target for antibody-based therapy. This study evaluated the frequency of AR/Cath-D co-expression and its prognostic value in a large series of patients with non-metastatic TNBC. Methods: AR and Cath-D expression was evaluated by immunohistochemistry in 147 non-metastatic TNBC. The threshold for AR positivity (AR+) was set at ≥1% of stained cells, and the threshold for Cath-D positivity (Cath-D+) was moderate/strong staining intensity. Lymphocyte density, macrophage infiltration, PD-L1 and programmed cell death (PD-1) expression were assessed. Results: Scarff-Bloom-Richardson grade 1–2 and lymph node invasion were more frequent, while macrophage infiltration was less frequent in AR+/Cath-D+ tumors (62.7%). In multivariate analyses, higher tumor size, no adjuvant chemotherapy and AR/Cath-D co-expression were independent prognostic factors of worse overall survival. Conclusions: AR/Cath-D co-expression independently predicted overall survival. Patients with TNBC in which AR and Cath-D are co-expressed could be eligible for combinatory therapy with androgen antagonists and anti-Cath-D human antibodies.
Collapse
Affiliation(s)
- Hanane Mansouri
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
| | - Lindsay B. Alcaraz
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
| | - Caroline Mollevi
- Biometry Department, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France;
| | - Aude Mallavialle
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
| | - William Jacot
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
- Department of Medical Oncology, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France
- Translational Research Unit, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (F.B.-M.); (J.S.-L.)
| | - Florence Boissière-Michot
- Translational Research Unit, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (F.B.-M.); (J.S.-L.)
| | - Joelle Simony-Lafontaine
- Translational Research Unit, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (F.B.-M.); (J.S.-L.)
| | - Valérie Laurent-Matha
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
| | - Pascal Roger
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
- Department of Pathology, CHU (Centre Hospitalier Universitaire) Nîmes, 30029 Nîmes, France
| | - Emmanuelle Liaudet-Coopman
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
- Correspondence:
| | - Séverine Guiu
- IRCM (Institut de Recherche en Cancérologie de Montpellier), INSERM (Institut National de la Santé et de la Recherche Médicale), Univ Montpellier (University of Montpellier), ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France; (H.M.); (L.B.A.); (A.M.); (W.J.); (V.L.-M.); (P.R.); (S.G.)
- Department of Medical Oncology, ICM (Institut du Cancer de Montpellier), 34298 Montpellier, France
| |
Collapse
|
32
|
Zheng W, Chen Q, Wang C, Yao D, Zhu L, Pan Y, Zhang J, Bai Y, Shao C. Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy. Mol Carcinog 2020; 59:651-660. [PMID: 32253787 DOI: 10.1002/mc.23194] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Postoperative radiotherapy combined with chemotherapy is a commonly used treatment for glioblastoma (GBM) but radiotherapy often fails to achieve the expected results mainly due to tumor radioresistance. In this study, we established a radioresistant subline from human glioma cell line U251 and found that Cathepsin D (CTSD), a gene closely related to the clinical malignancy and prognosis in glioma, had higher expression level in radioresistant clones than that in parental cells, and knocking down CTSD by small interfering RNA (siRNA) or its inhibitor Pepstatin-A increased the radiosensitivity. The level of autophagy was enhanced in the radioresistant GBM cells compared with its parent cells, and silencing autophagy by light chain 3 (LC3) siRNA significantly sensitized GBM cells to ionizing radiation (IR). Moreover, the protein expression level of CTSD was positively correlated with the autophagy marker LC3 II/I and negatively correlated with P62 after IR in radioresistant cells. As expected, through the combination of Western blot and immunofluorescence assays, inhibition of CTSD increased the formation of autophagosomes, while decreased the formation of autolysosomes, which indicating an attenuated autophagy level, leading to radiosensitization ultimately. Our results revealed for the first time that CTSD regulated the radiosensitivity of glioblastoma by affecting the fusion of autophagosomes and lysosomes. In significance, CTSD might be a potential molecular biomarker and a new therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianping Chen
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Yao
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Zhu
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Pan
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Bai
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunlin Shao
- Department of Radiation Biology, Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:1-16. [PMID: 32578168 DOI: 10.1007/978-3-030-43093-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer remains a major and leading health problem worldwide. Lack of early diagnosis, chemoresistance, and recurrence of cancer means vast research and development are required in this area. The complexity of the tumor microenvironment in the biological milieu poses greater challenges in having safer, selective, and targeted therapies. Existing strategies such as chemotherapy, radiotherapy, and antiangiogenic therapies moderately improve progression-free survival; however, they come with side effects that reduce quality of life. Thus, targeting potential candidates in the microenvironment, such as extracellular cathepsin D (CathD) which has been known to play major pro-tumorigenic roles in breast and ovarian cancers, could be a breakthrough in cancer treatment, specially using novel treatment modalities such as immunotherapy and nanotechnology-based therapy. This chapter discusses CathD as a pro-cancerous, more specifically a proangiogenic factor, that acts bi-functionally in the tumor microenvironment, and possible ways of targeting the protein therapeutically.
