1
|
Meena D, Jha S. Autophagy in glioblastoma: A mechanistic perspective. Int J Cancer 2024; 155:605-617. [PMID: 38716809 DOI: 10.1002/ijc.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies in humans. Even after surgical resection and aggressive radio- or chemotherapies, patients with GBM can survive for less than 14 months. Extreme inter-tumor and intra-tumor heterogeneity of GBM poses a challenge for resolving recalcitrant GBM pathophysiology. GBM tumor microenvironment (TME) exhibits diverse heterogeneity in cellular composition and processes contributing to tumor progression and therapeutic resistance. Autophagy is such a cellular process; that demonstrates a cell-specific and TME context-dependent role in GBM progression, leading to either the promotion or suppression of GBM progression. Autophagy can regulate GBM cell function directly via regulation of survival, migration, and invasion, or indirectly by affecting GBM TME composition such as immune cell population, tumor metabolism, and glioma stem cells. This review comprehensively investigates the role of autophagy in GBM pathophysiology.
Collapse
Affiliation(s)
- Durgesh Meena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Chakraborty S, Wei D, Tran M, Lang FF, Newman RA, Yang P. PBI-05204, a supercritical CO 2 extract of Nerium oleander, suppresses glioblastoma stem cells by inhibiting GRP78 and inducing programmed necroptotic cell death. Neoplasia 2024; 54:101008. [PMID: 38823209 PMCID: PMC11177059 DOI: 10.1016/j.neo.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Megan Tran
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Newman
- Phoenix Biotechnology, San Antonio, Texas 78217, United States
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.
| |
Collapse
|
3
|
Zhu C, Fan F, Li CY, Xiong Y, Liu X. Caspase-3 promotes oncogene-induced malignant transformation via EndoG-dependent Src-STAT3 phosphorylation. Cell Death Dis 2024; 15:486. [PMID: 38977663 PMCID: PMC11231138 DOI: 10.1038/s41419-024-06884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Accumulating evidence suggests that caspase-3 plays critical roles beyond apoptosis, serving pro-survival functions in malignant transformation and tumorigenesis. However, the mechanism of non-apoptotic action of caspase-3 in oncogenic transformation remains unclear. In the present study, we show that caspase-3 is consistently activated in malignant transformation induced by exogenous expression of oncogenic cocktail (c-Myc, p53DD, Oct-4, and H-Ras) in vitro as well as in the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse model of breast cancer. Genetic ablation of caspase-3 significantly attenuated oncogene-induced transformation of mammalian cells and delayed breast cancer progression in MMTV-PyMT transgenic mice. Mechanistically, active caspase-3 triggers the translocation of endonuclease G (EndoG) from mitochondria, which migrates to the nucleus, thereby induces phosphorylation of Src-STAT3 signaling pathway to facilitate oncogenic transformation. Taken together, our data suggest that caspase-3 plays pivotal role in facilitating rather than suppressing oncogene-induced malignant transformation of mammalian cells.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of Biochemistry, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fushun Fan
- BeBetter Med Inc., Guangzhou, Guangdong, China
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Yan Xiong
- Guangzhou Consen Pharmaceutical Technology Co. Ltd, Guangzhou, Guangdong, China.
| | - Xinjian Liu
- Department of Biochemistry, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Wu Q, Berglund AE, Macaulay RJ, Etame AB. The Role of Mesenchymal Reprogramming in Malignant Clonal Evolution and Intra-Tumoral Heterogeneity in Glioblastoma. Cells 2024; 13:942. [PMID: 38891074 PMCID: PMC11171993 DOI: 10.3390/cells13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J. Macaulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Kuru Cİ, Ulucan-Karnak F, Dayıoğlu B, Şahinler M, Şendemir A, Akgöl S. Affinity-Based Magnetic Nanoparticle Development for Cancer Stem Cell Isolation. Polymers (Basel) 2024; 16:196. [PMID: 38256995 PMCID: PMC10818538 DOI: 10.3390/polym16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer is still the leading cause of death in the world despite the developing research and treatment opportunities. Failure of these treatments is generally associated with cancer stem cells (CSCs), which cause metastasis and are defined by their resistance to radio- and chemotherapy. Although known stem cell isolation methods are not sufficient for CSC isolation, they also bring a burden in terms of cost. The aim of this study is to develop a high-efficiency, low-cost, specific method for cancer stem cell isolation with magnetic functional nanoparticles. This study, unlike the stem cell isolation techniques (MACS, FACS) used today, was aimed to isolate cancer stem cells (separation of CD133+ cells) with nanoparticles with specific affinity and modification properties. For this purpose, affinity-based magnetic nanoparticles were synthesized and characterized by providing surface activity and chemical reactivity, as well as making surface modifications necessary for both lectin affinity and metal affinity interactions. In the other part of the study, synthesized and characterized functional polymeric magnetic nanoparticles were used for the isolation of CSC from the human osteosarcoma cancer cell line (SAOS-2) with a cancer stem cell subpopulation bearing the CD133 surface marker. The success and efficiency of separation after stem cell isolation were evaluated via the MACS and FACS methods. As a result, when the His-graft-mg-p(HEMA) nanoparticle was used at a concentration of 0.1 µg/mL for 106 and 108 cells, superior separation efficiency to commercial microbeads was obtained.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Büşra Dayıoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Mert Şahinler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| |
Collapse
|
7
|
Mahmoudian E, Jahani-Asl A. Establishing Brain Tumor Stem Cell Culture from Patient Brain Tumors and Imaging Analysis of Patient-Derived Xenografts. Methods Mol Biol 2024; 2736:177-192. [PMID: 37243860 DOI: 10.1007/7651_2023_482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Brain tumor stem cells (BTSCs) have been isolated from different types of brain tumors including glioblastoma. Although BTSCs share common characteristics with neural stem cells (NSCs), such as capacity to self-renew and undergo long-term proliferation, they have tumor-propagating capabilities. A small population of BTSC can give rise to secondary tumor when transplanted into severe immunodeficient (SCID) mice. The histological and cytological features, as well as genetic heterogeneity of the xenografted tumors in mice, closely resemble those of primary tumors in patients. Patient-derived xenografts (PDX), therefore, provide a clinically relevant model to study brain tumors. Here, we describe our protocol for establishing BTSC cultures following surgical excision of human brain tumors and the procedures to conduct PDX studies in SCID mice. We also provide our detailed step-by-step protocol on in vivo imaging system (IVIS) of the PDX tumors as a noninvasive method to trace the cells and tumor volume.
