1
|
Vervliet T, Duelen R, Pradhan A, La Rovere R, Roderick HL, Sampaolesi M. Cardiomyocyte differentiation from human induced pluripotent stem cells is delayed following knockout of Bcl-2. J Cell Sci 2023; 136:286222. [PMID: 36583297 DOI: 10.1242/jcs.260216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Anti-apoptotic B-cell lymphoma 2 (Bcl-2) regulates a wide array of cellular functions involved in cell death, cell survival and autophagy. Less known is its involvement in the differentiation of cardiomyocytes. As a consequence, mechanisms by which Bcl-2 contributes to cardiac differentiation remain to be elucidated. To address this, we used CRISPR/Cas9 to knockout (KO) BCL2 in human induced pluripotent stem cells (hiPSCs) and investigated the consequence of this KO for differentiation towards cardiomyocytes. Our results indicate that differentiation of hiPSCs to cardiomyocytes was delayed following BCL2 KO. This was not related to the canonical anti-apoptotic function of Bcl-2. This delay led to reduced expression and activity of the cardiomyocyte Ca2+ toolkit. Finally, Bcl-2 KO reduced c-Myc expression and nuclear localization in the early phase of the cardiac differentiation process, which accounts at least in part for the observed delay in the cardiac differentiation. These results suggest that there is a central role for Bcl-2 in cardiomyocyte differentiation and maturation.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Ankit Pradhan
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Kim KY, Kim YR, Choi KW, Lee M, Lee S, Im W, Shin JY, Kim JY, Hong YH, Kim M, Kim JI, Sung JJ. Downregulated miR-18b-5p triggers apoptosis by inhibition of calcium signaling and neuronal cell differentiation in transgenic SOD1 (G93A) mice and SOD1 (G17S and G86S) ALS patients. Transl Neurodegener 2020; 9:23. [PMID: 32605607 PMCID: PMC7328278 DOI: 10.1186/s40035-020-00203-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level and are key modulators in neurodegenerative diseases. Overexpressed miRNAs play an important role in ALS; however, the pathogenic mechanisms of deregulated miRNAs are still unclear. METHODS We aimed to assess the dysfunction of RNAs or miRNAs in fALS (SOD1 mutations). We compared the RNA-seq of subcellular fractions in NSC-34 WT (hSOD1) and MT (hSOD1 (G93A)) cells to find altered RNAs or miRNAs. We identified that Hif1α and Mef2c were upregulated, and Mctp1 and Rarb were downregulated in the cytoplasm of NSC-34 MT cells. RESULTS SOD1 mutations decreased the level of miR-18b-5p. Induced Hif1α which is the target for miR-18b increased Mef2c expression as a transcription factor. Mef2c upregulated miR-206 as a transcription factor. Inhibition of Mctp1 and Rarb which are targets of miR-206 induces intracellular Ca2+ levels and reduces cell differentiation, respectively. We confirmed that miR-18b-5p pathway was also observed in G93A Tg, fALS (G86S) patient, and iPSC-derived motor neurons from fALS (G17S) patient. CONCLUSIONS Our data indicate that SOD1 mutation decreases miR-18b-5p, which sequentially regulates Hif1α, Mef2c, miR-206, Mctp1 and Rarb in fALS-linked SOD1 mutation. These results provide new insights into the downregulation of miR-18b-5p dependent pathogenic mechanisms of ALS.