Collapse
|
34
|
Vangala G, Imhoff FM, Squires CM, Cridge AG, Baird SK. Mesenchymal stem cell homing towards cancer cells is increased by enzyme activity of cathepsin D. Exp Cell Res 2019; 383:111494. [DOI: 10.1016/j.yexcr.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
|
35
|
Basu S, Cheriyamundath S, Gavert N, Brabletz T, Haase G, Ben-Ze'ev A. Increased expression of cathepsin D is required for L1-mediated colon cancer progression. Oncotarget 2019; 10:5217-5228. [PMID: 31497251 PMCID: PMC6718269 DOI: 10.18632/oncotarget.27155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023] Open
Abstract
Hyperactivation of Wnt/β-catenin target genes is considered a key step in human colorectal cancer (CRC) development. We previously identified the immunoglobulin-like cell adhesion receptor L1 as a target gene of β-catenin/TCF transactivation that is localized at the invasive edge of CRC tissue. Using gene arrays, we discovered a number of downstream target genes and signaling pathways conferred by L1 overexpression during colon cancer progression. Here, we have used a proteomic approach to identify proteins in the secretome of L1-overexpressing CRC cells and studied the role of the increase in the aspartate protease cathepsin D (CTSD) in L1-mediated colon cancer development. We found that in addition to the increase in CTSD in the secretome, the RNA and protein levels of CTSD were also induced by L1 in CRC cells. CTSD overexpression resulted in elevated proliferation under stress and increased motility, tumorigenesis and liver metastasis, although to a lesser extent than after L1-transfection. The suppression of endogenous CTSD in L1-expressing cells blocked the increase in the proliferative, motile, tumorigenic and metastatic ability of CRC cells. Enhancing Wnt/β-catenin signaling by the inhibition of GSK3β resulted in increased endogenous CTSD levels, suggesting the involvement of the Wnt/β-catenin pathway in CTSD expression. In human CRC tissue, CTSD was detected in epithelial cells and in the stromal compartment at the more invasive areas of the tumor, but not in the normal mucosa, indicating that CTSD plays an essential role in CRC progression.
Collapse
Affiliation(s)
- Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Gal Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
36
|
Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030319. [PMID: 30845739 PMCID: PMC6468385 DOI: 10.3390/cancers11030319] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis. Graphene oxide (GO) could form the basis of such a strategy by acting as an adsorbent for pro-metastatic enzymes. Here, we have conducted research into the potential of targeted anti-metastatic therapy using GO to adsorb these pro-tumorigenic enzymes. Binding of CathD/L to GO revealed that CathD/L were adsorbed onto the surface of GO through its cationic and hydrophilic residues. This work could provide a roadmap for the rational integration of CathD/L-targeting agents into clinical settings.
Collapse
|
37
|
Abstract
Cathepsins (CTS) are mainly lysosomal acid hydrolases extensively involved in the prognosis of different diseases, and having a distinct role in tumor progression by regulating cell proliferation, autophagy, angiogenesis, invasion, and metastasis. As all these processes conjunctively lead to cancer progression, their site-specific regulation might be beneficial for cancer treatment. CTS regulate activation of the proteolytic cascade and protein turnover, while extracellular CTS is involved in promoting extracellular matrix degradation and angiogenesis, thereby stimulating invasion and metastasis. Despite cancer regulation, the involvement of CTS in cellular adaptation toward chemotherapy and radiotherapy augments their therapeutic potential. However, lysosomal permeabilization mediated cytosolic translocation of CTS induces programmed cell death. This complex behavior of CTS generates the need to discuss the different aspects of CTS associated with cancer regulation. In this review, we mainly focused on the significance of each cathepsin in cancer signaling and their targeting which would provide noteworthy information in the context of cancer biology and therapeutics.