Collapse
Affiliation(s)
- Elham Mahmoudian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
10
|
Singh D, Biswas D, Tewari M, Kar AG, Ansari MA, Singh S, Narayan G. Clinical Significance of Overexpression of Oct4 in Advanced Stage Gallbladder Carcinoma. J Gastrointest Cancer 2023; 54:1231-1239. [PMID: 36705780 DOI: 10.1007/s12029-023-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Oct4 has critical role in maintaining pluripotency, proliferative potential, and self-renewal capacity in embryonic stem and germ cells. Although Oct4 has been shown to be upregulated in many cancers, its clinical significance in gallbladder carcinoma is poorly understood. METHODS We studied the expression profile of Oct4 in 61 GBC and 30 chronic cholecystitis (as control) using real time RT-PCR, western blotting, and immunohistochemistry. The expression data was correlated with clinico-pathological parameters. The diagnostic utility was assessed through ROC curve, and prognostic value was analyzed by Kaplan-Meier method. RESULTS Oct4 was significantly upregulated at mRNA as well as protein levels. The higher mRNA expression shows significant association with late stage, late T stage, and higher grade of tumor. A significant positive correlation was also observed with stage, T stage, and tumor grade. Sum score analysis of protein expression shows positive correlation with stage and the presence or absence of gallstone in tumor samples. The ROC curve analysis revealed the moderate diagnostic potential of Oct4. Kaplan-Meier analysis showed that patients having higher expression of Oct4 were having low mean survival compared with the patients with lower Oct4 expression. CONCLUSION In conclusion, our data suggests that higher expression of Oct4 may serve as potential biological indicator for tumor aggressiveness and poor prognosis of GBC.
Collapse
Affiliation(s)
- Deepika Singh
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Radiation Oncology, The Ohio State University, Columbus, 43210, USA
| | - Dipanjan Biswas
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, 400012, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mumtaz Ahmad Ansari
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Banaras Hindu University, Mahila Mahavidyalaya, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
12
|
José-López R. Chemotherapy for the treatment of intracranial glioma in dogs. Front Vet Sci 2023; 10:1273122. [PMID: 38026627 PMCID: PMC10643662 DOI: 10.3389/fvets.2023.1273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Gliomas are the second most common primary brain tumor in dogs and although they are associated with a poor prognosis, limited data are available relating to the efficacy of standard therapeutic options such as surgery, radiation and chemotherapy. Additionally, canine glioma is gaining relevance as a naturally occurring animal model that recapitulates human disease with fidelity. There is an intense comparative research drive to test new therapeutic approaches in dogs and assess if results translate efficiently into human clinical trials to improve the poor outcomes associated with the current standard-of-care. However, the paucity of data and controversy around most appropriate treatment for intracranial gliomas in dogs make comparisons among modalities troublesome. To further inform therapeutic decision-making, client discussion, and future studies evaluating treatment responses, the outcomes of 127 dogs with intracranial glioma, either presumed (n = 49) or histologically confirmed (n = 78), that received chemotherapy as leading or adjuvant treatment are reviewed here. This review highlights the status of current chemotherapeutic approaches to intracranial gliomas in dogs, most notably temozolomide and lomustine; areas of novel treatment currently in development, and difficulties to consensuate and compare different study observations. Finally, suggestions are made to facilitate evidence-based research in the field of canine glioma therapeutics.
Collapse
Affiliation(s)
- Roberto José-López
- Hamilton Specialist Referrals – IVC Evidensia, High Wycombe, United Kingdom
| |
Collapse
|
13
|
Mehta D, Shaikh S, Mohanty B, Chaudhari P, Waghmare SK. Secretory phospholipase (sPLA 2-IIA) regulates breast cancer stem cells differentiation and metastatic potential. Biochem Biophys Res Commun 2023; 677:98-104. [PMID: 37566923 DOI: 10.1016/j.bbrc.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Breast cancer is the second most cancer worldwide in females. The primary factor responsible for tumor recurrence is the presence of breast cancer stem cells (BCSCs), which escape the chemo-radiotherapy. In this study, we have investigated the role of Secretory phospholipase-A2 Group 2A (sPLA2-IIA) that is overexpressed in BCSCs of MCF7 and MDA-MB-231 breast cancer cell lines. Further, overexpression of sPLA2-IIA revealed an increased EGFR/JNK/c-JUN/c-FOS signaling in BCSCs, while sPLA2-IIA knockdown significantly reduced the percentage of BCSCs and decreased signaling in both the cell lines. Importantly, sPLA2-IIA knockdown showed differentiation of BCSCs. Strikingly, PET imaging showed a decreased metastatic potential of BCSCs. Our study revealed a novel role of sPLA2-IIA in regulating BCSCs, which play a crucial role in regulating the differentiation and metastatic potential of BCSCs.
Collapse
Affiliation(s)
- Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sana Shaikh
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Bhabani Mohanty
- Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India; Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
14
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
15
|
Yuan R, Zhang W, You Y, Cui G, Gao Z, Wang X, Chen J. Vitamin D3 suppresses the cholesterol homeostasis pathway in patient-derived glioma cell lines. FEBS Open Bio 2023; 13:1789-1806. [PMID: 37489660 PMCID: PMC10476568 DOI: 10.1002/2211-5463.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.
