1
|
Gu X, Zhuang A, Yu J, Yang L, Ge S, Ruan J, Jia R, Fan X, Chai P. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res 2024; 52:2273-2289. [PMID: 38118002 PMCID: PMC10954454 DOI: 10.1093/nar/gkad1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
2
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
3
|
Tang Y, Wang Y, Wang S, Wang R, Xu J, Peng Y, Ding L, Zhao J, Zhou G, Sun S, Zhang Z. Methylation and transcriptomic expression profiles of HUVEC in the oxygen and glucose deprivation model and its clinical implications in AMI patients. Front Genet 2023; 14:1293393. [PMID: 38145212 PMCID: PMC10740152 DOI: 10.3389/fgene.2023.1293393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δβ|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.
Collapse
Affiliation(s)
- Yuning Tang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yongxiang Wang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shengxiang Wang
- School of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Runqing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Jin Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
| | - Yu Peng
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liqiong Ding
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Gang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zheng Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, Lanzhou, China
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Lim C, Lee S, Shin Y, Cho S, Park C, Shin Y, Song EC, Kim WK, Ham C, Kim SB, Kwon YS, Oh KT. Development and application of novel peptide-formulated nanoparticles for treatment of atopic dermatitis. J Mater Chem B 2023; 11:10131-10146. [PMID: 37830254 DOI: 10.1039/d3tb01202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Cheolmin Ham
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yong-Su Kwon
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Zhang J, Li Y, Fan TY, Liu D, Zou WD, Li H, Li YK. Identification of bromodomain-containing proteins prognostic value and expression significance based on a genomic landscape analysis of ovarian serous cystadenocarcinoma. Front Oncol 2022; 12:1021558. [PMID: 36276071 PMCID: PMC9579433 DOI: 10.3389/fonc.2022.1021558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundOvarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear.MethodsWe performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases.ResultsMost BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients.ConclusionBRDs are potential targets and biomarkers for OSC patients, especially BRPF1.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yan Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Ting-yu Fan
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Wen-da Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| | - Yu-kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
- *Correspondence: Hui Li, ; Yu-kun Li,
| |
Collapse
|
6
|
In the Tumor Microenvironment, ETS1 Is an Oncogenic Immune Protein: An Integrative Pancancer Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7730433. [PMID: 35463077 PMCID: PMC9033344 DOI: 10.1155/2022/7730433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Background Previous research suggested that ETS1 (ETS proto-oncogene 1, transcription factor) could be useful for cancer immunotherapy. The processes underlying its therapeutic potential, on the other hand, have yet to be thoroughly investigated. The purpose of this study was to look into the relationship between ETS1 expression and immunity. Methods TCGA and GEO provide raw data on 33 different cancers as well as GSE67501, GSE78220, and IMvigor210. In addition, we looked at ETS1's genetic changes, expression patterns, and survival studies. The linkages between ETS1 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of ETS1 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between ETS1 and immunotherapeutic response. Results ETS1 expression was shown to be high in tumor tissue. ETS1 overexpression is linked to a worse clinical outcome in individuals with overall survival. Immune cell infiltration, immunological modulators, and immunotherapeutic signs are all linked to ETS1. Overexpression of ETS1 is linked to immune-related pathways. However, no statistically significant link was found between ETS1 and immunotherapeutic response. Conclusions ETS1 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., KIRP, MESO, BLCA, KIRC, and THYM).
Collapse
|
7
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
8
|
Comprehensive Statistical and Bioinformatics Analysis in the Deciphering of Putative Mechanisms by Which Lipid-Associated GWAS Loci Contribute to Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10020259. [PMID: 35203469 PMCID: PMC8868589 DOI: 10.3390/biomedicines10020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study was designed to evaluate putative mechanisms by which lipid-associated loci identified by genome-wide association studies (GWAS) are involved in the molecular pathogenesis of coronary artery disease (CAD) using a comprehensive statistical and bioinformatics analysis. A total of 1700 unrelated individuals of Slavic origin from the Central Russia, including 991 CAD patients and 709 healthy controls were examined. Sixteen lipid-associated GWAS loci were selected from European studies and genotyped using the MassArray-4 system. The polymorphisms were associated with plasma lipids such as total cholesterol (rs12328675, rs4846914, rs55730499, and rs838880), LDL-cholesterol (rs3764261, rs55730499, rs1689800, and rs838880), HDL-cholesterol (rs3764261) as well as carotid intima-media thickness/CIMT (rs12328675, rs11220463, and rs1689800). Polymorphisms such as rs4420638 of APOC1 (p = 0.009), rs55730499 of LPA (p = 0.0007), rs3136441 of F2 (p < 0.0001), and rs6065906 of PLTP (p = 0.002) showed significant associations with the risk of CAD, regardless of sex, age, and body mass index. A majority of the observed associations were successfully replicated in large independent cohorts. Bioinformatics analysis allowed establishing (1) phenotype-specific and shared epistatic gene–gene and gene–smoking interactions contributing to all studied cardiovascular phenotypes; (2) lipid-associated GWAS loci might be allele-specific binding sites for transcription factors from gene regulatory networks controlling multifaceted molecular mechanisms of atherosclerosis.
