1
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
2
|
von Stromberg K, Seddar L, Ip WH, Günther T, Gornott B, Weinert SC, Hüppner M, Bertzbach LD, Dobner T. The human adenovirus E1B-55K oncoprotein coordinates cell transformation through regulation of DNA-bound host transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2310770120. [PMID: 37883435 PMCID: PMC10622919 DOI: 10.1073/pnas.2310770120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Collapse
Affiliation(s)
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Günther
- Virus Genomics, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Sophie-Celine Weinert
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Max Hüppner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| |
Collapse
|
3
|
Conserved E1B-55K SUMOylation in different human adenovirus species is a potent regulator of intracellular localization. J Virol 2021; 96:e0083821. [PMID: 34787461 DOI: 10.1128/jvi.00838-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. Importance E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved post-translational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.
Collapse
|
4
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
5
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
6
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
7
|
E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J Virol 2018; 92:JVI.00164-18. [PMID: 29695423 DOI: 10.1128/jvi.00164-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention.
Collapse
|
8
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Efficient Transformation of Primary Human Mesenchymal Stromal Cells by Adenovirus Early Region 1 Oncogenes. J Virol 2016; 91:JVI.01782-16. [PMID: 27795433 DOI: 10.1128/jvi.01782-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022] Open
Abstract
Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. IMPORTANCE It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human embryonic tissue, albeit the exact cell type is not known yet. We show for the first time the successful transformation of primary human mesenchymal stromal cells (hMSCs) by HAdV-5 E1A and E1B. Further, we show upon HAdV-5 E1A and E1B expression that these primary progenitor cells exhibit features of tumor cells and can no longer be differentiated into the adipogenic, chondrogenic, or osteogenic lineage. Hence, primary hMSCs represent a robust and novel model system to elucidate the underlying molecular mechanisms of adenovirus-mediated transformation of multipotent human progenitor cells.
Collapse
|
10
|
Berscheminski J, Brun J, Speiseder T, Wimmer P, Ip WH, Terzic M, Dobner T, Schreiner S. Sp100A is a tumor suppressor that activates p53-dependent transcription and counteracts E1A/E1B-55K-mediated transformation. Oncogene 2016; 35:3178-89. [PMID: 26477309 DOI: 10.1038/onc.2015.378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 01/29/2023]
Abstract
Human adenoviruses (HAdV) are used as a model system to investigate tumorigenic processes in mammalian cells where the viral oncoproteins E1A and E1B-55K are absolutely required for oncogenic transformation, because they simultaneously accelerate cell cycle progression and inhibit tumor suppressor proteins such as p53, although the underlying mechanism is still not understood in detail. In our present study, we provide evidence that E1B-55K binding to the PML-NB component Sp100A apparently has an essential role in regulating adenovirus-mediated transformation processes. Specifically, when this E1B-55K/Sp100A complex recruits p53, Sp100A-induced activation of p53 transcriptional activity is effectively abolished. Hence, Sp100A exhibits tumor-suppressive activity, not only by stabilizing p53 transactivation but also by depressing E1A/E1B-55K-mediated transformation. E1B-55K counteracts this suppressive activity, inducing Sp100A SUMOylation and sequestering the modified cellular factor into the insoluble matrix of the nucleus or into cytoplasmic inclusions. These observations provide novel insights into how E1B-55K modulates cellular determinants to maintain growth-promoting activity during oncogenic processes and lytic infection.
Collapse
Affiliation(s)
- J Berscheminski
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - J Brun
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - T Speiseder
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - P Wimmer
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - W H Ip
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - M Terzic
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - T Dobner
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - S Schreiner
- Department of Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
11
|
KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification. J Virol 2015; 90:930-46. [PMID: 26537675 DOI: 10.1128/jvi.01836-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/26/2015] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection. We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the SUMO modification of E1B-55K by a so far unknown mechanism.
Collapse
|
12
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
13
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|
14
|
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T, Schreiner S. Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 2014; 88:6076-92. [PMID: 24623443 PMCID: PMC4093896 DOI: 10.1128/jvi.00469-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane Brun
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tim Horlacher
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ellis Jaffray
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ron T. Hay
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
15
|
Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates. J Virol 2013; 87:4872-81. [PMID: 23408624 DOI: 10.1128/jvi.03272-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.