Collapse
Affiliation(s)
- Ran Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yong‐Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityChina
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of MedicineShanghai UniversityNantongChina
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical SciencesNanjing Medical UniversityChina
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
16
|
Tinnirello R, Chinnici CM, Miceli V, Busà R, Bulati M, Gallo A, Zito G, Conaldi PG, Iannolo G. Two Sides of The Same Coin: Normal and Tumoral Stem Cells, The Relevance of In Vitro Models and Therapeutic Approaches: The Experience with Zika Virus in Nervous System Development and Glioblastoma Treatment. Int J Mol Sci 2023; 24:13550. [PMID: 37686355 PMCID: PMC10487988 DOI: 10.3390/ijms241713550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Neural stem cells (NSCs) were described for the first time more than two decades ago for their ability to differentiate into all neural cell lineages. The isolation of NSCs from adults and embryos was carried out by various laboratories and in different species, from mice to humans. Similarly, no more than two decades ago, cancer stem cells were described. Cancer stem cells, previously identified in hematological malignancies, have now been isolated from several solid tumors (breast, brain, and gastrointestinal compartment). Though the origin of these cells is still unknown, there is a wide consensus about their role in tumor onset, propagation and, in particular, resistance to treatments. Normal and neoplastic neural stem cells share common characteristics, and can thus be considered as two sides of the same coin. This is particularly true in the case of the Zika virus (ZIKV), which has been described as an inhibitor of neural development by specifically targeting NSCs. This understanding prompted us and other groups to evaluate ZIKV action in glioblastoma stem cells (GSCs). The results indicate an oncolytic activity of this virus vs. GSCs, opening potentially new possibilities in glioblastoma treatment.
Collapse
Affiliation(s)
- Rosaria Tinnirello
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Cinzia Maria Chinnici
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED c/o IRCCS ISMETT, 90127 Palermo, Italy
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| |
Collapse
|
17
|
Otsuka K, Iwasaki T. Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells. Int J Radiat Biol 2023; 99:1503-1521. [PMID: 36971595 DOI: 10.1080/09553002.2023.2194398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Strategy and Planning Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
18
|
Loss of p53 Concurrent with RAS and TERT Activation Induces Glioma Formation. Mol Neurobiol 2023; 60:3452-3463. [PMID: 36867344 DOI: 10.1007/s12035-023-03288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
There is an ongoing debate regarding whether gliomas originate due to functional or genetic changes in neural stem cells (NSCs). Genetic engineering has made it possible to use NSCs to establish glioma models with the pathological features of human tumors. Here, we found that RAS, TERT, and p53 mutations or abnormal expression were associated with the occurrence of glioma in the mouse tumor transplantation model. Moreover, EZH2 palmitoylation mediated by ZDHHC5 played a significant role in this malignant transformation. EZH2 palmitoylation activates H3K27me3, which in turn decreases miR-1275, increases glial fibrillary acidic protein (GFAP) expression, and weakens the binding of DNA methyltransferase 3A (DNMT3A) to the OCT4 promoter region. Thus, these findings are significant because RAS, TERT, and p53 oncogenes in human neural stem cells are conducive to a fully malignant and rapid transformation, suggesting that gene changes and specific combinations of susceptible cell types are important factors in determining the occurrence of gliomas.
Collapse
|
19
|
Effects of a monoclonal antibody against (pro)renin receptor on gliomagenesis. Sci Rep 2023; 13:808. [PMID: 36646875 PMCID: PMC9842725 DOI: 10.1038/s41598-023-28133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma is characterized by a strong self-renewal potential and poor differentiated state. We have reported previously that the (pro)renin receptor [(P)RR] is a potential target for glioma therapy by silencing the (P)RR gene. Here, we have examined the effects of a monoclonal antibody against (P)RR on gliomagenesis. Human glioma cell lines (U251MG and U87MG) and a glioma stem cell line (MGG23) were used for the in vitro study. The expressions of the Wnt/β-catenin signaling pathway (Wnt signaling pathway) components and stemness markers were measured by Western blotting. The effects of the (P)RR antibody on cell proliferation, sphere formation, apoptosis and migration were also examined. Subcutaneous xenografts were also examined in nude mice. Treatment with the (P)RR antibody reduced expression of Wnt signaling pathway components and stemness markers. Furthermore, the (P)RR antibody reduced cell proliferation and decreased sphere formation significantly. The treatment also suppressed migration and induced apoptosis. In a subcutaneous xenograft model, systemic administration of the (P)RR antibody reduced tumor volume significantly. These data show that treatment with the (P)RR antibody is a potential therapeutic strategy for treating glioblastoma.
Collapse
|
20
|
Jhanwar-Uniyal M, Gellerson O, Bree J, Das M, Kleinman G, Gandhi CD. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Adv Biol Regul 2022; 88:100946. [PMID: 36658088 DOI: 10.1016/j.jbior.2022.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
The mechanistic target of rapamycin (mTOR), a serine/threonine kinase, functions by forming two multiprotein complexes termed mTORC1 and mTORC2. Glioblastoma (GBM) is a uniformly fatal brain tumor that remains incurable partly due to the existence of untreatable cancer stem cells (CSC). The pathogenesis of GBM is largely due to the loss of the tumor suppressor gene PTEN, which is implicated in the aberrant activation of the mTOR pathway. The major cause of tumor recurrence, growth, and invasion is the presence of the unique population of CSC. Resistance to conventional therapies appears to be caused by both extensive genetic abnormalities and dysregulation of the transcription landscape. Consequently, CSCs have emerged as targets of interest in new treatment paradigms. Evidence suggests that inhibition of the mTOR pathway can also be applied to target CSCs. Here we explored the role of the mTOR pathway in the regulation of stem cells of GBM by treating them with inhibitors of canonical PI3K/AKT/mTOR pathways such as rapamycin (mTORC1 inhibitor), PP242 (ATP binding mTORC1/2 inhibitor), LY294002 (PI3K inhibitor), and MAPK inhibitor, U0126. A significant number of GBM tumors expressed stem cell marker nestin and activated mTOR (pmTORSer2448), with most tumor cells co-expressing both markers. The expression of stem cell marker NANOG was suppressed following rapamycin treatment. The neurospheres were disrupted following rapamycin and LY294002 treatments. Rapamycin or PP242 along with differentiating agent All-trans-retinoic acid reduced stem cell proliferation. Treatment with novel small molecule inhibitors of mTORC1/2 demonstrated that Torin1 and Torin2 suppressed the proliferation of GBM CSC, while XL388 was less effective. Torin1 and XL388 delay the process of self-renewal as compared to controls, whereas Torin2 halted self-renewal. Torin2 was able to eradicate tumor cells. In conclusion, Torin2 effectively targeted CSCs of GBM by halting self-renewal and inhibiting cell proliferation, underscoring the use of Torin2 in the treatment of GBM.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA.
