1
|
Gupta D, Kumar M, Saifi S, Rawat S, Ethayathulla AS, Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J Biol Macromol 2024; 265:130913. [PMID: 38508544 DOI: 10.1016/j.ijbiomac.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sana Saifi
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Shivani Rawat
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India.
| |
Collapse
|
2
|
Priya, Jaswal S, Gupta GD, Verma SK. A Comprehension on Synthetic Strategies of Aurora kinase A and B Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
de Oliveira FM, Jamur VR, Merfort LW, Pozzo AR, Mai S. Three-dimensional nuclear telomere architecture and differential expression of aurora kinase genes in chronic myeloid leukemia to measure cell transformation. BMC Cancer 2022; 22:1024. [PMID: 36175852 PMCID: PMC9520804 DOI: 10.1186/s12885-022-10094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Telomere dysfunction results in aneuploidy, and ongoing chromosomal abnormalities. The three-dimensional (3D) nuclear organization of telomeres allows for a distinction between normal and tumor cells. On the other hand, aurora kinase genes (AURKA and AURKB) play an important role regulating the cell cycle. A correlation between overexpression of aurora kinase genes and clinical aggressiveness has been demonstrated in different types of neoplasias. To better understand cellular and molecular mechanisms of CML evolution, it was examined telomere dysfunction (alterations in the 3D nuclear telomere architecture), and the expression levels of AURKA and AURKB genes in two clinical distinct subgroups of CML samples, from the same patient. Methods Eighteen CML patients, in total, 36 bone marrow samples (18 patients, chronic vs. accelerated/blast phase) were eligible for 3D telomeric investigations. Quantitative 3D imaging, cytologic diagnosis and cytogenetic determination of additional chromosomal abnormalities were assessed according to standard protocols. Results Using TeloView software, two CML subgroups were defined based on their 3D telomeric profiles, reflecting the different stages of the disease (chronic vs. accelerated/blast phase). Statistical analyses showed significant differences between the CML subgroups (p < 0.001). We also found that AURKA and AURKB mRNA were expressed at significantly higher levels in both CML subgroups, when compared with healthy donors. Our findings suggest that the evolution of CML progresses from a low to a high level of telomere dysfunction, that is, from an early stage to a more aggressive stage, followed by disease transformation, as demonstrated by telomere, additional chromosomal abnormalities, and gene expression profile dynamics. Conclusions Thus, we demonstrated that 3D telomere organization, in accordance with the genomic instability observed in CML samples were able to distinguish subgroup CML patients. Classifying CML patients based on these characteristics might represent an important strategy to define better therapeutic strategies.
Collapse
Affiliation(s)
- Fábio Morato de Oliveira
- Laboratory of Medical Genetics, Câmpus Jatobá - Cidade Universitária, Federal University of Jataí, BR 364, km 195, n° 3800, Jataí, CEP 75801-615, Brazil.
| | - Valderez Ravaglio Jamur
- Complexo Hospital das Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Lismeri Wuicik Merfort
- Complexo Hospital das Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Aline Rangel Pozzo
- Research Institute in Oncology and Hematology CancerCare Manitoba, The Genomic Centre for Cancer Research and Diagnosis, The University of Manitoba, Winnipeg, MB, R3E 0V9, Canada
| | - Sabine Mai
- Research Institute in Oncology and Hematology CancerCare Manitoba, The Genomic Centre for Cancer Research and Diagnosis, The University of Manitoba, Winnipeg, MB, R3E 0V9, Canada.
| |
Collapse
|
4
|
Furqan M, Fayyaz A, Firdous F, Raza H, Bilal A, Saleem RSZ, Shahzad-Ul-Hussan S, Wang D, Youssef FS, Al Musayeib NM, Ashour ML, Hussain H, Faisal A. Identification and Characterization of Natural and Semisynthetic Quinones as Aurora Kinase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2022; 85:1503-1513. [PMID: 35687347 DOI: 10.1021/acs.jnatprod.1c01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 μM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Alishba Fayyaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Farhat Firdous
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Hadeeqa Raza
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
5
|
Qiao B, Li S, Wang D, Wu D. Editorial: Genetics and Molecular Mechanisms of Oral and Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:874353. [PMID: 35463329 PMCID: PMC9019613 DOI: 10.3389/fonc.2022.874353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaize Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Die Wang
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Di Wu
- Department of Periodontology, School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur J Med Chem 2021; 221:113495. [PMID: 34020340 DOI: 10.1016/j.ejmech.2021.113495] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases that play a crucial role in cell proliferation through the regulation of mitotic spindles. These kinases are the regulatory proteins localized in the various phases of the cell cycle and are involved in centrosome maturation, chromosome alignment, chromosomal segregation, and cytokinesis. They have emerged as one of the validated drug targets for anticancer drug discovery as their overexpression has been implicated in the pathogenesis of various carcinomas. Inhibitors of Aurora kinases induce growth inhibition and apoptosis in a variety of tumor cells. Hence, the design and development of Aurora kinase inhibitors have been widely explored in recent years by the scientific community as potential anticancer agents. Various Aurora kinase inhibitors have been under preclinical and clinical investigations as antitumor agents. This review summarizes the recent strategies of various researchers for the design and development of Aurora kinase inhibitors belonging to different structural classes. Their bioactivity, SARs, molecular modelling, and mechanistic studies have also been described. The comprehensive compilation of research work carried out in the field will provide inevitable scope for the design and development of novel drug candidates with better selectivity and efficacy. The review is constructed after the exhaustive research in this discipline and includes the papers from 2011 to 2020.
Collapse
|
7
|
Wang S, Qi J, Zhu M, Wang M, Nie J. AURKA rs2273535 T>A Polymorphism Associated With Cancer Risk: A Systematic Review With Meta-Analysis. Front Oncol 2020; 10:1040. [PMID: 32733797 PMCID: PMC7357424 DOI: 10.3389/fonc.2020.01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Aurora kinase A (AURKA) is a cell cycle regulatory serine/threonine kinase that promotes cell cycle progression. It plays an important role in regulating the transition from G2 to M phase during mitosis. The association between the AURKA rs2273535 T>A polymorphism and cancer risk has been investigated, but the results remain inconsistent. To get a more accurate conclusion, we conducted a comprehensive meta-analysis of 36 case-control studies, involving 22,884 cancer cases and 30,497 healthy controls. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association of interest. Pooled analysis indicated that the AURKA rs2273535 T>A polymorphism increased the overall risk of cancer (homozygous: OR = 1.17, 95% CI = 1.04-1.33; recessive: OR = 1.15, 95% CI = 1.05-1.25; allele: OR = 1.07, 95% CI = 1.02-1.13). Stratification analysis by cancer type further showed that this polymorphism was associated with an increased breast cancer risk. This meta-analysis indicated that the AURKA rs2273535 T>A polymorphism was associated with an overall increased cancer risk, especially breast cancer. Further validation experiments are needed to strengthen our conclusion.