Collapse
|
9
|
Zhang J, Guo F, Zhou R, Xiang C, Zhang Y, Gao J, Cao G, Yang H. Proteomics and transcriptome reveal the key transcription factors mediating the protection of Panax notoginseng saponins (PNS) against cerebral ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153613. [PMID: 34500302 DOI: 10.1016/j.phymed.2021.153613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Transcription factors (TFs) play a critical role in the cerebral ischemia/reperfusion injury (IRI). Panax notoginseng saponins (PNS) are extensively used in the treatment of acute cerebral ischemia in China, but the mechanism of their effects, especially at the TF level, remains unclear. In this study, a combination of transcriptomics, proteomics and network pharmacology analysis was used to identify the key TFs involved in the protection of PNS against middle cerebral artery occlusion (MCAO)-induced IRI. METHODS AND RESULTS Sprague-Dawley rats which were subjected to 1.5 hours of MCAO-induced occlusionand then followed by reperfusion, were treated with PNS at a concentration of 36 mg/kg or 72 mg/kg daily for 7 days. PNS significantly decreased neurological deficient scores and infarction rate; prevented cerebral tissue damage; and reduced CASP3 activity, levels of TNF, IL1B and CCL2 after IRI. Through a combination of transcriptomics and proteomics, 9 critical TFs were identified, including Excision repair cross-complementing group 2 (ERCC2), Nuclear receptor subfamily 4 group A member 3 (NR4A3) and 7 other TFs. The targets of ERCC2 and NR4A3, such as Ubxn11, Ush2a, Numr2, Oxt, Ubxn11, Scrt2, Ttc34 and Lrrc23, were verified by using real-time PCR analysis. RNA-seq analyses indicated that PNS regulated nerve system development and inflammation, and the majority of the identified TFs were also involved in these processes. By using network pharmacology analysis, 73 chemical components in PNS were predicted to affect ERCC2, NR4A3 and 3 other identified TFs. CONCLUSION ERCC2, NR4A3 and 7 other TFs were of importance in the protection of PNS against IRI. This study promoted the understanding of protective mechanism of PNS against cerebral IRI and facilitated the identification of possible targets of PNS.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Singh AK, Verma S, Kushwaha PP, Prajapati KS, Shuaib M, Kumar S, Gupta S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 2021; 48:4703-4719. [PMID: 34014468 DOI: 10.1007/s11033-021-06405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA. .,Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA. .,Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA. .,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Xi X, Ma Y, Xu Y, Ogbuehi AC, Liu X, Deng Y, Xi J, Pan H, Lin Q, Li B, Ning W, Jiang X, Li H, Li S, Hu X. The Genetic and Epigenetic Mechanisms Involved in Irreversible Pulp Neural Inflammation. DISEASE MARKERS 2021; 2021:8831948. [PMID: 33777260 PMCID: PMC7968449 DOI: 10.1155/2021/8831948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
AIM To identify the critical genetic and epigenetic biomarkers by constructing the long noncoding RNA- (lncRNA-) related competing endogenous RNA (ceRNA) network involved in irreversible pulp neural inflammation (pulpitis). MATERIALS AND METHODS The public datasets regarding irreversible pulpitis were downloaded from the gene expression omnibus (GEO) database. The differential expression analysis was performed to identify the differentially expressed genes (DEGs) and DElncRNAs. Functional enrichment analysis was performed to explore the biological processes and signaling pathways enriched by DEGs. By performing a weighted gene coexpression network analysis (WGCNA), the significant gene modules in each dataset were identified. Most importantly, DElncRNA-DEmRNA regulatory network and DElncRNA-associated ceRNA network were constructed. A transcription factor- (TF-) DEmRNA network was built to identify the critical TFs involved in pulpitis. RESULT Two datasets (GSE92681 and GSE77459) were selected for analysis. DEGs involved in pulpitis were significantly enriched in seven signaling pathways (i.e., NOD-like receptor (NLR), Toll-like receptor (TLR), NF-kappa B, tumor necrosis factor (TNF), cell adhesion molecules (CAMs), chemokine, and cytokine-cytokine receptor interaction pathways). The ceRNA regulatory relationships were established consisting of three genes (i.e., LCP1, EZH2, and NR4A1), five miRNAs (i.e., miR-340-5p, miR-4731-5p, miR-27a-3p, miR-34a-5p, and miR-766-5p), and three lncRNAs (i.e., XIST, MIR155HG, and LINC00630). Six transcription factors (i.e., GATA2, ETS1, FOXP3, STAT1, FOS, and JUN) were identified to play pivotal roles in pulpitis. CONCLUSION This paper demonstrates the genetic and epigenetic mechanisms of irreversible pulpitis by revealing the ceRNA network. The biomarkers identified could provide research direction for the application of genetically modified stem cells in endodontic regeneration.
