1
|
He Y, Yu Q, Ma X, Lv D, Wang H, Qiu W, Chen XF, Jiao Y, Liu Y. A metabolomics approach reveals metabolic disturbance of human cholangiocarcinoma cells after parthenolide treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118075. [PMID: 38513779 DOI: 10.1016/j.jep.2024.118075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.
Collapse
Affiliation(s)
- Yongping He
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China; School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Department of Pharmacy, The People's Hospital of Chongzuo, Guangxi, Chongzuo, 532200, China
| | - Qianxue Yu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaoyu Ma
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hui Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Weian Qiu
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China
| | - Xiao Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yang Jiao
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China.
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zahra M, Abrahamse H, George BP. Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer. Biomed Pharmacother 2024; 173:116426. [PMID: 38471274 DOI: 10.1016/j.biopha.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa.
| |
Collapse
|
3
|
Kim JM, Choi JS, Jung J, Yeo SG, Kim SH. Inhibitory effect of parthenolide on peripheral nerve degeneration. Anat Sci Int 2023; 98:529-539. [PMID: 37024641 DOI: 10.1007/s12565-023-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Traumatic axonal damage disrupts connections between neurons, leading to the loss of motor and sensory functions. Although damaged peripheral nerves can regenerate, recovery depends on the variety and severity of nerve damage. Thus, many phytochemicals have been studied for their ability to reduce peripheral nerve degeneration, and among them, Parthenolide (PTL), which is extracted from Feverfew has effects against production of free radicals, inflammation, and apoptosis. Thus, we conducted a study to investigate whether PTL has an inhibitory effect on peripheral nerve degeneration during peripheral nerve damage. To verify the effect of PTL on peripheral nerve degeneration process, a morphological comparison of peripheral nerves with and without PTL was performed. PTL significantly reduced the quantity of fragmented ovoid formations at 3DIV (days in vitro). Immunostaining for MBP revealed that the ratio of intact myelin sheaths increased significantly in sciatic nerve with PTL compared with absence of PTL at 3DIV. Furthermore, nerve fibers in the presence of PTL maintained the continuity of Neurofilament (NF) compared to those without at 3DIV. Immunostaining for LAMP1 and p75 NTR showed that the expression of LAMP1 and p75 NTR decreased in the nerve after PTL addition at 3DIV. Lastly, immunostaining for anti-Ki67 revealed that PTL inhibited Ki67 expression at 3DIV compared to without PTL. These results confirm that PTL inhibits peripheral nerve degenerative processes. PTL may be a good applicant to inhibit peripheral nerve degeneration. Our study examined the effect of Parthenolide in preventing degeneration of peripheral nerves by inhibiting the breakdown of peripheral axons and myelin, also inhibiting Schwann cell trans-dedifferentiation and proliferation.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Jae Sun Choi
- Clinical Research Institute, Kyung Hee Medical Center, Seou, 02447, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicines, Kyung Hee University, Seoul, 02447, Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, 02447, Korea.
- Department of Otohinolaryngology - H & N Surgery, School of Medicine, KyungHee University, #1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-702, Korea.
| |
Collapse
|
4
|
LIU X, WANG X. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med 2022; 20:814-829. [DOI: 10.1016/s1875-5364(22)60238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/23/2022]
|
5
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| |
Collapse
|
6
|
Kazantseva L, Becerra J, Santos-Ruiz L. Traditional Medicinal Plants as a Source of Inspiration for Osteosarcoma Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155008. [PMID: 35956961 PMCID: PMC9370649 DOI: 10.3390/molecules27155008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is one of the most common types of bone cancers among paediatric patients. Despite the advances made in surgery, chemo-, and radiotherapy, the mortality rate of metastatic osteosarcoma remains unchangeably high. The standard drug combination used to treat this bone cancer has remained the same for the last 20 years, and it produces many dangerous side effects. Through history, from ancient to modern times, nature has been a remarkable source of chemical diversity, used to alleviate human disease. The application of modern scientific technology to the study of natural products has identified many specific molecules with anti-cancer properties. This review describes the latest discovered anti-cancer compounds extracted from traditional medicinal plants, with a focus on osteosarcoma research, and on their cellular and molecular mechanisms of action. The presented compounds have proven to kill osteosarcoma cells by interfering with different pathways: apoptosis induction, stimulation of autophagy, generation of reactive oxygen species, etc. This wide variety of cellular targets confer natural products the potential to be used as chemotherapeutic drugs, and also the ability to act as sensitizers in drug combination treatments. The major hindrance for these molecules is low bioavailability. A problem that may be solved by chemical modification or nano-encapsulation.
Collapse
Affiliation(s)
- Liliya Kazantseva
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - José Becerra
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
| | - Leonor Santos-Ruiz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, 29071 Málaga, Spain
- Correspondence:
| |
Collapse
|
7
|
Rao Q, Xie K, Varier KM, Huang L, Song J, Yang J, Qiu J, Huang Y, Li Y, Gajendran B, Li Y, Liu S. Design, Synthesis, and Antileukemic Evaluation of a Novel Mikanolide Derivative Through the Ras/Raf/MEK/ERK Pathway. Front Pharmacol 2022; 13:809551. [PMID: 35721186 PMCID: PMC9205396 DOI: 10.3389/fphar.2022.809551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic myeloid leukemia (CML) accounts for a major cause of death in adult leukemia patients due to mutations or other reasons for dysfunction in the ABL proto-oncogene. The ubiquitous BCR–ABL expression stimulates CML by activating CDK1 and cyclin B1, promoting pro-apoptotic, and inhibiting antiapoptotic marker expression along with regulations in RAS pathway activation. Thus, inhibitors of cyclins and the RAS pathway by ERK are of great interest in antileukemic treatments. Mikanolide is a sesquiterpene dilactone isolated from several Asteraceae family Mikania sp. plants. Sesquiterpene dilactone is a traditional medicine for treating ailments, such as flu, cardiovascular diseases, bacterial infections, and other blood disorders. It is used as a cytotoxic agent as well. The need of the hour is potent chemotherapeutic agents with cytotoxic effects inhibition of proliferation and activation of apoptotic machinery. Recently, ERK inhibitors are used in clinics as anticancer agents. Thus, in this study, we synthesized 22-mikanolide derivatives that elucidated to be potent antileukemic agents in vitro. However, a bioactive mikanolide derivative, 3g, was found with potent antileukemic activity, through the Ras/Raf/MEK/ERK pathway. It can arrest the cell cycle by inhibiting phosphorylation of CDC25C, triggering apoptosis, and promoting DNA and mitochondrial damage, thus suggesting it as a potential chemotherapeutic agent for leukemia patients.
