1
|
Ribeiro JH, Villarinho NJ, Fernandes PV, Spohr TCLDSE, Lopes GPDF. Conditioned Medium From Reactive Astrocytes Inhibits Proliferation, Resistance, and Migration of p53-Mutant Glioblastoma Spheroid Through GLI-1 Downregulation. J Cell Biochem 2024; 125:e30637. [PMID: 39150066 DOI: 10.1002/jcb.30637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Glioblastoma (GBM) aggressiveness is partly driven by the reactivation of signaling pathways such as Sonic hedgehog (SHH) and the interaction with its microenvironment. SHH pathway activation is one of the phenomena behind the glial transformation in response to tumor growth. The reactivation of the SHH signaling cascade during GBM-astrocyte interaction is highly relevant to understanding the mechanisms used by the tumor to modulate the adjacent stroma. The role of reactive astrocytes considering SHH signaling during GBM progression is investigated using a 3D in vitro model. T98G GBM spheroids displayed significant downregulation of SHH (61.4 ± 9.3%), GLI-1 (6.5 ± 3.7%), Ki-67 (33.7 ± 8.1%), and mutant MTp53 (21.3 ± 10.6%) compared to the CONTROL group when incubated with conditioned medium of reactive astrocytes (CM-AST). The SHH pathway inhibitor, GANT-61, significantly reduced previous markers (SHH = 43.0 ± 12.1%; GLI-1 = 9.5 ± 3.4%; Ki-67 = 31.9 ± 4.6%; MTp53 = 6.5 ± 7.5%) compared to the CONTROL, and a synergistic effect could be observed between GANT-61 and CM-AST. The volume (2.0 ± 0.2 × 107 µm³), cell viability (80.4 ± 3.2%), and migration (41 ± 10%) of GBM spheroids were significantly reduced in the presence of GANT-61 and CM-AST when compared to CM-AST after 72 h (volume = 2.3 ± 0.4 × 107 µm³; viability = 92.2 ± 6.5%; migration = 102.5 ± 14.6%). Results demonstrated that factors released by reactive astrocytes promoted a neuroprotective effect preventing GBM progression using a 3D in vitro model potentiated by SHH pathway inhibition.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Antwerp, Belgium
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nícolas Jones Villarinho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo, Brazil
| | - Priscila Valverde Fernandes
- Department of Pathology, Pathology Division, Instituto Nacional do Câncer (DIPAT-INCA), Rio de Janeiro, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Director of Sample Preparation, Cell Culture and Biobanking, Centogene, Rostock, Germany
| | - Giselle Pinto de Faria Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Marine Biotechnology, Natural Products Division, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zimmer N, Trzeciak ER, Müller A, Licht P, Sprang B, Leukel P, Mailänder V, Sommer C, Ringel F, Tuettenberg J, Kim E, Tuettenberg A. Nuclear Glycoprotein A Repetitions Predominant (GARP) Is a Common Trait of Glioblastoma Stem-like Cells and Correlates with Poor Survival in Glioblastoma Patients. Cancers (Basel) 2023; 15:5711. [PMID: 38136258 PMCID: PMC10741777 DOI: 10.3390/cancers15245711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GB) is notoriously resistant to therapy. GB genesis and progression are driven by glioblastoma stem-like cells (GSCs). One goal for improving treatment efficacy and patient outcomes is targeting GSCs. Currently, there are no universal markers for GSCs. Glycoprotein A repetitions predominant (GARP), an anti-inflammatory protein expressed by activated regulatory T cells, was identified as a possible marker for GSCs. This study evaluated GARP for the detection of human GSCs utilizing a multidimensional experimental design that replicated several features of GB: (1) intratumoral heterogeneity, (2) cellular hierarchy (GSCs with varied degrees of self-renewal and differentiation), and (3) longitudinal GSC evolution during GB recurrence (GSCs from patient-matched newly diagnosed and recurrent GB). Our results indicate that GARP is expressed by GSCs across various cellular states and disease stages. GSCs with an increased GARP expression had reduced self-renewal but no alterations in proliferative capacity or differentiation commitment. Rather, GARP correlated inversely with the expression of GFAP and PDGFR-α, markers of astrocyte or oligodendrocyte differentiation. GARP had an abnormal nuclear localization (GARPNU+) in GSCs and was negatively associated with patient survival. The uniformity of GARP/GARPNU+ expression across different types of GSCs suggests a potential use of GARP as a marker to identify GSCs.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Andreas Müller
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Philipp Licht
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
| | - Bettina Sprang
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Jochen Tuettenberg
- Department of Neurosurgery, SHG-Klinikum Idar-Oberstein, 55743 Idar-Oberstein, Germany;
| | - Ella Kim
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
- Laboratory of Experimental Neurooncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany (P.L.)