Collapse
Affiliation(s)
- Xiaoxi Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | | | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Junming Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Haitong Pan
- Department of Stomatology, Daqing Oilfield General Hospital, Zhongkang Street No. 9, Saertu District, 163000 Daqing City, Heilongjiang Province, China
| | - Qian Lin
- Department of Prosthetics, School of Stomatology, Second Affiliated Dental Hospital of Jiamusi University, Hongqi Street No. 522, Jiamusi City, Heilongjiang Province, China
| | - Bo Li
- Department of Stomatology, South District Hospital, Daqing Oilfield General Hospital Group, Tuqiang Fourth Street No. 14, Hong Gang District, Daqing City, Heilongjiang Province, China
| | - Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Simin Li
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Xianda Hu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| |
Collapse
|
12
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
13
|
Deng J, Huang Y, Wang Q, Li J, Ma Y, Qi Y, Liu Z, Li Y, Ruan Q. Human Cytomegalovirus Influences Host circRNA Transcriptions during Productive Infection. Virol Sin 2020; 36:241-253. [PMID: 32757146 DOI: 10.1007/s12250-020-00275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a double-strand DNA virus widely infected in human. Circular RNAs (circRNAs) are non-coding RNAs with most functions of which keep unknown, and the effects of HCMV productive infection on host circRNA transcriptions remain unclear. In this study, we profiled 283 host circRNAs that significantly altered by HCMV productive infection in human embryonic lung fibroblasts (HELF) by RNA deep sequencing and bioinformatics analysis. Among these, circSP100, circMAP3K1, circPLEKHM1, and circTRIO were validated for their transcriptions and sequences. Furthermore, characteristics of circSP100 were investigated by RT-qPCR and northern blot. It was implied that circSP100 was produced from the sense strand of the SP100 gene containing six exons. Kinetics of circSP100 and SP100 mRNA were significantly different after infection: circSP100 levels increased gradually along with infection, whereas SP100 mRNA levels increased in the beginning and dropped at 24 h post-infection (hpi). Meanwhile, a total number of 257 proteins, including 10 HCMV encoding proteins, were identified potentially binding to cytoplasmic circSP100 by RNA antisense purification (RAP) and mass spectrometry. Enrichment analysis showed these proteins were mainly involved in the spliceosome, protein processing, ribosome, and phagosome pathways, suggesting multiple functions of circSP100 during HCMV infection.
Collapse
Affiliation(s)
- Jingui Deng
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China.,Department of Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Yujing Huang
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Qing Wang
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Jianming Li
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Yanping Ma
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Qi
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Zhongyang Liu
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Yibo Li
- Department of Gynecology and Obstetrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China.,Department of Obstetrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Qiang Ruan
- Virology Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
14
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
15
|
Norman TA, Gower AC, Chen F, Fine A. Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. PLoS One 2019; 14:e0216795. [PMID: 31083674 PMCID: PMC6513083 DOI: 10.1371/journal.pone.0216795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The genetic programs responsible for pulmonary lymphatic maturation prior to birth are not known. To address this gap in knowledge, we developed a novel cell sorting strategy to collect fetal pulmonary lymphatic endothelial cells (PLECs) for global transcriptional profiling. We identified PLECs based on their unique cell surface immunophenotype (CD31+/Vegfr3+/Lyve1+/Pdpn+) and isolated them from murine lungs during late gestation (E16.5, E17.5, E18.5). Gene expression profiling was performed using whole-genome microarrays, and 1,281 genes were significantly differentially expressed with respect to time (FDR q < 0.05) and grouped into six clusters. Two clusters containing a total of 493 genes strongly upregulated at E18.5 were significantly enriched in genes with functional annotations corresponding to innate immune response, positive regulation of angiogenesis, complement & coagulation cascade, ECM/cell-adhesion, and lipid metabolism. Gene Set Enrichment Analysis identified several pathways coordinately upregulated during late gestation, the strongest of which was the type-I IFN-α/β signaling pathway. Upregulation of canonical interferon target genes was confirmed by qRT-PCR and in situ hybridization in E18.5 PLECs. We also identified transcriptional events consistent with a prenatal PLEC maturation program. This PLEC-specific program included individual genes (Ch25h, Itpkc, Pcdhac2 and S1pr3) as well as a set of chemokines and genes containing an NF-κB binding site in their promoter. Overall, this work reveals transcriptional insights into the genes, signaling pathways and biological processes associated with pulmonary lymphatic maturation in the fetal lung.
Collapse
Affiliation(s)
- Timothy A Norman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Felicia Chen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Boston Veteran's Hospital, West Roxbury, Massachusetts, United States of America
| |
Collapse
|
16
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
17
|
De Smit E, Lukowski SW, Anderson L, Senabouth A, Dauyey K, Song S, Wyse B, Wheeler L, Chen CY, Cao K, Wong Ten Yuen A, Shuey N, Clarke L, Lopez Sanchez I, Hung SSC, Pébay A, Mackey DA, Brown MA, Hewitt AW, Powell JE. Longitudinal expression profiling of CD4+ and CD8+ cells in patients with active to quiescent giant cell arteritis. BMC Med Genomics 2018; 11:61. [PMID: 30037347 PMCID: PMC6057030 DOI: 10.1186/s12920-018-0376-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Background Giant cell arteritis (GCA) is the most common form of vasculitis affecting elderly people. It is one of the few true ophthalmic emergencies but symptoms and signs are variable thereby making it a challenging disease to diagnose. A temporal artery biopsy is the gold standard to confirm GCA, but there are currently no specific biochemical markers to aid diagnosis. We aimed to identify a less invasive method to confirm the diagnosis of GCA, as well as to ascertain clinically relevant predictive biomarkers by studying the transcriptome of purified peripheral CD4+ and CD8+ T lymphocytes in patients with GCA. Methods We recruited 16 patients with histological evidence of GCA at the Royal Victorian Eye and Ear Hospital, Melbourne, Australia, and aimed to collect blood samples at six time points: acute phase, 2–3 weeks, 6–8 weeks, 3 months, 6 months and 12 months after clinical diagnosis. CD4+ and CD8+ T-cells were positively selected at each time point through magnetic-assisted cell sorting. RNA was extracted from all 195 collected samples for subsequent RNA sequencing. The expression profiles of patients were compared to those of 16 age-matched controls. Results Over the 12-month study period, polynomial modelling analyses identified 179 and 4 statistically significant transcripts with altered expression profiles (FDR < 0.05) between cases and controls in CD4+ and CD8+ populations, respectively. In CD8+ cells, two transcripts remained differentially expressed after 12 months; SGTB, associated with neuronal apoptosis, and FCGR3A, associatied with Takayasu arteritis. We detected genes that correlate with both symptoms and biochemical markers used for predicting long-term prognosis. 15 genes were shared across 3 phenotypes in CD4 and 16 across CD8 cells. In CD8, IL32 was common to 5 phenotypes including Polymyalgia Rheumatica, bilateral blindness and death within 12 months. Conclusions This is the first longitudinal gene expression study undertaken to identify robust transcriptomic biomarkers of GCA. Our results show cell type-specific transcript expression profiles, novel gene-phenotype associations, and uncover important biological pathways for this disease. In the acute phase, the gene-phenotype relationships we have identified could provide insight to potential disease severity and as such guide in initiating appropriate patient management. Electronic supplementary material The online version of this article (10.1186/s12920-018-0376-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth De Smit
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia.