| | - Olivia Gellerson
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Julie Bree
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Mohan Das
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - George Kleinman
- Department of Pathology, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| |
Collapse
|
21
|
Muacevic A, Adler JR, Cirino M, Trevisan FA, Peria F, Tirapelli D, Carlotti Jr CG. Modulation of Genes and MicroRNAs in the Neurospheres of Glioblastoma Cell Lines U343 and T98G Induced by Ionizing Radiation and Temozolomide Therapy. Cureus 2022; 14:e32211. [PMID: 36620850 PMCID: PMC9812005 DOI: 10.7759/cureus.32211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Glioblastoma is the most prevalent primary malignant neoplasm of the central nervous system. It has increased its incidence, while the overall survival remains over 14 months. PURPOSE The purpose is to evaluate the expression of the genes EGFR, PTEN, MGMT, and IDH1/2, and microRNAs miR-181b, miR-145, miR-149, and miR-128a in adhered cells (AC) and neurospheres (NS) from cell lines (T98G and U343) submitted to temozolomide (TMZ) and ionizing radiation (IR). METHODS T98G and U343 were treated with TMZ, IR, and TMZ+IR. The analysis of gene expression and miRNAs was performed using real-time PCR. RESULTS This study demonstrated: a) an improvement in the expression of IDH1 after IR and TMZ + IR in the NS (T98G); b) an increase in the expression of MGMT in NS (T98G) in IR groups and TMZ + IR. The expression of miRNAs results as a) AC (U343) expressed more miR-181b after TMZ, IR, and TMZ + IR; and miR-128a improved after TMZ, IR, and TMZ + IR; b) NS (T98G) after TMZ + IR expressed: miR-181b; miR-149; miR-145 and miR-128a; c) NS (U343) after IR huge expressed miR-149 and miR-145. CONCLUSION IR was an independent and determining radioresistance factor in NS. However, we observed no complementarity action of oncomiRs regulation.
Collapse
|
22
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
23
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
24
|
Akindona FA, Frederico SC, Hancock JC, Gilbert MR. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front Oncol 2022; 12:947634. [PMID: 36091174 PMCID: PMC9454306 DOI: 10.3389/fonc.2022.947634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells are thought to be the main drivers of tumorigenesis for malignancies such as glioblastoma (GBM). They are maintained through a close relationship with the tumor vasculature. Previous literature has well-characterized the components and signaling pathways for maintenance of this stem cell niche, but details on how the niche initially forms are limited. This review discusses development of the nonmalignant neural and hematopoietic stem cell niches in order to draw important parallels to the malignant environment. We then discuss what is known about the cancer stem cell niche, its relationship with angiogenesis, and provide a hypothesis for its development in GBM. A better understanding of the mechanisms of development of the tumor stem cell niche may provide new insights to potentially therapeutically exploit.
Collapse
Affiliation(s)
- Funto A. Akindona
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
| | - Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John C. Hancock
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark R. Gilbert,
| |
Collapse
|
25
|
Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals (Basel) 2022; 15:ph15050626. [PMID: 35631452 PMCID: PMC9144507 DOI: 10.3390/ph15050626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer. While metformin is a known adenosine monophosphate-activated protein kinase (AMPK) agonist and an inhibitor of the electron transport chain complex I, its mechanism of action in cancer cells as well as its effect on cancer metabolism is not clearly established. In this review, we will give an update on the role of metformin as an antitumoral agent and detail relevant evidence on the potential use and mechanisms of action of metformin in cancer. Analyzing antitumoral, signaling, and metabolic impacts of metformin on cancer cells may provide promising new therapeutic strategies in oncology.
Collapse
|
26
|
Hide T, Shibahara I, Inukai M, Shigeeda R, Shirakawa Y, Jono H, Shinojima N, Mukasa A, Kumabe T. Ribosomal proteins induce stem cell-like characteristics in glioma cells as an "extra-ribosomal function". Brain Tumor Pathol 2022; 39:51-56. [PMID: 35508789 DOI: 10.1007/s10014-022-00434-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
The characteristic features of plasticity and heterogeneity in glioblastoma (GB) cells cause therapeutic difficulties. GB cells are exposed to various stimuli from the tumor microenvironment and acquire the potential to resist chemoradiotherapy. To investigate how GB cells acquire stem cell-like phenotypes, we focused on ribosomal proteins, because ribosome incorporation has been reported to induce stem cell-like phenotypes in somatic cells. Furthermore, dysregulation of ribosome biogenesis has been reported in several types of cancer. We focused on ribosomal protein S6, which promotes sphere-forming ability and stem cell marker expression in GB cells. We expect that investigation of dysregulation of ribosome biogenesis and extra-ribosomal function in GB will provide new insights about the plasticity, heterogeneity, and therapeutic resistance of GB cells, which can potentially lead to revolutionary therapeutic strategies.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryota Shigeeda
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuki Shirakawa
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 850-8556, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 850-8556, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
27
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
28
|
Mehta D, Roy S, Joshi P, Parab M, Waghmare SK. Secretory phospholipase sPLA 2-IIAloss impairs tumorigenic and metastatic potential in breast cancer cells. Biochem Biophys Res Commun 2022; 597:102-108. [PMID: 35134607 DOI: 10.1016/j.bbrc.2022.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
Abstract
Breast cancer stem cells (BCSCs) are slow cycling cells that escape the traditional chemo-radio-therapy, thereby contributing in resistance and recurrence. Although several markers have been identified, it is still challenging to develop strategies targeting them. In this study, we have isolated BCSCs from MCF-7 cell line using markers CD44+/CD24-/low, which showed higher percentage of mammospheres in CSC population. Moreover, in vivo tumorigenic potential of BCSCs showed as low as 10,000 cells had the ability to develop tumors when transplanted into NOD-SCID mice. We observed an increased level of EMT markers in CSC population. Overexpression of secretory phospholipase sPLA2-IIA was found in CSCs. Further, we have uncovered the upregulation of sPLA2-IIA mediated through JNK signaling in breast cancer cells whereas knockdown of sPLA2-IIA reduces JNK signaling, cell proliferation, EMT and in vivo tumorigenic potential in breast cancer cells. Our study reveals overexpression of sPLA2-IIA in two different breast cancer cells such as MCF7 (ER+,PR+) and a triple negative, MDA-MB-231 (ER-PR-HER2-). Further, the novel role of sPLA2-IIA was discerned by unraveling the molecular mechanism, which regulates the cell proliferation and metastasis in breast cancer cells.