Collapse
Affiliation(s)
- Tejinder Pal Khaket
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
38
|
Ashraf Y, Mansouri H, Laurent-Matha V, Alcaraz LB, Roger P, Guiu S, Derocq D, Robin G, Michaud HA, Delpech H, Jarlier M, Pugnière M, Robert B, Puel A, Martin L, Landomiel F, Bourquard T, Achour O, Fruitier-Arnaudin I, Pichard A, Deshayes E, Turtoi A, Poupon A, Simony-Lafontaine J, Boissière-Michot F, Pirot N, Bernex F, Jacot W, du Manoir S, Theillet C, Pouget JP, Navarro-Teulon I, Bonnefoy N, Pèlegrin A, Chardès T, Martineau P, Liaudet-Coopman E. Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer 2019; 7:29. [PMID: 30717773 PMCID: PMC6360707 DOI: 10.1186/s40425-019-0498-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) treatment is currently restricted to chemotherapy. Hence, tumor-specific molecular targets and/or alternative therapeutic strategies for TNBC are urgently needed. Immunotherapy is emerging as an exciting treatment option for TNBC patients. The aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer (BC), is overproduced and hypersecreted by human BC cells. This study explores whether cath-D is a tumor cell-associated extracellular biomarker and a potent target for antibody-based therapy in TNBC. METHODS Cath-D prognostic value and localization was evaluated by transcriptomics, proteomics and immunohistochemistry in TNBC. First-in-class anti-cath-D human scFv fragments binding to both human and mouse cath-D were generated using phage display and cloned in the human IgG1 λ format (F1 and E2). Anti-cath-D antibody biodistribution, antitumor efficacy and in vivo underlying mechanisms were investigated in TNBC MDA-MB-231 tumor xenografts in nude mice. Antitumor effect was further assessed in TNBC patient-derived xenografts (PDXs). RESULTS High CTSD mRNA levels correlated with shorter recurrence-free survival in TNBC, and extracellular cath-D was detected in the tumor microenvironment, but not in matched normal breast stroma. Anti-cath-D F1 and E2 antibodies accumulated in TNBC MDA-MB-231 tumor xenografts, inhibited tumor growth and improved mice survival without apparent toxicity. The Fc function of F1, the best antibody candidate, was essential for maximal tumor inhibition in the MDA-MB-231 model. Mechanistically, F1 antitumor response was triggered through natural killer cell activation via IL-15 upregulation, associated with granzyme B and perforin production, and the release of antitumor IFNγ cytokine. The F1 antibody also prevented the tumor recruitment of immunosuppressive tumor-associated macrophages M2 and myeloid-derived suppressor cells, a specific effect associated with a less immunosuppressive tumor microenvironment highlighted by TGFβ decrease. Finally, the antibody F1 inhibited tumor growth of two TNBC PDXs, isolated from patients resistant or not to neo-adjuvant chemotherapy. CONCLUSION Cath-D is a tumor-specific extracellular target in TNBC suitable for antibody-based therapy. Immunomodulatory antibody-based strategy against cath-D is a promising immunotherapy to treat patients with TNBC.
Collapse
Affiliation(s)
- Yahya Ashraf
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Hanane Mansouri
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Valérie Laurent-Matha
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Lindsay B Alcaraz
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Pascal Roger
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Pathology, CHU Nîmes, Nîmes, France
| | - Séverine Guiu
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Danielle Derocq
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Gautier Robin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Henri-Alexandre Michaud
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Helène Delpech
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | - Martine Pugnière
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Bruno Robert
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Anthony Puel
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Lucie Martin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | | | | | | | - Alexandre Pichard
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Emmanuel Deshayes
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Andrei Turtoi
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | | | | | | | - Nelly Pirot
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Florence Bernex
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - William Jacot
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
- Department of Medical Oncology, ICM, Montpellier, France
- Translational Research Unit, ICM, Montpellier, France
| | - Stanislas du Manoir
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Charles Theillet
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Jean-Pierre Pouget
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Isabelle Navarro-Teulon
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - André Pèlegrin
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Thierry Chardès
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Pierre Martineau
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, INSERM, U1194 Univ Montpellier, ICM, 208, rue des Apothicaires, F-34298, Montpellier, Cedex 5, France.