Collapse
|
16
|
The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication. J Virol 2013; 87:4432-44. [PMID: 23388716 DOI: 10.1128/jvi.03387-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To begin to investigate the mechanism by which the human adenovirus type 5 E1B 55-kDa protein protects against the antiviral effects of type 1 interferon (IFN) (J. S. Chahal, J. Qi, and S. J. Flint, PLoS Pathog. 8:e1002853, 2012 [doi:10.1371/journal.ppat.1002853]), we examined the effects of precise amino acid substitution in this protein on resistance of viral replication to the cytokine. Only substitution of residues 443 to 448 of E1B for alanine (E1B Sub19) specifically impaired production of progeny virus and resulted in a large defect in viral DNA synthesis in IFN-treated normal human fibroblasts. Untreated or IFN-treated cells infected by this mutant virus (AdEasyE1Sub19) contained much higher steady-state concentrations of IFN-inducible GBP1 and IFIT2 mRNAs than did wild-type-infected cells and of the corresponding newly transcribed pre-mRNAs, isolated exploiting 5'-ethynyluridine labeling and click chemistry. These results indicated that the mutations created by substitution of residues 443 to 448 for alanine (Sub19) impair repression of transcription of IFN-inducible genes, by the E1B, 55-kDa protein, consistent with their location in a segment required for repression of p53-dependent transcription. However, when synthesized alone, the E1B 55-kDa protein inhibited expression of the p53-regulated genes BAX and MDM2 but had no impact whatsoever on induction of IFIT2 and GBP1 expression by IFN. These observations correlate repression of transcription of IFN-inducible genes by the E1B 55-kDa protein with protection against inhibition of viral genome replication and indicate that the E1B 55-kDa protein is not sufficient to establish such transcriptional repression.
Collapse
|
17
|
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87:965-77. [PMID: 23135708 PMCID: PMC3554061 DOI: 10.1128/jvi.02023-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/20/2012] [Indexed: 12/21/2022] Open
Abstract
PML nuclear bodies (PML NBs), also called ND10, are matrix-bound nuclear structures that have been implicated in a variety of functions, including DNA repair, transcriptional regulation, protein degradation, and tumor suppression. These domains are also known for their potential to mediate an intracellular defense mechanism against many virus types. This is likely why they are targeted and subsequently manipulated by numerous viral proteins. Paradoxically, the genomes of various DNA viruses become associated with PML NBs, and initial sites of viral transcription/replication centers are often juxtaposed to these domains. The question is why viruses start their transcription and replication next to their supposed antagonists. Here, we report that PML NBs are targeted by the adenoviral (Ad) transactivator protein E1A-13S. Alternatively spliced E1A isoforms (E1A-12S and E1A-13S) are the first proteins expressed upon Ad infection. E1A-13S is essential for activating viral transcription in the early phase of infection. Coimmunoprecipitation assays showed that E1A-13S preferentially interacts with only one (PML-II) of at least six nuclear human PML isoforms. Deletion mapping located the interaction site within E1A conserved region 3 (CR3), which was previously described as the transcription factor binding region of E1A-13S. Indeed, cooperation with PML-II enhanced E1A-mediated transcriptional activation, while deleting the SUMO-interacting motif (SIM) of PML proved even more effective. Our results suggest that in contrast to PML NB-associated antiviral defense, PML-II may help transactivate viral gene expression and therefore play a novel role in activating Ad transcription during the early viral life cycle.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Chahal JS, Qi J, Flint SJ. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells. PLoS Pathog 2012; 8:e1002853. [PMID: 22912576 PMCID: PMC3415460 DOI: 10.1371/journal.ppat.1002853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN) was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT) virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication. The most frequently used therapeutic vectors for gene transfer or cancer treatment are derived from human adenovirus type 5 (Ad5). We have observed previously that the E1B 55 kDa protein encoded by a gene routinely deleted from these vectors represses expression of numerous cellular genes regulated by interferon (IFN) α and β, which are important components of the innate immune response to viral infection. We therefore compared synthesis of pre-mRNA from IFN-inducible genes, viral yields and early reactions in the infectious cycle in normal human cells exposed to exogenous IFN and infected by wild-type or E1B 55 kDa null-mutant viruses. We report that the E1B 55 kDa protein is a potent repressor of expression of IFN-regulated genes, and protects viral replication against anti-viral actions of IFN by blocking inhibition of formation of viral replication centers and genome replication. These observations provide the first information about the function of the transcription repression activity of E1B during the infectious cycle. Importantly, they also suggest new design considerations for adenoviral vectors that can circumvent induction of innate immune responses, currently a major therapeutic limitation.