Collapse
Affiliation(s)
- Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Sayoni Roy
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Priyanka Joshi
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mitali Parab
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
29
|
Anti-glioblastoma effects of phenolic variants of benzoylphenoxyacetamide (BPA) with high potential for blood brain barrier penetration. Sci Rep 2022; 12:3384. [PMID: 35232976 PMCID: PMC8888627 DOI: 10.1038/s41598-022-07247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood–brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System—Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood–brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.
Collapse
|
30
|
Zhao Y, Zhu W, Chen H, Yan K, Wu J, Huang Q. Glioma stem cells and their microenvironment: A narrative review on docking and transformation. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Zhu YD, Ba H, Chen J, Zhang M, Li P. Celastrus orbiculatus Extract Reduces Stemness of Gastric Cancer Stem Cells by Targeting PDCD4 and EIF3H. Integr Cancer Ther 2021; 20:15347354211058168. [PMID: 34802261 PMCID: PMC8606975 DOI: 10.1177/15347354211058168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Celastrus orbiculatus ethyl acetate extract (COE) has shown a strong anti-gastric cancer effect, but the understanding of its mechanism is still lacking. The results of previous studies indicated that COE may be able to inhibit the stemness of gastric cancer stem cells (GCSCs) by regulating PDCD4 and EIF3H expression. AIMS To explore if COE could inhibit the stemness of GCSCs by regulating PDCD4 and EIF3H expression in vitro and in vivo. PROCEDURE The GCSCs model was established by stem cell-conditioned culture. Spheroid formation and flow cytometry assays were used to detect the effect of COE on the spheroid formation ability of GCSCs and the percentage of CD44+/CD24+ and ALDH+ cell subpopulations. Western blot analysis was applied to measure the expression of GCSCs biomarkers (Nanog, Oct-4, and SOX-2), PDCD4, and EIF3H in GCSCs treated with COE; and RT-PCR was performed to investigate the effect of COE on PDCD4 mRNA expression in GCSCs. An in vivo tumorigenicity experiment was also conducted to evaluate the effect of COE on tumor-initiating ability of GCSCs in vivo; and the expression of PDCD4 and EIF3H in xenograft tissues was examined by immunohistochemistry (IHC) staining. RESULTS After culture in stem cell-conditioned medium, SGC7901 cells manifested significantly enhanced spheroid formation ability, upregulated Nanog, Oct-4, and SOX-2 expression and increased percentages of CD44+/CD24+ and ALDH+ cell subpopulations, indicating successful establishment of the GCSCs model. COE treatment significantly inhibited the spheroid formation ability of GCSCs and reduced the percentage of CD44+/CD24+ and ALDH+ cell subpopulations. The western blot analysis showed a significant decrease of Nanog, Oct-4, SOX-2, and EIF3H expression and an increase of PDCD4 expression in GCSCs after COE treatment in a concentration-dependent manner. COE treatment also significantly upregulated the mRNA expression of PDCD4 in GCSCs. In addition, COE displayed a strong inhibitory effect on the tumor-initiating ability of GCSCs in vivo and upregulated PDCD4 and downregulated EIF3H expression in xenograft tissues. CONCLUSION COE may be able to inhibit GC growth by suppressing the stemness of GCSCs via regulating PDCD4 and EIF3H expression.
Collapse
Affiliation(s)
| | - He Ba
- Medical University of Anhui, Anhui, China
| | - Jie Chen
- Medical University of Anhui, Anhui, China
| | - Mei Zhang
- Medical University of Anhui, Anhui, China
| | - Ping Li
- Medical University of Anhui, Anhui, China
| |
Collapse
|
32
|
Park HJ, Baek I, Cheang G, Solomon JP, Song W. Comparison of RNA-Based Next-Generation Sequencing Assays for the Detection of NTRK Gene Fusions. J Mol Diagn 2021; 23:1443-1451. [PMID: 34756276 DOI: 10.1016/j.jmoldx.2021.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Recently, the US Food and Drug Administration approved several targeted therapies directed against oncogenic fusions. One of the most effective such targeted therapies is Vitrakvi (larotrectinib), highly specific oral tropomyosin receptor kinase inhibitor indicated for the treatment of patients with any solid tumor harboring a fusion involving one of the neurotrophic receptor tyrosine kinase (NTRK) genes. Although several diagnostic approaches can be used to detect these NTRK fusions, RNA-based next-generation sequencing remains one of the most sensitive methods, as it can directly detect the transcribed end product of gene fusion at the mRNA level. In this study, performance characteristics of three RNA-based next-generation sequencing assays with distinct mechanisms and chemistries were investigated: anchored multiplex PCR, amplicon-based multiplex PCR, and hybrid capture-based enrichment method. Analytical sensitivity analysis shows that the amplicon-based multiplex PCR method has the lowest limit of detection. However, both hybrid-capture and anchored multiplex PCR methods can detect NTRK fusions with uncommon or novel fusion partners, which is challenging for the amplicon-based multiplex method. As for clinical sensitivity, all three methods were highly concordant in detecting NTRK fusions in patient samples. Additionally, they all presented equivalent high-level performance in specificity, suggesting that all three platforms can detect NTRK fusions in clinical samples with similar performance characteristics.