Collapse
Affiliation(s)
- Shujie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Wang
- Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hefei, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
8
|
Thomas X. Alisertib: a new option for acute myeloid leukaemia. Lancet Haematol 2020; 7:e87-e88. [PMID: 31837958 DOI: 10.1016/s2352-3026(19)30215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Department of Hematology, Lyon-Sud Hospital, 69495 Pierre-Bénite, Lyon, France.
| |
Collapse
|
9
|
Furqan M, Huma Z, Ashfaq Z, Nasir A, Ullah R, Bilal A, Iqbal M, Khalid MH, Hussain I, Faisal A. Identification and evaluation of novel drug combinations of Aurora kinase inhibitor CCT137690 for enhanced efficacy in oral cancer cells. Cell Cycle 2019; 18:2281-2292. [PMID: 31318643 PMCID: PMC6738527 DOI: 10.1080/15384101.2019.1643658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Oral cancer is the most prevalent subtype of head and neck cancers and arises mainly from squamous cells of the oral cavity. Patients with advanced metastatic disease have poor overall survival resulting primarily from limited treatment options. Recent advances in the understanding of molecular basis of oral tumorigenesis provide an opportunity for identification and validation of new drug targets. The deregulated expression of the Aurora family of mitotic kinases, for example, has been associated with pathogenesis and poor prognosis in oral cancer. Here, we have evaluated the efficacy of the pan-Aurora inhibitor (CCT137690) alone and in combination with different chemotherapeutic and targeted drugs to identify its synergistic partners in oral cancer cell lines (ORL-48 and ORL-115). CCT137690 effectively inhibits Aurora kinases in both the cell lines and displays potent antiproliferative activity towards them. Prolonged treatment of these cells with CCT137690 results in abrogated mitotic spindle formation, misaligned chromosome attachment and polyploidy that ultimately leads to apoptotic cell death. We further identified that inhibitors of EGFR (gefitinib) and PI3-kinase (pictilisib) synergize with CCT137690 to inhibit the proliferation of the oral cancer cell lines. Moreover, we demonstrate that polyethylene glycol-based nanocapsules harboring combinations of CCT137690 with gefitinib or pictilisib inhibit the growth of oral cancer cell lines in 3D spheroid cultures and induce apoptosis that is comparable to free drug combinations. In conclusion, we have demonstrated the in vitro efficacy of CCT137690 in oral cancer cell lines, identified novel drug combinations with CCT137690 and synthesized nanocapsules containing these drug combinations for co-administration.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zille Huma
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Ashfaq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Apsra Nasir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aishah Bilal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Maheen Iqbal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Hashaam Khalid
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
11
|
Umstead M, Xiong J, Qi Q, Du Y, Fu H. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget 2018; 8:28359-28372. [PMID: 28177880 PMCID: PMC5438655 DOI: 10.18632/oncotarget.15049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/07/2017] [Indexed: 11/25/2022] Open
Abstract
In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras. Further more, the interaction of Aurora A and H-Ras exists in a protein complex with Raf-1. We show that binding of H-Ras to Raf-1 and subsequent MAPK signaling is enhanced by Aurora A, and requires active H-Ras. Thus, the functional linkage between Aurora A and the H-Ras/Raf-1 protein complex may provide a mechanism for Aurora A's oncogenic activity through direct activation of the Ras/MAPK pathway.
Collapse
Affiliation(s)
- MaKendra Umstead
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA.,Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinglin Xiong
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
12
|
Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the old, the new, and the future. Cancer Biol Med 2018; 15:354-374. [PMID: 30766748 PMCID: PMC6372908 DOI: 10.20892/j.issn.2095-3941.2018.0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors and has a median survival of 3 months if left untreated. Despite advances in rationally targeted pharmacological approaches, the clinical care of GBM remains palliative in intent. Since the majority of altered signaling cascades involved in cancer establishment and progression eventually affect cell cycle progression, an alternative approach for cancer therapy is to develop innovative compounds that block the activity of crucial molecules needed by tumor cells to complete cell division. In this context, we review promising ongoing and future strategies for GBM therapeutics aimed towards G2/M inhibition such as anti-microtubule agents and targeted therapy against G2/M regulators like cyclin-dependent kinases, Aurora inhibitors, PLK1, BUB, 1, and BUBR1, and survivin. Moreover, we also include investigational agents in the preclinical and early clinical settings. Although several drugs were shown to be gliotoxic, most of them have not yet entered therapeutic trials. The use of either single exposure or a combination with novel compounds may lead to treatment alternatives for GBM patients in the near future.
Collapse
Affiliation(s)
- Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas 37130-001, Brazil
| | - Julia Alejandra Pezuk
- Biotechnology and Innovation in Health Program and Pharmacy Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo 05145-200, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics.,Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
13
|
Wang C, Yan Q, Hu M, Qin D, Feng Z. Effect of AURKA Gene Expression Knockdown on Angiogenesis and Tumorigenesis of Human Ovarian Cancer Cell Lines. Target Oncol 2017; 11:771-781. [PMID: 27250762 DOI: 10.1007/s11523-016-0436-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is one of the most common malignant gynecological cancers. Higher expression of AURKA has been found in immortalized human ovarian epithelial cells in previous studies, implying the relationship between AURKA and ovarian cancer pathogenesis. AIM We investigated the effect of AURKA on angiogenesis and tumorigenesis of human ovarian cancer cells. METHODS Firstly, the expression of AURKA in HO8910 and SKOV3 ovarian cancer cell lines was knocked down using a vector expressing a short hairpin small interfering RNA (shRNA). Next, the effect of knockdown of AURKA on cell angiogenesis, proliferation, migration, and invasion was determined by microtubule formation assay, proliferation assay, transwell migration, and invasion assays. In addition, the effect of AURKA knockdown on angiogenesis and tumorigenesis was also determined in a chicken chorioallantoic membrane (CAM) model and in nude mice. RESULTS The results of the microtubule formation assay indicated that knockdown of AURKA significantly inhibited ovarian cancer cell-induced angiogenesis of endothelial cells compared to its control (P < 0.001). Knockdown of AURKA also significantly inhibited cell proliferation, migration, and invasion of HO8910 and SKOV3 cells in vitro. Furthermore, the Matrigel plug assay showed that knockdown of AURKA significantly repressed ovarian cancer cell-induced angiogenesis in nude mice (P < 0.05), and the CAMs model also showed that AURKA knockdown significantly attenuated the angiogenesis (P < 0.001) and tumorigenesis (P < 0.001) of HO8910 cells compared to the control. Finally, the tumorigenicity assay in vivo further indicated that AURKA shRNA reduced tumorigenesis in nude mice inoculated with ovarian cancer cells (P < 0.001). CONCLUSIONS These results suggest the potential role of AURKA in angiogenesis and tumorigenesis of ovarian cancer, which may provide a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Minmin Hu
- Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
14
|
Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017; 8:23937-23954. [PMID: 28147341 PMCID: PMC5410356 DOI: 10.18632/oncotarget.14893] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.
Collapse
Affiliation(s)
- Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Keyu Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Laili Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Rui Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Jing Yang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Golmohammadi R, Namazi MJ, Going JJ, Derakhshan MH. A single nucleotide polymorphism in codon F31I and V57I of the AURKA gene in invasive ductal breast carcinoma in Middle East. Medicine (Baltimore) 2017; 96:e7933. [PMID: 28906374 PMCID: PMC5604643 DOI: 10.1097/md.0000000000007933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although few studies have suggested a carcinogenic role for polymorphism of F31I and V57I codons of AURKA gene in invasive ductal carcinoma, contradictory results from different populations mandates regional investigations. We aimed to determine polymorphisms of F31I and V57I codons of AURKA gene and their association with cancer prognosis in patients compared with controls in an eastern population of Iran.A case-control study was conducted on specimens from 100 patients and 100 age- and gender-matched controls. DNA was extracted and the codons F31I and V57I were amplified. The different genotypes were analyzed by PCR-RFLP and electrophoresis.In codon F31I, the frequency of Phe/Ile was 70% and 82% in patients and healthy controls respectively, whereas (Ile/Ile) was 30% in patients and 18% in healthy (P = .047). Analyzing V57I genotypes showed a higher homozygote Val/Val genotype in patients compared with controls (76% vs 68%), whereas the frequency of heterozygous Val/Ile genotype was lower in patients (17%) than controls (30%), yielding a marginal association between breast cancer and Val/Val genotype (P = .048). No association was observed between SNPs of either F31I or V57I genotypes and histological grades. However, there was a significant association between tumor stages and F31I genotype (P for trend = .003).This is the first report of F31I and V57I polymorphisms in AURKA gene in breast cancer in Iran. Determination of allelic polymorphism of those codons will help to understand background genetic predisposition and could have prognostic value in management of breast cancer in the target population.