Collapse
Affiliation(s)
- Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Kaiqiang Xie
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Krishnapriya M. Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jue Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jianfei Qiu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yubing Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
- *Correspondence: Yan Li, ; Babu Gajendran, ; Yanmei Li, ; Sheng Liu,
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Yan Li, ; Babu Gajendran, ; Yanmei Li, ; Sheng Liu,
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
- *Correspondence: Yan Li, ; Babu Gajendran, ; Yanmei Li, ; Sheng Liu,
| | - Sheng Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
- *Correspondence: Yan Li, ; Babu Gajendran, ; Yanmei Li, ; Sheng Liu,
| |
Collapse
|
8
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
9
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
10
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
11
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
12
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
13
|
Riedel T, Demaria O, Zava O, Joncic A, Gilliet M, Dyson PJ. Drug Repurposing Approach Identifies a Synergistic Drug Combination of an Antifungal Agent and an Experimental Organometallic Drug for Melanoma Treatment. Mol Pharm 2018; 15:116-126. [PMID: 29185769 DOI: 10.1021/acs.molpharmaceut.7b00764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By screening a drug library comprising FDA approved compounds, we discovered a potent interaction between the antifungal agent haloprogin and the experimental organometallic drug RAPTA-T, to synergistically induce cancer cell killing. The combination of these two small molecules, even at low doses, elicited an improved therapeutic response on tumor growth over either agent alone or the current treatment used in the clinic in the highly aggressive syngeneic B16F10 melanoma tumor model, where classical cytotoxic chemotherapeutic agents show little efficacy. The combination with the repurposed chemodrug haloprogin provides the basis for a new powerful treatment option for cutaneous melanoma. Importantly, because synergistic induction of tumor cell death is achieved with low individual drug doses, and cellular targets for RAPTA-T are different from those of classical chemotherapeutic drugs, a therapeutic strategy based on this approach could avoid toxicities and potentially resistance mechanisms, and could even inhibit metastatic progression.
Collapse
Affiliation(s)
- Tina Riedel
- Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) , 1015 Lausanne, Switzerland
| | - Olivier Demaria
- Department of Dermatology, University Hospital of Lausanne , 1011 Lausanne, Switzerland
| | - Olivier Zava
- Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) , 1015 Lausanne, Switzerland
| | - Ana Joncic
- Department of Dermatology, University Hospital of Lausanne , 1011 Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology, University Hospital of Lausanne , 1011 Lausanne, Switzerland
| | - Paul J Dyson
- Laboratory of Organometallic and Medicinal Chemistry, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL) , 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Synthesis, characterization and anticancer evaluation of phosphinogold(I) thiocarbohydrate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Liu YC, Kim SL, Park YR, Lee ST, Kim SW. Parthenolide promotes apoptotic cell death and inhibits the migration and invasion of SW620 cells. Intest Res 2017; 15:174-181. [PMID: 28522946 PMCID: PMC5430008 DOI: 10.5217/ir.2017.15.2.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Parthenolide (PT), a principle component derived from feverfew (Tanacetum parthenium), is a promising anticancer agent and has been shown to promote apoptotic cell death in various cancer cells. In this study, we focused on its functional role in apoptosis, migration, and invasion of human colorectal cancer (CRC) cells. Methods SW620 cells were employed as representative human CRC cells. We performed the MTT assay and cell cycle analysis to measure apoptotic cell death. The wound healing, Transwell migration, and Matrigel invasion assays were performed to investigate the effect of PT on cell migration/invasion. Western blotting was used to establish the signaling pathway of apoptosis and cell migration/invasion. Results PT exerts antiproliferative effect and induces apoptotic cell death of SW620 cells. In addition, PT prevents cell migration and invasion in a dose-dependent manner. Moreover, PT markedly suppressed migration/invasion-related protein expression, including E-cadherin, β-catenin, vimentin, Snail, cyclooxygenase-2, matrix metalloproteinase-2 (MMP-2), and MMP-9 in SW620 cells. PT also inhibited the expression of antiapoptotic proteins (Bcl-2 and Bcl-xL) and activated apoptosis terminal factor (caspase-3) in a dose-dependent manner. Conclusions Our results suggest that PT is a potential novel therapeutic agent for aggressive CRC treatment.
Collapse
Affiliation(s)
- Yu Chuan Liu
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Se Lim Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Young Ran Park
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Soo-Teik Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, Korea.,Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
16
|
Zhang JF, Zhang L, Shi LL, Zhao ZH, Xu H, Liang F, Li HB, Zhao Y, Xu X, Yang K, Tian YF. Parthenolide attenuates cerebral ischemia/reperfusion injury via Akt/GSK-3β pathway in PC12 cells. Biomed Pharmacother 2017; 89:1159-1165. [PMID: 28314243 DOI: 10.1016/j.biopha.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
Parthenolide (PN), a sesquiterpene lactone isolated from the herbal medicine feverfew (Tanacetum parthenium), was reported to possess neuroprotective activity. However, the neuroprotective effect of PN against cerebral ischemia/reperfusion (I/R) injury remains unclear. Therefore, the aim of the present study was to explore the neuroprotective effects of PN against oxygen-glucose deprivation (OGD)-induced apoptosis in PC12 cells and the underlying mechanisms. Our results demonstrated that PN ameliorated OGD/R-evoked neuronal injury and oxidative stress in PC12 cells. In addition, PN notably decreased HIF-1α expression, as well as inhibited apoptosis in PC12 cells after OGD/R. Furthermore, PN pretreatment significantly enhanced the phosphorylation of Akt and GSK-3β in PC12 cells exposed to OGD/R. In conclusion, the present study demonstrated that PN exhibits a neuroprotective effect against OGD/R through activation of the Akt/GSK-3β signaling pathway. Our findings suggest that PN has the potential to serve as a novel therapeutic agent for cerebral I/R injury.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Li Zhang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Li-Li Shi
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Zhao-Hua Zhao
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Hao Xu
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Fei Liang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Hong-Bo Li
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Yan Zhao
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Xi Xu
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China.
