1
|
Yang D, Huang L, Wang J, Wu H, Liu Z, Abudureyimu A, Qiao Z. Tumorigenesis mechanism and application strategy of the MDCK cell line: A systematic review. Biologicals 2023; 83:101699. [PMID: 37573790 DOI: 10.1016/j.biologicals.2023.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus that seriously endangers people's health. Influenza vaccination is the most effective means to prevent influenza virus infection and its serious complications. MDCK cells are considered to be superior to chicken embryos for the production of influenza vaccines, but the tumorigenicity of cells is a concern over the theoretical possibility of the risk of adverse events. The theoretical risks need to be adequately addressed if public confidence in programs of immunization are to be maintained. In this paper, studies of the tumorigenic potential of cell lines, with MDCK cells as an example, published since 2010 are reviewed. The mechanism of tumorigenicity of MDCK cells is discussed with reference to cell heterogeneity and epithelial to mesenchymal transition (EMT). Understanding the mechanism of the acquisition of a tumorigenic phenotype by MDCK cells might assist in estimating potential risks associated with using tumorigenic cell substrates for vaccine production.
Collapse
Affiliation(s)
- Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China; College of Veterinary Medicine, Gansu Agricultural University, 730030, Lanzhou, China; Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Lingwei Huang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Huihao Wu
- Department of Experiment & Teaching, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Ayimuguli Abudureyimu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, 730030, Lanzhou, China.
| |
Collapse
|
2
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
3
|
Karaosmanoğlu O, Banerjee S, Sivas H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol (Dordr) 2018; 41:439-453. [PMID: 29858962 DOI: 10.1007/s13402-018-0384-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. Complete epithelial to mesenchymal transition (EMT) has long been considered as a crucial step for metastasis initiation. It has, however, become apparent that many carcinoma cells can metastasize without complete loss of epithelial traits or with incomplete gain of mesenchymal traits, i.e., partial EMT. Here, we aimed to determine the similarities and differences between complete and partial EMT through over-expression of the EMT-associated transcription factor Slug in different HCC-derived cell lines. METHODS Slug over-expressing HCC-derived HepG2 and Huh7 cells were assessed for their EMT, chemo-resistance and stemness features using Western blotting, qRT-PCR, neutral red uptake, doxorubicin accumulation and scratch wound healing assays. We also collected conditioned media from Slug over-expressing HCC cells and analyzed its exosomal protein content for the presence of chemo-resistance and partial EMT markers using MALDI-TOF/TOF and ELISA assays, respectively. RESULTS We found that Slug over-expression resulted in the induction of both complete and partial EMT in the different HCC-derived cell lines tested. Complete EMT was characterized by downregulation of E-cadherin and upregulation of ZEB2. Partial EMT was characterized by upregulation of E-cadherin and downregulation of vimentin and ZEB2. Interestingly, we found that Slug induced chemo-resistance through downregulation of the ATP binding cassette (ABC) transporter ABCB1 and upregulation of the ABC transporter ABCG2, as well as through expression of CD133, a stemness marker that exhibited a similar expression pattern in cells with either a complete or a partial EMT phenotype. In addition, we found that Slug-mediated partial EMT was associated with enhanced exosomal secretion of post-translationally modified fibronectin 1 (FN1), collagen type II alpha 1 (COL2A1) and native fibrinogen gamma chain (FGG). CONCLUSIONS From our data we conclude that the exosomal proteins identified may be considered as potential non-invasive biomarkers for chemo-resistance and partial EMT in HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Faculty of Science, Anadolu University, 26400, Eskişehir, Turkey.
| | - Sreeparna Banerjee
- Department of Biological Sciences, Faculty of Science and Letters, Middle East Technical University, 06800, Ankara, Turkey
| | - Hülya Sivas
- Department of Biology, Faculty of Science, Anadolu University, 26400, Eskişehir, Turkey
| |
Collapse
|
4
|
Dual role of E-cadherin in the regulation of invasive collective migration of mammary carcinoma cells. Sci Rep 2018; 8:4986. [PMID: 29563585 PMCID: PMC5862898 DOI: 10.1038/s41598-018-22940-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
In this article, we explore a non-canonical form of collective cell migration, displayed by the metastatic murine mammary carcinoma cell line 4T1. We show here that in sparsely plated 4T1 cells, E-cadherin levels are moderately reduced (~50%), leading to the development of collective migration, whereby cells translocate in loose clusters, interconnected by thin membrane tethers. Knocking down E-cadherin blocked tether formation in these cells, leading to enhancement of migration rate and, at the same time, to suppression of lung metastases formation in vivo, and inhibition of infiltration into fibroblast monolayers ex vivo. These findings suggest that the moderate E-cadherin levels present in wild-type 4T1 cells play a key role in promoting cancer invasion and metastasis.
Collapse
|
5
|
Valacca C, Tassone E, Mignatti P. TIMP-2 Interaction with MT1-MMP Activates the AKT Pathway and Protects Tumor Cells from Apoptosis. PLoS One 2015; 10:e0136797. [PMID: 26331622 PMCID: PMC4558019 DOI: 10.1371/journal.pone.0136797] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.
Collapse
Affiliation(s)
- Cristina Valacca
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Evelyne Tassone
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - Paolo Mignatti
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Cell Biology, New York University School of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Desjarlais M, Pratt J, Lounis A, Mounier C, Haidara K, Annabi B. Tetracycline derivative minocycline inhibits autophagy and inflammation in concanavalin-a-activated human hepatoma cells. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:63-73. [PMID: 24634581 PMCID: PMC3948715 DOI: 10.4137/grsb.s13946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Abstract
Inhibition of soluble matrix metalloproteinase (MMP) activity is among the non-antibiotic cellular effects exerted by the anti-inflammatory tetracycline derivative minocycline. The impact of minocycline on the signal transduction functions of membrane-bound MMPs is however unknown. We assessed minocycline in a concanavalin-A (ConA)-activated human HepG2 hepatoma cell model, a condition known to increase the expression of membrane type-1 MMP (MT-MMP) and to trigger inflammatory and autophagy processes. We found that minocycline inhibited ConA-induced formation of autophagic acidic vacuoles, green fluorescent microtubule-associated protein 1 light chain 3 (GFP-LC3) puncta formation, gene and protein expression of autophagy biomarker BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), invasion biomarker MT1-MMP, and inflammation biomarker cyclooxygenase (COX)-2. Gene silencing of MT1-MMP abrogated ConA-induced formation of autophagic acidic vacuoles and ConA-induced expressions of BNIP3 and COX-2. Minocycline was also shown to inhibit ConA-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation as well as gene expression of NANOS1, a biomarker believed to colocalize with MT1-MMP and the specific silencing of which further inhibited ConA-induced STAT3 phosphorylation. Collectively, our data demonstrate that part of minocycline’s effects on autophagy could be exerted through the inhibition of MT1-MMP signaling functions, which contribute to the autophagy and inflammatory phenotype of ConA-activated HepG2 cells.