Collapse
Affiliation(s)
- Ki Yoon Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Yu Ri Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Kyung Won Choi
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Mijung Lee
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Somyung Lee
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Daejun, South Korea
| | - Yoon Ho Hong
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
3
|
Zheng MG, Sui WY, He ZD, Liu Y, Huang YL, Mu SH, Xu XZ, Zhang JS, Qu JL, Zhang J, Wang D. TrkA regulates the regenerative capacity of bone marrow stromal stem cells in nerve grafts. Neural Regen Res 2019; 14:1765-1771. [PMID: 31169194 PMCID: PMC6585565 DOI: 10.4103/1673-5374.257540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously demonstrated that overexpression of tropomyosin receptor kinase A (TrkA) promotes the survival and Schwann cell-like differentiation of bone marrow stromal stem cells in nerve grafts, thereby enhancing the regeneration and functional recovery of the peripheral nerve. In the present study, we investigated the molecular mechanisms underlying the neuroprotective effects of TrkA in bone marrow stromal stem cells seeded into nerve grafts. Bone marrow stromal stem cells from Sprague-Dawley rats were infected with recombinant lentivirus vector expressing rat TrkA, TrkA-shRNA or the respective control. The cells were then seeded into allogeneic rat acellular nerve allografts for bridging a 1-cm right sciatic nerve defect. Then, 8 weeks after surgery, hematoxylin and eosin staining showed that compared with the control groups, the cells and fibers in the TrkA overexpressing group were more densely and uniformly arranged, whereas they were relatively sparse and arranged in a disordered manner in the TrkA-shRNA group. Western blot assay showed that compared with the control groups, the TrkA overexpressing group had higher expression of the myelin marker, myelin basic protein and the axonal marker neurofilament 200. The TrkA overexpressing group also had higher levels of various signaling molecules, including TrkA, pTrkA (Tyr490), extracellular signal-regulated kinases 1/2 (Erk1/2), pErk1/2 (Thr202/Tyr204), and the anti-apoptotic proteins Bcl-2 and Bcl-xL. In contrast, these proteins were downregulated, while the pro-apoptotic factors Bax and Bad were upregulated, in the TrkA-shRNA group. The levels of the TrkA effectors Akt and pAkt (Ser473) were not different among the groups. These results suggest that TrkA enhances the survival and regenerative capacity of bone marrow stromal stem cells through upregulation of the Erk/Bcl-2 pathway. All procedures were approved by the Animal Ethical and Welfare Committee of Shenzhen University, China in December 2014 (approval No. AEWC-2014-001219).
Collapse
Affiliation(s)
- Mei-Ge Zheng
- Department of Orthopedics, The Seventh Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China; Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wen-Yuan Sui
- Department of Orthopedics, The Seventh Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhen-Dan He
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yan Liu
- Department of Scientific Research, The Seventh Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yu-Lin Huang
- Department of Orthopedics, The Seventh Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Shu-Hua Mu
- Psychology & Social College of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Xin-Zhong Xu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ji-Sen Zhang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun-Le Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jian Zhang
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Dong Wang
- Department of Orthopedics, The Seventh Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Ratner N, Brodeur GM, Dale RC, Schor NF. The "neuro" of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol 2016; 80:13-23. [PMID: 27043043 DOI: 10.1002/ana.24659] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. Ann Neurol 2016;80:13-23.
Collapse
Affiliation(s)
- Nancy Ratner
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, OH
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Russell C Dale
- Clinical School, the Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
5
|
Fröhlich M, Jaeger A, Weiss DG, Kriehuber R. Inhibition of BCL‐2 leads to increased apoptosis and delayed neuronal differentiation in human ReNcell VM cells
in vitro. Int J Dev Neurosci 2015; 48:9-17. [DOI: 10.1016/j.ijdevneu.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Michael Fröhlich
- University of RostockInstitute of Biological Sciences, Cell Biology and Biosystems TechnologyAlbert‐Einstein‐Straße 3D‐18051RostockGermany
| | - Alexandra Jaeger
- University of RostockInstitute of Biological Sciences, Cell Biology and Biosystems TechnologyAlbert‐Einstein‐Straße 3D‐18051RostockGermany
| | - Dieter G. Weiss
- University of RostockInstitute of Biological Sciences, Cell Biology and Biosystems TechnologyAlbert‐Einstein‐Straße 3D‐18051RostockGermany
| | - Ralf Kriehuber
- University of RostockInstitute of Biological Sciences, Cell Biology and Biosystems TechnologyAlbert‐Einstein‐Straße 3D‐18051RostockGermany
- Department of Safety and Radiation Protection, Radiation Biology UnitForschungszentrum Jülich GmbHD‐52425JülichGermany
| |
Collapse
|
6
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells. Mol Neurobiol 2014; 51:1089-102. [PMID: 24986006 DOI: 10.1007/s12035-014-8773-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/01/2014] [Indexed: 12/12/2022]
Abstract
We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.