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Lisa Anderson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, Queensland, Australia
| | - Anne Senabouth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Kaisar Dauyey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Sharon Song
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, Queensland, Australia
| | - Bruce Wyse
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, Queensland, Australia
| | - Lawrie Wheeler
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, Queensland, Australia
| | - Christine Y Chen
- Ophthalmology Department at Monash Health, Department of Surgery, School of Clinical Sciences at Monash Health, Melbourne, 3168, Victoria, Australia
| | - Khoa Cao
- Ophthalmology Department at Monash Health, Department of Surgery, School of Clinical Sciences at Monash Health, Melbourne, 3168, Victoria, Australia
| | - Amy Wong Ten Yuen
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia
| | - Neil Shuey
- Department of Neuro-Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, 3002, Victoria, Australia
| | - Linda Clarke
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia
| | - Isabel Lopez Sanchez
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia
| | - Sandy S C Hung
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Lions Eye Institute, Perth, 6009, Western Australia, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, 4102, Queensland, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, The University of Melbourne, Royal Victorian Eye & Ear Hospital, 32 Gisborne Street, East Melbourne, 3002, Australia.,School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, 7000, Tasmania, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
18
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
19
|
Barresi V, Signorelli SS, Musso N, Anzaldi M, Fiore V, Alberghina M, Condorelli DF. ICAM-1 and SRD5A1 gene polymorphisms in symptomatic peripheral artery disease. Vasc Med 2014; 19:175-181. [PMID: 24879712 DOI: 10.1177/1358863x14532705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genotype distribution of two gene polymorphisms, previously associated with peripheral artery disease (PAD), has been evaluated in a population of diabetic (DPAD) and non-diabetic (NDPAD) patients affected by symptomatic PAD (stages II-IV). A decreased frequency of the AA genotype of rs5498 (ICAM-1) was observed in the PAD subjects compared to controls but this result did not reach statistical significance (p=0.06 by chi-squared test). On the contrary, a significant increase in the frequency of the GG homozygous genotype of rs248793 (SRD5A1) was observed in the PAD patient group in comparison to controls (p=0.01). These data confirm that the GG genotype of rs248793 in the SRD5A1 gene is significantly associated with symptomatic PAD and show a trend towards a stronger association with the non-diabetic status.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Bio-Medical Sciences, Section of Biochemistry, University of Catania, Catania, Italy
| | | | - Nicolò Musso
- Department of Bio-Medical Sciences, Section of Biochemistry, University of Catania, Catania, Italy
| | | | - Valerio Fiore
- Department of Medicine and Pediatrics, University of Catania, Catania, Italy
| | - Mario Alberghina
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | | |
Collapse
|
20
|
Selective Inhibition of Acetyl-Lysine Effector Domains of the Bromodomain Family in Oncology. NUCLEAR SIGNALING PATHWAYS AND TARGETING TRANSCRIPTION IN CANCER 2014. [DOI: 10.1007/978-1-4614-8039-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Khaiboullina SF, Morzunov SP, Boichuk SV, Palotás A, St Jeor S, Lombardi VC, Rizvanov AA. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors. Virology 2013; 443:338-48. [PMID: 23830076 DOI: 10.1016/j.virol.2013.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.