Collapse
Affiliation(s)
- Hyeon J Park
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, New York
| | - Inji Baek
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, New York
| | - Gloria Cheang
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, New York
| | - James P Solomon
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, New York
| | - Wei Song
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
33
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
34
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
35
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
36
|
Panda MK, Paul M, Singdevsachan SK, Tayung K, Das SK, Thatoi H. Promising Anti-cancer Therapeutics From Mushrooms: Current Findings and Future Perceptions. Curr Pharm Biotechnol 2021; 22:1164-1191. [PMID: 33032507 DOI: 10.2174/1389201021666201008164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects. OBJECTIVE The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment. METHODS A literature search has been conducted for the collection of research papers from universally accepted scientific databases. These research papers and published book chapters were scrutinized to retrieve information on ethnomedicinal uses of mushrooms, different factors involved in cancer cell proliferation, clinical and in silico pharmaceutical studies made for possible treatments of cancer using mushroom derived compounds. Overall, 241 articles were retrieved and reviewed from the year 1970 to 2020, out of which 98 relevant articles were finally considered for the preparation of this review. RESULTS This review presents an update on the natural bioactive substances derived from medicinal mushrooms and their role in inhibiting the factors responsible for cancer cell proliferation. Along with it, the present review also provides information on the ethnomedicinal uses, solvents used for extraction of anti-cancer metabolites, clinical trials, and in silico studies that were undertaken towards anticancer drug development from medicinal mushrooms. CONCLUSION The present review provides extensive knowledge on various anti-cancer substances obtained from medicinal mushrooms, their biological actions, and in silico drug designing approaches, which could form a basis for the development of natural anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mrunmaya K Panda
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Manish Paul
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Sameer K Singdevsachan
- Spinco Biotech Pvt. Ltd., Spinco Towers, No. 934, 5th A cross, Service Road, HRBR Layout 1st Block, Kalyan Nagar, Bengaluru-560043, Karnataka, India
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India
| | - Swagat K Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar- 751003, Odisha, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| |
Collapse
|
37
|
The role of FOSL1 in stem-like cell reprogramming processes. Sci Rep 2021; 11:14677. [PMID: 34282187 PMCID: PMC8290037 DOI: 10.1038/s41598-021-94072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer stem-like cells (CSCs) have self-renewal abilities responsible for cancer progression, therapy resistance, and metastatic growth. The glioblastoma stem-like cells are the most studied among CSC populations. A recent study identified four transcription factors (SOX2, SALL2, OLIG2, and POU3F2) as the minimal core sufficient to reprogram differentiated glioblastoma (GBM) cells into stem-like cells. Transcriptomic data of GBM tissues and cell lines from two different datasets were then analyzed by the SWItch Miner (SWIM), a network-based software, and FOSL1 was identified as a putative regulator of the previously identified minimal core. Herein, we selected NTERA-2 and HEK293T cells to perform an in vitro study to investigate the role of FOSL1 in the reprogramming mechanisms. We transfected the two cell lines with a constitutive FOSL1 cDNA plasmid. We demonstrated that FOSL1 directly regulates the four transcription factors binding their promoter regions, is involved in the deregulation of several stemness markers, and reduces the cells' ability to generate aggregates increasing the extracellular matrix component FN1. Although further experiments are necessary, our data suggest that FOSL1 reprograms the stemness by regulating the core of the four transcription factors.
Collapse
|
38
|
Tanabe R, Miyazono K, Todo T, Saito N, Iwata C, Komuro A, Sakai S, Raja E, Koinuma D, Morikawa M, Westermark B, Heldin CH. PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating glioma-initiating cell properties via DNA methyltransferase 3A. Mol Oncol 2021; 16:269-288. [PMID: 34214250 PMCID: PMC8732353 DOI: 10.1002/1878-0261.13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
Glioma‐initiating cells (GICs), a major source of glioblastoma recurrence, are characterized by the expression of neural stem cell markers and the ability to grow by forming nonadherent spheres under serum‐free conditions. Bone morphogenetic proteins (BMPs), members of the transforming growth factor‐β family, induce differentiation of GICs and suppress their tumorigenicity. However, the mechanisms underlying the BMP‐induced loss of GIC stemness have not been fully elucidated. Here, we show that paired related homeobox 1 (PRRX1) induced by BMPs decreases the CD133‐positive GIC population and inhibits tumorigenic activity of GICs in vivo. Of the two splice isoforms of PRRX1, the longer isoform, pmx‐1b, but not the shorter isoform, pmx‐1a, induces GIC differentiation. Upon BMP stimulation, pmx‐1b interacts with the DNA methyltransferase DNMT3A and induces promoter methylation of the PROM1 gene encoding CD133. Silencing DNMT3A maintains PROM1 expression and increases the CD133‐positive GIC population. Thus, pmx‐1b promotes loss of stem cell‐like properties of GICs through region‐specific epigenetic regulation of CD133 expression by recruiting DNMT3A, which is associated with decreased tumorigenicity of GICs.