Collapse
Affiliation(s)
- Jasdave S. Chahal
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Ji Qi
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - S. J. Flint
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
19
|
Schreiner S, Wimmer P, Dobner T. Adenovirus degradation of cellular proteins. Future Microbiol 2012; 7:211-25. [PMID: 22324991 DOI: 10.2217/fmb.11.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic cells orchestrate constant synthesis and degradation of intracellular components, including soluble proteins and organelles. The two major intracellular degradation pathways are the ubiquitin/proteasome system and autophagy. Whereas ubiquitin/proteasome system is involved in rapid degradation of proteins, autophagy selectively removes protein aggregates and damaged organelles. Failure of these highly adjusted proteolytic systems to maintain basal turnover leads to altered cellular homeostasis. During evolution, certain viruses have developed mechanisms to exploit their functions to facilitate their own replication, prevent viral clearance and promote the outcome of infection. In this article, we summarize the current opinion on adenoviruses (Ad) and molecular host cell targets, extending on recent evidences for protein degradation pathways in infected cells. We describe recently identified connections between Ad-mediated proteolysis and viral replication with main emphasis on the function of certain Ad proteins.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany. sabrina.schreiner@hpi. uni-hamburg.de
| | | | | |
Collapse
|
20
|
Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H, Dobner T. Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 2012; 32:1626-37. [PMID: 22614022 DOI: 10.1038/onc.2012.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the discovery of post-translational modification (PTM) by the small ubiquitin-related modifiers (SUMOs), a multitude of proteins have been described to be reversibly modified, resulting in the alteration of several cellular pathways. Interestingly, various pathogens gain access to this modification system, although the molecular mechanisms and functional consequences are barely understood. We show here that the adenoviral oncoprotein E1B-55K is a substrate of the SUMO conjugation system, which is directly linked to its C-terminal phosphorylation. This regulative connection is indispensable for modulation of the tumor suppressor p53/chromatin-remodeling factor Daxx by E1B-55K and, consequently, its oncogenic potential in primary mammalian cells. In virus infection, E1B-55K PTMs are necessary for localization to viral transcription/replication sites. Furthermore, we identify the E2 enzyme Ubc9 as an interaction partner of E1B-55K, providing a possible molecular explanation for SUMO-dependent modulation of cellular target proteins. In conclusion, these results for the first time provide evidence how E1B-55K PTMs are regulated and subsequently facilitate exploitation of the host cell SUMOylation machinery.
Collapse
Affiliation(s)
- P Wimmer
- Department of Molecular Virology, Heinrich-Pette-Institute-Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 2012; 86:3064-72. [PMID: 22278242 DOI: 10.1128/jvi.06764-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.
Collapse
|
22
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
23
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
24
|
Kato SEM, Huang W, Flint SJ. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
25
|
Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210-25. [PMID: 20861261 DOI: 10.1128/jvi.01442-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.
Collapse
|
26
|
SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29:5511-22. [PMID: 20639899 DOI: 10.1038/onc.2010.284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Collapse
|
27
|
Adenoviral oncoprotein E1B55K mediates colocalization of SSBP2 and PML in response to stress. J Mol Signal 2010; 5:6. [PMID: 20540776 PMCID: PMC2896343 DOI: 10.1186/1750-2187-5-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022] Open
Abstract
Transient expression of adenoviral oncoprotein E1B55K in normal cells induces aggresome formation and sequestration of critical host proteins in aggresomes. Our previous studies reported that Sequence Specific Binding Protein 2 (SSBP2), a candidate tumor suppressor is recruited to aggresomes in adenovirally transformed human embryonal kidney 293 (HEK293) cells. To understand the extent and significance of the E1B55K-SSBP2 interactions in these cells, we have examined SSBP2 localization under conditions of stress in HEK293 cells. SSBP2 localizes to PML- Nuclear Bodies (PML-NBs) in response to inhibition of nuclear export, treatment with etoposide, hydroxyurea or gamma irradiation only in HEK293 cells. Furthermore, the PML-NBs grow in size and number in response to radiation over a 24 hour period in HEK293 cells analogous to previous findings for other cell types. Nonetheless, we conclude that E1B55K subverts SSBP2 function in HEK293 cells. These findings demonstrate the limitations in using HEK293 cells to study DNA damage response and other cellular processes since SSBP2 and similar regulatory proteins are aberrantly localized due to constitutive E1B55K expression.