Collapse
|
22
|
Newhart A, Negorev DG, Rafalska-Metcalf IU, Yang T, Maul GG, Janicki SM. Sp100A promotes chromatin decondensation at a cytomegalovirus-promoter-regulated transcription site. Mol Biol Cell 2013; 24:1454-68. [PMID: 23485562 PMCID: PMC3639056 DOI: 10.1091/mbc.e12-09-0669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs)/nuclear domain 10s (ND10s) are nuclear structures that contain many transcriptional and chromatin regulatory factors. One of these, Sp100, is expressed from a single-copy gene and spliced into four isoforms (A, B, C, and HMG), which differentially regulate transcription. Here we evaluate Sp100 function in single cells using an inducible cytomegalovirus-promoter-regulated transgene, visualized as a chromatinized transcription site. Sp100A is the isoform most strongly recruited to the transgene array, and it significantly increases chromatin decondensation. However, Sp100A cannot overcome Daxx- and α-thalassemia mental retardation, X-linked (ATRX)-mediated transcriptional repression, which indicates that PML-NB/ND10 factors function within a regulatory hierarchy. Sp100A increases and Sp100B, which contains a SAND domain, decreases acetyl-lysine regulatory factor levels at activated sites, suggesting that Sp100 isoforms differentially regulate transcription by modulating lysine acetylation. In contrast to Daxx, ATRX, and PML, Sp100 is recruited to activated arrays in cells expressing the herpes simplex virus type 1 E3 ubiquitin ligase, ICP0, which degrades all Sp100 isoforms except unsumoylated Sp100A. The recruitment Sp100A(K297R), which cannot be sumoylated, further suggests that sumoylation plays an important role in regulating Sp100 isoform levels at transcription sites. This study provides insight into the ways in which viruses may modulate Sp100 to promote their replication cycles.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, 19104
| | - Dmitri G. Negorev
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, PA, 19104
| | | | - Tian Yang
- Roy and Diana Vagelos Scholars Program in Molecular Life Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerd G. Maul
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, PA, 19104
| | - Susan M. Janicki
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, 19104
| |
Collapse
|
23
|
Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res 2013; 22:1711-22. [PMID: 22955983 PMCID: PMC3431488 DOI: 10.1101/gr.135129.111] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Complex patterns of cell-type-specific gene expression are thought to be achieved by combinatorial binding of transcription factors (TFs) to sequence elements in regulatory regions. Predicting cell-type-specific expression in mammals has been hindered by the oftentimes unknown location of distal regulatory regions. To alleviate this bottleneck, we used DNase-seq data from 19 diverse human cell types to identify proximal and distal regulatory elements at genome-wide scale. Matched expression data allowed us to separate genes into classes of cell-type-specific up-regulated, down-regulated, and constitutively expressed genes. CG dinucleotide content and DNA accessibility in the promoters of these three classes of genes displayed substantial differences, highlighting the importance of including these aspects in modeling gene expression. We associated DNase I hypersensitive sites (DHSs) with genes, and trained classifiers for different expression patterns. TF sequence motif matches in DHSs provided a strong performance improvement in predicting gene expression over the typical baseline approach of using proximal promoter sequences. In particular, we achieved competitive performance when discriminating up-regulated genes from different cell types or genes up- and down-regulated under the same conditions. We identified previously known and new candidate cell-type-specific regulators. The models generated testable predictions of activating or repressive functions of regulators. DNase I footprints for these regulators were indicative of their direct binding to DNA. In summary, we successfully used information of open chromatin obtained by a single assay, DNase-seq, to address the problem of predicting cell-type-specific gene expression in mammalian organisms directly from regulatory sequence.
Collapse
Affiliation(s)
- Anirudh Natarajan
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
24
|
Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett 2012; 586:2692-704. [DOI: 10.1016/j.febslet.2012.04.045] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 01/05/2023]
|
25
|
Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith C, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149:214-31. [PMID: 22464331 PMCID: PMC3326523 DOI: 10.1016/j.cell.2012.02.013] [Citation(s) in RCA: 1225] [Impact Index Per Article: 102.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/16/2011] [Accepted: 01/13/2012] [Indexed: 12/18/2022]
Abstract
Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Maria Mangos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tracy Keates
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Jean-Philippe Lambert
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ildiko Felletar
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Susanne Müller
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Tony Pawson
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
- Department of Biochemistry and Molecular Biology, George Washington University, School of Medicine and Health Sciences, 2300 Eye Street, NW, Suite 530, Washington, DC, 20037, USA
| |
Collapse
|
26
|
Wang R, Li KM, Zhou CH, Xue JL, Ji CN, Chen JZ. Cdc20 mediates D-box-dependent degradation of Sp100. Biochem Biophys Res Commun 2011; 415:702-6. [PMID: 22086178 DOI: 10.1016/j.bbrc.2011.10.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022]
Abstract
Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand our knowledge of both Sp100 and Cdc20 as well as their role in ubiquitination.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
27
|
Kim YE, Lee JH, Kim ET, Shin HJ, Gu SY, Seol HS, Ling PD, Lee CH, Ahn JH. Human cytomegalovirus infection causes degradation of Sp100 proteins that suppress viral gene expression. J Virol 2011; 85:11928-37. [PMID: 21880768 PMCID: PMC3209270 DOI: 10.1128/jvi.00758-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/18/2011] [Indexed: 01/02/2023] Open
Abstract
The interferon-inducible Sp100 proteins are thought to play roles in the chromatin pathway and in transcriptional regulation. Sp100A, the smallest isoform, is one of the major components of PML nuclear bodies (NBs) that exhibit intrinsic antiviral activity against several viruses. Since PML NBs are disrupted by the immediate-early 1 (IE1) protein during human cytomegalovirus (HCMV) infection, the modulation of Sp100 protein expression or activity during infection has been suggested. Here, we show that Sp100 proteins are lost largely in the late stages of HCMV infection. This event required viral gene expression and involved posttranscriptional control. The mutant virus with deletion of the sequence for IE1 (CR208) did not have Sp100 loss. In CR208 infection, PML depletion by RNA interference abrogated the accumulation of SUMO-modified Sp100A and of certain high-molecular-weight Sp100 isoforms but did not significantly affect unmodified Sp100A, suggesting that the IE1-induced disruption of PML NBs is not sufficient for the complete loss of Sp100 proteins. Sp100A loss was found to require proteasome activity. Depletion of all Sp100 proteins by RNA silencing enhanced HCMV replication and major IE (MIE) gene expression. Sp100 knockdown enhanced the acetylation level of histones associated with the MIE promoter, demonstrating that the repressive effect of Sp100 proteins may involve, at least in part, the epigenetic control of the MIE promoter. Sp100A was found to interact directly with IE1 through the N-terminal dimerization domain. These findings indicate that the IE1-dependent loss of Sp100 proteins during HCMV infection may represent an important requirement for efficient viral growth.