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Pertz M, Schlömer S, Seidel C, Hentschel B, Löffler M, Schackert G, Krex D, Juratli T, Tonn JC, Schnell O, Vatter H, Simon M, Westphal M, Martens T, Sabel M, Bendszus M, Dörner N, Wick A, Fliessbach K, Hoppe C, Klingner M, Felsberg J, Reifenberger G, Gramatzki D, Weller M, Schlegel U. Long-term neurocognitive function and quality of life after multimodal therapy in adult glioma patients: a prospective long-term follow-up. J Neurooncol 2023; 164:353-366. [PMID: 37648934 PMCID: PMC10522752 DOI: 10.1007/s11060-023-04419-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may induce long-term neurotoxicity compromising patients' neurocognition and quality of life. The present prospective multicenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hippocampal irradiation. METHODS Seventy-one glioma patients (WHO grade 1-4) were serially evaluated with neurocognitive testing and quality of life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6-11.0] after baseline) a standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibition, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy plans to evaluate its association with neurocognition. RESULTS Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radiation dose > 50 Gy (Dmean) as compared to < 10 Gy showed no associations with long-term cognitive functioning. However, patients with Dmean < 10 Gy showed stable or improved performance in all cognitive domains, while patients with > 50 Gy numerically deteriorated in 4/8 domains. CONCLUSIONS Multimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with unilateral hippocampal irradiation with > 50 Gy showed no profound cognitive decline in this series.
Collapse
Affiliation(s)
- Milena Pertz
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Universitätsstraße 105, 44789, Bochum, Germany.
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany.
| | - Sabine Schlömer
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Markus Löffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Tareq Juratli
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Joerg Christian Tonn
- Department of Neurosurgery, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Oliver Schnell
- Department of Neurosurgery, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, Medical Center Bethel, University Hospital Bielefeld, Bielefeld, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Martens
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurosurgery, Medical Center Asklepios St. Georg, Hamburg, Germany
| | - Michael Sabel
- Department of Neurosurgery, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Medical Center of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Dörner
- Department of Neuroradiology, Medical Center of Neurology, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Antje Wick
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Christian Hoppe
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marcel Klingner
- Department of Radiation Oncology, University Hospital Leipzig, Leipzig, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Department of General Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Uwe Schlegel
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, Bochum, Germany
- Department of Neurology, Hirslanden Hospital, Zurich, Switzerland
| |
Collapse
|
4
|
Włodarczyk A, Tręda C, Rutkowska A, Grot D, Dobrewa W, Kierasińska A, Węgierska M, Wasiak T, Strózik T, Rieske P, Stoczyńska-Fidelus E. Phenotypical Flexibility of the EGFRvIII-Positive Glioblastoma Cell Line and the Multidirectional Influence of TGFβ and EGF on These Cells—EGFRvIII Appears as a Weak Oncogene. Int J Mol Sci 2022; 23:ijms232012129. [PMID: 36292985 PMCID: PMC9603514 DOI: 10.3390/ijms232012129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The biological role of EGFRvIII (epidermal growth factor receptor variant three) remains unclear. Methods: Three glioblastoma DK-MG sublines were tested with EGF (epidermal growth factor) and TGFβ (transforming growth factor β). Sublines were characterized by an increased percentage of EGFRvIII-positive