| | - Ke Yang
- Department of Anesthesiology, The No.1 Hospital of Xi'an, Xi'an 710002, People's Republic of China.
| | - Ying-Fang Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
17
|
Hartman ML, Talar B, Sztiller-Sikorska M, Nejc D, Czyz M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget 2016; 7:9026-40. [PMID: 26824319 PMCID: PMC4891023 DOI: 10.18632/oncotarget.7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results obtained in patient-derived melanoma cell populations indicate that parthenolide efficiently decreases the MITF-M level. This is neither dependent on p65/NF-κB signaling nor RAF/MEK/ERK pathway activity as inhibition of MEK by GSK1120212 (trametinib) and induction of ERK1/2 activity by parthenolide itself do not interfere with parthenolide-triggered depletion of MITF-M in both wild-type BRAF and BRAFV600E melanoma populations. Parthenolide activity is not prevented by inhibitors of caspases, proteasomal and lysosomal pathways. As parthenolide reduces MITF-M transcript level and HDAC1 protein level, parthenolide-activated depletion of MITF-M protein may be considered as a result of transcriptional regulation, however, the influence of parthenolide on other elements of a dynamic control over MITF-M cannot be ruled out. Parthenolide induces diverse effects in melanoma cells, from death to senescence. The mode of the response to parthenolide is bound to the molecular characteristics of melanoma cells, particularly to the basal MITF-M expression level but other cell-autonomous differences such as NF-κB activity and MCL-1 level might also contribute. Our data suggest that parthenolide can be developed as a drug used in combination therapy against melanoma when simultaneous inhibition of MITF-M, NF-κB and HDAC1 is needed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Penthala NR, Janganati V, Alpe TL, Apana SM, Berridge MS, Crooks PA, Borrelli MJ. N-[ 11CH 3]Dimethylaminoparthenolide (DMAPT) uptake into orthotopic 9LSF glioblastoma tumors in the rat. Bioorg Med Chem Lett 2016; 26:5883-5886. [PMID: 27866815 DOI: 10.1016/j.bmcl.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the uptake of intravenously administered N-[11CH3]-dimethylaminoparthenolide (DMAPT) into orthotopic 9LSF glioblastoma brain tumors in Fisher 344 rats from positron emission tomography (PET) imaging studies. [11C]methyl iodide (11CH3I) was utilized as a [11C]-labeling reagent to label the precursor methylaminoparthenolide (MAPT) intermediate. From PET imaging studies it was found that brain uptake of N-[11CH3]DMAPT into brain tumor tissue was rapid (30min), and considerably higher than that in the normal brain tissue.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Terri L Alpe
- College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | - Michael J Borrelli
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA; College of Medicine, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
19
|
Tyagi V, Alwaseem H, O'Dwyer KM, Ponder J, Li QY, Jordan CT, Fasan R. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs. Bioorg Med Chem 2016; 24:3876-3886. [PMID: 27396927 PMCID: PMC5083853 DOI: 10.1016/j.bmc.2016.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O-H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.
Collapse
Affiliation(s)
- Vikas Tyagi
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Kristen M O'Dwyer
- Department of Hematology/Oncology, University of Rochester, Rochester, NY 14627, United States
| | - Jessica Ponder
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States; Division of Toxicology, University of Colorado, Aurora, CO 80045, United States
| | - Qi Ying Li
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
20
|
Synthesis and anticancer evaluation of novel 9α-substituted-13-(1,2,3-triazolo)-parthenolides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016; 5:cells5020015. [PMID: 27043634 PMCID: PMC4931664 DOI: 10.3390/cells5020015] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| |
Collapse
|
22
|
Burnett RM, Craven KE, Krishnamurthy P, Goswami CP, Badve S, Crooks P, Mathews WP, Bhat-Nakshatri P, Nakshatri H. Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells. Oncotarget 2016; 6:12682-96. [PMID: 25926557 PMCID: PMC4494966 DOI: 10.18632/oncotarget.3707] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/10/2015] [Indexed: 01/18/2023] Open
Abstract
Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Riesa M Burnett
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly E Craven
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chirayu P Goswami
- Department of Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Janganati V, Ponder J, Jordan CT, Borrelli MJ, Penthala NR, Crooks PA. Dimers of Melampomagnolide B Exhibit Potent Anticancer Activity against Hematological and Solid Tumor Cells. J Med Chem 2015; 58:8896-906. [PMID: 26540463 DOI: 10.1021/acs.jmedchem.5b01187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Novel carbamate (7a-7h) and carbonate (7i, 7j, and 8) dimers of melampomagnolide B have been synthesized by reaction of the melampomagnolide-B-triazole carbamate synthon 6 with various terminal diamino- and dihydroxyalkanes. Dimeric carbamate products 7b, 7c, and 7f exhibited potent growth inhibition (GI50 = 0.16-0.99 μM) against the majority of cell lines in the NCI panel of 60 human hematological and solid tumor cell lines. Compound 7f and 8 exhibited anticancer activity that was 300-fold and 1 × 10(6)-fold more cytotoxic than DMAPT, respectively, at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. Compounds 7a-7j and 8 were also screened against M9-ENL1 and acute myelogenous leukemia (AML) primary cell lines and exhibited 2- to 10-fold more potent antileukemic activity against M9-ENL1 cells (EC50 = 0.57-2.90 μM) when compared to parthenolide (EC50 = 6.0) and showed potent antileukemic activity against five primary AML cell lines (EC50 = 0.76-7.3 μM).