Collapse
Affiliation(s)
- Michel Desjarlais
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Québec, Canada
| | - Jonathan Pratt
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Québec, Canada
| | - Amine Lounis
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Québec à Montréal, Quebec, Canada
| | - Catherine Mounier
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Québec à Montréal, Quebec, Canada
| | - Khadidja Haidara
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Québec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Québec, Canada
| |
Collapse
|
7
|
Nakashima Y, Yoshinaga K, Kitao H, Ando K, Kimura Y, Saeki H, Oki E, Morita M, Kakeji Y, Hirahashi M, Oda Y, Maehara Y. Podoplanin is expressed at the invasive front of esophageal squamous cell carcinomas and is involved in collective cell invasion. Cancer Sci 2013; 104:1718-25. [PMID: 24103048 PMCID: PMC7654258 DOI: 10.1111/cas.12286] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022] Open
Abstract
The expression of podoplanin is reportedly involved in collective cell invasion, which is independent from the epithelial-mesenchymal transition (EMT). We focused on the expression of podoplanin in esophageal squamous cell carcinomas (ESCC) and investigated the correlation of podoplanin and EMT-related markers, and evaluated its prognostic significance. Five ESCC cell lines were subjected to western blot analysis for podoplanin and EMT markers. The effects of podoplanin on EMT and carcinoma invasion were evaluated with wound healing assays, invasion assays and 3-D culture. Transfection of ectopic podoplanin into a podoplanin-negative ESCC cell line (TE-15) induced cell migration and invasive activity (P < 0.001 and P < 0.05, respectively) without downregulation of E-cadherin. In contrast, transfection of si-podoplanin RNA into a podoplanin-positive ESCC cell line (TE-13) reduced cell migration and invasive activity (P < 0.05). We reviewed 101 patients who had undergone esophagectomy for ESCC. Podoplanin expression was observed in 58 patients (57.4%), and positive expression was positively correlated with expression of E-cadherin (P < 0.01), deeper wall invasion (P < 0.01), venous invasion (P < 0.05) and poorer prognosis (P < 0.01). Multivariate Cox analysis revealed that expression of podoplanin was a significant and independent unfavorable predictor of survival (P < 0.05). These data suggest that podoplanin is significantly associated with and likely contributes to ESCC invasion in the absence of EMT.
Collapse
Affiliation(s)
- Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Giantin M, Aresu L, Benali S, Aricò A, Morello E, Martano M, Vascellari M, Castagnaro M, Lopparelli R, Zancanella V, Granato A, Mutinelli F, Dacasto M. Expression of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases and Vascular Endothelial Growth Factor in Canine Mast Cell Tumours. J Comp Pathol 2012; 147:419-29. [PMID: 22520817 DOI: 10.1016/j.jcpa.2012.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/20/2011] [Accepted: 01/12/2012] [Indexed: 02/05/2023]
|
9
|
Jung YS, Liu XW, Chirco R, Warner RB, Fridman R, Kim HRC. TIMP-1 induces an EMT-like phenotypic conversion in MDCK cells independent of its MMP-inhibitory domain. PLoS One 2012; 7:e38773. [PMID: 22701711 PMCID: PMC3372473 DOI: 10.1371/journal.pone.0038773] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/12/2012] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) regulate epithelial-mesenchymal transition (EMT) critical for the development of epithelial organs as well as cancer cell invasion. TIMP-1 is frequently overexpressed in several types of human cancers and serves as a prognostic marker. The present study investigates the roles of TIMP-1 on the EMT process and formation of the lumen-like structure in a 3D Matrigel culture of MDCK cells. We show that TIMP-1 overexpression effectively prevents cell polarization and acinar-like structure formation. TIMP-1 induces expression of the developmental EMT transcription factors such as SLUG, TWIST, ZEB1 and ZEB2, leading to downregulation of epithelial marker and upregulation of mesenchymal markers. Importantly, TIMP-1's ability to induce the EMT-like process is independent of its MMP-inhibitory domain. To our surprise, TIMP-1 induces migratory and invasive properties in MDCK cells. Here, we present a novel finding that TIMP-1 signaling upregulates MT1-MMP and MMP-2 expression, and potentiates MT1-MMP activation of pro-MMP-2, contributing to tumor cell invasion. In spite of the fact that TIMP-1, as opposed to TIMP-2, does not interact with and inhibit MT1-MMP, TIMP-1 may act as a key regulator of MT1-MMP/MMP-2 axis. Collectively, our findings suggest a model in which TIMP-1 functions as a signaling molecule and also as an endogenous inhibitor of MMPs. This concept represents a paradigm shift in the current view of TIMP-1/MT1-MMP interactions and functions during cancer development/progression.
Collapse
Affiliation(s)
- Young Suk Jung
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xu-Wen Liu
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Rosemarie Chirco
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Richard B. Warner
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Rafael Fridman
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem J 2012; 441:541-52. [PMID: 22187935 DOI: 10.1042/bj20111240] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PDAC (pancreatic ductal adenocarcinoma) is among the most deadly of human malignances. A hallmark of the disease is a pronounced collagen-rich fibrotic extracellular matrix known as the desmoplastic reaction. Intriguingly, it is precisely these areas of fibrosis in which human PDAC tumours demonstrate increased expression of a key collagenase, MT1-MMP [membrane-type 1 MMP (matrix metalloproteinase); also known as MMP-14]. Furthermore, a cytokine known to mediate fibrosis in vivo, TGF-β1 (transforming growth factor-β1), is up-regulated in human PDAC tumours and can promote MT1-MMP expression. In the present review, we examine the regulation of PDAC progression through the interplay between type I collagen (the most common extracellular matrix present in human PDAC tumours), MT1-MMP and TGF-β1. Specifically, we examine the way in which signalling events through these pathways mediates invasion, regulates microRNAs and contributes to chemoresistance.