Collapse
|
8
|
Fadó R, Moubarak RS, Miñano-Molina AJ, Barneda-Zahonero B, Valero J, Saura CA, Moran J, Comella JX, Rodríguez-Álvarez J. X-linked inhibitor of apoptosis protein negatively regulates neuronal differentiation through interaction with cRAF and Trk. Sci Rep 2014; 3:2397. [PMID: 23928917 PMCID: PMC3739015 DOI: 10.1038/srep02397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
X-linked Inhibitor of apoptosis protein (XIAP) has been classically identified as a cell death regulator. Here, we demonstrate a novel function of XIAP as a regulator of neurite outgrowth in neuronal cells. In PC12 cells, XIAP overexpression prevents NGF-induced neuronal differentiation, whereas NGF treatment induces a reduction of endogenous XIAP levels concomitant with the induction of neuronal differentiation. Accordingly, downregulation of endogenous XIAP protein levels strongly increases neurite outgrowth in PC12 cells as well as axonal and dendritic length in primary cortical neurons. The effects of XIAP are mediated by the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERKs) pathway since blocking this pathway completely prevents the neuritogenesis mediated by XIAP downregulation. In addition, we found that XIAP binds to cRaf and Trk receptors. Our results demonstrate that XIAP plays a new role as a negative regulator of neurotrophin-induced neurite outgrowth and neuronal differentiation in developing neurons.
Collapse
Affiliation(s)
- Rut Fadó
- Institut de Neurociències and Dpt. Bioquímica and Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang W, Ju J, Gronowicz G. Odontoblast-targeted Bcl-2 overexpression impairs dentin formation. J Cell Biochem 2011; 111:425-32. [PMID: 20518070 DOI: 10.1002/jcb.22722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis has been described extensively in tooth development, which is under tight control of multiple apoptosis regulators, including anti-apoptotic protein Bcl-2. However, it is totally unclear how Bcl-2 is related to odontogenesis, especially dentinogenesis. Using a transgenic mouse Col2.3Bcl-2 in which human Bcl-2 was overexpressed in odontoblasts, the effect of Bcl-2 on dentinogenesis was investigated. Overexpression of Bcl-2 was detected by immunohistochemistry and Western blot. Odontoblast apoptosis was evaluated by TUNEL and Western blot detection of cleaved caspase-3. Odontoblast differentiation was assessed by real-time PCR detection of dentin matrix expression. Dentin mineralization was evaluated by micro-CT in vivo, and alizarin red S staining and calcium content analysis in vitro. Bcl-2 was found to be overexpressed in odontoblasts and prevent their apoptosis. Odontoblast differentiation and mineralization was inhibited by Bcl-2, as evidenced by lower expressions of DMP-1, OC, and DSPP, and decreased odontoblast mineralization in vitro, as well as decreased dentin thickness and mineral density in vivo when compared to the wild-type animals. Inhibition of odontoblast differentiation by Bcl-2 occurs, at least partially, via a suppression of MEK-ERK1/2 signaling pathway. In conclusion, Bcl-2 overexpression prevents odontoblast apoptosis and impairs dentin formation, partially via an inhibition of odontoblast differentiation. This study revealed some novel functions of Bcl-2 in dentinogenesis in addition to its anti-apoptotic effect, which shed some light on the genetic complexity of tooth development.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic Sciences, University of Texas Dental Branch at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
10
|
Masgrau R, Hurel C, Papastefanaki F, Georgopoulou N, Thomaidou D, Matsas R. BM88/Cend1 regulates stimuli-induced intracellular calcium mobilization. Neuropharmacology 2008; 56:598-609. [PMID: 19061903 DOI: 10.1016/j.neuropharm.2008.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
In neurogenesis, little is known about signal transduction pathways upstream of gene expression however, mounting evidence suggests that calcium release from internal stores plays a critical role. We have previously demonstrated that BM88 is a neuronal lineage-specific regulator of cell cycle exit and differentiation; we now report a link between BM88 and calcium signaling. Calcium imaging experiments revealed that P2Y-induced calcium mobilization is diminished in mouse neuroblastoma Neuro 2a cells stably transfected with BM88 (N2A-BM88 cells) as compared with N2A cells or N2A cells differentiated with retinoic acid. This effect is not restricted to N2A cells but is also observed in HeLa cells that are transiently transfected with BM88, indicating that cells of both neural and non-neural origin respond similarly. Further, activation of P2Y1 but not purinergic P2X receptors induces proliferation of N2A and to a lesser extent of N2A-BM88 cells. Conversely, knockdown of BM88 facilitates N2A cell proliferation both under stimulating and non-stimulating conditions. Importantly, N2A-BM88 cells are less susceptible to apoptosis triggered by C2-ceramide and exhibit reduced C2-ceramide-induced intracellular calcium release. Higher calcium uptake from mitochondria and/or lower calcium levels inside the endoplasmic reticulum may explain the reduced calcium mobilization in response to BM88. Overall, our data reveal a novel signaling mechanism by which BM88 interferes with calcium release from inositol 1,4,5-trisphosphate-sensitive stores and exerts anti-proliferative and anti-apoptotic functions.