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Jessica Ponder
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Craig T Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Michael J Borrelli
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| |
Collapse
|
24
|
Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. NF-κB in cancer therapy. Arch Toxicol 2015; 89:711-31. [PMID: 25690730 DOI: 10.1007/s00204-015-1470-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor kappa B (NF-κB) has attracted increasing attention in the field of cancer research from last few decades. Aberrant activation of this transcription factor is frequently encountered in a variety of solid tumors and hematological malignancies. NF-κB family members and their regulated genes have been linked to malignant transformation, tumor cell proliferation, survival, angiogenesis, invasion/metastasis, and therapeutic resistance. In this review, we highlight the diverse molecular mechanism(s) by which the NF-κB pathway is constitutively activated in different types of human cancers, and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. Additionally, various pharmacological approaches employed to target the deregulated NF-κB signaling pathway, and their possible therapeutic potential in cancer therapy is also discussed briefly.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:477-86. [DOI: 10.1007/s00210-015-1096-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023]
|
26
|
Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem Biol Interact 2015; 228:46-56. [DOI: 10.1016/j.cbi.2015.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/14/2023]
|
27
|
NF-κB-dependent and -independent epigenetic modulation using the novel anti-cancer agent DMAPT. Cell Death Dis 2015; 6:e1608. [PMID: 25611383 PMCID: PMC4669767 DOI: 10.1038/cddis.2014.569] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-κB) is constitutively active in several cancers and is a target of therapeutic development. We recently developed dimethylaminoparthenolide (DMAPT), a clinical grade water-soluble analog of parthenolide, as a potent inhibitor of NF-κB and demonstrated in vitro and in vivo anti-tumor activities in multiple cancers. In this study, we show DMAPT is an epigenetic modulator functioning in an NF-κB-dependent and -independent manner. DMAPT-mediated NF-κB inhibition resulted in elevated histone H3K36 trimethylation (H3K36me3), which could be recapitulated through genetic ablation of the p65 subunit of NF-κB or inhibitor-of-kappaB alpha super-repressor overexpression. DMAPT treatment and p65 ablation increased the levels of H3K36 trimethylases NSD1 (KMT3B) and SETD2 (KMT3A), suggesting that NF-κB directly represses their expression and that lower H3K36me3 is an epigenetic marker of constitutive NF-κB activity. Overexpression of a constitutively active p65 subunit of NF-κB reduced NSD1 and H3K36me3 levels. NSD1 is essential for DMAPT-induced expression of pro-apoptotic BIM, indicating a functional link between epigenetic modification and gene expression. Interestingly, we observed enhanced H4K20 trimethylation and induction of H4K20 trimethylase KMT5C in DMAPT-treated cells independent of NF-κB inhibition. These results add KMT5C to the list NF-κB-independent epigenetic targets of parthenolide, which include previously described histone deacetylase 1 (HDAC-1) and DNA methyltransferase 1. As NSD1 and SETD2 are known tumor suppressors and loss of H4K20 trimethylation is an early event in cancer progression, which contributes to genomic instability, we propose DMAPT as a potent pharmacologic agent that can reverse NF-κB-dependent and -independent cancer-specific epigenetic abnormalities.
Collapse
|
28
|
Karmakar A, Xu Y, Mustafa T, Kannarpady G, Bratton S, Radominska-Pandya A, Crooks P, Biris A. Nanodelivery of Parthenolide Using Functionalized Nanographene Enhances its Anticancer Activity. RSC Adv 2015; 5:2411-2420. [PMID: 25574376 PMCID: PMC4283950 DOI: 10.1039/c4ra10871j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advances in anticancer chemotherapy have been hindered by the lack of biocompatibility of new prospective drugs. One significant challenge concerns water insolubility, which compromises the bioavailability of the drugs leading to increased dosage and higher systemic toxicity. To overcome these problems, nanodelivery has been established as a promising approach for increasing the efficacy and lowering the required dosage of chemotherapeutics. The naturally derived compound, parthenolide (PTL), is known for its anti-inflammatory and anticancer activity, but its poor water solubility limits its clinical value. In the present study, we have used carboxyl-functionalized nanographene (fGn) delivery to overcome the extreme hydrophobicity of this drug. A water-soluble PTL analog, dimethylamino parthenolide (DMAPT), was also examined for comparison with the anticancer efficacy of our PTL-fGn complex. Delivery by fGn was found to increase the anticancer/apoptotic effects of PTL (but not DMAPT) when delivered to the human pancreatic cancer cell line, Panc-1. The IC50 value for PTL decreased from 39 µM to 9.5 µM when delivered as a mixture with fGn. The IC50 of DMAPT did not decrease when delivered as DMAPT-fGn and was significantly higher than that for PTL-fGn. There were significant increases in ROS formation and in mitochondrial membrane disruption in Panc-1 cells after PTL-fGn treatment as compared to PTL treatment, alone. Increases in toxicity were also seen with apoptosis detection assays using flow cytometry, ethidium bromide/acridine orange/DAPI staining, and TUNEL. Thus, fGn delivery was successfully used to overcome the poor water solubility of PTL, providing a strategy for improving the effectiveness of this anticancer agent.