Collapse
Affiliation(s)
- Rahim Golmohammadi
- Department of Anatomy, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Javed Namazi
- Department of Microbiology and Immunology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James J. Going
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mohammad H. Derakhshan
- Academic Unit of Medical Genetics and Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Xu L, Liu H, Yan Z, Sun Z, Luo S, Lu Q. Inhibition of the Hedgehog signaling pathway suppresses cell proliferation by regulating the Gli2/miR-124/AURKA axis in human glioma cells. Int J Oncol 2017; 50:1868-1878. [PMID: 28393219 DOI: 10.3892/ijo.2017.3946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
Abstract
Multiple lines of evidence indicate that aberrant activation of Hedgehog (Hh) signaling plays an important role in tumorigenesis in human glioma. However, the underlying molecular mechanism and crucial downstream targets of glioma-associated oncogene (Gli), a primary transcriptional regulator of Hh signaling, are not fully understood. Here, we report the identification of miR-124 as a novel downstream target of the transcriptional factor Gli2, which is important for proliferation and tumor growth in human glioma cells. Blockade of Hh signaling leads to a remarkable increase in miR-124 expression in glioma cells, whereas overexpression of Gli2 suppresses miR-124 expression by increasing the direct binding of Gli2 to the upstream region of the transcriptional start site for miR-124. Furthermore, we found that miR-124 potentially interacts with the 3'-UTR region of AURKA. Overexpression of miR-124 significantly decreased the expression of AURKA in glioma cells. In contrast, the loss of miR-124 led to the increased expression of AURKA mRNA and protein. In addition, cell proliferation and colony formation ability were significantly decreased following Gli2 knockdown in human glioma cells, while transfection with a miR-124 inhibitor rescued the proliferative ability of cells. These results demonstrate that miR-124 is an important downstream target gene of Hh signaling, and the Gli2/miR-124/AURKA axis is essential for the proliferation and growth of human glioma cells.
Collapse
Affiliation(s)
- Liyao Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhangming Yan
- MOE Key Laboratory of Bioinformatics, School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Zhirong Sun
- MOE Key Laboratory of Bioinformatics, School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
18
|
Fathi AT, Wander SA, Blonquist TM, Brunner AM, Amrein PC, Supko J, Hermance NM, Manning AL, Sadrzadeh H, Ballen KK, Attar EC, Graubert TA, Hobbs G, Joseph C, Perry AM, Burke M, Silver R, Foster J, Bergeron M, Ramos AY, Som TT, Fishman KM, McGregor KL, Connolly C, Neuberg DS, Chen YB. Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia. Haematologica 2016; 102:719-727. [PMID: 28034990 PMCID: PMC5395112 DOI: 10.3324/haematol.2016.158394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of aurora kinase A is implicated in the genesis of various
neoplasms, including acute myeloid leukemia. Alisertib, an aurora A kinase
inhibitor, has demonstrated efficacy as monotherapy in trials of myeloid
malignancy, and this efficacy appears enhanced in combination with conventional
chemotherapies. In this phase I, dose-escalation study, newly diagnosed patients
received conventional induction with cytarabine and idarubicin, after which
alisertib was administered for 7 days. Dose escalation occurred
via cohorts. Patients could then receive up to four cycles
of consolidation, incorporating alisertib, and thereafter alisertib maintenance
for up to 12 months. Twenty-two patients were enrolled. One dose limiting
toxicity occurred at dose level 2 (prolonged thrombocytopenia), and the
recommended phase 2 dose was established at 30mg twice daily. Common
therapy-related toxicities included cytopenias and mucositis. Only three
(14%) patients had persistent disease at mid-cycle, requiring
“5+2” reinduction. The composite remission rate (complete
remission and complete remission with incomplete neutrophil recovery) was
86% (nineteen of twenty-two patients; 90% CI
68–96%). Among those over age 65 and those with high-risk
disease (secondary acute leukemia or cytogenetically high-risk disease), the
composite remission rate was 88% and 100%, respectively. The
median follow up was 13.5 months. Of those treated at the recommended phase 2
dose, the 12-month overall survival and progression-free survival were
62% (90% CI 33–81%) and 42% (90%
CI 17–65%), respectively. Alisertib is well tolerated when
combined with induction chemotherapy in acute myeloid leukemia, with a promising
suggestion of efficacy. (clinicaltrials.gov Identifier:01779843).
Collapse
Affiliation(s)
- Amir T Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Seth A Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | | | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Philip C Amrein
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Jeffrey Supko
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology, Worcester, MA, USA
| | - Hossein Sadrzadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Karen K Ballen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Eyal C Attar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Gabriela Hobbs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christelle Joseph
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Ashley M Perry
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Burke
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Regina Silver
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Julia Foster
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Meghan Bergeron
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Aura Y Ramos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Tina T Som
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kaitlyn M Fishman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Kristin L McGregor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Christine Connolly
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Donna S Neuberg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Yi-Bin Chen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Dos Santos EO, Carneiro-Lobo TC, Aoki MN, Levantini E, Bassères DS. Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Mol Cancer 2016; 15:12. [PMID: 26842935 PMCID: PMC4739397 DOI: 10.1186/s12943-016-0494-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activating mutations in KRAS are prevalent in lung cancer and have been causally linked to the oncogenic process. However, therapies targeted to oncogenic RAS have been ineffective to date and identification of KRAS targets that impinge on the oncogenic phenotype is warranted. Based on published studies showing that mitotic kinases Aurora A (AURKA) and B (AURKB) cooperate with oncogenic RAS to promote malignant transformation and that AURKA phosphorylates RAS effector pathway components, the aim of this study was to investigate whether AURKA and AURKB are KRAS targets in lung cancer and whether targeting these kinases might be therapeutically beneficial. METHODS In order to determine whether oncogenic KRAS induces Aurora kinase expression, we used qPCR and western blotting in three different lung cell-based models of gain- or loss-of-function of KRAS. In order to determine the functional role of these kinases in KRAS-induced transformation, we generated KRAS-positive A549 and H358 cells with stable and inducible shRNA-mediated knockdown of AURKA or AURKB and evaluated transformation in vitro and tumor growth in vivo. In order to validate AURKA and/or AURKB as therapeutically relevant KRAS targets in lung cancer, we treated A549 and H358 cells, as well as two different lung cell based models of gain-of-function of KRAS with a dual Aurora kinase inhibitor and performed functional in vitro assays. RESULTS We determined that KRAS positively regulates AURKA and AURKB expression. Furthermore, in KRAS-positive H358 and A549 cell lines, inducible knockdown of AURKA or AURKB, as well as treatment with a dual AURKA/AURKB inhibitor, decreased growth, viability, proliferation, transformation, and induced apoptosis in vitro. In addition, inducible shRNA-mediated knockdown of AURKA in A549 cells decreased tumor growth in vivo. More importantly, dual pharmacological inhibiton of AURKA and AURKB reduced growth, viability, transformation, and induced apoptosis in vitro in an oncogenic KRAS-dependent manner, indicating that Aurora kinase inhibition therapy can specifically target KRAS-transformed cells. CONCLUSIONS Our results support our hypothesis that Aurora kinases are important KRAS targets in lung cancer and suggest Aurora kinase inhibition as a novel approach for KRAS-induced lung cancer therapy.