Collapse
|
11
|
Eisenach PA, de Sampaio PC, Murphy G, Roghi C. Membrane type 1 matrix metalloproteinase (MT1-MMP) ubiquitination at Lys581 increases cellular invasion through type I collagen. J Biol Chem 2012; 287:11533-45. [PMID: 22315223 DOI: 10.1074/jbc.m111.306340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys(581)) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.
Collapse
Affiliation(s)
- Patricia A Eisenach
- Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Mahimkar R, Alfonso-Jaume MA, Cape LM, Dahiya R, Lovett DH. Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype. Carcinogenesis 2011; 32:1806-14. [PMID: 21965271 DOI: 10.1093/carcin/bgr216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of Raf/Ras/mitogen-activated protein kinase (MEK)/mitogen-activated protein kinase signaling and elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) are associated with von Hippel-Lindau gene alterations in renal cell carcinoma. We postulated that the degree of MEK activation was related to graded expression of MT1-MMP and the resultant phenotype of renal epithelial tumors. Madin Darby canine kidney epithelial cells transfected with a MEK1 expression plasmid yielded populations with morphologic phenotypes ranging from epithelial, mixed epithelial/mesenchymal to mesenchymal. Clones were analyzed for MEK1 activity, MT1-MMP expression and extent of epithelial-mesenchymal transition. Phenotypes of the MDCK-MEK1 clones were evaluated in vivo with nu/nu mice. Tissue microarray of renal cell cancers was quantitatively assessed for expression of phosphorylated MEK1 and MT1-MMP proteins and correlations drawn to Fuhrman nuclear grade. Graded increases in the MEK signaling module were associated with graded induction of epithelial-mesenchymal transition of the MDCK cells and induction of MT1-MMP transcription and synthesis. Inhibition of MEK1 and MT1-MMP activity reversed the epithelial-mesenchymal transition. Tumors generated by epithelial, mixed epithelial/mesenchymal and mesenchymal MDCK clones demonstrated a gradient of phenotypes extending from well-differentiated, fully encapsulated non-invasive tumors to tumors with an anaplastic morphology, high Fuhrman nuclear score, neoangiogenesis and invasion. Tumor microarray demonstrated a statistically significant association between the extent of phosphorylated MEK1, MT1-MMP expression and nuclear grade. We conclude that graded increases in the MEK1 signaling module are correlated with M1-MMP expression, renal epithelial cell tumor phenotype, invasive activity and nuclear grade. Phosphorylated MEK1 and MT1-MMP may represent novel, and mechanistic, biomarkers for the assessment of renal cell carcinoma.
Collapse
Affiliation(s)
- Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
13
|
Krantz SB, Shields MA, Dangi-Garimella S, Cheon EC, Barron MR, Hwang RF, Rao MS, Grippo PJ, Bentrem DJ, Munshi HG. MT1-MMP cooperates with Kras(G12D) to promote pancreatic fibrosis through increased TGF-β signaling. Mol Cancer Res 2011; 9:1294-304. [PMID: 21856775 DOI: 10.1158/1541-7786.mcr-11-0023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras(+)/MT1-MMP(-)) that express an activating Kras(G12D) mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and Kras(G12D) (Kras(+)/MT1-MMP(+)) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP-expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium-induced collagen expression by stellate cells. In addition, a function-blocking anti-TGF-β antibody also inhibited MT1-MMP conditioned medium-induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis.
Collapse
Affiliation(s)
- Seth B Krantz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Golubkov VS, Chernov AV, Strongin AY. Intradomain cleavage of inhibitory prodomain is essential to protumorigenic function of membrane type-1 matrix metalloproteinase (MT1-MMP) in vivo. J Biol Chem 2011; 286:34215-23. [PMID: 21832072 DOI: 10.1074/jbc.m111.264036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Invasive cancers use pericellular proteolysis to breach the extracellular matrix and basement membrane barriers and invade the surrounding tissue. Proinvasive membrane type-1 matrix metalloproteinase (MT1-MMP) is the primary mediator of proteolytic events on the cancer cell surface. MT1-MMP is synthesized as a zymogen. The latency of MT1-MMP is maintained by its N-terminal inhibitory prodomain. In the course of MT1-MMP activation, the R(108)RKR(111) ↓ Y(112) prodomain sequence is processed by furin. The intact prodomain released by furin alone, however, is a potent inhibitor of the emerging MT1-MMP enzyme. Evidence suggests that the prodomain undergoes intradomain cleavage at the PGD ↓ L(50) site followed by the release of the degraded prodomain by furin cleavage that finalizes the two-step activation event. These cleavages, only if combined, cause the activation of MT1-MMP. The significance of the intradomain cleavage in the protumorigenic program of MT1-MMP, however, remained unidentified. To identify this important parameter, in our current study, we used the cells that expressed the wild-type prodomain-based fluorescent biosensor and the mutant biosensor with the inactivated PGD↓L(50) cleavage site (L50D mutant) and also the cells with the enforced expression of the wild-type and L50D mutant MT1-MMP. Using cell-based tests, orthotopic breast cancer xenografts in mice, and genome-wide transcriptional profiling of cultured cells and tumor xenografts, we demonstrated that the intradomain cleavage of the PGD ↓ L(50) sequence of the prodomain is essential for the protumorigenic function of MT1-MMP. Our results emphasize the importance of the intradomain cleavages resulting in the inactivation of the respective inhibitory prodomains not only for MT1-MMP but also for other MMP family members.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ, Munshi HG. Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP-mediated expression of HMGA2. Cancer Res 2010; 71:1019-28. [PMID: 21148071 DOI: 10.1158/0008-5472.can-10-1855] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the hallmarks of human pancreatic ductal adenocarcinoma (PDAC) is its pronounced type I collagen-rich fibrotic reaction. Although recent reports have shown that the fibrotic reaction can limit the efficacy of gemcitabine chemotherapy, the underlying mechanisms remain poorly understood. In this article, we show that the type I collagen allows PDAC cells to override checkpoint arrest induced by gemcitabine. Relative to cells grown on tissue culture plastic, PDAC cells grown in 3-dimensional collagen microenvironment have minimal Chk1 phosphorylation and continue to proliferate in the presence of gemcitabine. Collagen increases membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent ERK1/2 phosphorylation to limit the effect of gemcitabine. Collagen also increases MT1-MMP-dependent high mobility group A2 (HMGA2) expression, a nonhistone DNA-binding nuclear protein involved in chromatin remodeling and gene transcription, to attenuate the effect of gemcitabine. Overexpression of MT1-MMP in the collagen microenvironment increases ERK1/2 phosphorylation and HMGA2 expression, and thereby further attenuates gemcitabine-induced checkpoint arrest. MT1-MMP also allows PDAC cells to continue to proliferate in the presence of gemcitabine in a xenograft mouse model. Clinically, human tumors with increased MT1-MMP show increased HMGA2 expression. Overall, our data show that collagen upregulation of MT1-MMP contributes to gemcitabine resistance in vitro and in a xenograft mouse model, and suggest that targeting MT1-MMP could be a novel approach to sensitize pancreatic tumors to gemcitabine.