Collapse
Affiliation(s)
- A. Karmakar
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR 72204, USA
| | - Y. Xu
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR 72204, USA
| | - T. Mustafa
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR 72204, USA
| | - G. Kannarpady
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR 72204, USA
| | - S.M. Bratton
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - A. Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - P.A. Crooks
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - A.S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, AR 72204, USA
| |
Collapse
|
29
|
KIM SELIM, LIU YUCHUAN, PARK YOUNGRAN, SEO SEUNGYOUNG, KIM SEONGHUN, KIM INHEE, LEE SEUNGOK, LEE SOOTEIK, KIM DAEGHON, KIM SANGWOOK. Parthenolide enhances sensitivity of colorectal cancer cells to TRAIL by inducing death receptor 5 and promotes TRAIL-induced apoptosis. Int J Oncol 2014; 46:1121-30. [PMID: 25502339 DOI: 10.3892/ijo.2014.2795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/26/2014] [Indexed: 11/05/2022] Open
|
30
|
Zhang Y, Xie RF, Xiao QG, Li R, Shen XL, Zhu XG. Hedyotis diffusa Willd extract inhibits the growth of human glioblastoma cells by inducing mitochondrial apoptosis via AKT/ERK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:404-411. [PMID: 25456437 DOI: 10.1016/j.jep.2014.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa Willd (Rubiaceae) (HDW) has been widely applied for the treatment of tumors, inflammation and toxication in traditional Chinese medicine. The antitumor effect of HDW on glioblastoma has been rarely reported. We aim to evaluate the activity of this extract and explore the underlying mechanism in U87 human glioblastoma cell line. MATERIALS AND METHODS Cytotoxicity of HDW extract on U87 cells was measured by MTT assay. Apoptosis, cell cycle arrest and mitochondrial membrane potential (MMP) collapse induced by HDW extract were determined by flow cytometry. Caspase activity was analyzed based on colorimetric assay with a microplate spectrophotometer. Protein expression was examined by Western blot. RESULTS HDW extract suppressed U87 cells growth in a dose- and time-dependent manner. Flow cytometry showed that HDW extract induced significant apoptosis, S/G2-M phase arrest and MMP collapse in U87 cells. Furthermore, dose-dependent activation of caspase-3, Bcl-2, Bax and ERK was observed with HDW extract treatment. Decreased Bcl-2/Bax ratio and Akt suppression were readily found as well. CONCLUSIONS Induction of mitochondria-mediated apoptosis played an essential role in antitumor activity of HDW extract in U87 cells, in which ERKs and Akt signaling proteins were also involved. These findings contributed to the feasibility of using HDW extract in glioblastoma treatment and the understanding of the molecular mechanism.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Rui-Fan Xie
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun-Gen Xiao
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Li Shen
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin-Gen Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
31
|
Whipple RA, Vitolo MI, Boggs AE, Charpentier MS, Thompson K, Martin SS. Parthenolide and costunolide reduce microtentacles and tumor cell attachment by selectively targeting detyrosinated tubulin independent from NF-κB inhibition. Breast Cancer Res 2014; 15:R83. [PMID: 24028602 PMCID: PMC3979133 DOI: 10.1186/bcr3477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Detyrosinated tubulin, a post-translational modification of α-tubulin and a hallmark of stable microtubules, has gained recent attention given its association with tumor progression, invasiveness, and chemoresistance. We also recently reported that epithelial-to-mesenchymal transition (EMT) promotes tubulin detyrosination through tubulin tyrosine ligase (TTL) suppression. Furthermore, detyrosinated tubulin-enriched membrane protrusions, termed microtentacles (McTN), facilitate tumor cell reattachment to endothelial layers. Given the induction of EMT associated with inflammation and cancer progression, we tested anti-inflammatory nuclear factor-kappaB (NF-κB) inhibitors on a panel of human breast carcinoma cells to examine their effects on detyrosinated tubulin to identify more specific tubulin-directed anti-cancer treatments. Methods Using metastatic human breast carcinoma cells MDA-MB-157, MDA-MB-436, and Bt-549, we measured the impact of NF-κB inhibitors parthenolide, costunolide, and resveratrol on detyrosinated tubulin using protein expression analysis and immunofluorescence. A luciferase reporter assay and a viability screen were performed to determine if the effects were associated with their NF-κB inhibitory properties or were a result of apoptosis. Real-time monitoring of cell-substratum attachment was measured utilizing electrical impedance across microelectronic sensor arrays. We compared the selectivity of the NF-κB inhibitors to specifically target detyrosinated tubulin with traditional tubulin-targeted therapeutics, paclitaxel and colchicine, throughout the study. Results Sesquiterpene lactones, parthenolide and costunolide, selectively decrease detyrosinated tubulin independent of their inhibition of NF-κB. Live-cell scoring of suspended cells treated with parthenolide and costunolide show reduction in the frequency of microtentacles and inhibition of reattachment. Structural analysis shows that parthenolide and costunolide can decrease detyrosinated microtubules without significantly disrupting the overall microtubule network or cell viability. Paclitaxel and colchicine display indiscriminate disruption of the microtubule network. Conclusions Our data demonstrate that selective targeting of detyrosinated tubulin with parthenolide and costunolide can reduce McTN frequency and inhibit tumor cell reattachment. These actions are independent of their effects on NF-κB inhibition presenting a novel anti-cancer property and therapeutic opportunity to selectively target a stable subset of microtubules in circulating tumor cells to reduce metastatic potential with less toxicity in breast cancer patients.
Collapse
|
32
|
Viennois E, Xiao B, Ayyadurai S, Wang L, Wang PG, Zhang Q, Chen Y, Merlin D. Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. J Transl Med 2014; 94:950-65. [PMID: 25068660 DOI: 10.1038/labinvest.2014.89] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/18/2014] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal (GI) tract associated with an increased risk of colorectal cancer (CRC). Current treatments for both IBD and colitis-associated CRC suffer from numerous side effects. Parthenolide (PTL) is a sesquiterpene lactone with anti-inflammatory activity, and previous studies have demonstrated that PTL is a potent inhibitor of the NF-κB pathway. Micheliolide (MCL), substantially more stable than PTL in vivo, was recently developed, and this study aimed to decipher its suitability as therapeutic tool for IBD and IBD-associated diseases. Similar to PTL, MCL inhibited NF-κB activation and subsequent pro-inflammatory pathways activation in vitro. Pro-drug forms of both compounds inhibited the DSS-induced colitis when administrated intraperitoneally or encapsulated in a polysaccharide gel designed to release drugs in the colon. Interestingly, MCL was found to attenuate carcinogenesis in AOM/DSS-induced CRC, thus providing new candidate for the treatment of inflammatory bowel disease and CRC.