Collapse
Affiliation(s)
| | | | - Mateus Nobrega Aoki
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil.
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy.
| | - Daniela Sanchez Bassères
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Goswami S, Sharma-Walia N. Osteoprotegerin secreted by inflammatory and invasive breast cancer cells induces aneuploidy, cell proliferation and angiogenesis. BMC Cancer 2015; 15:935. [PMID: 26608463 PMCID: PMC4660791 DOI: 10.1186/s12885-015-1837-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Background Osteoprotegerin (OPG) is a glycoprotein that has multifaceted role and is associated with several cancer malignancies like that of bladder carcinoma, gastric carcinoma, prostate cancer, multiple myeloma and breast cancer. Also OPG has been associated with several organ pathologies. The widespread expression of OPG suggests that OPG may have multiple biological activities that are yet to be explored. Methods The anchorage-independent sphere cultures of the adherent cells were instrumental in our study as it provided a deeper insight into the complexity of a 3D tumor. Cytokine profiling was performed for OPG’s detection in the microenvironment. ELISA and western blotting were performed to quantify the OPG secretion and measure the protein levels respectively. OPG expression was detected in human breast cancer tissue samples by IHC. To decipher OPG’s role in tumor aggressiveness both recombinant human OPG as well as OPG rich and depleted breast cancer cell conditioned media were tested. Western blotting and MTT assay were performed to detect changes in signaling pathways and proliferation that were induced in presence of OPG. Onset of aneuploidy, in presence of OPG, was measured by cell cycle analysis and western blotting. Finally, human Breast Cancer qBiomarker Copy Number PCR Array was used to detect how OPG remarkably induced gene copy numbers for oncogenic pathway regulators. Results SUM149PT and SUM1315M02 cells secrete high levels of the cytokine OPG compared to primary human mammary epithelial cells (HMEC). High expression of OPG was also detected in human breast cancer tissue samples compared to the uninvolved tissue from the same patient. OPG induced proliferation of control HMEC spheres and triggered the onset of aneuploidy in HMEC sphere cultures. OPG induced the expression of aneuploidy related kinases Aurora-A Kinase (IAK-1), Bub1 and BubR1 probably through the receptor activator of nuclear factor kappa-B ligand (RANKL) and syndecan-1 receptors via the Erk, AKT and GSK3(3 signaling pathway. Gene copy numbers for oncogenic pathway regulators such AKT1, Aurora-A Kinase (AURKA or IAK-1), epidermal growth factor receptor (EGFR) and MYC with a reduction in the copy numbers of cyclin dependent kinase inhibitor 2A (CDKN2A), PTEN and DNA topoisomerase 2 alpha (TOP2A) were induced in presence of OPG. Conclusions These results highlight the role of OPG in reprogramming normal mammary epithelial cells to a tumorigenic state and suggest promising avenues for treating inflammatory breast cancer as well as highly invasive breast cancer with new therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1837-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sudeshna Goswami
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
21
|
Bone marrow niche in the myelodysplastic syndromes. Leuk Res 2015; 39:1020-7. [DOI: 10.1016/j.leukres.2015.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
|
22
|
Umene K, Yanokura M, Banno K, Irie H, Adachi M, Iida M, Nakamura K, Nogami Y, Masuda K, Kobayashi Y, Tominaga E, Aoki D. Aurora kinase A has a significant role as a therapeutic target and clinical biomarker in endometrial cancer. Int J Oncol 2015; 46:1498-506. [PMID: 25625960 PMCID: PMC4356503 DOI: 10.3892/ijo.2015.2842] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
Aurora kinase A (AURKA) regulates the cell cycle checkpoint and maintains genomic integrity. AURKA is overexpressed in various malignant tumors and its upregulation induces chromosomal instability, which leads to aneuploidy and cell transformation. To investigate the role of AURKA in endometrial cancer, we evaluated the association of immunohistochemical expression of AURKA with clinicopathological factors. Furthermore, we examined the effects of AURKA inhibition by transfected siRNA in HEC-1B cells on colony-forming ability, invasion and migration capacity, and chemosensitivity. Immunohistochemical staining showed that overexpression of AURKA was significantly associated with tumor grade (P<0.05) and poor histologic differentiation (P<0.05). The recurrence rate also tended to be high in cases with overexpression of AURKA (P<0.1) and these cases also had a tendency for shorter disease-free survival (DFS) (P<0.1). AURKA inhibition in endometrial cancer cell lines significantly decreased cell growth, invasion and migration (P<0.05), and increased chemosensitivity to paclitaxel. We also evaluated the efficacy of a combination of AURKA siRNA and paclitaxel against subcutaneous tumors formed in a nude mouse. After treatment, the tumor volume shrank significantly compared to treatment with paclitaxel only (P<0.05). To our knowledge, this is the first study in endometrial carcinoma to show a correlation between overexpression of AURKA and tumor grade, histological type and sensitivity to paclitaxel. AURKA is a promising therapeutic target in endometrial cancer and the combination therapy with AURKA inhibitors and paclitaxel could be effective for endometrial cancer that is resistant to conventional treatment and has a poor prognosis.
Collapse
Affiliation(s)
- Kiyoko Umene
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Haruko Irie
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Miho Iida
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
23
|
Okamoto M, Fujiwara M, Hori M, Okada K, Yazama F, Konishi H, Xiao Y, Qi G, Shimamoto F, Ota T, Temme A, Tatsuka M. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet 2014; 10:e1004639. [PMID: 25233213 PMCID: PMC4169382 DOI: 10.1371/journal.pgen.1004639] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer. The cellular mechanisms for sensing and responding to stress on nucleic acid metabolism or to genotoxic stress are the fundamental and ancient evolutionary biological activities with conserved and diverse biological functions. In yeast, hypomodified mature tRNA species are rapidly decayed under heat stress by the RTD pathway. Yet, it has been shown that tRNA-specific methyltransferases Trm4 and Trm8 protect from tRNA decay. 5-FU, a pyrimidine analog used for cancer treatment, is generally known to act as a thymidylate synthase inhibitor although other ways for the mechanisms of action are suggested. We studied NSUN2 and METTL1, the human orthologs of Trm4 and Trm8 in yeast, and demonstrated that these RTD-related tRNA modifying enzymes are involved in 5-FU sensitivity in cervical cancer HeLa cells. We conclude that the evolutionarily conserved regulation of tRNA modifications is a potential mechanism of chemotherapy resistance in cancer cells.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Mamoru Fujiwara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Masato Hori
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kaoru Okada
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Futoshi Yazama
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Hiroaki Konishi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Yegui Xiao
- Department of Management Information Systems, Faculty of Management and Information System, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Guangying Qi
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Takahide Ota
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
24
|
Ragazzi M, Ciarrocchi A, Sancisi V, Gandolfi G, Bisagni A, Piana S. Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the most aggressive thyroid cancer. Int J Endocrinol 2014; 2014:790834. [PMID: 25214840 PMCID: PMC4158294 DOI: 10.1155/2014/790834] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer. It shows a wide spectrum of morphological presentations and the diagnosis could be challenging due to its high degree of dedifferentiation. Molecular and genetic features of ATC are widely heterogeneous as well and many efforts have been made to find a common profile in order to clarify its cancerogenetic process. A comprehensive review of the current literature is here performed, focusing on histopathological and genetic features.