Collapse
Affiliation(s)
- Roser Masgrau
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
11
|
Rogers D, Nylander KD, Mi Z, Hu T, Schor NF. Molecular predictors of human nervous system cancer responsiveness to enediyne chemotherapy. Cancer Chemother Pharmacol 2008; 62:699-706. [PMID: 18338171 PMCID: PMC2575071 DOI: 10.1007/s00280-008-0725-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE To identify and mathematically model molecular predictors of response to the enediyne chemotherapeutic agent, neocarzinostatin, in nervous system cancer cell lines. METHODS Human neuroblastoma, breast cancer, glioma, and medulloblastoma cell lines were maintained in culture. Content of caspase-3 and Bcl-2, respectively, was determined relative to actin content for each cell line by Western blotting and optical densitometry. For each cell line, sensitivity to neocarzinostatin was determined. Brain tumor cell lines were stably transfected with human Bcl-2 cDNA cloned into the pcDNA3 plasmid vector. RESULTS In human tumor cell lines of different tissue origins, sensitivity to neocarzinostatin is proportional to the product of the relative contents of Bcl-2 and caspase-3 (r (2) = 0.9; P < 0.01). Neuroblastoma and brain tumor cell lines are particularly sensitive to neocarzinostatin; the sensitivity of brain tumor lines to neocarzinostatin is enhanced by transfection with an expression construct for Bcl-2 and is proportional in transfected cells to the product of the relative contents of Bcl-2 and caspase-3 (r (2) = 0.7). CONCLUSION These studies underscore the potential of molecular profiling in identifying effective chemotherapeutic paradigms for cancer in general and tumors of the nervous system in particular.
Collapse
Affiliation(s)
- Danny Rogers
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Karen D. Nylander
- Pediatric Center for Neuroscience, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Zhiping Mi
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Tong Hu
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Nina F. Schor
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
12
|
Chiou SH, Kao CL, Chang YL, Ku HH, Tsai YJ, Lin HT, Yen CJ, Peng CH, Chiu JH, Tsai TH. Evaluation of anti-Fas ligand-induced apoptosis and neural differentiation of PC12 cells treated with nerve growth factor using small interfering RNA method and sampling by microdialysis. Anal Biochem 2007; 363:46-57. [PMID: 17306206 DOI: 10.1016/j.ab.2007.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/16/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
The small interfering RNA (siRNA) method is an effective technique for silencing gene expression and is a useful tool for screening the gene functions in drug discovery. Our study found that nerve growth factor (NGF) can increase the cell viability of PC12 cells and that NGF induction up-regulates the expression of Bcl-2 detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). To further investigate the role of Bcl-2 expression in NGF-treated PC12 cells, the plasmid of Bcl-2 siRNA was then transfected into PC12 cells. Moreover, to investigate and continuously monitor the real-time dynamic neurotransmitter release, and to compare with the time course of Bcl-2 expression, a liquid chromatography coupled with electrochemical detection (LC-ED) and with a microdialysis device was used. After 6h of NGF being added to the PC12 cell culture medium, the dopamine (DA) concentrations were significantly increased (P<0.05). This result is simultaneously compatible with the up-regulated messenger RNA (mRNA) expressions of tyrosine hydroxylase (TH), aromatic acid decarboxylase (AADC), and Bcl-2 by RT-PCR. Using the Bcl-2 siRNA method, our data revealed that NGF can inhibit Fas ligand (FasL)-induced apoptosis in PC12 cells through the activation of Bcl-2. The in vitro observation further demonstrated that NGF can stimulate the neurite development in PC12 cells through the activation of Bcl-2. Moreover, the DA concentrations of NGF induction were decreased specifically by Bcl-2 siRNA (P<0.05). In sum, our data support that NGF prevents Fas-induced apoptosis, facilitates neural differentiation, promotes dendritic formation, and increases DA release in PC12 cells through activation of Bcl-2.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang W, Pantschenko AG, McCarthy MB, Gronowicz G. Bone-targeted overexpression of Bcl-2 increases osteoblast adhesion and differentiation and inhibits mineralization in vitro. Calcif Tissue Int 2007; 80:111-22. [PMID: 17308993 DOI: 10.1007/s00223-006-0168-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 11/21/2006] [Indexed: 12/11/2022]