Collapse
|
28
|
Wimmer P, Täuber B, Spruss T, Dobner T. Adenovirus type 5 early encoded proteins of the E1 and E4 regions induce oncogenic transformation of primary rabbit cells. J Gen Virol 2010; 91:1828-33. [PMID: 20335490 DOI: 10.1099/vir.0.020537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the molecular mechanisms of viral-mediated oncogenesis has contributed enormously to the understanding of the basic principles of normal/malignant cell growth. Transformation by human adenoviruses is a multi-step process involving the modulation of numerous cellular pathways, leading to inhibition of apoptosis and growth arrest. However, the molecular mechanism of how the adenovirus oncogenes facilitate transformation of rodent cells, while concurrently failing to do so for human cells, remains elusive. In this report, we demonstrate for the first time that the transformation capabilities of adenovirus type 5 oncogenes are not restricted to rodent cells, but include cells of the related mammalian order Lagomorpha, inducing considerable morphological alterations, enhanced cell growth and tumour induction in vivo. Furthermore, the established cell lines may represent a suitable tool for further development to generate E4-mutated adenoviruses, which has so far been difficult as mutations within the E4 region often prove to be lethal without a helper-cell system.
Collapse
Affiliation(s)
- Peter Wimmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany
| | | | | | | |
Collapse
|
29
|
Kindsmüller K, Schreiner S, Leinenkugel F, Groitl P, Kremmer E, Dobner T. A 49-kilodalton isoform of the adenovirus type 5 early region 1B 55-kilodalton protein is sufficient to support virus replication. J Virol 2009; 83:9045-56. [PMID: 19587039 PMCID: PMC2738261 DOI: 10.1128/jvi.00728-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/01/2009] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) early region 1B 55-kDa (E1B-55K) protein is a multifunctional regulator of cell-cycle-independent virus replication that participates in many processes required for maximal virus production. As part of a study of E1B-55K function, we generated the Ad5 mutant H5pm4133, carrying stop codons after the second and seventh codons of the E1B reading frame, thereby eliminating synthesis of the full-length 55K product and its smaller derivatives. Unexpectedly, phenotypic studies revealed that H5pm4133 fully exhibits the characteristics of wild-type (wt) Ad5 in all assays tested. Immunoblot analyses demonstrated that H5pm4133 and wt Ad5 produce very low levels of two distinct polypeptides in the 48- to 49-kDa range, which lack the amino-terminal region but contain segments from the central and carboxy-terminal part of the 55K protein. Genetic and biochemical studies with different Ad5 mutants show that at least one of these isoforms consists of two closely migrating polypeptides of 433 amino acid residues (433R) and 422R, which are produced by translation initiation at two downstream AUG codons of the 55K reading frame. Significantly, a virus mutant producing low levels of the 433R isoform alone replicated to levels comparable to those of wt Ad5, demonstrating that this polypeptide provides essentially all functions of E1B-55K required to promote maximal virus growth in human tumor cells. Altogether, these results extend previous findings that the wt Ad5 E1B region encodes a series of smaller isoforms of E1B-55K and demonstrate that very low levels of at least one of these novel proteins (E1B-433R) are sufficient for a productive infection.
Collapse
Affiliation(s)
- Kathrin Kindsmüller
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Florian Leinenkugel
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Peter Groitl
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany, Institute of Medical Microbiology and Hygiene, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany, Helmholtz Zentrum München, Institute of Molecular Immunology, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
30
|
Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 2009; 83:3591-603. [PMID: 19211769 PMCID: PMC2663238 DOI: 10.1128/jvi.02269-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/30/2009] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | | | |
Collapse
|
31
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
33
|
In vivo potential effects of adenovirus type 5 E1A and E1B on lung carcinogenesis and lymphoproliferative inflammation. J Virol 2008; 82:8105-11. [PMID: 18524829 DOI: 10.1128/jvi.00536-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triggering uncontrolled cellular proliferation, chronic inflammation, and/or disruption of p53 activity is critical for tumorigenesis initiated by latent viral oncogenes. The adenovirus type 5 (Ad5) early genes E1A and E1B can maintain lifelong latency in the lungs of patients with chronic pulmonary diseases. To determine the in vivo effects of the latent Ad5 E1A and E1B oncogenes, we have examined the influence of Ad5 E1A and E1B gene products on mouse lung carcinogenesis and inflammation by generation and characterization of lung-specific transgenic mouse models. Here, we show that either the Ad5 E1A 243-amino-acid (aa) protein or the E1B 58-kDa protein was dominantly expressed in the transgenic lung. Preferential expression of Ad5 E1A 243-aa protein alone was not sufficient to induce lung carcinogenesis but resulted in low-grade cellular proliferation and high-grade lymphoproliferative inflammation in the lung. The presence of Ad5 E1B dramatically enhanced the expression of the E1A 243-aa protein, in addition to impairing p53 and apoptosis response, resulting in uncontrolled cellular proliferation, lymphoproliferative inflammation, and metastatic carcinomas in the lung after a period of latency. Our studies may provide clues to understanding the potential in vivo biological effects of Ad5 E1A and E1B latent in the lung and a new scope for assessing in vivo functions of viral genes latent in the infection target tissue.