| |
Collapse
|
39
|
Abstract
The life span of cancer patients can be prolonged with appropriate therapies if detected early. Mass screening for early detection of cancer, however, requires sensitive and specific biomarkers obtainable from body fluids such as blood or urine. To date, most biomarker discovery programs focus on the proteome rather than the endogenous peptidome. It has been long-established that tumor cells and stromal cells produce tumor resident proteases (TRPs) to remodel the surrounding tumor microenvironment in support of tumor progression. In fact, proteolytic products of TRPs have been shown to correlate with malignant behavior. Being of low molecular weight, these unique peptides can pass through the endothelial barrier of the vasculature into the bloodstream. As such, the cancer peptidome has increasingly become a focus for biomarker discovery. In this review, we discuss on the various aspects of the peptidome in cancer biomarker research.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Huang L, Li L, Hu E, Chen G, Meng X, Xiong C, He J. Potential biomarkers and targets in reversibility of pulmonary arterial hypertension secondary to congenital heart disease: an explorative study. Pulm Circ 2018; 8:2045893218755987. [PMID: 29480151 PMCID: PMC5865461 DOI: 10.1177/2045893218755987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Whether pulmonary arterial hypertension (PAH) is reversible in congenital heart disease (CHD) is important for the operability of CHD. However, little is known about that. Our research was aimed at exploring novel biomarkers and targets in the reversibility of CHD-PAH. CHD-PAH patients diagnosed with right heart catheterization (RHC) were enrolled (n = 14). Lung biopsy was performed during the repair surgery. After one year follow-up, mean pulmonary arterial pressures (mPAP) were evaluated by RHC to determine the diagnosis of reversible (mPAP < 25 mmHg, n = 10) and irreversible (mPAP ≥ 25 mmHg, n = 4) PAH. Harvested normal lung tissues (n = 6) were included as the control group. Pulmonary arteriole lesions were identified by pathological grading in tissue staining. iTRAQ-labelled mass-spectrometry analysis followed by immunohistochemistry and western blot was used to explore the most meaningful differential proteins. For enrolled patients, the histopathological grading of pulmonary vascular lesions in reversible CHD-PAH patients was all at grades 0-II while grades III-IV were shown only in irreversible CHD-PAH patients. Proteomic analysis identified 85 upregulated and 75 downregulated proteins, including cytoskeletal proteins and collagen chains, mainly involved in cell adhesion, extracellular matrix, cytoskeleton, immune response, and complement pathways. Among them, caveolin-1, filamin A expression, and cathepsin D combined with macrophagocytes counts were significantly increased; glutathione S-transferase mu1 (GSTM1) expression was significantly decreased in the irreversible CHD-PAH group (all P < 0.05). Caveolin-1, filamin A, and cathepsin D expression showed a positive relation and GSTM1 showed a negative relation with pathological grading. Upregulated caveolin-1, filamin A, and cathepsin D combined with increased macrophagocytes and downregulated GSTM1 may be potential biomarkers and targets in the irreversibility CHD-PAH, and which may be useful in evaluating the operability and understanding the irreversibility of CHD-PAH. Expression of these pathological biomarkers combined with pathological changes in lung biopsy may have great value in predicting the irreversibility of PAH.