Collapse
Affiliation(s)
- Surabhi Dangi-Garimella
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Eisenach PA, Roghi C, Fogarasi M, Murphy G, English WR. MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src. J Cell Sci 2010; 123:4182-93. [PMID: 21062896 DOI: 10.1242/jcs.062711] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level. In this study, we investigated the mechanism by which MT1-MMP regulates the expression of VEGF-A in breast cancer cells. We discovered that MT1-MMP regulates VEGFR-2 cell surface localisation and forms a complex with VEGFR-2 and Src that is dependent on the MT1-MMP hemopexin domain and independent of its catalytic activity. Although the localisation of VEGFR-2 was independent of the catalytic and intracellular domain of MT1-MMP, intracellular signalling dependent on VEGFR-2 activity leading to VEGF-A transcription still required the MT1-MMP catalytic and intracellular domain, including residues Y573, C574 and DKV582. However, there was redundancy in the function of the catalytic activity of MT1-MMP, as this could be substituted with MMP-2 or MMP-7 in cells expressing inactive MT1-MMP. The signalling cascade dependent on the MT1-MMP-VEGFR-2-Src complex activated Akt and mTOR, ultimately leading to increased VEGF-A transcription.
Collapse
Affiliation(s)
- Patricia A Eisenach
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | |
Collapse
|
17
|
Atkinson JM, Falconer RA, Edwards DR, Pennington CJ, Siller CS, Shnyder SD, Bibby MC, Patterson LH, Loadman PM, Gill JH. Development of a novel tumor-targeted vascular disrupting agent activated by membrane-type matrix metalloproteinases. Cancer Res 2010; 70:6902-12. [PMID: 20663911 DOI: 10.1158/0008-5472.can-10-1440] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular disrupting agents (VDA) offer a strategy to starve solid tumors of nutrients and oxygen concomitant with tumor shrinkage. Several VDAs have progressed into early clinical trials, but their therapeutic value seems to be compromised by systemic toxicity. In this report, we describe the design and characterization of a novel VDA, ICT2588, that is nontoxic until activated specifically in the tumor by membrane-type 1 matrix metalloproteinase (MT1-MMP). HT1080 cancer cells expressing MT1-MMP were selectively chemosensitive to ICT2588, whereas MCF7 cells that did not express MT1-MMP were nonresponsive. Preferential hydrolysis of ICT2588 to its active metabolite (ICT2552) was observed in tumor homogenates of HT1080 relative to MCF7 homogenates, mouse plasma, and liver homogenate. ICT2588 activation was inhibited by the MMP inhibitor ilomastat. In HT1080 tumor-bearing mice, ICT2588 administration resulted in the formation of the active metabolite, diminution of tumor vasculature, and hemorrhagic necrosis of the tumor. The antitumor activity of ICT2588 was superior to its active metabolite, exhibiting reduced toxicity, improved therapeutic index, enhanced pharmacodynamic effect, and greater efficacy. Coadministration of ICT2588 with doxorubicin resulted in a significant antitumor response (22.6 d growth delay), which was superior to the administration of ICT2588 or doxorubicin as a single agent, including complete tumor regressions. Our findings support the clinical development of ICT2588, which achieves selective VDA targeting based on MT-MMP activation in the tumor microenvironment.
Collapse
Affiliation(s)
- Jennifer M Atkinson
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dangi-Garimella S, Redig AJ, Shields MA, Siddiqui MA, Munshi HG. Rho-ROCK-myosin signaling mediates membrane type 1 matrix metalloproteinase-induced cellular aggregation of keratinocytes. J Biol Chem 2010; 285:28363-72. [PMID: 20605790 DOI: 10.1074/jbc.m110.146019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP, MMP14), which is associated with extracellular matrix (ECM) breakdown in squamous cell carcinoma (SCC), promotes tumor formation and epithelial-mesenchymal transition. However, in this report we demonstrate that MT1-MMP, by cleaving the underlying ECM, causes cellular aggregation of keratinocytes and SCC cells. Treatment with an MMP inhibitor abrogated MT1-MMP-induced phenotypic changes, but decreasing E-cadherin expression did not affect MT1-MMP-induced cellular aggregation. As ROCK1/2 can regulate cell-cell and cell-ECM interaction, we examined its role in mediating MT1-MMP-induced phenotypic changes. Blocking ROCK1/2 expression or activity abrogated the cellular aggregation resulting from MT1-MMP expression. Additionally, blocking Rho and non-muscle myosin attenuated MT1-MMP-induced phenotypic changes. Moreover, SCC cells expressing only the catalytically active MT1-MMP protein demonstrated increased cellular aggregation and increased myosin II activity in vivo when injected subcutaneously into nude mice. Together, these results demonstrate that expression of MT1-MMP may be anti-tumorigenic in keratinocytes by promoting cellular aggregation.
Collapse
Affiliation(s)
- Surabhi Dangi-Garimella
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
For all animals, cell migration is an essential and highly regulated process. Cells migrate to shape tissues, to vascularize tissues, in wound healing, and as part of the immune response. Unfortunately, tumor cells can also become migratory and invade surrounding tissues. Some cells migrate as individuals, but many cell types will, under physiological conditions, migrate collectively in tightly or loosely associated groups. This includes invasive tumor cells. This review discusses different types of collective cell migration, including sheet movement, sprouting and branching, streams, and free groups, and highlights recent findings that provide insight into cells' organization and behavior. Cells performing collective migration share many cell biological characteristics with independently migrating cells but, by affecting one another mechanically and via signaling, these cell groups are subject to additional regulation and constraints. New properties that emerge from this connectivity can contribute to shaping, guiding, and ultimately ensuring tissue function.