cells and doubling time (DK-MGlow to DK-MGextra-high), number of amplicons, and EGFRvIII mRNA expression. The influence of the growth factors on primary EGFRvIII positive glioblastomas was assessed. Results: The overexpression of exoEGFRvIII in DK-MGhigh did not convert them into DK-MGextra-high, and this overexpression did not change DK-MGlow to DK-MGhigh; however, the overexpression of RASG12V increased the proliferation of DK-MGlow. Moreover, the highest EGFRvIII phosphorylation in DK-MGextra-high did not cause relevant AKT (known as protein kinase B) and ERK (extracellular signal-regulated kinase) activation. Further analyses indicate that TGFβ is able to induce apoptosis of DK-MGhigh cells. This subline was able to convert to DK-MGextra-high, which appeared resistant to this proapoptotic effect. EGF acted as a pro-survival factor and stimulated proliferation; however, simultaneous senescence induction in DK-MGextra-high cells was ambiguous. Primary EGFRvIII positive (and SOX2 (SRY-Box Transcription Factor 2) positive or SOX2 negative) glioblastoma cells differentially responded to EGF and TGFβ. Conclusions: The roles of TGFβ and EGF in the EGFRvIII context remain unclear. EGFRvIII appears as a weak oncogene and not a marker of GSC (glioma stem cells). Hence, it may not be a proper target for CAR-T (chimeric antigen receptor T cells).
Collapse
Affiliation(s)
- Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Dagmara Grot
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Weronika Dobrewa
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Tomasz Wasiak
- Department of Molecular Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Tadeusz Strózik
- Department of Molecular Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Department of Research and Development, Personather LTD, Inwestycyjna 7 St., 95-050 Konstantynow Lodzki, Poland
- Correspondence: ; Tel.: +48-426-393-221
| |
Collapse
|
5
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
6
|
Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15:80. [PMID: 35690784 PMCID: PMC9188021 DOI: 10.1186/s13045-022-01298-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in cancer therapeutics, glioblastoma (GBM) remains one of the most difficult cancers to treat in both the primary and recurrent settings. GBM presents a unique therapeutic challenge given the immune-privileged environment of the brain and the aggressive nature of the disease. Furthermore, it can change phenotypes throughout the course of disease—switching between mesenchymal, neural, and classic gene signatures, each with specific markers and mechanisms of resistance. Recent advancements in the field of immunotherapy—which utilizes strategies to reenergize or alter the immune system to target cancer—have shown striking results in patients with many types of malignancy. Immune checkpoint inhibitors, adoptive cellular therapy, cellular and peptide vaccines, and other technologies provide clinicians with a vast array of tools to design highly individualized treatment and potential for combination strategies. There are currently over 80 active clinical trials evaluating immunotherapies for GBM, often in combination with standard secondary treatment options including re-resection and anti-angiogenic agents, such as bevacizumab. This review will provide a clinically focused overview of the immune environment present in GBM, which is frequently immunosuppressive and characterized by M2 macrophages, T cell exhaustion, enhanced transforming growth factor-β signaling, and others. We will also outline existing immunotherapeutic strategies, with a special focus on immune checkpoint inhibitors, chimeric antigen receptor therapy, and dendritic cell vaccines. Finally, we will summarize key discoveries in the field and discuss currently active clinical trials, including combination strategies, burgeoning technology like nucleic acid and nanoparticle therapy, and novel anticancer vaccines. This review aims to provide the most updated summary of the field of immunotherapy for GBM and offer both historical perspective and future directions to help inform clinical practice.