Collapse
Affiliation(s)
- Ryo Tanabe
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Satoshi Sakai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
39
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
40
|
Fukui N, Yawata T, Nakajo T, Kawanishi Y, Higashi Y, Yamashita T, Aratake T, Honke K, Ueba T. Targeting CD146 using folic acid-conjugated nanoparticles and suppression of tumor growth in a mouse glioma model. J Neurosurg 2021; 134:1772-1782. [PMID: 32707539 DOI: 10.3171/2020.4.jns193078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glioma stem cells (GSCs) are responsible for tumor initiation, therapeutic resistance, and recurrence. CD146 is mainly expressed in dividing GSCs and regulates cell cycle progression. However, the evaluation of the efficacy of targeted therapy against CD146 in vivo remains to be investigated. In this study, the authors aimed to develop gene therapy targeting GSCs using chitosan oligosaccharide lactate (COL) nanoparticles (NPs) conjugated with folic acid-polyethylene glycol (FA-PEG-COL NPs) for in vitro and in vivo delivery of CD146 small-interfering RNA (siCD146) and to determine the effect of CD146 knockdown on tumor growth. METHODS To examine the uptake of NPs by tumor cells, immunofluorescence staining, flow cytometry, and in vivo imaging were performed. The knockdown effect of siCD146 was measured by western blot and water-soluble tetrazolium salt-8 assay in mouse glioma cells. The efficacy of siRNA therapy-targeted GSCs was evaluated by monitoring tumor growth through in vivo imaging and histological analysis. RESULTS In vivo accumulation of the FA-PEG-COL NPs in subcutaneous and intracranial gliomas following NP administration via a mouse tail vein was observed. Additionally, in vitro delivery of siCD146 ionically cross-linked NPs, reduced CD146 levels, and suppressed growth in the glioma tumor sphere. Evaluation of the in vivo therapeutic effects of siCD146-cross-linked NPs in a mouse glioma model revealed significant suppression of intracranial tumor growth, with complete removal of the tumor observed in some mice on histological examination. Furthermore, delivery of siCD146 significantly reduced the Ki-67 index in residual tumor tissues relative to that in control mice. CONCLUSIONS CD146 is a potential therapeutic target, and folic acid-conjugated NPs delivering siRNA may facilitate gene therapy in malignant gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Takaaki Aratake
- 2Pharmacology, and
- 4Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Honke
- 3Biochemistry, Kochi Medical School, Kochi University, Nankoku, Kochi; and
| | | |
Collapse
|
41
|
Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, Nykter M, Le Joncour V, Laakkonen P. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight 2021; 6:141486. [PMID: 33986188 PMCID: PMC8262342 DOI: 10.1172/jci.insight.141486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Collapse
Affiliation(s)
- Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kirsi J. Granberg
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Adv Healthc Mater 2021; 10:e2001997. [PMID: 33738958 DOI: 10.1002/adhm.202001997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Microvessels of the blood-brain barrier (BBB) exclusively express the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which is the key transporter for docosahexaenoic acid uptake into the brain. Mfsd2a suppresses caveolae-mediated transcytosis to regulate BBB transcellular permeability via controlling lipid composition of BBB endothelial cells. It is speculated that Mfsd2a can restrain BBB crossing efficiency and brain accumulation efficiency of brain-targeting drug delivery systems, which penetrate the BBB often through the receptor-mediated transcytosis pathway. Transcytosis across the BBB is a crucial bottleneck for targeted chemotherapy of brain metastases. To overcome this issue, a pair of priming nanoparticles (NPs) and following drug-loaded NPs are designed. Tunicamycin-(TM)-loaded transcytosis-targeting-peptide-(TTP)-decorated NPs (TM@TTP) are used to boost BBB transcytosis via inhibiting Mfsd2a. Doxorubicin (DOX)-loaded TTP and CD44-specific hyaluronic acid (HA)-comodified NPs (DOX@TTP-HA) are designed as following drug-loaded NPs. The brain accumulation efficacy of following DOX@TTP-HA with priming is 4.30-fold higher than that without priming through the enhanced transcytosis pathway rather than the tight junction opening. Effective BBB crossing and brain accumulation, selective tumor uptake, excellent antitumor efficacy, and low hepatotoxicity are achieved by TM@TTP and DOX@TTP-HA, suggesting this tactic as a significant therapeutic strategy against breast cancer brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Jiang Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
- Stake Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| |
Collapse
|
43
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
44
|
Echizenya S, Ishii Y, Kitazawa S, Tanaka T, Matsuda S, Watanabe E, Umekawa M, Terasaka S, Houkin K, Hatta T, Natsume T, Maeda Y, Watanabe SI, Hagiwara S, Kondo T. Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Neuro Oncol 2021; 22:229-239. [PMID: 31499527 DOI: 10.1093/neuonc/noz170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastoma-initiating cells (GICs) comprise a tumorigenic subpopulation of cells that are resistant to radio- and chemotherapies and are responsible for cancer recurrence. The aim of this study was to identify novel compounds that specifically eradicate GICs using a high throughput drug screening approach. METHODS We performed a cell proliferation/death-based drug screening using 10 560 independent compounds. We identified dihydroorotate dehydrogenase (DHODH) as a target protein of hit compound 10580 using ligand-fishing and mass spectrometry analysis. The medical efficacy of 10580 was investigated by in vitro cell proliferation/death and differentiation and in vivo tumorigenic assays. RESULTS Among the effective compounds, we identified 10580, which induced cell cycle arrest, decreased the expression of stem cell factors in GICs, and prevented tumorigenesis upon oral administration without any visible side effects. Mechanistic studies revealed that 10580 decreased pyrimidine nucleotide levels and enhanced sex determining region Y-box 2 nuclear export by antagonizing the enzyme activity of DHODH, an essential enzyme for the de novo pyrimidine synthesis. CONCLUSION In this study, we identified 10580 as a promising new drug against GICs. Given that normal tissue cells, in particular brain cells, tend to use the alternative salvage pathway for pyrimidine synthesis, our findings suggest that 10580 can be used for glioblastoma therapy without side effects.Key Points1. Chemical screening identified 10580 as a novel GIC-eliminating drug that targets DHODH, an essential enzyme for the de novo pyrimidine synthesis pathway. 2. Compound 10580 induced cell cycle arrest, apoptosis, and differentiation in GICs.
Collapse
Affiliation(s)
- Smile Echizenya
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yukiko Ishii
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Satoshi Kitazawa
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Tadashi Tanaka
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shun Matsuda
- Safety Evaluation Center, Ecology & Quality Management Division, CSR Division, Fujifilm Corporation, Minamiashigara, Kanagawa, Japan
| | - Eriko Watanabe
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Masao Umekawa
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Yoshimasa Maeda
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shin-Ichi Watanabe
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shinji Hagiwara
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
45
|
Glioblastoma-initiating cell heterogeneity generated by the cell-of-origin, genetic/epigenetic mutation and microenvironment. Semin Cancer Biol 2021; 82:176-183. [PMID: 33453403 DOI: 10.1016/j.semcancer.2020.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) and other malignant tumours consist of heterogeneous cancer cells, including GBM-initiating cells (GICs). This heterogeneity is likely to arise from the following: different sets of genetic mutations and epigenetic modifications, which GICs gain in the transformation process; differences in cells of origin, such as stem cells, precursor cells or differentiated cells; and the cancer microenvironment, in which GICs communicate with neural cells, endothelial cells and immune cells. Furthermore, considering that various types of GICs can be generated at different time points of the transformation process, GBM very likely consists of heterogeneous GICs and their progeny. Because cancer cell heterogeneity is responsible for therapy resistance, it is crucial to develop methods of reducing such heterogeneity. Here, I summarize how GIC heterogeneity is generated in the transformation process and present how cell heterogeneity in cancer can be addressed based on recent findings.