Abstract
Apoptosis is a process important for the development and homeostasis of self-renewing tissues, including bone. However, little is known about the function of Bcl-2, a key player of apoptosis, in the regulation of osteoblast activity. Ex vivo cultures of osteoblasts from Col2.3Bcl-2 mice, in which human Bcl-2 was targeted to bone by the 2.3 kb fragment of the type I collagen promoter, were used to study the effect of Bcl-2 in osteoblasts. During 35 days of culture, hBcl-2 expression increased without any effect on endogenous mouse Bcl-2 and Bax expression. Adhesion of transgenic (TG) osteoblasts was twofold more than that of wild-type (WT) cells, with significantly higher expression of integrins alpha(1), alpha(2), and alpha(5) but similar levels of alpha(v) and beta(1) relative to WT cells. Proliferation of osteoblasts was not affected. Overexpression of hBcl-2 promoted the differentiation of osteoblasts, as shown by increased message levels of alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin in the TG compared to WT cells throughout the culture period. The two transcription factors essential for osteoblast differentiation, core binding factor alpha 1 (Cbfa-1) and osterix, had significantly higher expression in TG than WT cells during the early culture period. ss-Catenin, a central player in the canonical Wnt pathway, also had higher expression in TG than WT cultures. Mineralization was significantly decreased in TG cultures, with less osteoblast apoptosis, compared to WT. Thus, Bcl-2 seems to have multiple roles in modulating osteoblast activities.
Collapse
Affiliation(s)
- W Zhang
- Department of Orthopedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
14
|
Mi Z, Mirnics ZK, Schor NF. Bcl-2 overexpression disrupts the morphology of PC12 cells through reduced ERK activation. Brain Res 2006; 1112:46-55. [PMID: 16914120 DOI: 10.1016/j.brainres.2006.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/19/2006] [Accepted: 07/05/2006] [Indexed: 12/22/2022]
Abstract
Bcl-2 has been hypothesized to regulate many cellular functions in addition to its well-characterized role in the prevention of programmed cell death. To understand the role of Bcl-2 in regulating cell morphology and to explore the mechanism of this effect, we examined the effects of Bcl-2 overexpression on the morphology of PC12 cells in culture. We demonstrate that the overexpression of Bcl-2 in PC12 cells results in altered cell morphology and reduced actin expression. Analysis of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation reveals that the morphological changes seen after bcl-2 transfection are associated with reduced ERK activation. Treatment of control (mock-transfected) PC12 cells with the mitogen-activated ERK-activating kinase (MEK) inhibitor PD98059 converts their flat, process-bearing morphology into the rounded, process-free morphology of bcl-2-transfected cells, further confirming the association of ERK activation with altered cell shape. In conclusion, the present study describes a novel function of Bcl-2 in regulating cell shape through reduced ERK activation.
Collapse
Affiliation(s)
- Zhiping Mi
- Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
15
|
Dietz GPH, Dietz B, Bähr M. Bcl-xL increases axonal numbers but not axonal elongation from rat retinal explants. Brain Res Bull 2006; 70:117-23. [PMID: 16782502 DOI: 10.1016/j.brainresbull.2006.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/10/2006] [Accepted: 03/23/2006] [Indexed: 01/12/2023]
Abstract
The Bcl-2 family of proteins has been characterized as a key regulator of cell death programs. In addition, these proteins also play important roles in cellular differentiation, such as axonal growth. The role of Bcl-2 family members on axonal regeneration and neurite extension has been controversial so far. Here, we examine the influence of Bcl-x(L) on axonal regeneration from adult retina explants in vitro. We delivered recombinant Bcl-x(L) into retinal tissue, mediated by the Tat-protein transduction domain, and observed its effect on retinal axon extension. We found that Bcl-x(L) increased the number of regenerating neurites, but did not increase their length. Our results indicate that Bcl-x(L) stimulates axonal initiation but not axonal elongation after crush injury to retinal explants, without altering the number of surviving neurons.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Neurologische Universitätsklinik, Waldweg 33, 37073 Göttingen, Germany.