Collapse
Affiliation(s)
- Emilie Viennois
- 1] Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA [2] Veterans Affairs Medical Center, Decatur, GA, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Saravanan Ayyadurai
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Lixin Wang
- 1] Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA [2] Veterans Affairs Medical Center, Decatur, GA, USA
| | - Peng G Wang
- 1] Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA [2] The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Quan Zhang
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Didier Merlin
- 1] Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA [2] Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
33
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
34
|
Liu YJ, Lin YC, Lee JC, Kuo SC, Ho CT, Huang LJ, Kuo DH, Way TD. CCT327 enhances TRAIL-induced apoptosis through the induction of death receptors and downregulation of cell survival proteins in TRAIL-resistant human leukemia cells. Oncol Rep 2014; 32:1257-64. [PMID: 25017974 DOI: 10.3892/or.2014.3317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/20/2014] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-related apoptosis‑inducing ligand (TRAIL) has potential application in cancer therapy and it has the ability to selectively kill cancer cells without affecting normal cells. However, the development of resistance to TRAIL in cancer cells cannot be avoided. This study investigated the effects of 2-(5-methylselenophen‑2‑yl)‑6,7‑methylenedioxyquinolin‑4-one (CCT327), an analogue of quinolin-4-one, on the sensitization of cancer cells to TRAIL and on TRAIL‑induced apoptosis in TRAIL‑resistance human leukemia cells (HL60‑TR). We found that CCT327 enhanced TRAIL‑induced apoptosis through upregulation of death receptors DR4 and DR5. In addition to upregulating DRs (death receptors), CCT327 suppressed the expression of decoy receptor DcR1 and DcR2. CCT327 significantly downregulated the expression of FLICE inhibitory protein (cFLIP) and other antiapoptotic proteins. We also demonstrated that CCT327 could activate p38 and JNK. Moreover, CCT327-induced induction of DR5 and DR4 was mediated by reactive oxygen species (ROS), and N-acetylcysteine (NAC) blocked the induction of DRs by CCT327. Taken together, these results showed that CCT327 combined with TRAIL treatment may provide an effective therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Yan-Jin Liu
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung, Taiwan, R.O.C
| | - Jang-Chang Lee
- Department of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Daih-Huang Kuo
- Graduate Institute of Pharmaceutical Technology, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan, R.O.C
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
35
|
KIM SELIM, LEE SOOTEIK, TRANG KIEUTHITHU, KIM SEONGHUN, KIM INHEE, LEE SEUNGOK, KIM DAEGHON, KIM SANGWOOK. Parthenolide exerts inhibitory effects on angiogenesis through the downregulation of VEGF/VEGFRs in colorectal cancer. Int J Mol Med 2014; 33:1261-7. [DOI: 10.3892/ijmm.2014.1669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/19/2014] [Indexed: 11/06/2022] Open
|
36
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
37
|
Trang KTT, Kim SL, Park SB, Seo SY, Choi CH, Park JK, Moon JC, Lee ST, Kim SW. Parthenolide Sensitizes Human Colorectal Cancer Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand through Mitochondrial and Caspase Dependent Pathway. Intest Res 2014; 12:34-41. [PMID: 25349561 PMCID: PMC4204686 DOI: 10.5217/ir.2014.12.1.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS Combination therapy utilizing tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in conjunction with other anticancer agents, is a promising strategy to overcome TRAIL resistance in malignant cells. Recently, parthenolide (PT) has proved to be a promising anticancer agent, and several studies have explored its use in combination therapy. Here, we investigated the molecular mechanisms by which PT sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. METHODS HT-29 cells (TRAIL-resistant) were treated with PT and/or TRAIL for 24 hours. The inhibitory effect on proliferation was detected using the 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Annexin V staining, cell cycle analysis, and Hoechst 33258 staining were used to assess apoptotic cell death. Activation of an apoptotic pathway was confirmed by Western blot. RESULTS Treatment with TRAIL alone inhibited the proliferation of HCT 116 cells in a dose-dependent manner, whereas proliferation was not affected in HT-29 cells. Combination PT and TRAIL treatment significantly inhibited cell growth and induced apoptosis of HT-29 cells. We observed that the synergistic effect was associated with misregulation of B-cell lymphoma 2 (Bcl-2) family members, release of cytochrome C to the cytosol, activation of caspases, and increased levels of p53. CONCLUSION Combination therapy using PT and TRAIL might offer an effetive strategy to overcome TRAIL resistance in certain CRC cells.
Collapse
Affiliation(s)
- Kieu Thi Thu Trang
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Se-Lim Kim
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Bae Park
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Seung-Young Seo
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Chung-Hwan Choi
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Jin-Kyoung Park
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Jin-Chang Moon
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Soo-Teik Lee
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea. ; Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
38
|
Han Y, Park S, Kinyua AW, Andera L, Kim KW, Kim I. Emetine enhances the tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of pancreatic cancer cells by downregulation of myeloid cell leukemia sequence-1 protein. Oncol Rep 2013; 31:456-62. [PMID: 24213797 DOI: 10.3892/or.2013.2838] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
Abstract
Although the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent, it shows limited efficacy in human pancreatic cancer cells. Protein synthesis inhibition has been reported to sensitize cancer cells to apoptosis-inducing agents, but the detailed mechanism by which protein synthesis inhibition sensitize cells to TRAIL has not been determined. To investigate the mechanism underlying pancreatic cancer cell resistance to TRAIL, we performed a small scale high-throughput compound screening in AsPC-1 pancreatic cancer cells using a bioactive small molecule library. We identified 8 compounds that reproducibly sensitize AsPC-1 cells to TRAIL-induced apoptosis. One of these compounds, emetine hydrochloride, when combined with subtoxic concentrations of TRAIL, induced massive apoptosis in AsPC-1 and BxPC-3 pancreatic cancer cells. Cell death analysis revealed that the sensitizing effects of emetine were specific to TRAIL. Emetine downregulated the expression of the TRAIL-related anti-apoptotic protein Mcl-1 in a dose- and time-dependent manner. Furthermore, specific knockdown of Mcl-1 using small interfering RNA without emetine treatment sensitized pancreatic cancer cells to TRAIL. Emetine sensitization of pancreatic cancer cells to TRAIL via Mcl-1 was confirmed under hypoxic conditions. Taken together, these findings strongly suggest that Mcl-1 is involved in pancreatic cancer cell resistance to TRAIL, and emetine facilitates the apoptosis of TRAIL-tolerant pancreatic cancer cells by specifically inhibiting Mcl-1 function.