Collapse
Affiliation(s)
- Moira Ragazzi
- Pathology Unit, IRCCS-Arcispedale Santa Maria Nuova, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, 42123 Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, 42123 Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, 42123 Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, IRCCS-Arcispedale Santa Maria Nuova, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, IRCCS-Arcispedale Santa Maria Nuova, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| |
Collapse
|
25
|
Jia L, Lee HS, Wu CF, Kundu J, Park SG, Kim RN, Wang LH, Erkin ÖC, Choi JS, Chae SW, Yang HB, Choi YL, Shin YK. SMAD4 suppresses AURKA-induced metastatic phenotypes via degradation of AURKA in a TGFβ-independent manner. Mol Cancer Res 2014; 12:1779-95. [PMID: 25061104 DOI: 10.1158/1541-7786.mcr-14-0191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED SMAD4 has been suggested to inhibit the activity of the WNT/β-catenin signaling pathway in cancer. However, the mechanism by which SMAD4 antagonizes WNT/β-catenin signaling in cancer remains largely unknown. Aurora A kinase (AURKA), which is frequently overexpressed in cancer, increases the transcriptional activity of β-catenin/T-cell factor (TCF) complex by stabilizing β-catenin through the inhibition of GSK-3β. Here, SMAD4 modulated AURKA in a TGFβ-independent manner. Overexpression of SMAD4 significantly suppressed AURKA function, including colony formation, migration, and invasion of cell lines. In addition, SMAD4 bound to AURKA induced degradation of AURKA by the proteasome. A luciferase activity assay revealed that the transcriptional activity of the β-catenin/TCF complex was elevated by AURKA, but decreased by SMAD4 overexpression. Moreover, target gene analysis showed that SMAD4 abrogated the AURKA-mediated increase of β-catenin target genes. However, this inhibitory effect of SMAD4 was abolished by overexpression of AURKA or silencing of AURKA in SMAD4-overexpressed cells. Meanwhile, the SMAD4-mediated repression of AURKA and β-catenin was independent of TGFβ signaling because blockage of TGFβR1 or restoration of TGFβ signaling did not prevent suppression of AURKA and β-catenin signaling by SMAD4. These results indicate that the tumor-suppressive function of SMAD4 is mediated by downregulation of β-catenin transcriptional activity via AURKA degradation in a TGFβ-independent manner. IMPLICATIONS SMAD4 interacts with AURKA and antagonizes its tumor-promoting potential, thus demonstrating a novel mechanism of tumor suppression.
Collapse
Affiliation(s)
- Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chun Fu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Juthika Kundu
- College of Pharmacy, Keimyung University, Deagu, Korea
| | - Sang Gyu Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Gyuggido, Korea
| | - Ryong Nam Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Özgür Cem Erkin
- Department of Bioengineering, Faculty of Engineering, Adana Science and Technology, Adana, Turkey
| | - Jong-Sun Choi
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Bin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea. Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Spartà AM, Bressanin D, Chiarini F, Lonetti A, Cappellini A, Evangelisti C, Evangelisti C, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Martelli AM. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia. Cell Cycle 2014; 13:2237-47. [PMID: 24874015 PMCID: PMC4111679 DOI: 10.4161/cc.29267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.
Collapse
Affiliation(s)
- Antonino Maria Spartà
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Alessandra Cappellini
- Department of Human, Social, and Health Sciences; University of Cassino; Cassino, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics; National Research Council; Bologna, Italy
- Muscoloskeletal Cell Biology Laboratory; IOR; Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit ‘Lalla Seragnoli’; S. Orsola-Malpighi Hospital; University of Bologna; Bologna, Italy
| | - Alice Bertaina
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - Franco Locatelli
- Oncoematologia Pediatrica; IRCCS Ospedale Pediatrico Bambino Gesú; Rome, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| |
Collapse
|
27
|
Xia P, Zhou J, Song X, Wu B, Liu X, Li D, Zhang S, Wang Z, Yu H, Ward T, Zhang J, Li Y, Wang X, Chen Y, Guo Z, Yao X. Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction. J Mol Cell Biol 2014; 6:240-54. [PMID: 24847103 DOI: 10.1093/jmcb/mju016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Entosis, a cell-in-cell process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TIP150 facilitates the loading of MCAK onto the microtubule plus ends and orchestrates microtubule plus-end dynamics during cell division. Here we show that TIP150 cooperates with MCAK to govern entosis via a regulatory circuitry that involves Aurora A-mediated phosphorylation of MCAK. Our biochemical analyses show that MCAK forms an intra-molecular association, which is essential for TIP150 binding. Interestingly, Aurora A-mediated phosphorylation of MCAK modulates its intra-molecular association, which perturbs the MCAK-TIP150 interaction in vitro and inhibits entosis in vivo. To probe if MCAK-TIP150 interaction regulates microtubule plasticity to affect the mechanical properties of cells during entosis, we used an optical trap to measure the mechanical rigidity of live MCF7 cells. We find that the MCAK cooperates with TIP150 to promote microtubule dynamics and modulate the mechanical rigidity of the cells during entosis. Our results show that a dynamic interaction of MCAK-TIP150 orchestrated by Aurora A-mediated phosphorylation governs entosis via regulating microtubule plus-end dynamics and cell rigidity. These data reveal a previously unknown mechanism of Aurora A regulation in the control of microtubule plasticity during cell-in-cell processes.
Collapse
Affiliation(s)
- Peng Xia
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Jinhua Zhou
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoyu Song
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Bing Wu
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Di Li
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Shuyuan Zhang
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhikai Wang
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Huijuan Yu
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | - Tarsha Ward
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA Harvard Medical School, Boston, MA 02115, USA
| | - Jiancun Zhang
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China Guangzhou Institutes of Biomedicine and Health, Guangzhou 510513, China
| | - Yinmei Li
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| | | | - Yong Chen
- Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhen Guo
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology, Department of Optics and Optical Engineering, and Hefei National Laboratory for Physical Sciences at Nanoscale, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
28
|
Goldenson B, Crispino JD. The aurora kinases in cell cycle and leukemia. Oncogene 2014; 34:537-45. [PMID: 24632603 PMCID: PMC4167158 DOI: 10.1038/onc.2014.14] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
The Aurora kinases, which include Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) and meiosis (AURKC). Since their discovery nearly 20 years ago, Aurora kinases have been studied extensively in cell and cancer biology. Several early studies found that Aurora kinases are amplified and overexpressed at the transcript and protein level in various malignancies, including several types of leukemia. These discoveries and others provided a rationale for the development of small-molecule inhibitors of Aurora kinases as leukemia therapies. The first generation of Aurora kinase inhibitors did not fare well in clinical trials, owing to poor efficacy and high toxicity. However, the creation of second-generation, highly selective Aurora kinase inhibitors has increased the enthusiasm for targeting these proteins in leukemia. This review will describe the functions of each Aurora kinase, summarize their involvement in leukemia and discuss inhibitor development and efficacy in leukemia clinical trials.