Collapse
Affiliation(s)
- Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Jin-Hyoung Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Hye Jin Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Su Yeon Gu
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Hyang Sook Seol
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Chan Hee Lee
- Division of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| |
Collapse
|
28
|
Heikkinen S, Väisänen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 2011; 39:9181-93. [PMID: 21846776 PMCID: PMC3241659 DOI: 10.1093/nar/gkr654] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were strongly associated with the ligand-responsiveness of VDR occupation. Only 20% of the VDR peaks diminishing most after ligand treatment have a DR3-type RE, in contrast to 90% for the most growing peaks. Ligand treatment revealed 638 1α,25(OH)2D3 target genes enriched in gene ontology categories associated with immunity and signaling. From the 408 upregulated genes, 72% showed VDR binding within 400 kb of their transcription start sites (TSSs), while this applied only for 43% of the 230 downregulated genes. The VDR loci showed considerable variation in gene regulatory scenarios ranging from a single VDR location near the target gene TSS to very complex clusters of multiple VDR locations and target genes. In conclusion, ligand binding shifts the locations of VDR occupation to DR3-type REs that surround its target genes and occur in a large variety of regulatory constellations.
Collapse
Affiliation(s)
- Sami Heikkinen
- Department of Biosciences, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
29
|
Huang Z, Zuo L, Zhang Z, Liu J, Chen J, Dong L, Zhang J. 3,3'-Diindolylmethane decreases VCAM-1 expression and alleviates experimental colitis via a BRCA1-dependent antioxidant pathway. Free Radic Biol Med 2011; 50:228-36. [PMID: 21034812 DOI: 10.1016/j.freeradbiomed.2010.10.703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 10/08/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) exhibit a key role in the pathogenesis of inflammatory bowel disease (IBD). 3,3'-Diindolylmethane (DIM) can protect against oxidative stress in a breast cancer susceptibility gene 1 (BRCA1)-dependent manner. The aim of this study was to examine the therapeutic effects of DIM in experimental colitis and investigate the possible mechanisms underlying its effects on intestinal inflammation. The therapeutic effects of DIM were studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Pathological markers of colitis severity, antioxidant activity, and ROS generation in colonic tissue were measured. The impact of DIM on ROS-induced endothelial vascular cell adhesion molecule 1 (VCAM-1) expression and leukocyte-endothelial cell interaction was further investigated in cultures of endothelial cells and in the TNBS-induced colitis model. Administration of DIM was demonstrated to attenuate experimental colitis, as judged by pathological indices. DIM could effectively stimulate the expression of BRCA1 in vitro and in vivo and reduce ROS generation, leading to the inhibition of VCAM-1 expression and leukocyte-endothelial cell adhesion, and finally resulted in an alleviation of experimental colitis. DIM has shown anti-IBD activity in animal models by inhibiting ROS-induced VCAM-1 expression and leukocyte recruitment via a BRCA1-dependent antioxidant pathway and thus may offer potential treatments for IBD patients.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ferlini A, Bovolenta M, Neri M, Gualandi F, Balboni A, Yuryev A, Salvi F, Gemmati D, Liboni A, Zamboni P. Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis. BMC MEDICAL GENETICS 2010; 11:64. [PMID: 20426824 PMCID: PMC2880319 DOI: 10.1186/1471-2350-11-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Background Multiple sclerosis (MS) is a complex disorder thought to result from an interaction between environmental and genetic predisposing factors which have not yet been characterised, although it is known to be associated with the HLA region on 6p21.32. Recently, a picture of chronic cerebrospinal venous insufficiency (CCSVI), consequent to stenosing venous malformation of the main extra-cranial outflow routes (VM), has been described in patients affected with MS, introducing an additional phenotype with possible pathogenic significance. Methods In order to explore the presence of copy number variations (CNVs) within the HLA locus, a custom CGH array was designed to cover 7 Mb of the HLA locus region (6,899,999 bp; chr6:29,900,001-36,800,000). Genomic DNA of the 15 patients with CCSVI/VM and MS was hybridised in duplicate. Results In total, 322 CNVs, of which 225 were extragenic and 97 intragenic, were identified in 15 patients. 234 known polymorphic CNVs were detected, the majority of these being situated in non-coding or extragenic regions. The overall number of CNVs (both extra- and intragenic) showed a robust and significant correlation with the number of stenosing VMs (Spearman: r = 0.6590, p = 0.0104; linear regression analysis r = 0.6577, p = 0.0106). The region we analysed contains 211 known genes. By using pathway analysis focused on angiogenesis and venous development, MS, and immunity, we tentatively highlight several genes as possible susceptibility factor candidates involved in this peculiar phenotype. Conclusions The CNVs contained in the HLA locus region in patients with the novel phenotype of CCSVI/VM and MS were mapped in detail, demonstrating a significant correlation between the number of known CNVs found in the HLA region and the number of CCSVI-VMs identified in patients. Pathway analysis revealed common routes of interaction of several of the genes involved in angiogenesis and immunity contained within this region. Despite the small sample size in this pilot study, it does suggest that the number of multiple polymorphic CNVs in the HLA locus deserves further study, owing to their possible involvement in susceptibility to this novel MS/VM plus phenotype, and perhaps even other types of the disease.