Collapse
Affiliation(s)
- Li Huang
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- 2 Departement of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Enci Hu
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Chen
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianmin Meng
- 3 Central Laboratory, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Xiong
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo He
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Rodríguez J, Vázquez J, Corte MD, Lamelas M, Bongera M, Corte MG, Alvarez A, Allende M, Gonzalez L, Sánchez M, Vijande M, Garcia Muñiz J, Vizoso F. Clinical Significance of Cathepsin D Concentration in Tumor Cytosol of Primary Breast Cancer. Int J Biol Markers 2018; 20:103-11. [PMID: 16011040 DOI: 10.1177/172460080502000204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Cathepsin D is the proteolytic enzyme most frequently implicated as a prognostic factor in primary breast cancer. In the present study we evaluated by means of an immunoradiometric assay the tumor content of this protease in primary breast cancer, its relationship with tumor-related clinical and pathological parameters, and its prognostic significance in a large series of breast cancer patients. Method The study comprised 1033 women with histologically established invasive breast cancer. Cathepsin D was measured in cytosol samples by means of an immunoradiometric assay to determine the total amount of cathepsin D (52 kDa, 48 kDa and 34 kDa). Evaluation of relapse-free survival and cause-specific survival was performed in the group of 1003 patients without evidence of metastasis at the time of initial diagnosis. The median follow-up of the patients who were free of recurrence was 54 months. Results Cathepsin D levels showed a wide range among the studied tumors (n=1033; median (range) 41 (0.9–2504) pmol/mg protein). Statistical analysis showed that the median cathepsin D levels were considerably higher in large tumors (T2–4) than in smaller ones (T1) (p=0.017), as well as in node-positive than in node-negative tumors (p=0.004). Cathepsin D levels were also higher in ductal tumors than in the other histological types (p=0.001), as well as in moderately or poorly differentiated tumors (p<0.001). Likewise, the median value of the protease was significantly higher in ER or PgR-positive tumors than in hormone receptor-negative ones (p=0.011 and p=0.004, respectively), as well as in aneuploid tumors than in diploid tumors (p=0.029). Multivariate analysis demonstrated that elevated cathepsin D levels (>59 pmol/mg protein) were notably associated with a shorter cause-specific survival in the whole group of patients with breast cancer, as well as in the subgroup of node-positive patients (p<0.05). Conclusions This study suggests that elevated intratumoral cathepsin D levels may identify a subset of node-positive breast cancer patients showing a high probability of earlier death.
Collapse
Affiliation(s)
- J Rodríguez
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Al-Awadhi FH, Law BK, Paul VJ, Luesch H. Grassystatins D-F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2017; 80:2969-2986. [PMID: 29087712 PMCID: PMC5764543 DOI: 10.1021/acs.jnatprod.7b00551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new modified peptides named grassystatins D-F (1-3) were discovered from a marine cyanobacterium from Guam. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The hallmark structural feature in the peptides is a statine unit, which contributes to their aspartic protease inhibitory activity preferentially targeting cathepsins D and E. Grassystatin F (3) was the most potent analogue, with IC50 values of 50 and 0.5 nM against cathepsins D and E, respectively. The acidic tumor microenvironment is known to increase the activation of some of the lysosomal proteases associated with tumor metastasis such as cathepsins. Because cathepsin D is a biomarker in aggressive forms of breast cancer and linked to poor prognosis, the effects of cathepsin D inhibition by 1 and 3 on the downstream cellular substrates cystatin C and PAI-1 were investigated. Furthermore, the functional relevance of targeting cathepsin D substrates was evaluated by examining the effect of 1 and 3 on the migration of MDA-MD-231 cells. Grassystatin F (3) inhibited the cleavage of cystatin C and PAI-1, the activities of their downstream targets cysteine cathepsins and tPA, and the migration of the highly aggressive triple negative breast cancer cells, phenocopying the effect of siRNA-mediated knockdown of cathepsin D.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Brian K. Law
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmacology and Therapeutics, University of Florida, 1600 Archer Road, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
43
|
Pranjol MZI, Gutowski NJ, Hannemann M, Whatmore JL. Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:25-33. [PMID: 29024694 DOI: 10.1016/j.bbamcr.2017.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
Abstract
Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum.