Collapse
Affiliation(s)
- Pernille Rørth
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore.
| |
Collapse
|
20
|
Atkinson JM, Siller CS, Gill JH. Tumour endoproteases: the cutting edge of cancer drug delivery? Br J Pharmacol 2008; 153:1344-52. [PMID: 18204490 PMCID: PMC2437906 DOI: 10.1038/sj.bjp.0707657] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/09/2007] [Accepted: 11/27/2007] [Indexed: 01/06/2023] Open
Abstract
Despite progression in anticancer drug development and improvements in the clinical utilization of therapies, current treatment regimes are still dependent upon the use of systemic antiproliferative cytotoxic agents. Although these agents are unquestionably potent, their efficacy is limited by toxicity towards 'normal' cells and a lack of tumour selective targeting, resulting in a therapeutic index which is modest at best. Consequently, the development of more tumour selective cancer treatments, with better discrimination between tumour and normal cells is unequivocally an important goal for cancer drug discovery. One such strategy is to exploit the tumour phenotype as a mechanism for tumour-selective delivery of potent therapeutics. An exciting approach in this area is to develop anticancer therapeutics as prodrugs, which are non-toxic until activated by enzymes localized specifically in the tumour. Enzymes suitable for tumour-activated prodrug development must have increased activity in the tumour relative to non-diseased tissue and an ability to activate the prodrug to its active form. One class of enzyme satisfying these criteria are the tumour endoproteases, particularly the serine- and metallo-proteases. These proteolytic enzymes are essential for tumour angiogenesis, invasion and metastasis, the major defining features of malignancy. This review describes the concept behind development of tumour-endoprotease activated prodrugs and discusses the various studies to date that have demonstrated the huge potential of this approach for improvement of cancer therapy.
Collapse
Affiliation(s)
- J M Atkinson
- Institute of Cancer Therapeutics, University of Bradford Bradford, UK
| | - C S Siller
- Institute of Cancer Therapeutics, University of Bradford Bradford, UK
| | - J H Gill
- Institute of Cancer Therapeutics, University of Bradford Bradford, UK
| |
Collapse
|
21
|
Trastuzumab decreases the number of circulating and disseminated tumor cells despite trastuzumab resistance of the primary tumor. Cancer Lett 2007; 260:198-208. [PMID: 18096313 DOI: 10.1016/j.canlet.2007.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 11/22/2022]
Abstract
We have recently shown that despite of the fact that the ErbB2-positive JIMT-1 human breast cancer cells intrinsically resistant to trastuzumab in vitro, trastuzumab inhibited the outgrowth of early phase JIMT-1 xenografts in SCID mice via antibody-dependent cellular cytotoxicity (ADCC). Here we show that trastuzumab significantly reduces the number of circulating and disseminated tumor cells (CTCs and DTCs) in this xenograft model system at a time when the primary tumor is already unresponsive to trastuzumab. This observation suggests that ErbB2 positive CTCs and DTCs might be sensitive to trastuzumab-mediated ADCC even if when the primary tumor is already non-responsive. Thus, trastuzumab treatment might also be beneficial in the case of patients with breast cancer that is already trastuzumab resistant.
Collapse
|
22
|
Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2007; 66:8319-26. [PMID: 16951136 DOI: 10.1158/0008-5472.can-06-0410] [Citation(s) in RCA: 786] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For most carcinomas, progression toward malignancy is accompanied by loss of epithelial differentiation and a shift towards a mesenchymal phenotype. This process, referred to as epithelial to mesenchymal transition (EMT), exacerbates motility and invasiveness of many cell types and is often considered a prerequisite for tumor infiltration and metastasis. However, there are numerous examples of advanced carcinomas that adopt some mesenchymal features, yet retain characteristics of well-differentiated epithelial cells. We provide a review of these reports and describe mechanisms to explain the morphologic and molecular heterogeneity and plasticity of malignant carcinoma cells, including incomplete EMT, reversion to an epithelial phenotype, and collective migration. We suggest that these mechanisms can manifest in a series of independent and reversible steps and that EMT represents just one mechanism in the global metastatic carcinoma development process.
Collapse
Affiliation(s)
- Jason J Christiansen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
23
|
Abstract
MT1-MMP is a key integral membrane protease, which regulates tumor growth by cleaving extracellular matrix components, activating growth factors and receptors, and consequently, triggering downstream signals. To study what genes or pathways are mediated by endogenous MT1-MMP during tumor growth in vivo, we stably suppressed endogenous MT1-MMP in human tumor cells using RNA interference (RNAi). Tumor growth was significantly reduced in tumors derived from MT1-MMP-suppressed cells relative to control cells; the effect was rescued in cells engineered to re-express MT1-MMP expression. Gene expression profiling of cultured and tumor-derived cells by DNA microarray and real-time RT-PCR revealed that Smad1 expression was upregulated in MT1-MMP-expressing cells and rapidly growing tumors; this was confirmed in 4 additional tumor cell lines. Furthermore, tumor growth of MT1-MMP-expressing cells was reduced when Smad1 was suppressed by RNAi. We also found that the active form, but not the latent form, of TGF-beta was capable in promoting Smad1 expression and 3D cell proliferation in MT1-MMP-suppressed cells. In addition, a dominant-negative form of the TGF-beta Type II receptor reduced Smad1 expression in MT1-MMP-expressing cells. Thus, we propose that MT1-MMP functions, in part, to promote tumor growth by inducing the expression of Smad1 via TGF-beta signaling.