Collapse
Affiliation(s)
- Yujeong Han
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 2013; 4:e891. [PMID: 24176849 PMCID: PMC3920954 DOI: 10.1038/cddis.2013.415] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancers (TNBCs) are clinically aggressive forms associated with a poor prognosis. We evaluated the cytotoxic effect exerted on triple-negative MDA-MB231 breast cancer cells both by parthenolide and its soluble analogue dimethylamino parthenolide (DMAPT) and explored the underlying molecular mechanism. The drugs induced a dose- and time-dependent decrement in cell viability, which was not prevented by the caspase inhibitor z-VAD-fmk. In particular in the first hours of treatment (1–3 h), parthenolide and DMAPT strongly stimulated reactive oxygen species (ROS) generation. The drugs induced production of superoxide anion by activating NADPH oxidase. ROS generation caused depletion of thiol groups and glutathione, activation of c-Jun N-terminal kinase (JNK) and downregulation of nuclear factor kB (NF-kB). During this first phase, parthenolide and DMAPT also stimulated autophagic process, as suggested by the enhanced expression of beclin-1, the conversion of microtubule-associated protein light chain 3-I (LC3-I) to LC3-II and the increase in the number of cells positive to monodansylcadaverine. Finally, the drugs increased RIP-1 expression. This effect was accompanied by a decrement of pro-caspase 8, while its cleaved form was not detected and the expression of c-FLIPS markedly increased. Prolonging the treatment (5–20 h) ROS generation favoured dissipation of mitochondrial membrane potential and the appearance of necrotic events, as suggested by the increased number of cells positive to propidium iodide staining. The administration of DMAPT in nude mice bearing xenografts of MDA-MB231 cells resulted in a significant inhibition of tumour growth, an increment of animal survival and a marked reduction of the lung area invaded by metastasis. Immunohistochemistry data revealed that treatment with DMAPT reduced the levels of NF-kB, metalloproteinase-2 and -9 and vascular endothelial growth factor, while induced upregulation of phosphorylated JNK. Taken together, our data suggest a possible use of parthenolide for the treatment of TNBCs.
Collapse
|
40
|
Abstract
Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.
Collapse
|
41
|
Antonella DS, Federico D, Grazia SM, Gabriela M. Antimutagenic and antioxidant activities of some bioflavours from wine. Food Chem Toxicol 2013; 60:141-6. [PMID: 23891760 DOI: 10.1016/j.fct.2013.07.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Monoterpenes limonene and its metabolic derivatives, α-terpineol and 1,8-cineol, commonly found as aroma wine components, were studied for their antimutagenicity by the bacterial reverse mutation assay on different strains. Substances were also tested for their antioxidant activity, i.e. radical scavenger, chelation, reduction, and lipid peroxidation inhibition. Limonene and its metabolites, α-terpineol and 1,8-cineol, resulted able to inhibit the chemically-induced mutagenesis, although with a different specificity. The antimutagenicity of limonene has been generally retained by its metabolites and sometimes increased. In particular, α-terpineol exhibited the strongest inhibition, moreover it showed to be a remarkable ferrous ions chelating agent. Limonene and 1,8-cineol were devoid of antioxidant activity. Present results are a starting point in evaluating the potential of α-terpineol as a chemopreventive agent and suggest potential functional dietary benefits of wine.
Collapse
Affiliation(s)
- Di Sotto Antonella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
42
|
Park S, Cho DH, Andera L, Suh N, Kim I. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins. Mol Cell Biochem 2013; 383:39-48. [DOI: 10.1007/s11010-013-1752-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
43
|
Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 2013; 14:12780-805. [PMID: 23783276 PMCID: PMC3709812 DOI: 10.3390/ijms140612780] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/24/2013] [Accepted: 05/31/2013] [Indexed: 01/19/2023] Open
Abstract
Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualities for future crop production are discussed.
Collapse
Affiliation(s)
- Martin Chadwick
- Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, RG6 6AP, UK; E-Mail:
| | - Harriet Trewin
- Tozer Seeds, Pyports, Downside Bridge Road, Cobham, Surrey, KT11 3EH, UK; E-Mails: (H.T.); (F.G.)
| | - Frances Gawthrop
- Tozer Seeds, Pyports, Downside Bridge Road, Cobham, Surrey, KT11 3EH, UK; E-Mails: (H.T.); (F.G.)
| | - Carol Wagstaff
- Food and Nutritional Sciences, University of Reading, PO Box 226, Whiteknights, RG6 6AP, UK; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-118-378-5362; Fax: +44-118-931-0080
| |
Collapse
|
44
|
Ai Z, Wang J, Xu Y, Teng Y. Bioinformatics analysis reveals potential candidate drugs for cervical cancer. J Obstet Gynaecol Res 2013; 39:1052-8. [PMID: 23551598 DOI: 10.1111/jog.12022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 11/08/2012] [Indexed: 01/21/2023]
Abstract
AIM We sought to explore the mechanisms of cervical carcinoma response to epidermal growth factor (EGF), and then identify biologically active small molecules capable of targeting the sub-pathways that were dysregulated in cervical cancer cells in the response to EGF. MATERIAL AND METHODS Differentially expressed genes and pathways were analyzed based on the transcription profile of GSE6783, and then the differentially expressed molecules were further analyzed by several bioinformatics methods. RESULTS Our results suggested that EGF could promote cervical cancer cell proliferation through triggering the dysregulation of certain sub-pathways in the mitogen-activated protein kinase signaling pathway, p53 signaling pathway and pathways in cancer. Furthermore, our bioinformatics analysis revealed a total of 49 small molecules which may play a role in perturbing the response to EGF of cervical cancer cells. CONCLUSIONS Candidate drugs identified by our approach may provide the groundwork for a combination therapy approach for cervical cancer; however, further studies are still needed to make sure that the use of parthenolide or other anti-cancer agents is effective without inhibiting important host defense mechanisms in cervical cancer.