Collapse
|
34
|
Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription. Oncogene 2008; 27:3673-84. [PMID: 18212738 DOI: 10.1038/sj.onc.1211039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inhibition of p53-activated transcription is an integral part of the mechanism by which early region 1B 55K oncoprotein (E1B-55K) from adenovirus type 5 (Ad5) contributes to complete cell transformation in combination with Ad E1A. In addition, more recent data suggest that the mode of action of the Ad protein during transformation may involve additional functions and other protein interactions. In the present study, we performed a comprehensive mutational analysis to assign further transforming functions of Ad5 E1B-55K to distinct domains within the viral polypeptide. Results from these studies show that the functions required for transformation are encoded within several patches of the 55K primary sequence, including several clustered cysteine and histidine residues, some of which match the consensus for zinc fingers. In addition, two amino-acid substitutions (C454S/C456S) created a 55K mutant protein, which had substantially reduced transforming activity. Interestingly, the same mutations neither affected binding to p53 nor inhibition of p53-mediated transactivation. Therefore, an activity necessary for efficient transformation of primary rat cells can be separated from functions required for inhibition of p53-stimulated transcription. Our data indicate that this activity is linked to the ability of the Ad5 protein to bind to components of the Mre11/Rad50/NBS1 DNA double-strand break repair complex, and/or its ability to assemble multiprotein aggregates in the cytoplasm and nucleus of transformed rat cells. These results introduce a new function for Ad5 E1B-55K and suggest that the viral protein contributes to cell transformation through p53 transcription-dependent and -independent pathways.
Collapse
|
35
|
Fleisig HB, Orazio NI, Liang H, Tyler AF, Adams HP, Weitzman MD, Nagarajan L. Adenoviral E1B55K oncoprotein sequesters candidate leukemia suppressor sequence-specific single-stranded DNA-binding protein 2 into aggresomes. Oncogene 2007; 26:4797-805. [PMID: 17311003 DOI: 10.1038/sj.onc.1210281] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 11/02/2006] [Accepted: 11/26/2006] [Indexed: 01/08/2023]
Abstract
Sequence-specific single-stranded DNA-binding protein 2 (SSBP2) is a candidate tumor suppressor for human acute myelogenous leukemia (AML). Inducible expression of SSBP2 causes growth arrest and partial differentiation in AML cells. Here, we report that the adenoviral oncoprotein E1B55K directly binds to endogenous SSBP2 protein and sequesters it into juxtanuclear bodies in adenovirally transformed human embryonic kidney (HEK) 293 cells. Similarly, transient expression of E1B55K in IMR90 fibroblasts and HeLa cells result in the formation of juxtanuclear bodies containing SSBP2. When nuclear export of E1B55K is prevented, SSBP2 remains associated with E1B55K in nuclear foci. A requirement for intact microtubules to retain the integrity of the juxtanuclear bodies suggests them to be E1B55K containing aggresomes. The adenoviral E1B55K protein has been shown to localize to the Mre11 complex and p53 to aggresome structures; together with the viral E4orf6 protein, E1B55K recruits a cellular E3 ubiquitin ligase that induces degradation of Mre11 and p53. However, our present studies reveal that E1B55K does not degrade SSBP2. These data demonstrate that E1B55K targets the candidate leukemia suppressor SSBP2 and suggest that subverting its function may contribute to cell transformation by viral oncoproteins.