| | | | | |
Collapse
|
16
|
Georges P, Cornish EE, Provis JM, Madigan MC. Muller cell expression of glutamate cycle related proteins and anti-apoptotic proteins in early human retinal development. Br J Ophthalmol 2006; 90:223-8. [PMID: 16424538 PMCID: PMC1860165 DOI: 10.1136/bjo.2005.078014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS The distribution of glutamate cycle related proteins (glutamine synthetase (GS) and GLAST) and anti-apoptotic proteins (Bcl-2 and Bcl-X) was investigated in Müller cells during early human retinal development, relative to the onset of expression of synaptophysin, a presynaptic vesicle protein. METHODS Using frozen sections of human fetal eyes (13-22 weeks gestation) (n = 10), Bcl-2, Bcl-X, GS, GLAST, and synaptophysin immunoreactivities (IR) were imaged using fluorescence microscopy and plotted as a function of eccentricity from the incipient fovea. Frozen sections of adult human retina (n = 4) were immunolabelled with antibodies to Bcl-2 and Bcl-X. RESULTS Müller cell immunoreactivity for GS, GLAST, and Bcl-2 was initially detected in the incipient fovea, and then at more peripheral locations with increasing age. Synaptophysin-IR appeared earlier than all other target proteins. Within the synaptophysin-IR region, mature (differentiated) Müller cells expressed both Bcl-2 and Bcl-X-IR from 13 weeks gestation, ahead of GS-IR and GLAST-IR that were first seen at 14 weeks gestation. Additionally, from as early as 13 weeks gestation, ganglion cells and immature neuronal progenitor cells across the entire retina expressed Bcl-2-IR and Bcl-X-IR, respectively. In adult retina, ganglion cells and some bipolar cells expressed Bcl-X but not Bcl-2. CONCLUSION Müller cells express Bcl-2 and Bcl-X after synaptogenesis has commenced, but before the onset of GS and GLAST expression, suggesting a protective role for these proteins in Müller cells during the onset of glutamatergic transmission in early human retinal development.
Collapse
Affiliation(s)
- P Georges
- Save Sight Institute, GPO Box 4337, Sydney NSW 2001 Australia
| | | | | | | |
Collapse
|
17
|
Schor NF. The p75 neurotrophin receptor in human development and disease. Prog Neurobiol 2005; 77:201-14. [PMID: 16297524 DOI: 10.1016/j.pneurobio.2005.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Revised: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 11/29/2022]
Abstract
The functional effects of nerve growth factor (NGF) and its precursor, pro-NGF, are thought to be mediated through binding of these ligands to one or both of their receptors, TrkA and p75NTR. While the signaling pathways and downstream effects of NGF binding to TrkA are reasonably well known, those related to the binding of NGF and pro-NGF to p75NTR are less well understood. Furthermore, p75NTR appears to play functional roles that are unrelated to its ability to bind NGF and pro-NGF, some of which are ligand-independent and others of which are dependent upon binding to other neurotrophins. As these functional roles and their biochemical mechanisms become better known, the importance of p75NTR, related receptors, and both extracellular ligands and intracellular interactors and effectors for human development and health has become increasingly apparent. A complete understanding of p75NTR and its cellular partners is best served by approaching the remaining questions from both sides, with studies of function in normal states and studies of dysfunction in aberrant states mutually informing one another.
Collapse
Affiliation(s)
- Nina Felice Schor
- Department of Pediatrics, University of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Swettenham E, Witting PK, Salvatore BA, Neuzil J. α-Tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? J Neurochem 2005; 94:1448-56. [PMID: 16001965 DOI: 10.1111/j.1471-4159.2005.03298.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vitamin E (VE) analogues, epitomized by alpha-tocopheryl succinate (alpha-TOS), are potent inducers of apoptosis and anti-cancer agents. Here, we tested their effect on the highly malignant N-type neuroblastoma (Nb) cells and their differentiated, neurone-like counterparts. Nb cells were highly susceptible to several VE analogues, while differentiated Nb cells were relatively resistant to alpha-TOS. The importance of caspase-9 rather than caspase-8, as judged by specific siRNAs studies, together with the loss of the inner mitochondrial potential, suggests that alpha-TOS triggers apoptosis in Nb cells via the mitochondrial pathway. Cultured Nb cells were sensitized to alpha-TOS by pre-treatment with Bcl-2, Bcl-xL or Mcl-1 siRNAs, while the malignant cell line was more resistant to the vitamin E analogue when Bax was knocked down. In contrast, overexpression of Bcl-2 in Nb cells rendered them more resistant to alpha-TOS-induced apoptosis. The resistance of differentiated Nb cells to alpha-TOS-mediated apoptosis occurred via two modes: first, by up-regulation of the anti-apoptotic Bcl-2 family proteins and second, by accumulation of decreased levels of reactive oxygen species when challenged with alpha-TOS. We conclude that alpha-TOS is highly selective in killing malignant brain cancer cells while relatively inert toward differentiated neuronal cells, and that vitamin E analogues may be novel therapeutics for the treatment of tumours such as neuroblastomas.