Collapse
Affiliation(s)
- Alessandra Ferlini
- Section of Medical Genetics, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Taylor KL, Leaman DW, Grane R, Mechti N, Borden EC, Lindner DJ. Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J Interferon Cytokine Res 2009; 28:733-40. [PMID: 18937547 DOI: 10.1089/jir.2008.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interferons (IFNs) have proven antitumor activity against a variety of human malignancies, which may result, at least in part, from inhibition of angiogenesis. The objective of this study was to identify IFN-stimulated genes (ISGs) that played a role in mediation of angiogenic inhibition. IFN-beta was a more potent antiangiogenic agent compared to IFN-alpha2b (80% versus 20%, respectively) and suggests that IFNs inhibited angiogenesis by preventing endothelial cell differentiation, and not by direct antiproliferative effects. To identify ISGs that were key inhibitors of angiogenesis, we utilized an in vitro fibrin gel angiogenic assay which closely recapitulated the in vivo processes of angiogenesis. DNA microarray analysis of IFN-beta-treated endothelial cells in the fibrin gel assay identified 11 ISGs that were induced >10-fold during angiogenesis inhibition. Recombinant IP-10 inhibited angiogenesis in a dose-dependent fashion, but was a less effective inhibitor compared to IFN-beta, suggesting that additional ISGs are involved in inhibiting angiogenesis. ISG20 was upregulated by microarray analysis, but did not inhibit angiogenesis when overexpressed in human umbilical vein endothelial cells (HUVECs). However, a dominant negative mutant of ISG20 inhibited angiogenesis by 43%. Results suggest that IFN-induced angiogenic inhibition was likely mediated by multiple ISGs; our novel finding is that decreased exonuclease activity in HUVECs associated with expression of the ISG20 ExoII mutant inhibited angiogenesis.
Collapse
Affiliation(s)
- Kevin L Taylor
- Cleveland Clinic, Taussig Cancer Institute, Center for Hematology and Oncology Molecular Therapeutics, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
32
|
Negorev DG, Vladimirova OV, Maul GG. Differential functions of interferon-upregulated Sp100 isoforms: herpes simplex virus type 1 promoter-based immediate-early gene suppression and PML protection from ICP0-mediated degradation. J Virol 2009; 83:5168-80. [PMID: 19279115 PMCID: PMC2682089 DOI: 10.1128/jvi.02083-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/27/2009] [Indexed: 12/26/2022] Open
Abstract
Cells have intrinsic defenses against virus infection, acting before the innate or the adaptive immune response. Preexisting antiviral proteins such as PML, Daxx, and Sp100 are stored in specific nuclear domains (ND10). In herpes simplex virus type 1 (HSV-1), the immediate-early protein ICP0 serves as a counterdefense through degradation of the detrimental protein PML. We asked whether interferon (IFN)-upregulated Sp100 is similarly antagonized by ICP0 in normal human fibroblasts by using a selective-knockdown approach. We find that of the four Sp100 isoforms, the three containing a SAND domain block the transcription of HSV-1 proteins ICP0 and ICP4 at the promoter level and that IFN changes the differential splicing of the Sp100 transcript in favor of the inhibitor Sp100C. At the protein level, ICP0 activity does not lead to the hydrolysis of any of the Sp100 isoforms. The SAND domain-containing isoforms are not general inhibitors of viral promoters, as the activity of the major immediate-early cytomegalovirus promoter is not diminished, whereas the long terminal repeat of a retrovirus, like the ICP0 promoter, is strongly inhibited. Since we could not find a specific promoter region in the ICP0 gene that responds to the SAND domain-containing isoforms, we questioned whether Sp100 could act through other antiviral proteins such as PML. We find that all four Sp100 isoforms stabilize ND10 and protect PML from ICP0-based hydrolysis. Loss of either all PML isoforms or all Sp100 isoforms reduces the opposite constituent ND10 protein, suggesting that various interdependent mechanisms of ND10-based proteins inhibit virus infection at the immediate-early level.
Collapse
Affiliation(s)
- Dmitri G Negorev
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Turner DP, Findlay VJ, Kirven AD, Moussa O, Watson DK. Global gene expression analysis identifies PDEF transcriptional networks regulating cell migration during cancer progression. Mol Biol Cell 2008; 19:3745-57. [PMID: 18579687 DOI: 10.1091/mbc.e08-02-0154] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate derived ETS factor (PDEF) is an ETS (epithelial-specific E26 transforming sequence) family member that has been identified as a potential tumor suppressor. In multiple invasive breast cancer cells, PDEF expression inhibits cell migration by preventing the acquisition of directional morphological polarity conferred by changes in cytoskeleton organization. In this study, microarray analysis was used to identify >200 human genes that displayed a common differential expression pattern in three invasive breast cancer cell lines after expression of exogenous PDEF protein. Gene ontology associations and data mining analysis identified focal adhesion, adherens junctions, cell adhesion, and actin cytoskeleton regulation as cell migration-associated interaction pathways significantly impacted by PDEF expression. Validation experiments confirmed the differential expression of four cytoskeleton-associated genes with known functional associations with these pathways: uPA, uPAR, LASP1, and VASP. Significantly, chromatin immunoprecipitation studies identified PDEF as a direct negative regulator of the metastasis-associated gene uPA and phenotypic rescue experiments demonstrate that exogenous urokinase plasminogen activator (uPA) expression can restore the migratory ability of invasive breast cancer cells expressing PDEF. Furthermore, immunofluorescence studies identify the subcellular relocalization of urokinase plasminogen activator receptor (uPAR), LIM and SH3 protein (LASP1), and vasodilator-stimulated protein (VASP) as a possible mechanism accounting for the loss of morphological polarity observed upon PDEF expression.