Collapse
Affiliation(s)
- Md Zahidul I Pranjol
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, UK
| | - Nicholas J Gutowski
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, UK; Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 7JU, UK
| | - Michael Hannemann
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 7JU, UK
| | - Jacqueline L Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
44
|
Drwal E, Rak A, Grochowalski A, Milewicz T, Gregoraszczuk EL. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol Lett 2017; 280:10-19. [DOI: 10.1016/j.toxlet.2017.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
|
45
|
Reddy S, Amutha A, Rajalakshmi R, Bhaskaran R, Monickaraj F, Rangasamy S, Anjana RM, Abhijit S, Gokulakrishnan K, Das A, Mohan V, Balasubramanyam M. Association of increased levels of MCP-1 and cathepsin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications 2017; 31:804-809. [PMID: 28336215 DOI: 10.1016/j.jdiacomp.2017.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
AIM Young onset type 2 diabetes patients (T2DM-Y) have been shown to possess an increased risk of developing microvascular complications particularly diabetic retinopathy. However, the molecular mechanisms are not clearly understood. In this study, we investigated the serum levels of monocyte chemotactic protein 1 (MCP-1) and cathepsin-D in patients with T2DM-Y without and with diabetic retinopathy. METHODS In this case-control study, participants comprised individuals with normal glucose tolerance (NGT=40), patients with type 2 diabetes mellitus (T2DM=35), non-proliferative diabetic retinopathy (NPDR=35) and proliferative diabetic retinopathy (PDR=35). Clinical characterization of the study subjects was done by standard procedures and MCP-1 and cathepsin-D were measured by ELISA. RESULTS Compared to control individuals, patients with T2DM-Y, NPDR and PDR exhibited significantly (p<0.001) higher levels of MCP-1. Cathepsin-D levels were also significantly (p<0.001) higher in patients with T2DM-Y without and with diabetic retinopathy. Correlation analysis revealed a positive association (p<0.001) between MCP-1 and cathepsin-D levels. There was also a significant negative correlation of MCP1/cathepsin-D with C-peptide levels. The association of increased levels of MCP-1/cathepsin-D in patients with DR persisted even after adjusting for all the confounding factors. CONCLUSION As both MCP-1 and cathepsin-D are molecular signatures of cellular senescence, we suggest that these biomarkers might be useful to predict the development of retinopathy in T2DM-Y patients.
Collapse
Affiliation(s)
- Sruthi Reddy
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Anandakumar Amutha
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ramachandran Rajalakshmi
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Regin Bhaskaran
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Finny Monickaraj
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute, (TGen), Phoenix, AZ, USA
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Shiny Abhijit
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Kuppan Gokulakrishnan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Arup Das
- Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology and Dr. Rema Mohan High-Throughput Screening (HTS) Lab, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India..
| |
Collapse
|
46
|
Shen S, Gong J, Yang Y, Qin S, Huang L, She S, Yang M, Ren H, Hu H. Molecular mechanism of C-reaction protein in promoting migration and invasion of hepatocellular carcinoma cells in vitro. Int J Oncol 2017; 50:1289-1298. [PMID: 28350119 DOI: 10.3892/ijo.2017.3911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common malignant cancers and is the second leading cause of cancer related deaths. The prognosis and survival of patients are closely related to the degree of tumor metastasis. The mechanism of HCC metastasis is still unclear. In the present study, we investigated the molecular mechanism of C-reaction protein in promoting migration and invasion of hepatocellular carcinoma cells in vitro. We estimated that CRP is overexpressed in liver cancer tissues and that it promotes invasion and metastasis of HCC in vitro. In the present study, we employed iTRAQ-based mass spectrometry to analyze the HepG2 secretory proteins of CRP siRNA-treated cells and negative control siRNA-treated cells. We identified 109 differentially expressed proteins after silencing CRP, of which 45 were upregulated and 64 were downregulated. Some of the differentially expressed proteins were confirmed by western blot analysis and real-time quantitative PCR. Furthermore, we found that knockdown of CRP substantially abrogates HIF-1α expression levels, the luciferase activity of HIF-1α and ERK and Akt phosphorylation in HepG2 cells. The present study provides a novel mechanism by which CRP promotes the proliferation, migration, invasion and metastasis of hepatocellular carcinoma cells. Inhibition of CRP suppressed migration, invasion and healing of hepatoma carcinoma cells by decreasing HIF-1α activity and CTSD.
Collapse
Affiliation(s)
- Shasha Shen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jiaojiao Gong
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Yixuan Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Si Qin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Lifan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Sha She
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Min Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Huaidong Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
47
|
Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med 2016; 21:349-363. [PMID: 27641937 PMCID: PMC5264143 DOI: 10.1111/jcmm.12969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/06/2016] [Indexed: 01/09/2023] Open
Abstract
This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN‐BMMSCs, the bioactive content of ZDF‐BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5‐fold; P < 0.01) formation of tubule‐like structures and migration of these cells (3‐fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF‐1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.