Collapse
Affiliation(s)
- H B Fleisig
- Department of Molecular Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kindsmüller K, Groitl P, Härtl B, Blanchette P, Hauber J, Dobner T. Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc Natl Acad Sci U S A 2007; 104:6684-9. [PMID: 17428914 PMCID: PMC1871846 DOI: 10.1073/pnas.0702158104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the requirements for CRM1-mediated nuclear export and SUMO1 conjugation of the adenovirus E1B-55K protein during productive infection. Our data show that CRM1 is the major export receptor for E1B-55K in infected cells. Functional inactivation of the E1B-55K CRM1-dependent nuclear export signal (NES) or leptomycin B treatment causes an almost complete redistribution of the viral protein from the cytoplasm to the nucleus and its accumulation at the periphery of the viral replication centers. Interestingly, however, this nuclear restriction imposed on the wild type and the NES mutant protein is fully compensated by concurrent inactivation of the adjacent SUMO1 conjugation site. Moreover, the same mutation fully reverses defects of the NES mutant in the nucleocytoplasmic transport of Mre11 and proteasomal degradation of p53. These results show that nuclear export of E1B-55K in infected cells occurs via CRM1-dependent and -independent pathways and suggest that SUMO1 conjugation and deconjugation provide a molecular switch that commits E1B-55K to a CRM1-independent export pathway.
Collapse
Affiliation(s)
- Kathrin Kindsmüller
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Peter Groitl
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Barbara Härtl
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Paola Blanchette
- McGill University, Department of Biochemistry, Montreal, QC, Canada H3G 1Y6
| | - Joachim Hauber
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
| | - Thomas Dobner
- *Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Sieber T, Dobner T. Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 2006; 81:95-105. [PMID: 17050591 PMCID: PMC1797270 DOI: 10.1128/jvi.01608-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Early region 1B (E1B) of adenovirus type 5 (Ad5) encodes at least five different polypeptides generated by alternative splicing of a common mRNA precursor. Two of these gene products, E1B-19K and E1B-55K, are individually capable of cooperating with the Ad5 E1A proteins to completely transform rodent cells in culture. Substantial evidence suggests that these two E1B proteins contribute to cell transformation by antagonizing growth arrest and apoptosis. Here, we performed genetic and biochemical analyses to assess the attributes of the remaining E1B proteins (E1B-156R, E1B-93R, and E1B-84R). Our results show that E1B-156R, which comprises the 79 amino-terminal and 77 carboxy-terminal amino acids of E1B-55K, also enhances focal transformation of primary rat cells in cooperation with E1A. Since E1B-156R seemed unable to relocalize p53 and inhibit its transactivating function, it must be assumed that it contributes to transformation independently of repression of p53-stimulated transcription. Furthermore, we discovered that E1B-156R contains a functional transcriptional repression domain and binds Ad5 E4orf6 and the cellular apoptosis regulator Daxx. While the ability to bind E4orf6 could indicate further biological functions of E1B-156R in viral infection, the interaction with Daxx might also be linked to its transforming potential. Taken together, these analyses introduce E1B-156R as a novel transformation-promoting E1B protein that acts without repressing p53 transactivation. Moreover, identification of the interaction partners E4orf6 and Daxx provides a first glance of E1B-156R's potential functions.
Collapse
Affiliation(s)
- Timo Sieber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Germany
| | | |
Collapse
|
38
|
Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD. Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 2005; 79:11382-91. [PMID: 16103189 PMCID: PMC1193610 DOI: 10.1128/jvi.79.17.11382-11391.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/01/2005] [Indexed: 12/20/2022] Open
Abstract
Virus infections have dramatic effects on structural and morphological characteristics of the host cell. The gene product of open reading frame 3 in the early region 4 (E4orf3) of adenovirus serotype 5 (Ad5) is involved in efficient replication and late protein synthesis. During infection with adenovirus mutants lacking the E4 region, the viral genomic DNA is joined into concatemers by cellular DNA repair factors, and this requires the Mre11/Rad50/Nbs1 complex. Concatemer formation can be prevented by the E4orf3 protein, which causes the cellular redistribution of the Mre11 complex. Here we show that E4orf3 colocalizes with components of the Mre11 complex in nuclear tracks and also in large cytoplasmic accumulations. Rearrangement of Mre11 and Rad50 by Ad5 E4orf3 is not dependent on interactions with Nbs1 or promyelocytic leukemia protein nuclear bodies. Late in infection the cytoplasmic inclusions appear as a distinct juxtanuclear accumulation at the centrosome and this requires an intact microtubule cytoskeleton. The large cytoplasmic accumulations meet the criteria defined for aggresomes, including gamma-tubulin colocalization and formation of a surrounding vimentin cage. E4orf3 also appears to alter the solubility of the cellular Mre11 complex. These data suggest that E4orf3 can target the Mre11 complex to an aggresome and may explain how the cellular repair complex is inactivated during adenovirus infection.
Collapse
Affiliation(s)
- Felipe D Araujo
- Laboratory of Genetics, Salk Institute for Biological Studies, San Diego, CA 92186-5800, USA
| | | | | | | | | |
Collapse
|
39
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|