Collapse
|
7
|
Li Y, Ma K, Xie Q, Zhang X, Zhang X, Chen K, Kong L, Qian R. Identification of HOXD10 as a Marker of Poor Prognosis in Glioblastoma Multiforme. Onco Targets Ther 2021; 14:5183-5195. [PMID: 34737577 PMCID: PMC8558040 DOI: 10.2147/ott.s336225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose HOXD10 is a tumor modulator that can either be a tumor-suppressor or a tumor-promoting gene. However, the role of HOXD10 in glioblastoma multiforme (GBM) remains unclear. Methods Immunohistochemistry (IHC) was applied to detect protein expression of HOXD10 in GBM and normal brain tissue patients. Clinicopathological characteristics with GBM were recorded, and a Kaplan–Meier curve was plotted. Additionally, the mRNA expression of HOXD10 and its effect on prognosis were analyzed using the online tool GEPIA and the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and the Gene Expression Omnibus (GEO) databases. Based on the mRNA expression of HOXD10, GBM patients from TCGA database were divided into low- and high-HOXD10 expression groups to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and construct a lncRNA-miRNA-mRNA network and a protein–protein interaction (PPI) network. Results The mRNA expression of HOXD10 was up-regulated in GBM according to GEPIA, while the protein expression of HOXD10 in GBM was down-regulated according to IHC analysis of samples from patients collected from our hospital. Correlation analysis showed that HOXD10 expression was significantly related to IDH1 status. Univariate analysis revealed that low HOXD10 expression, complete surgical resection, postoperative radiotherapy, postoperative temozolomide chemotherapy and IDH1 mutation were all beneficial prognostic factors. Further multivariate analysis revealed that only complete surgical resection and postoperative radiotherapy were independent prognostic factors. GO and KEGG enrichment analyses indicated that HOXD10 expression is mainly involved in cytokine-cytokine receptor interactions. In the ceRNA network, 89 nodes, containing 45 mRNAs, 39 miRNAs and five lncRNAs associated with prognosis were involved. The PPI network revealed a tight interaction between HOXD10 and HOXD8, HOXD9, HOXD11, HOXD13 and HOXB3. Conclusion Based on our experimental data, although HOXD10 expression is low in GBM compared with normal brain tissue, GBM patients with high HOXD10 expression have a worse prognosis. HOXD10 may play different or even opposite roles in different stages of GBM occurrence and development. For patients with GBM, HOXD10 may be a valid predictor of prognosis.
Collapse
Affiliation(s)
- Yanxin Li
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Ke Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Qi Xie
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xianwei Zhang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiulei Zhang
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Kui Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
8
|
Carballo GB, Ribeiro JH, Lopes GPDF, Ferrer VP, Dezonne RS, Pereira CM, Spohr TCLDSE. GANT-61 Induces Autophagy and Apoptosis in Glioblastoma Cells despite their heterogeneity. Cell Mol Neurobiol 2021; 41:1227-1244. [PMID: 32504326 DOI: 10.1007/s10571-020-00891-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common adult primary tumor of the CNS characterized by rapid growth and diffuse invasiveness into the brain parenchyma. The GBM resistance to chemotherapeutic drugs may be due to the presence of cancer stem cells (CSCs). The CSCs activate the same molecular pathways as healthy stem cells such as WNT, Sonic hedgehog (SHH), and Notch. Mutations or deregulations of those pathways play a key role in the proliferation and differentiation of their surrounding environment, leading to tumorigenesis. Here we investigated the effect of SHH signaling pathway inhibition in human GBM cells by using GANT-61, considering stem cell phenotype, cell proliferation, and cell death. Our results demonstrated that GANT-61 induces apoptosis and autophagy in GBM cells, by increasing the expression of LC3 II and cleaved caspase 3 and 9. Moreover, we observed that SHH signaling plays a crucial role in CSC phenotype maintenance, being also involved in the epithelial-mesenchymal transition (EMT) phenotype. We also noted that SHH pathway modulation can regulate cell proliferation as revealed through the analysis of Ki-67 and c-MYC expressions. We concluded that SHH signaling pathway inhibition may be a promising therapeutic approach to treat patients suffering from GBM refractory to traditional treatments.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jessica Honorato Ribeiro
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, Mol, Belgium
| | - Giselle Pinto de Faria Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Valéria Pereira Ferrer
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Romulo Sperduto Dezonne
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Cláudia Maria Pereira
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil.