Collapse
Affiliation(s)
- Zhihong Ai
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
45
|
D'Anneo A, Carlisi D, Lauricella M, Emanuele S, Di Fiore R, Vento R, Tesoriere G. Parthenolide induces caspase-independent and AIF-mediated cell death in human osteosarcoma and melanoma cells. J Cell Physiol 2013; 228:952-67. [PMID: 22688575 DOI: 10.1002/jcp.24131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/01/2012] [Indexed: 01/13/2023]
Abstract
The mechanism of the cytotoxic effect exerted by parthenolide on tumor cells is not clearly defined today. This article shows that parthenolide stimulates in human osteosarcoma MG63 and melanoma SK-MEL-28 cells a mechanism of cell death, which is not prevented by z-VAD-fmk and other caspase inhibitors. In particular treatment with parthenolide rapidly stimulated (1-2 h) reactive oxygen species (ROS) generation by inducing activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and NADPH oxidase. This event caused depletion of thiol groups and glutathione, NF-κB inhibition, c-Jun N-terminal kinase (JNK) activation, cell detachment from the matrix, and cellular shrinkage. The increase of ROS generation together with the mitochondrial accumulation of Ca(2+) also favored dissipation of Δψm, which seemed primarily determined by permeability transition pore opening, since Δψm loss was partially prevented by the inhibitor cyclosporin A. Staining with Hoechst 33342 revealed in most cells, at 3-5 h of treatment, chromatin condensation, and fragmentation, while only few cells were propidium iodide (PI)-positive. In addition, at this stage apoptosis inducing factor (AIF) translocated to the nucleus and co-localized with areas of condensed chromatin. Prolonging the treatment (5-15 h) ATP content declined while PI-positive cells strongly augmented, denouncing the increase of necrotic effects. All these effects were prevented by N-acetylcysteine, while caspase inhibitors were ineffective. We suggest that AIF exerts a crucial role in parthenolide action. In accordance, down-regulation of AIF markedly inhibited parthenolide effect on the production of cells with apoptotic or necrotic signs. Taken together our results demonstrate that parthenolide causes in the two cell lines a caspase-independent cell death, which is mediated by AIF.
Collapse
Affiliation(s)
- Antonella D'Anneo
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs 2013; 23:883-96. [PMID: 22797176 DOI: 10.1097/cad.0b013e328356cad9] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sesquiterpene lactones (SLs) constitute a large and diverse group of biologically active plant compounds that possess anti-inflammatory and antitumor activity. The subclass germacranolides is one of the major groups of SLs. It includes parthenolide, a highly cytotoxic SL that is being tested in clinical trials as an anti-cancer agent. In this review, we focus on SL antitumor activity related to cell-cycle arrest, differentiation, apoptosis induction through the intrinsic pathway, and sensitization of the extrinsic pathway. We also address the regression of tumors in response to cotreatment with conventional chemotherapeutics. We review the nuclear factor-κB-targeted anti-inflammatory activity in vitro and in vivo and relate it to the SL structural features involved in the molecular mechanisms. It is obvious that SLs are emerging as promising anticancer agents, but more investigations are required to fully understand the molecular mechanisms of known SLs in different cell death modalities and how these mechanisms contribute toward the potent antitumor and anti-inflammatory activities of SLs.
Collapse
|
47
|
Kim EY, Yu JS, Yang M, Kim AK. Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mol Cells 2013; 35:32-40. [PMID: 23224239 PMCID: PMC3887848 DOI: 10.1007/s10059-013-2175-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.
Collapse
Affiliation(s)
- Eun Young Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Ji Sun Yu
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - An Keun Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
48
|
Czyz M, Koprowska K, Sztiller-Sikorska M. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres. Cancer Biol Ther 2012. [PMID: 23192276 PMCID: PMC3571995 DOI: 10.4161/cbt.22952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent.
Collapse
Affiliation(s)
- Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|
49
|
Synergistic induction of TRAIL-mediated apoptosis by anisomycin in human hepatoma cells via the BH3-only protein Bid and c-Jun/AP-1 signaling pathway. Biomed Pharmacother 2012; 67:321-8. [PMID: 23582782 DOI: 10.1016/j.biopha.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/04/2012] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF super-family, and it has been shown that many human cancer cell lines are refractory to TRAIL-induced cell death. However, the molecular mechanisms underlying resistance are unclear. In the present study, we show that TRAIL-resistance is reversed in human hepatoma cells by anisomycin, which is known to inhibit protein synthesis and induce ribotoxic stress. Synergistic induction of apoptosis in cells treated with anisomycin plus TRAIL was associated with activation of caspases and cleavage of Bid, a pro-apoptotic BH3-only protein. Silencing of Bid expression by small interfering RNA (siRNA) significantly attenuated the loss of mitochondrial membrane potential (MMP, Δψm) and significantly increased induction of apoptosis in cells treated with anisomycin and TRAIL, confirming that Bid cleavage is required for the response. In addition, c-Jun/AP-1 was rapidly activated upon stimulation with anisomycin; however, the knockdown of c-Jun/AP-1 expression by c-Jun siRNA markedly reduced anisomycin plus TRAIL-induced loss of MMP and apoptosis. Taken together, the findings show that anisomycin sensitizes TRAIL-mediated hepatoma cell apoptosis via the mitochondria-associated pathway, involving the cleavage of Bid and activation of the c-Jun/AP-1 pathway, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Collapse
|
50
|
Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN ONCOLOGY 2012; 2012:137289. [PMID: 23119185 PMCID: PMC3483701 DOI: 10.5402/2012/137289] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 12/03/2022]
Abstract
The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress.
Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Medicine and Experimental Oncology, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|