Collapse
Affiliation(s)
- B Goldenson
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Tang W, Qiu H, Jiang H, Wang L, Sun B, Gu H. Aurora-A V57I (rs1047972) polymorphism and cancer susceptibility: a meta-analysis involving 27,269 subjects. PLoS One 2014; 9:e90328. [PMID: 24598702 PMCID: PMC3943872 DOI: 10.1371/journal.pone.0090328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The association between Aurora-A V57I (rs1047972, G>A) polymorphism and cancer susceptibility has been widely studied. However, the results are inconsistent. METHODOLOGY/PRINCIPAL FINDINGS To obtain a more precise evaluation of the relationship, we performed a meta-analysis of 14 case-control studies involving a total of 11,245 cancer cases and 16,024 controls. Our results demonstrated that there was a borderline evidence of an association between the Aurora-A V57I polymorphism and the decreased risk of overall cancer in two genetic models: AA vs. GA+GG and AA vs. GG. In a stratified analysis by cancer type, significant association between Aurora-A V57I polymorphism and the decreased risk of breast cancer was identified in one genetic model: AA vs. GG. In a stratified analysis by ethnicity, in three genetic models, significant decreased cancer risk was observed among Caucasians (AA vs. GA+GG; AA vs. GG and A vs. G) instead of Asians. Furthermore, a stratified analysis by ethnicity in breast cancer subgroup, five genetic models (AA+GA vs. GG; AA vs. GA+GG; AA vs. GG; AA vs. GA and A vs. G), significant decreased cancer risk was observed among Caucasians, but not among Asians. A slight publication bias was observed in our meta-analysis, thus nonparametric "trim-and-fill" method was utilized to detect the stability of our results. The adjusted odds ratios and confidence intervals showed that Aurora-A V57I polymorphism might be a protective factor for cancer risk, suggesting the reliability of our findings. CONCLUSION In summary, this meta-analysis suggests that Aurora-A V57I polymorphism may be a protective factor for cancer risk.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hao Qiu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Heping Jiang
- Emergency Department, Affiliated Jintan People's Hospital of Jiangsu University, Jintan, Jiangsu Province, China
| | - Lixin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Bin Sun
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Haiyong Gu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
30
|
Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X, Howe C, O’Brien S, Maglaty M, Ecsedy JA, Litwin S, Golemis EA, Schilder RJ, Godwin AK, Connolly DC. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014; 33:539-49. [PMID: 23334327 PMCID: PMC3640671 DOI: 10.1038/onc.2012.632] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 12/26/2022]
Abstract
Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Fang Xiao
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Laura E. Bickel
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | | | - Harsh B. Pathak
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Xiang Hua
- Transgenic Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Caitlin Howe
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Shane O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Marisa Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jeffrey A. Ecsedy
- Department of Translational Medicine, Millennium Pharmaceuticals Inc., Cambridge, MA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Russell J. Schilder
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA
- Department of Gynecologic Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Andrew K. Godwin
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Denise C. Connolly
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
31
|
Specenier PM, Vermorken JB. Recurrent head and neck cancer: current treatment and future prospects. Expert Rev Anticancer Ther 2014; 8:375-91. [DOI: 10.1586/14737140.8.3.375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Baldini E, D'Armiento M, Ulisse S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol 2014; 2014:816430. [PMID: 25097550 PMCID: PMC4106108 DOI: 10.1155/2014/816430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
Anaplastic thyroid cancers (ATC) are among the most aggressive human neoplasms with a dire prognosis and a median survival time of few months from the diagnosis. The complete absence of effective therapies for ATC renders the identification of novel therapeutic approaches sorely needed. Chromosomal instability, a feature of all human cancers, is thought to represent a major driving force in thyroid cancer progression and a number of mitotic kinases showing a deregulated expression in malignant thyroid tissues are now held responsible for thyroid tumor aneuploidy. These include the three members of the Aurora family (Aurora-A, Aurora-B, and Aurora-C), serine/threonine kinases that regulate multiple aspects of chromosome segregation and cytokinesis. Over the last few years, several small molecule inhibitors targeting Aurora kinases were developed, which showed promising antitumor effects against a variety of human cancers, including ATC, in preclinical studies. Several of these molecules are now being evaluated in phase I/II clinical trials against advanced solid and hematological malignancies. In the present review we will describe the structure, expression, and mitotic functions of the Aurora kinases, their implications in human cancer progression, with particular regard to ATC, and the effects of their functional inhibition on malignant cell proliferation.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Massimino D'Armiento
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- *Salvatore Ulisse:
| |
Collapse
|
33
|
Aurora-A: a potential DNA repair modulator. Tumour Biol 2013; 35:2831-6. [PMID: 24277377 DOI: 10.1007/s13277-013-1393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022] Open
Abstract
It is well-known that overexpression of Aurora-A promotes tumorigenesis, but the role of Aurora-A in the development of cancer has not been fully investigated. Recent studies indicate that Aurora-A may confer cancer cell chemo- and radioresistance through dysregulation of cell cycle progression and DNA damage response. Direct evidences from literatures suggest that Aurora-A inhibits pRb, p53, p21(waf1/cip1), and p27(cip/kip) but enhances Plk1, CDC25, CDK1, and cyclin B1 to repeal cell cycle checkpoints and to promote cell cycle progression. Other studies indicate that Aurora-A suppresses BRCA1, BRCA2, RAD51, poly(ADP ribose) polymerase (PARP), and gamma-H2AX to dysregulate DNA damage response. Aurora-A may also interact with RAS and Myc to control DNA repair indirectly. In this review, we summarized the potential role of Aurora-A in DNA repair from the current literatures and concluded that Aurora-A may function as a DNA repair modulator to control cancer cell radio- and chemosensitivity, and that Aurora-A-associated DNA repair molecules may be considered for targeted cancer therapy.
Collapse
|
34
|
Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. Lancet Oncol 2013; 14:e425-35. [PMID: 23993387 DOI: 10.1016/s1470-2045(13)70128-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In healthy cells, controlled activation of aurora kinases regulates mitosis. Overexpression and hyperactivation of aurora kinases A and B have major roles in tumorigenesis, and can induce aneuploidy and genomic instability. In squamous-cell carcinomas of the head and neck, overexpression of aurora kinase A is associated with decreased survival, and a reduction in aurora kinase A and aurora kinase B expression inhibits cell growth and increases apoptosis. In this Review, we provide an overview of the biological functions of aurora kinases in healthy cells and in cancer cells, and we review small studies and high-throughput datasets that particularly implicate aurora kinase A in the pathogenesis of squamous-cell carcinomas of the head and neck. Early phase trials are beginning to assess the activity of small-molecule inhibitors of aurora kinases. We summarise trials of aurora kinase inhibitors in squamous-cell carcinomas of the head and neck, and discuss directions for future drug combination trials and biomarkers to use with drugs that inhibit aurora kinases.
Collapse
Affiliation(s)
- Ranee Mehra
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
35
|
Yang G, Mercado-Uribe I, Multani AS, Sen S, Shih IM, Wong KK, Gershenson DM, Liu J. RAS promotes tumorigenesis through genomic instability induced by imbalanced expression of Aurora-A and BRCA2 in midbody during cytokinesis. Int J Cancer 2013; 133:275-85. [PMID: 23319376 PMCID: PMC3883442 DOI: 10.1002/ijc.28032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/21/2012] [Indexed: 12/31/2022]
Abstract
The oncogene RAS is known to induce genomic instability, leading to cancer development; the underlying mechanism, however, remains poorly understood. To better understand how RAS functions, we measured the activity of the functionally related genes Aurora-A and BRCA2 in ovarian cancer cell lines and tumor samples containing RAS mutations. We found that Aurora-A and BRCA2 inversely controlled RAS-associated genomic instability and ovarian tumorigenesis through regulation of cytokinesis and polyploidization. Overexpression of mutated RAS ablated BRCA2 expression but induced Aurora-A accumulation at the midbody, leading to abnormal cytokinesis and ultimately chromosomal instability via polyploidy in cancer cells. RAS regulates the expression of Aurora-A and BRCA2 through dysregulated protein expression of farnesyl protein transferase β and insulin-like growth factor binding protein 3. Our results suggest that the imbalance in expression of Aurora-A and BRCA2 regulates RAS-induced genomic instability and tumorigenesis.