Collapse
Affiliation(s)
| | - Wen-Tien Chen
- To whom requests for reprints should be addressed, at Department of Medicine, HSC T15, Rm. 053, Stony Brook University, Stony Brook, NY 11794-8151. Phone: (631) 444-6948; Fax: (631) 444-7530;
| |
Collapse
|
24
|
Vernon AE, Bakewell SJ, Chodosh LA. Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 2007; 8:199-213. [PMID: 17657606 DOI: 10.1007/s11154-007-9041-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer begins as a localized disease, but has the potential to spread to distant sites within the body. This process--known as metastasis--is the leading cause of death from breast cancer. Whether the ability of cancer cells to metastasize is an intrinsic or acquired feature is currently a topic of considerable debate. Nevertheless, the key cellular events required for metastasis are generally accepted. These include invasion of the surrounding stromal tissue, intravasation, evasion of programmed cell death, arrest within the vasculature at a distant site, extravasation, and establishment and growth within a new microenvironment. The development of mouse models that faithfully mimic critical aspects of human neoplasia has been instrumental in framing our current understanding of multistage carcinogenesis. This review examines the advantages and limitations of existing murine models for mammary carcinogenesis for probing the molecular mechanisms that contribute to metastasis, as well as non-invasive tumor imaging approaches to facilitate these investigations.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Cancer Biology, and The Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 612 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
25
|
Taniwaki K, Fukamachi H, Komori K, Ohtake Y, Nonaka T, Sakamoto T, Shiomi T, Okada Y, Itoh T, Itohara S, Seiki M, Yana I. Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. Cancer Res 2007; 67:4311-9. [PMID: 17483344 DOI: 10.1158/0008-5472.can-06-4761] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) is a stroma-derived MMP belonging to the type IV collagenase family. It is believed to mediate tumor cell behavior by degrading deposits of type IV collagen, a major component of the basement membrane. The membrane type 1-MMP (MT1-MMP) is a highly potent activator of MMP-2 and is expressed in many tumor and stromal cells. However, the roles played by stromal MMP-2 in tumor progression in vivo remain poorly understood. We established a colon epithelial cell line from an Mt1-mmp(-/-) mouse strain and transfected these cells with an inducible expression system for MT1-MMP (MT1rev cells). Following s.c. implantation into Mmp-2(+/+) mice and induction of MT1-MMP expression, MT1rev cells grew rapidly, whereas they grew very slowly in Mmp-2(-/-) mice, even in the presence of MT1-MMP. This MT1-MMP-dependent tumor growth of MT1rev cells was enhanced in Mmp-2(-/-) mice as long as MMP-2 was supplied via transfection or coimplantation of MMP-2-positive fibroblasts. MT1rev cells cultured in vitro in a three-dimensional collagen gel matrix also required the MT1-MMP/MMP-2 axis for rapid proliferation. MT1rev cells deposit type IV collagen primarily at the cell-collagen interface, and these deposits seem scarce at sites of invasion and proliferation. These data suggest that cooperation between stroma-derived MMP-2 and tumor-derived MT1-MMP may play a role in tumor invasion and proliferation via remodeling of the tumor-associated basement membrane. To our knowledge, this is the first study demonstrating that MT1-MMP-dependent tumor growth in vivo requires stromal-derived MMP-2. It also suggests that MMP-2 represents a potential target for tumor therapeutics.
Collapse
Affiliation(s)
- Kaori Taniwaki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Petrella BL, Brinckerhoff CE. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer 2006; 5:66. [PMID: 17140440 PMCID: PMC1764426 DOI: 10.1186/1476-4598-5-66] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 12/01/2006] [Indexed: 12/21/2022] Open
Abstract
Background Metastatic renal cell carcinoma (RCC) remains the leading cause of mortality in patients with clear cell RCC arising from mutations in the von Hippel Lindau (VHL) tumor suppressor. Successful RCC tumor suppression by VHL requires the negative regulation of hypoxia inducible factor alpha (HIF alpha) protein and its downstream targets. Thus, identification of HIF target genes responsible for RCC tumor progression will aid in the development of therapies for this disease. We previously identified membrane type-1 matrix metalloproteinase (MT1-MMP) as a transcriptional target of HIF-2alpha in RCC cells null for VHL and showed that MT1-MMP is overexpressed in these cells. MT1-MMP is a key regulator of tumor progression through its functions as a matrix-degrading enzyme, as well as its ability to cleave factors, such as adhesion molecules and other MMPs. The aim of this study was to investigate the contribution of MT1-MMP to the invasive potential of RCC cells using in vitro type I collagen degradation and invasion assays. Results We evaluated RCC cells wild-type (WT8) and null (pRc-9) for VHL for invasive characteristics and showed that the pRc-9 cells demonstrated a greater propensity for both invasion and degradation of a type I collagen matrix. Furthermore, overexpression of either HIF-2alpha or MT1-MMP in the poorly invasive cell line, WT8, promoted collagen degradation and invasion of these cells. Finally, using RNAi, we show that inhibition of MT1-MMP suppresses tumor cell invasion of RCC cells. Conclusion Our results suggest that MT1-MMP is a major mediator of tumor cell invasiveness and type I collagen degradation by VHL RCC cells that express either MT1-MMP or HIF-2alpha. As such, MT1-MMP may represent a novel target for anti-invasion therapy for this disease.