Collapse
Affiliation(s)
- Emma Swettenham
- Apoptosis Research Group, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | | | | | | |
Collapse
|
19
|
Azoitei N, Wirth T, Baumann B. Activation of the IkappaB kinase complex is sufficient for neuronal differentiation of PC12 cells. J Neurochem 2005; 93:1487-501. [PMID: 15935065 DOI: 10.1111/j.1471-4159.2005.03148.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the role of the IkappaB kinase complex in nerve growth factor (NGF)-induced neuronal differentiation of PC12 cells. We showed that neurite outgrowth is accompanied by an activation of the IKK complex and a delayed elevation of NF-kappaB-dependent transcription. Ectopic expression of a constitutively active form of IKK2 but not of IKK1 promoted neurite outgrowth in the absence of NGF. In addition, increased expression of Bcl-2 and Bcl-xL and resistance to apoptosis upon serum withdrawal were found. The IKK2-driven neurite outgrowth was not blocked by MEK1/2 and PI3K inhibitors but was repressed by the SN50 peptide suggesting that NF-kappaB activation is critical for this differentiation process. Transdominant mutants of IkappaBalpha (32/36-SS/AA) and IKK1 only marginally reduced NGF-driven neuritogenesis. However, a dominant negative mutant of IKK2 or an IkappaBalpha protein lacking the complete N-terminus was able to repress neuritogenesis. We also detected tyrosine phosphorylation of IkappaBalpha during differentiation. Consequently, PC12 cells expressing mutant IkappaBalpha (Y42F) show an impaired neuritogenesis. Furthermore, PC12 cells ectopically expressing p65 show almost no signs of neurite outgrowth which is, however, found to some extent in c-Rel-expressing cells. Our data suggest that NGF-induced PC12 differentiation includes activation of IKK2 which may promote the release of c-Rel-containing dimers.
Collapse
Affiliation(s)
- Ninel Azoitei
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | | |
Collapse
|
20
|
Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. ACTA ACUST UNITED AC 2004; 167:723-34. [PMID: 15545317 PMCID: PMC2172580 DOI: 10.1083/jcb.200405144] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation of stem cell-derived tumors (teratomas) is observed when engrafting undifferentiated embryonic stem (ES) cells, embryoid body-derived cells (EBCs), or mammalian embryos and is a significant obstacle to stem cell therapy. We show that in tumors formed after engraftment of EBCs into mouse brain, expression of the pluripotency marker Oct-4 colocalized with that of prostate apoptosis response-4 (PAR-4), a protein mediating ceramide-induced apoptosis during neural differentiation of ES cells. We tested the ability of the novel ceramide analogue N-oleoyl serinol (S18) to eliminate mouse and human Oct-4(+)/PAR-4(+) cells and to increase the proportion of nestin(+) neuroprogenitors in EBC-derived cell cultures and grafts. S18-treated EBCs persisted in the hippocampal area and showed neuronal lineage differentiation as indicated by the expression of beta-tubulin III. However, untreated cells formed numerous teratomas that contained derivatives of endoderm, mesoderm, and ectoderm. Our results show for the first time that ceramide-induced apoptosis eliminates residual, pluripotent EBCs, prevents teratoma formation, and enriches the EBCs for cells that undergo neural differentiation after transplantation.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
21
|
Bilalovic N, Sandstad B, Golouh R, Nesland JM, Selak I, Torlakovic EE. CD10 protein expression in tumor and stromal cells of malignant melanoma is associated with tumor progression. Mod Pathol 2004; 17:1251-8. [PMID: 15205682 DOI: 10.1038/modpathol.3800174] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD10 antigen is a 100-kDa-cell surface zinc metalloendopeptidase expressed in a variety of normal and neoplastic lymphoid and nonlymphoid tissues including melanomas. It was recently shown that metastatic melanomas express more CD10 than primary tumors. We evaluated CD10 expression in tumor and stromal cells in 70 biopsies with primary and 28 with metastatic malignant melanomas. Ki-67, Bcl-2, and Bax were also examined to investigate whether CD10 expression is associated with tumor proliferation index or factors of apoptosis. Formalin-fixed/paraffin-embedded tissues were studied by immunohistochemistry. More advanced primary tumors had higher CD10 expression in the tumor cells (r = 0.27, P = 0.03 for Clark levels and r = 0.29, P = 0.02 for Breslow) and higher Ki-67 proliferation fraction (r = 0.32, P = 0.007 for Clark levels and r = 0.32, P = 0.001 for Breslow). Similarly, CD10 expression in the intratumoral stromal cells was also higher in primary tumors with higher Clark level (P = 0.04, linear-by-linear association) and tumor thickness according to Breslow (r = 0.33, P = 0.01). The presence of CD10+ peritumoral stromal cell cuffs was also positively associated with tumor thickness according to Breslow (r = 0.27, P = 0.05). Also, expression of CD10 and Ki-67 were significantly higher in metastatic than in primary tumors (P = 0.01 and 0.02 respectively), but Bcl-2 expression was higher in primary melanomas (P = 0.02). We conclude that CD10 expression in malignant melanoma is associated with tumor progression.