Collapse
Affiliation(s)
- David P Turner
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
34
|
Sanchez-Pulido L, Valencia A, Rojas AM. Are promyelocytic leukaemia protein nuclear bodies a scaffold for caspase-2 programmed cell death? Trends Biochem Sci 2007; 32:400-6. [PMID: 17693089 DOI: 10.1016/j.tibs.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/02/2007] [Accepted: 08/02/2007] [Indexed: 12/16/2022]
Abstract
Promyelocytic leukaemia protein nuclear bodies (PML-NBs) are nuclear structures whose function is still poorly understood. They are implicated in various biological functions, such as viral infection, cellular transformation, innate immunity and growth control, and they might be dynamic hubs sensing stress and DNA damage. Data from PML(-/-) mice suggest that PML-NBs are involved in apoptosis via caspase-independent mechanisms, probably involving p53-dependent and independent pathways. However, the recently demonstrated co-localization of caspase-2 within the PML-NB nuclear structures presents a new paradigm for nuclear cell death. Here, we show that these nuclear structures have a protein known as SP100 that could contain a caspase recruitment domain (CARD). If verified experimentally, this discovery will suggest a mechanism by which caspase-2 could be recruited into the complex and ultimately lead to apoptosis.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- National Center for Biotechnology, Consejo Superior de Investigaciones Cientificas. C/Darwin n3, 28049, Madrid, Spain
| | | | | |
Collapse
|
35
|
Duflo SM, Thibeault SL, Li W, Smith ME, Schade G, Hess MM. Differential gene expression profiling of vocal fold polyps and Reinke's edema by complementary DNA microarray. Ann Otol Rhinol Laryngol 2006; 115:703-14. [PMID: 17044544 DOI: 10.1177/000348940611500910] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Our purpose was to determine whether complementary DNA (cDNA) microarray analysis (MA) can establish distinct gene expression profiles for 2 phenotypically similar vocal fold lesions: Reinke's edema (RE) and polyps. Established transcript profiles can provide insight into the molecular and cellular processes involved in these diseases. METHODS Eleven RE specimens and 17 polyps were analyzed with MA for 8,745 genes. Further MA profiling was attempted within each lesion group to identify molecular markers for reflux exposure and smoking. Prediction analysis was used to predict lesion classification for 2 unclassified samples. A real-time polymerase chain reaction was performed to corroborate MA transcript levels for selected significant genes. RESULTS Sixty-five genes were found to differentiate RE and polyps (p = .0088). For RE, 19 genes were differentiated for reflux exposure (p = .016). No genes were found to differentiate smokers from nonsmokers. For polyps, no genes were found to differentiate for reflux (p = .16) and smoking (p = .565). Categorization of unclassified lesions was possible with a minimum of 13 genes. CONCLUSIONS We demonstrate the feasibility of benign lesion classification based on MA. Microarray analysis is useful not only for improving diagnosis and classification of such lesions, but also for potentially generating prognostic indicators and targets for therapy.
Collapse
Affiliation(s)
- Suzy M Duflo
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine, The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
36
|
Park JW, Cai J, McIntosh I, Jabs EW, Fallin MD, Ingersoll R, Hetmanski JB, Vekemans M, Attie-Bitach T, Lovett M, Scott AF, Beaty TH. High throughput SNP and expression analyses of candidate genes for non-syndromic oral clefts. J Med Genet 2006; 43:598-608. [PMID: 16415175 PMCID: PMC2564555 DOI: 10.1136/jmg.2005.040162] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/02/2006] [Indexed: 11/03/2022]
Abstract
BACKGROUND Recent work suggests that multiple genes and several environmental risk factors influence risk for non-syndromic oral clefts, one of the most common birth defects in humans. Advances in high-throughput genotyping technology now make it possible to test multiple markers in many candidate genes simultaneously. METHODS We present findings from family based association tests of single nucleotide polymorphism (SNP) markers in 64 candidate genes genotyped using the BeadArray approach in 58 case-parent trios from Maryland (USA) to illustrate how multiple markers in multiple genes can be analysed. To assess whether these genes were expressed in human craniofacial structures relevant to palate and lip development, we also analysed data from the Craniofacial and Oral Gene Expression Network (COGENE) consortium, and searched public databases for expression profiles of these genes. RESULTS Thirteen candidate genes showed significant evidence of linkage in the presence of disequilibrium, and ten of these were found to be expressed in relevant embryonic tissues: SP100, MLPH, HDAC4, LEF1, C6orf105, CD44, ALX4, ZNF202, CRHR1, and MAPT. Three other genes showing statistical evidence (ADH1C, SCN3B, and IMP5) were not expressed in the embryonic tissues examined here. CONCLUSIONS This approach demonstrates how statistical evidence on large numbers of SNP markers typed in case-parent trios can be combined with expression data to identify candidate genes for complex disorders. Many of the genes reported here have not been previously studied as candidates for oral clefts and warrant further investigation.
Collapse
Affiliation(s)
- J W Park
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Angiogenesis, the process by which new blood vessels develop from a pre-existing vascular network, is essential for normal development and in certain physiological states. Inadequate or excessive angiogenesis has been incriminated in a number of pathologic states. For example, vaso-occlusive disease arising from atherosclerosis can lead to ischemia, a situation in which enhanced angiogenesis would be beneficial. Conversely, overzealous angiogenesis can contribute to tumor development and in this case inhibition of angiogenesis is desirable. Thus, strategies to induce or inhibit angiogenesis are of considerable therapeutic interest.
Collapse
Affiliation(s)
- Anne Hamik
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
N/A, 夏 薇, 李 永. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:702-708. [DOI: 10.11569/wcjd.v14.i7.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|