Collapse
|
46
|
A contemporary update on glioblastoma: molecular biology, current management, and a vision towards bio-adaptable personalized care. J Neurooncol 2021; 151:103-112. [PMID: 33394264 DOI: 10.1007/s11060-020-03671-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most fatal brain tumor in adults. Current survival rates of GBM remain below 2 years due to GBM's aggressive cellular migration and genetically driven treatment escape pathways. Despite our rapidly increasing understanding of GBM biology, earlier diagnoses, and refined surgical techniques, only moderate survival benefits have been achieved. Nonetheless, the pressing need for better survival rates has brought forward a multitude of newer therapeutic approaches and opened the door for potential personalization of these modalities in the near future. METHODS We reviewed the published literature discussing the current state of knowledge regarding GBM biology and therapy and summarized the information that may point toward future personalized therapeutic strategies. RESULTS Several novel modalities such as oncolytic viruses, targeted immune, and molecular therapies, and tumor treating fields have been introduced. To date, there is no single treatment modality for GBM, but rather a wide spectrum of combined modalities that address intratumoral cellular and genetic variabilities. While the current state of GBM research and clinical trial landscape may hold promise, current literature lacks any fruitful progress towards personalized GBM therapy. CONCLUSION In this review, we are discussing our recent knowledge of the GBM genetic biologic landscape and the current advances in therapy, as well as providing a blueprint for an envisioned GBM management paradigm that should be personalized and adaptable to accommodate each patient's diverse genetic variations and therapy response/escape patterns.
Collapse
|
47
|
Gupta S, Kumar P, Das BC. HPV +ve/-ve oral-tongue cancer stem cells: A potential target for relapse-free therapy. Transl Oncol 2021; 14:100919. [PMID: 33129107 PMCID: PMC7590584 DOI: 10.1016/j.tranon.2020.100919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
The tongue squamous cell carcinoma (TSCC) is a highly prevalent head and neck cancer often associated with tobacco and/or alcohol abuse or high-risk human papillomavirus (HR-HPV) infection. HPV positive TSCCs present a unique mechanism of tumorigenesis as compared to tobacco and alcohol-induced TSCCs and show a better prognosis when treated. The poor prognosis and/or recurrence of TSCC is due to presence of a small subpopulation of tumor-initiating tongue cancer stem cells (TCSCs) that are intrinsically resistant to conventional chemoradio-therapies enabling cancer to relapse. Therefore, targeting TCSCs may provide efficient therapeutic strategy for relapse-free survival of TSCC patients. Indeed, the development of new TCSC targeting therapeutic approaches for the successful elimination of HPV+ve/-ve TCSCs could be achieved either by targeting the self-renewal pathways, epithelial mesenchymal transition, vascular niche, nanoparticles-based therapy, induction of differentiation, chemoradio-sensitization of TCSCs or TCSC-derived exosome-based drug delivery and inhibition of HPV oncogenes or by regulating epigenetic pathways. In this review, we have discussed all these potential approaches and highlighted several important signaling pathways/networks involved in the formation and maintenance of TCSCs, which are targetable as novel therapeutic targets to sensitize/eliminate TCSCs and to improve survival of TSCC patients.
Collapse
Affiliation(s)
- Shilpi Gupta
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India; National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida 201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Bhudev C Das
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
48
|
Higgins DMO, Caliva M, Schroeder M, Carlson B, Upadhyayula PS, Milligan BD, Cheshier SH, Weissman IL, Sarkaria JN, Meyer FB, Henley JR. Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer 2020; 20:1213. [PMID: 33302912 PMCID: PMC7727139 DOI: 10.1186/s12885-020-07694-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dominique M O Higgins
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
| | - Maisel Caliva
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Currently: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pavan S Upadhyayula
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA
| | - Brian D Milligan
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA
- Currently: Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84113, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
49
|
Bou-Gharios J, Assi S, Bahmad HF, Kharroubi H, Araji T, Chalhoub RM, Ballout F, Harati H, Fares Y, Abou-Kheir W. The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells. Pharmacol Rep 2020; 73:227-239. [PMID: 33140310 DOI: 10.1007/s43440-020-00180-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM), a stage IV astrocytoma, is the most common brain malignancy among adults. Conventional treatments of surgical resection followed by radio and/or chemotherapy fail to completely eradicate the tumor. Resistance to the currently available therapies is mainly attributed to a subpopulation of cancer stem cells (CSCs) present within the tumor bulk that self-renew leading to tumor relapse with time. Therefore, identification of characteristic markers specific to these cells is crucial for the development of targeted therapies. Glycogen synthase kinase 3 (GSK-3), a serine-threonine kinase, is deregulated in a wide range of diseases, including cancer. In GBM, GSK-3β is overexpressed and its suppression in vitro has been shown to induce apoptosis of cancer cells. METHODS In our study, we assessed the effect of GSK-3β inhibition with Tideglusib (TDG), an irreversible non-ATP competitive inhibitor, using two human GBM cell lines, U-251 MG and U-118 MG. In addition, we combined TDG with radiotherapy to assess whether this inhibition enhances the effect of standard treatment. RESULTS Our results showed that TDG significantly reduced cell proliferation, cell viability, and migration of both GBM cell lines in a dose- and time-dependent manner in vitro. Treatment with TDG alone and in combination with radiation significantly decreased the colony formation of U-251 MG cells and the sphere formation of both cell lines, by targeting and reducing their glioblastoma cancer stem-like cells (GSCs) population. Finally, cells treated with TDG showed an increased level of unrepaired radio-induced DNA damage and, thus, became sensitized toward radiation. CONCLUSIONS In conclusion, TDG has proven its effectiveness in targeting the cancerous properties of GBM in vitro and may, hence, serve as a potential adjuvant radio-therapeutic agent to better target this deadly tumor.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Tarek Araji
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon
| | - Hayat Harati
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Chair of Neurosurgery Department, Faculty of Medicine, Neuroscience Research Center, Lebanese University, Beirut, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Riad el Solh, PO Box 110236/41, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
50
|
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39:127-148. [PMID: 31919619 DOI: 10.1007/s10555-019-09840-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Mohamad K Elajami
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Talal El Zarif
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Campus, CHSC 6101, Byblos, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon.
| |
Collapse
|