Collapse
Affiliation(s)
- Gong Yang
- Cancer Research Laboratory, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imelda Mercado-Uribe
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Subrata Sen
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ie-Ming Shih
- Department of Gynecologic Pathology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21209, USA
| | - Kwong-Kwok Wong
- Department of Gynecological Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David M Gershenson
- Department of Gynecological Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Yap TA, Molife LR, Blagden SP, de Bono S. Targeting cell cycle kinases and kinesins in anticancer drug development. Expert Opin Drug Discov 2013; 2:539-60. [PMID: 23484760 DOI: 10.1517/17460441.2.4.539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cell cycle is regulated by kinases such as the cyclin-dependent kinases (CDKs) and non-CDKs, which include Aurora and polo-like kinases, as well as checkpoint proteins. Mitotic kinesins are involved in the establishment of the mitotic spindle formation and function, and also play a role in cell cycle control. The disruption of the cell cycle is a hallmark of malignancy. Genetic or epigenetic events result in the upregulation of these kinases and mitotic kinesins in a myriad of tumour types, suggesting that their inhibition could result in preferential targeting of malignant cells. Such findings make the development of these inhibitors a rational and attractive new area for cancer therapeutics. Although challenges of potency and non-specificity have hampered their progress through the clinic, several novel compounds are presently in various phases of clinical trial evaluation.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | | | | | | |
Collapse
|
37
|
de Oliveira FM, Lucena-Araujo AR, Favarin MDC, Bonini Palma PV, Rego EM, Falcão RP, Covas DT, Fontes AM. Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol 2013; 41:198-208. [DOI: 10.1016/j.exphem.2012.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/17/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
|
38
|
Wan XB, Fan XJ, Huang PY, Dong D, Zhang Y, Chen MY, Xiang J, Xu J, Liu L, Zhou WH, Lv YC, Wu XY, Hong MH, Liu Q. Aurora-A activation, correlated with hypoxia-inducible factor-1α, promotes radiochemoresistance and predicts poor outcome for nasopharyngeal carcinoma. Cancer Sci 2012; 103:1586-94. [PMID: 22587416 PMCID: PMC7659277 DOI: 10.1111/j.1349-7006.2012.02332.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/27/2022] Open
Abstract
Previously, we and others showed that hypoxia-inducible factor-1α (HIF-1α) and transcriptionally upregulated Aurora-A were required for disease progression in several tumors. Here, we address the clinicopathologic value of Aurora-A and HIF-1α in locally advanced nasopharyngeal carcinoma (NPC). Aurora-A and HIF-1α expression was semiquantitatively evaluated by immunohistochemistry staining in 144 cases from a randomized controlled trial. Of these patients, 69 received neoadjuvant chemotherapy plus concurrent chemoradiotherapy, and acted as the training set, and 75 cases treated with neoadjuvant chemotherapy plus radiotherapy were used as the testing set to validate the prognostic effect of Aurora-A and HIF-1α. We found that Aurora-A and HIF-1α were highly expressed in NPC, but were deficient in normal adjacent epithelia. In the testing set, Aurora-A overexpression predicted a shortened 5-year overall survival (59.1% vs 82.5%, P = 0.024), progression-free survival (44.8% vs 79.8%, P = 0.004), and distant metastasis-free survival (43.0% vs 17.3%, P = 0.016). Multivariate regression analysis confirmed that Aurora-A was indeed an independent prognostic factor for death, recurrence, and distant metastasis both in the testing set and overall patients. Moreover, a positive correlation between Aurora-A and HIF-1α was detected (P = 0.037). Importantly, although HIF-1α did not show any prognostic effect for patient outcome, the subset with Aurora-A and HIF-1α co-overexpression had the poorest overall, progression-free, and distant metastasis-free survival (all P < 0.05). Our results confirmed that Aurora-A was an independent prognostic factor for NPC. Aurora-A combined with HIF-1α refined the risk definition of the patient subset, thus potentially directing locally advanced NPC patients for more selective therapy.
Collapse
Affiliation(s)
- Xiang-Bo Wan
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Patel AV, Eaves D, Jessen WJ, Rizvi TA, Ecsedy JA, Qian MG, Aronow BJ, Perentesis JP, Serra E, Cripe TP, Miller SJ, Ratner N. Ras-driven transcriptome analysis identifies aurora kinase A as a potential malignant peripheral nerve sheath tumor therapeutic target. Clin Cancer Res 2012; 18:5020-30. [PMID: 22811580 DOI: 10.1158/1078-0432.ccr-12-1072] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Patients with neurofibromatosis type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST), which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to use comprehensive gene expression analysis to identify novel therapeutic targets. EXPERIMENTAL DESIGN Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST because of the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase overexpression in MPNST in vitro and in vivo using Aurora kinase short hairpin RNAs (shRNA) and compounds that inhibit Aurora kinase. RESULTS We identified 2,000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically overexpressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. CONCLUSION Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST.
Collapse
Affiliation(s)
- Ami V Patel
- Divisions of Experimental Hematology and Cancer Biology, Oncology, and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs 2012; 30:2411-32. [PMID: 22350019 PMCID: PMC3484309 DOI: 10.1007/s10637-012-9798-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
Abstract
The Aurora kinases (serine/threonine kinases) were discovered in 1995 during studies of mutant alleles associated with abnormal spindle pole formation in Drosophila melanogaster. They soon became the focus of much attention because of their importance in human biology and association with cancer. Aurora kinases are essential for cell division and are primarily active during mitosis. Following their identification as potential targets for cancer chemotherapy, many Aurora kinase inhibitors have been discovered, and are currently under development. The binding modes of Aurora kinase inhibitors to Aurora kinases share specific hydrogen bonds between the inhibitor core and the back bone of the kinase hinge region, while others parts of the molecules may point to different parts of the active site via noncovalent interactions. Currently there are about 30 Aurora kinase inhibitors in different stages of pre-clinical and clinical development. This review summarizes the characteristics and status of Aurora kinase inhibitors in preclinical, Phase I, and Phase II clinical studies, with particular emphasis on the mechanisms of action and resistance to these promising anticancer agents. We also discuss the validity of Aurora kinases as oncology targets, on/off-target toxicities, and other important aspects of overall clinical performance and future of Aurora kinase inhibitors.
Collapse
Affiliation(s)
- Madhu Kollareddy
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Palacky University, Puskinova 6, Olomouc, 77520, Czech Republic
| | | | | | | | | | | |
Collapse
|
41
|
Pérez de Castro I, Aguirre-Portolés C, Martin B, Fernández-Miranda G, Klotzbucher A, Kubbutat MHG, Megías D, Arlot-Bonnemains Y, Malumbres M. A SUMOylation Motif in Aurora-A: Implications for Spindle Dynamics and Oncogenesis. Front Oncol 2011; 1:50. [PMID: 22649767 PMCID: PMC3355891 DOI: 10.3389/fonc.2011.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/22/2011] [Indexed: 11/13/2022] Open
Abstract
Aurora-A is a serine/threonine kinase that plays critical roles in centrosome maturation, spindle dynamics, and chromosome orientation and it is frequently over-expressed in human cancers. In this work, we show that Aurora-A interacts with the SUMO-conjugating enzyme UBC9 and co-localizes with SUMO1 in mitotic cells. Aurora-A can be SUMOylated in vitro and in vivo. Mutation of the highly conserved SUMOylation residue lysine 249 significantly disrupts Aurora-A SUMOylation and mitotic defects characterized by defective and multipolar spindles ensue. The Aurora-AK249R mutant has normal kinase activity but displays altered dynamics at the mitotic spindle. In addition, ectopic expression of the Aurora-AK249R mutant results in a significant increase in susceptibility to malignant transformation induced by the Ras oncogene. These data suggest that modification by SUMO residues may control Aurora-A function at the spindle and that deficiency of SUMOylation of this kinase may have important implications for tumor development.