Collapse
Affiliation(s)
- Jonathan Ribot
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Guavri Caliaperoumal
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Joseph Paquet
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | | | - Herve Petite
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| | - Fani Anagnostou
- Laboratory of Bioingénierie et Biomécanique Ostéo-articulaires-UMR CNRS 7052 Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France.,Department of Periodontology, Service of Odontology, Pitié Salpêtrière Hospital et Hôtel-Dieu Hospital AP-HP, U.F.R. of Odontology Paris 7-Denis Diderot University, Sorbonne Paris Cite, Paris, France
| |
Collapse
|
48
|
de Aquino PF, Carvalho PC, Nogueira FCS, da Fonseca CO, de Souza Silva JCT, Carvalho MDGDC, Domont GB, Zanchin NIT, Fischer JDSDG. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme. Front Oncol 2016; 6:183. [PMID: 27597932 PMCID: PMC4992702 DOI: 10.3389/fonc.2016.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique.
Collapse
Affiliation(s)
- Priscila F de Aquino
- Laboratory of Microbial Diversity from Amazon with Importance for Health, Instituto Leônidas e Maria Deane, Fiocruz , Manaus, Amazonas , Brazil
| | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Curitiba, Paraná, Brazil; Laboratory of Toxinology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University , Rio de Janeiro , Brazil
| | | | - Maria da Gloria da Costa Carvalho
- Laboratory of Molecular Pathology, Department of Pathology, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Gilberto B Domont
- Laboratory for Protein Chemistry, Chemistry Institute, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Nilson I T Zanchin
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz , Curitiba, Paraná , Brazil
| | | |
Collapse
|
49
|
Bach AS, Derocq D, Laurent-Matha V, Montcourrier P, Sebti S, Orsetti B, Theillet C, Gongora C, Pattingre S, Ibing E, Roger P, Linares LK, Reinheckel T, Meurice G, Kaiser FJ, Gespach C, Liaudet-Coopman E. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells. Oncotarget 2016; 6:28084-103. [PMID: 26183398 PMCID: PMC4695046 DOI: 10.18632/oncotarget.4394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
Abstract
The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.
Collapse
Affiliation(s)
- Anne-Sophie Bach
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Danielle Derocq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Valérie Laurent-Matha
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Philippe Montcourrier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Salwa Sebti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Sophie Pattingre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Eva Ibing
- Universität zu Lübeck, Lübeck, Germany
| | - Pascal Roger
- Department of Pathology, CHU Nimes, Nimes, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany
| | - Guillaume Meurice
- Functional Genomic Plateform, Institut Gustave Roussy, Villejuif, France
| | | | - Christian Gespach
- INSERM U938, Molecular and Clinical Oncology, Paris 6 University Pierre et Marie Curie, Hôpital Saint-Antoine, Paris, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France.,INSERM U1194, Montpellier, France.,Université de Montpellier, Montpellier, France.,Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
50
|
Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev 2016; 17:361-76. [PMID: 26914773 DOI: 10.1111/obr.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Obesity, a pandemic disease, is caused by an excessive accumulation of fat that can have detrimental effects on health. Adipose tissue plays a very important endocrine role, secreting different molecules that affect body physiology. In obesity, this function is altered, leading to a dysfunctional production of several factors, known as adipocytokines. This process has been linked to various comorbidities associated with obesity, such as carcinogenesis. In fact, several classical adipocytokines with increased levels in obesity have been demonstrated to exert a pro-carcinogenic role, including leptin, TNF-α, IL-6 and resistin, whereas others like adiponectin, with decreased levels in obesity, might have an anti-carcinogenic function. In this expanding field, new proteomic techniques and approaches have allowed the identification of novel adipocytokines, a number of which exhibit an altered production in obesity and type 2 diabetes and thus are related to adiposity. Many of these novel adipocytokines have also been identified in various tumour types, such as that of the breast, liver or endometrium, thereby increasing the list of potential contributors to carcinogenesis. This review is focused on the regulation of these novel adipocytokines by obesity, including apelin, endotrophin, FABP4, lipocalin 2, omentin-1, visfatin, chemerin, ANGPTL2 or osteopontin, emphasizing its involvement in tumorigenesis.
Collapse
Affiliation(s)
- B Cabia
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - S Andrade
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - M C Carreira
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - F F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| | - A B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|