Collapse
Affiliation(s)
- Brenda L Petrella
- Department of Medicine, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH, USA
| | | |
Collapse
|
27
|
Golubkov VS, Chekanov AV, Savinov AY, Rozanov DV, Golubkova NV, Strongin AY. Membrane Type-1 Matrix Metalloproteinase Confers Aneuploidy and Tumorigenicity on Mammary Epithelial Cells. Cancer Res 2006; 66:10460-5. [PMID: 17079467 DOI: 10.1158/0008-5472.can-06-2997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely associated with multiple malignancies. Recently, we discovered that recycled MT1-MMP was trafficked along the tubulin cytoskeleton into the centrosomal compartment and cleaved the integral centrosomal protein pericentrin-2. These events correlated with the induction of chromosome instability and aneuploidy in nonmalignant Madine-Darby canine kidney cells. Accordingly, we hypothesized that MT1-MMP is an oncogene that promotes malignant transformation of normal cells rather than just an enzyme that supports growth of preexisting tumors. To prove our hypothesis, we transfected normal 184B5 human mammary epithelial cells with MT1-MMP (184B5-MT1 cells). MT1-MMP was colocalized with pericentrin in the centrosomal compartment and especially in the midbody of dividing cells. 184B5-MT1 cells acquired the ability to activate MMP-2, to cleave pericentrin, and to invade the Matrigel matrix. 184B5-MT1 cells exhibited aneuploidy, and they were efficient in generating tumors in the orthotopic xenograft model in immunodeficient mice. Because of the absence of tumor angiogenesis and the resulting insufficient blood supply, the tumors then regressed with significant accompanying necrosis. Gene array studies confirmed a significant up-regulation of oncogenes and tumorigenic genes but not the angiogenesis-promoting genes in 184B5-MT1 cells. We believe that our data point to a novel function of MT1-MMP in the initial stages of malignant transformation and to new and hitherto unknown transition mechanism from normalcy to malignancy.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yang MX, Qu X, Kong BH, Lam QLK, Shao QQ, Deng BP, Ko KH, Lu L. Membrane type 1-matrix metalloproteinase is involved in the migration of human monocyte-derived dendritic cells. Immunol Cell Biol 2006; 84:557-62. [PMID: 16956391 DOI: 10.1111/j.1440-1711.2006.01465.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DC) are highly mobile APC. The trafficking of both immature and mature DC is crucial for their functions, which depends mainly on chemotactic attraction and matrix metalloproteinases (MMP) activity. MMP that are in a transmembrane form belong to membrane type (MT)-MMP, among which MT1-MMP has been shown to possess strong proteolytic activity that is capable of degrading extracellular matrix molecules. Although it is well established that MMP are zinc-dependent endopeptidases that collectively degrade most components of the extracellular matrix, relatively little is known about MT-MMP-mediated matrix degradation during DC migration. In this study, we showed that MT1-MMP was expressed in human monocyte-derived immature and mature DC by semi-quantitative reverse transcription PCR and western blotting analyses. Moreover, immunofluorescence microscopic studies showed that MT1-MMP was expressed on the membrane surface of DC. Blocking of MT1-MMP activity greatly reduced the invasion capacity of immature DC in Matrigel, whereas mature DC mobility was not affected. Taken together, our results show a novel functional link between MT1-MMP and DC motility and suggest that MT1-MMP may play an important role in modulating the migration of immature DC.
Collapse
Affiliation(s)
- Mei-Xiang Yang
- Institute of Basic Medical Sciences, Quilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Functions of individual matrix metalloproteinases (MMPs) differentially expressed by tumor cells and stromal cells, are finely regulated by their spatial as well as temporal interactions with distinct cellular and extracellular components of the tumor microenvironment and also distant pre-metastatic sites. Certain aspects of MMP involvement in tumor metastasis such as tumor-induced angiogenesis, tumor invasion, and establishment of metastatic foci at the secondary site, have received extensive attention that resulted in an overwhelming amount of experimental and observational data in favor of critical roles of MMPs in these processes. In particular, dependency of tumor angiogenesis on the activity of MMPs, especially that of MMP-9, renders this step possibly the most effective target of synthetic MMP inhibitors. MMP functioning in other stages of metastasis, including the escape of individual tumor cells from the primary tumor, their intravasation, survival in circulation, and extravasation at the secondary site, have not yet received enough consideration, resulting in insufficient or controversial data. The major pieces of evidence that are most compelling and clearly determine the role and involvement of MMPs in the metastatic cascade are provided by molecular genetic studies employing knock-out or transgenic animals and tumor cell lines, modified to overexpress or downregulate a specific MMP. Findings from all of these studies implicate different functional mechanisms for both tumor and stromal MMPs during distinct steps of the metastatic cascade and indicate that MMPs can exhibit pro-metastatic as well as anti-metastatic roles depending on their nature and the experimental setting. This dual function of individual MMPs in metastasis has become a major focus of this review.
Collapse
Affiliation(s)
- Elena I Deryugina
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
30
|
Zhong J, Gencay MMC, Bubendorf L, Burgess JK, Parson H, Robinson BWS, Tamm M, Black JL, Roth M. ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration: a comparison between mesothelioma and mesothelial cells. J Cell Physiol 2006; 207:540-52. [PMID: 16447244 DOI: 10.1002/jcp.20605] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pleural malignant mesothelioma is a locally aggressive tumor of mesothelial cell origin. In other tumor types high expression of matrix metalloproteinase (MMP)-2, together with membrane-type1-MMP (MT1-MMP), and low levels of the tissue inhibitor of MMP (TIMP)-2 have been correlated with aggressive tumor progression and low survival rates. Therefore, we compared the expression and activation of these three factors and their regulation by two mesothelioma associated growth factors, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF)-beta1 in six human mesothelioma and one mesothelial cell line. Polymerase chain reaction (PCR), immunoblotting, zymography, and small inhibitory RNAs (siRNA) were used to study gene expression, protein activation, and signal transduction. To proof the relevance of our in vitro data immunohistochemistry was performed in tissue sections. PDGF-BB induced, while TGF-beta1 inhibited cell proliferation. PDGF-BB was a chemoattractant for mesothelial cells, and its effect was increased in the presence of TGF-beta1. TGF-beta1 stimulated the de novo synthesis of pro-MMP-2 in both cell types. Pro-MMP-2 synthesis involved p38 MAP kinase. In cell culture and tissue sections only mesothelial cells expressed MT1-MMP. Migration of mesothelioma cells was dependent on the presence of MT1-MMP. Migration, but not proliferation of mesothelioma cells was inhibited by oleoyl-N-hydroxylamide, TIMP-2, and siRNA for MT1-MMP. Our data suggest that in mesothelioma cells the phosphorylation of p38 MAP kinase is deregulated and is involved in pro-MMP-2 expression. Mesothelioma progression depends on an interaction with mesothelial cells that provide MT1-MMP necessary to activate pro-MMP-2 to facilitate migration through an extracellular matrix (ECM) layer.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Pharmacology, The Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blavier L, Lazaryev A, Dorey F, Shackleford GM, DeClerck YA. Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res 2006; 66:2691-9. [PMID: 16510589 DOI: 10.1158/0008-5472.can-05-2919] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Wnt signaling transduction pathway plays a critical role in the pathogenesis of several murine and human epithelial cancers. Here, we have used mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice, which develop spontaneous mammary adenocarcinoma, to examine whether matrix metalloproteinases (MMPs)--a family of extracellular proteases implicated in multiple steps of cancer progression--contributed to Wnt1-induced tumorigenesis. An analysis of the expression of several MMPs by RT-PCR and in situ hybridization revealed an increase in the expression of MMP-2, MMP-3, MMP-9, MMP-13, and MT1-MMP (MMP-14) in hyperplastic glands and in mammary tumors of MMTV-Wnt1 transgenic mice. Interestingly, whereas MMP-2, MMP-3, and MMP-9 were exclusively expressed by stromal cells in mammary tumors, MMP-13 and MT1-MMP were expressed by transformed epithelial cells in addition to the tumor stroma. To determine whether these MMPs contributed to tumorigenesis, MMTV-Wnt1 mice were crossed with transgenic mice overexpressing tissue inhibitor of metalloproteinase-2-a natural MMP inhibitor-in the mammary gland. In the double MMTV-Wnt1/tissue inhibitor of metalloproteinases-2 transgenic mice, we observed an increase in tumor latency and a 26.3% reduction in tumor formation. Furthermore, these tumors grew at a slower rate, exhibited an 18% decrease in proliferative rate, and a 12.2% increase in apoptotic rate of the tumor cells in association with a deficit in angiogenesis when compared with tumors from MMTV-Wnt1 mice. Thus, for the first time, the data provides evidence for the active role of MMPs in Wnt1-induced mammary tumorigenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Cell Growth Processes/physiology
- Female
- Isoenzymes/biosynthesis
- Mammary Glands, Animal/enzymology
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Matrix Metalloproteinases/biosynthesis
- Mice
- Mice, Transgenic
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Inhibitor of Metalloproteinase-2/biosynthesis
- Transgenes
- Wnt1 Protein/biosynthesis
- Wnt1 Protein/genetics
Collapse
Affiliation(s)
- Laurence Blavier
- Division of Hematology/Oncology, Department of Pediatrics, USC Keck School of Medicine, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
32
|
Hurst D, Schwartz M, Jin Y, Ghaffari M, Kozarekar P, Cao J, Sang QX. Inhibition of enzyme activity of and cell-mediated substrate cleavage by membrane type 1 matrix metalloproteinase by newly developed mercaptosulphide inhibitors. Biochem J 2006; 392:527-36. [PMID: 16026329 PMCID: PMC1316292 DOI: 10.1042/bj20050545] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MT1-MMP (membrane type 1 matrix metalloproteinase, or MMP-14) is a key enzyme in molecular carcinogenesis, tumour-cell growth, invasion and angiogenesis. Novel and potent MMP inhibitors with a mercaptosulphide zinc-binding functionality have been designed and synthesized, and tested against human MT1-MMP and other MMPs. Binding to the MT1-MMP active site was verified by the competitive-inhibition mechanism and stereochemical requirements. MT1-MMP preferred deep P1' substituents, such as homophenylalanine instead of phenylalanine. Novel inhibitors with a non-prime phthalimido substituent had K(i) values in the low-nanomolar range; the most potent of these inhibitors was tested and found to be stable against air-oxidation in calf serum for at least 2 days. To illustrate the molecular interactions of the inhibitor-enzyme complex, theoretical docking of the inhibitors into the active site of MT1-MMP and molecular minimization of the complex were performed. In addition to maintaining the substrate-specificity pocket (S1' site) van der Waals interactions, the P1' position side chain may be critical for the peptide-backbone hydrogen-bonding network. To test the inhibition of cell-mediated substrate cleavage, two human cancer-cell culture models were used. Two of the most potent inhibitors tested reached the target enzyme and effectively inhibited activation of proMMP-2 by endogenous MT1-MMP produced by HT1080 human fibrosarcoma cells, and blocked fibronectin degradation by prostate cancer LNCaP cells stably transfected with MT1-MMP. These results provide a model for mercaptosulphide inhibitor binding to MT1-MMP that may aid in the design of more potent and selective inhibitors for MT1-MMP.
Collapse
Affiliation(s)
- Douglas R. Hurst
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Martin A. Schwartz
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Yonghao Jin
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Mohammad A. Ghaffari
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Pallavi Kozarekar
- †Department of Medicine, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Jian Cao
- †Department of Medicine, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Qing-Xiang Amy Sang
- *Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY. Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. J Biol Chem 2005; 280:42237-41. [PMID: 16251193 DOI: 10.1074/jbc.m510139200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits distinctive and important pericellular cleavage functions. Recently, we determined that MT1-MMP was trafficked to the centrosomes in the course of endocytosis. Our data suggested that the functionally important, integral, centrosomal protein, pericentrin-2, was a cleavage target of MT1-MMP in human and in canine cells and that the sequence of the cleavage sites were ALRRLLG1156 downward arrow L1157FG and ALRRLLS2068 downward arrow L2069FG, respectively. The presence of Asp-948 at the P1 position inactivated the corresponding site (ALRRLLD948-L949FGD) in murine pericentrin. To confirm that MT1-MMP itself cleaves pericentrin directly, rather than indirectly, we analyzed the cleavage of the peptides that span the MT1-MMP cleavage site. In addition, we analyzed glioma U251 cells, which co-expressed MT1-MMP with the wild type murine pericentrin and the D948G mutant. We determined that the D948G mutant that exhibited the cleavage sequence of human pericentrin was sensitive to MT1-MMP, whereas unmodified murine pericentrin was resistant to proteolysis. Taken together, our results confirm that MT1-MMP cleaves pericentrin-2 in humans but not in mice and that mouse models of cancer probably cannot be used to critically examine MT1-MMP functionality.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
34
|
Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY. Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem 2005; 280:25079-86. [PMID: 15878869 DOI: 10.1074/jbc.m502779200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely associated with malignancies. There is a consensus among scientists that cell surface-associated MT1-MMP is a key player in pericellular proteolytic events. Now we have identified an intracellular, hitherto unknown, function of MT1-MMP. We demonstrated that MT1-MMP is trafficked along the tubulin cytoskeleton. A fraction of cellular MT1-MMP accumulates in the centrosomal compartment. MT1-MMP targets an integral centrosomal protein, pericentrin. Pericentrin is known to be essential to the normal functioning of centrosomes and to mitotic spindle formation. Expression of MT1-MMP stimulates mitotic spindle aberrations and aneuploidy in non-malignant cells. Volumes of data indicate that chromosome instability is an early event of carcinogenesis. In agreement, the presence of MT1-MMP activity correlates with degraded pericentrin in tumor biopsies, whereas normal tissues exhibit intact pericentrin. We believe that our data show a novel proteolytic pathway to chromatin instability and elucidate the close association of MT1-MMP with malignant transformation.
Collapse
|