Collapse
Affiliation(s)
- Nurija Bilalovic
- Department of Pathology, University Hospital Sarajevo, Bosnia and Herzegovina
| | | | | | | | | | | |
Collapse
|
22
|
Jang JH, Surh YJ. Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activation. J Biol Chem 2004; 279:38779-86. [PMID: 15208316 DOI: 10.1074/jbc.m406371200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress induced by reactive oxygen intermediates often causes cell death via apoptosis, which is regulated by many functional genes and their protein products. The evolutionarily conserved protein Bcl-2 blocks apoptosis induced by a wide array of death signals. Despite extensive research, the molecular milieu that characterizes the anti-apoptotic function of Bcl-2 has not been fully clarified. In this work, we have investigated the role of bcl-2 in protecting against oxidative death induced by H(2)O(2) in cultured rat pheochromocytoma PC12 cells. Transfection with the bcl-2 gene rescued PC12 cells from apoptotic death caused by H(2)O(2). Addition of NF-kappaB inhibitors such as pyrrolidine dithiocarbamate and N-tosyl-l-phenylalanine chloromethyl ketone to the medium aggravated oxidative cell death. PC12 cells overexpressing bcl-2 exhibited relatively high constitutive DNA binding and transcriptional activities of NF-kappaB compared with vector-transfected control cells. Western blot analysis and immunocytochemistry revealed that bcl-2-transfected PC12 cells retained a higher level of p65 (the functionally active subunit of NF-kappaB) in the nucleus compared with vector-transfected controls. In addition, sustained activation of ERK1/2 (upstream of NF-kappaB) was observed in bcl-2-overexpressing cells. In contrast, the cytoplasmic inhibitor IkappaBalpha was present in lower amounts in cells overexpressing bcl-2. The ectopic expression of bcl-2 increased the cellular glutathione level and gamma-glutamylcysteine ligase expression, which were attenuated by NF-kappaB inhibitors. These results suggest that NF-kappaB plays a role in bcl-2-mediated protection against H(2)O(2)-induced apoptosis in PC12 cells through augmentation of antioxidant capacity.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | |
Collapse
|
23
|
Eom DS, Choi WS, Oh YJ. Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun 2004; 314:377-81. [PMID: 14733915 DOI: 10.1016/j.bbrc.2003.12.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies suggest that Bcl-2 may play an active role in neuronal differentiation. Here, we showed a marked neurite extension in MN9D dopaminergic neuronal cells overexpressing Bcl-2 (MN9D/Bcl-2) or Bcl-X(L) (MN9D/Bcl-X(L)). We found a specific increase in phosphorylation of c-Jun N-terminal kinase (JNK) accompanied by neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells. Consequently, neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells was suppressed by treatment with SP600125, a specific inhibitor of JNK. Inhibition of other mitogen-activated protein kinases-including p38 and extracellular signal-regulated kinase-did not affect Bcl-2-mediated neurite extension in MN9D cells. While the expression levels of such protein markers of maturation as SNAP-25, phosphorylated NF-H, and neuron-specific enolase were increased in MN9D/Bcl-2 cells, only upregulation of SNAP-25 was inhibited after treatment with SP600125. Thus, the JNK signal activated by Bcl-2 seems to play an important role during morphological and certain biochemical differentiation in cultured dopaminergic neurons.
Collapse
Affiliation(s)
- Dae-Seok Eom
- Department of Biology, Yonsei University College of Science, 120-749 Seoul, Republic of Korea
| | | | | |
Collapse
|