Collapse
Affiliation(s)
- Ignacio Pérez de Castro
- Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Okamoto M, Hirata S, Sato S, Koga S, Fujii M, Qi G, Ogawa I, Takata T, Shimamoto F, Tatsuka M. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol 2011; 31:660-71. [PMID: 22136356 DOI: 10.1089/dna.2011.1446] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSUN2, also known as SAKI or MISU, is a methyltransferase which catalyses (cytosine-5-)-methylation of tRNA. The human NSUN2 gene is located on chromosome 5p15.31-33. We show that NSUN2 gene copy number is increased in oral and colorectal cancers. Protein expression levels of NSUN2 were determined by immunoblot using novel polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal region of the protein. In most normal tissues, NSUN2 expression levels were extremely low. On the other hand, oral and colorectal cancers typically expressed high levels of NSUN2. The level of NSUN2 was similar in interphase and mitotic cells, and immunohistochemical analysis demonstrated strong staining for NSUN2 in oral and colon cancer tissues when compared with normal tissues, providing a distinct diagnostic significance for NSUN2 in comparison with Ki-67, a widely used marker of actively proliferating cells. In addition, elevated protein expression of NSUN2 was confirmed by immunohistochemical analysis of various cancers including esophageal, stomach, liver, pancreas, uterine cervix, prostate, kidney, bladder, thyroid, and breast cancers. NSUN2 is regulated by Aurora-B, a newly developed molecular target for cancer therapy, leading us to propose that NSUN2 might become a valuable target for cancer therapy and a cancer diagnostic marker.
Collapse
Affiliation(s)
- Mayumi Okamoto
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers.
Collapse
Affiliation(s)
- Sherif S Farag
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, 840 Westr Walnut St., Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
45
|
Baldini E, Arlot-Bonnemains Y, Mottolese M, Sentinelli S, Antoniani B, Sorrenti S, Salducci M, Comini E, Ulisse S, D'Armiento M. Deregulation of Aurora kinase gene expression in human testicular germ cell tumours. Andrologia 2010; 42:260-7. [PMID: 20629650 DOI: 10.1111/j.1439-0272.2009.00987.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Aurora kinases regulate chromosome segregation and cytokinesis, and alterations in their expression associate with cell malignant transformation. In this study, we demonstrated by qRT-PCR analysis of 14 seminomas that Aurora-A mRNA was, with respect to control tissues, augmented in five of 14 tumour tissues by 2.17 +/- 0.30 fold (P < 0.05) and reduced in 9 to 0.38 +/- 0.10 (P < 0.01). Aurora-B mRNA was increased in 11 tumour tissues by 4.33 +/- 0.82 fold (P < 0.01) and reduced in 3 to 0.41 +/- 0.11 fold. Aurora-C mRNA was reduced to 0.20 +/- 0.32 fold (P < 0.01) in 13 seminomas and up-regulated in one case. Western blot experiments, performed on protein extracts of nine seminomas and six normal testes, showed an up-regulation of Aurora-B protein by 10.14 +/- 3.51 fold (P < 0.05), while Aurora-A protein was found increased in four seminomas by 2.16 +/- 0.43 (P < 0.05), unchanged in three and reduced in two tumour tissues. Aurora-C protein was increased by 9.2 +/- 2.90 fold (P < 0.05), suggesting that post-transcriptional mechanisms modulate its expression. In conclusion, we demonstrated that expression of Aurora kinases is deregulated in seminomas, suggesting that they may play a role in the progression of testicular cancers.
Collapse
Affiliation(s)
- E Baldini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 2010; 116:1498-505. [PMID: 20519624 DOI: 10.1182/blood-2009-11-251074] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myc oncoproteins promote continuous cell growth, in part by controlling the transcription of key cell cycle regulators. Here, we report that c-Myc regulates the expression of Aurora A and B kinases (Aurka and Aurkb), and that Aurka and Aurkb transcripts and protein levels are highly elevated in Myc-driven B-cell lymphomas in both mice and humans. The induction of Aurka by Myc is transcriptional and is directly mediated via E-boxes, whereas Aurkb is regulated indirectly. Blocking Aurka/b kinase activity with a selective Aurora kinase inhibitor triggers transient mitotic arrest, polyploidization, and apoptosis of Myc-induced lymphomas. These phenotypes are selectively bypassed by a kinase inhibitor-resistant Aurkb mutant, demonstrating that Aurkb is the primary therapeutic target in the context of Myc. Importantly, apoptosis provoked by Aurk inhibition was p53 independent, suggesting that Aurka/Aurkb inhibitors will show efficacy in treating primary or relapsed malignancies having Myc involvement and/or loss of p53 function.
Collapse
|
47
|
Shimomura T, Hasako S, Nakatsuru Y, Mita T, Ichikawa K, Kodera T, Sakai T, Nambu T, Miyamoto M, Takahashi I, Miki S, Kawanishi N, Ohkubo M, Kotani H, Iwasawa Y. MK-5108, a highly selective Aurora-A kinase inhibitor, shows antitumor activity alone and in combination with docetaxel. Mol Cancer Ther 2010; 9:157-66. [PMID: 20053775 DOI: 10.1158/1535-7163.mct-09-0609] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aurora-A kinase is a one of the key regulators during mitosis progression. Aurora-A kinase is a potential target for anticancer therapies because overexpression of Aurora-A, which is frequently observed in some human cancers, results in aberrant mitosis leading to chromosomal instability and possibly tumorigenesis. MK-5108 is a novel small molecule with potent inhibitory activity against Aurora-A kinase. Although most of the Aurora-kinase inhibitors target both Aurora-A and Aurora-B, MK-5108 specifically inhibited Aurora-A kinase in a panel of protein kinase assays. Inhibition of Aurora-A by MK-5108 in cultured cells induced cell cycle arrest at the G(2)-M phase in flow cytometry analysis. The effect was confirmed by the accumulation of cells with expression of phosphorylated Histone H3 and inhibition of Aurora-A autophosphorylation by immunostaining assays. MK-5108 also induced phosphorylated Histone H3 in skin and xenograft tumor tissues in a nude rat xenograft model. MK-5108 inhibited growth of human tumor cell lines in culture and in different xenograft models. Furthermore, the combination of MK-5108 and docetaxel showed enhanced antitumor activities compared with control and docetaxel alone-treated animals without exacerbating the adverse effects of docetaxel. MK-5108 is currently tested in clinical trials and offers a new therapeutic approach to combat human cancers as a single agent or in combination with existing taxane therapies.
Collapse
Affiliation(s)
- Toshiyasu Shimomura
- Department of Oncology, Banyu Tsukuba Research Institute, Merck Research Laboratories, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Polyploidy: Mechanisms and Cancer Promotion in Hematopoietic and Other Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:105-22. [DOI: 10.1007/978-1-4419-6199-0_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
|
50
|
Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer 2009; 9:435. [PMID: 20003375 PMCID: PMC2803196 DOI: 10.1186/1471-2407-9-435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/12/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. METHODS Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12 and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. RESULTS Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. CONCLUSION Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway.
Collapse
|