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Wu X, Shen Q, Zhang Z, Zhang D, Gu Y, Xing D. Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer's disease model. Stem Cell Res Ther 2021; 12:345. [PMID: 34116709 PMCID: PMC8196501 DOI: 10.1186/s13287-021-02399-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background Adult hippocampal neurogenesis (AHN) is restricted under the pathological conditions of neurodegenerative diseases, especially in Alzheimer’s disease (AD). The drop of AHN reduces neural circuit plasticity, resulting in the decrease of the generation of newborn neurons in dentate gyrus (DG), which makes it difficult to recover from learning/memory dysfunction in AD, therefore, it is imperative to find a therapeutic strategy to promote neurogenesis and clarify its underlying mechanism involved. Methods Amyloid precursor protein/presenilin 1 (APP/PS1) mice were treated with photobiomodulation therapy (PBMT) for 0.1 mW/mm2 per day in the dark for 1 month (10 min for each day). The neural stem cells (NSCs) were isolated from hippocampus of APP/PS1 transgenic mice at E14, and the cells were treated with PBMT for 0.667 mW/mm2 in the dark (5 min for each time). Results In this study, photobiomodulation therapy (PBMT) is found to promote AHN in APP/PS1 mice. The latent transforming growth factor-β1 (LTGFβ1) was activated in vitro and in vivo during PBMT-induced AHN, which promoted the differentiation of hippocampal APP/PS1 NSCs into newborn neurons. In particular, behavioral experiments showed that PBMT enhanced the spatial learning/memory ability of APP/PS1 mice. Mechanistically, PBMT-stimulated reactive oxygen species (ROS) activates TGFβ/Smad signaling pathway to increase the interaction of the transcription factors Smad2/3 with Smad4 and competitively reduce the association of Smad1/5/9 with Smad4, thereby significantly upregulating the expression of doublecortin (Dcx)/neuronal class-III β-tubulin (Tuj1) and downregulating the expression of glial fibrillary acidic protein (GFAP). These in vitro effects were abrogated when eliminating ROS. Furthermore, specific inhibition of TGFβ receptor I (TGFβR I) attenuates the DNA-binding efficiency of Smad2/3 to the Dcx promotor triggered by PBMT. Conclusion Our study demonstrates that PBMT, as a viable therapeutic strategy, directs the adult hippocampal APP/PS1 NSCs differentiate towards neurons, which has great potential value for ameliorating the drop of AHN in Alzheimer’s disease mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02399-2.
Collapse
Affiliation(s)
- Xiaolei Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhan Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ying Gu
- Department of Laser Medicine, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
10
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Sriramulu S, Nandy SK, Ganesan H, Banerjee A, Pathak S. In silico analysis and prediction of transcription factors of the proteins interacting with astrocyte elevated gene-1. Comput Biol Chem 2021; 92:107478. [PMID: 33866140 DOI: 10.1016/j.compbiolchem.2021.107478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Multifunctional in nature, the protein Astrocyte Elevated Gene-1 (AEG-1) controls several cancers through protein-protein interactions. Although, specific physiological processes and molecular functions linked with AEG-1 interactors remain unclear. In our present study, we procured the data of AEG-1 interacting proteins and evaluated their biological functions, associated pathways, and interaction networks using bioinformatic tools. A total of 112 proteins experimentally detected to interact with AEG-1 were collected from various public databases. DAVID 6.8 Online tool was utilized to identify the molecular functions, biological processes, cellular components that aid in understanding the physiological function of AEG-1 and its interactors in several cell types. With the help of integrated network analysis of AEG-1 interactors using Cytoscape 3.8.0 software, cross-talk between various proteins, and associated pathways were revealed. Additionally, the Enrichr online tool was used for performing enrichment of transcription factors of AEG-1 interactors' which further revealed a closely associated self-regulated interaction network of a variety of transcription factors that shape the expression of AEG-1 interacting proteins. As a whole, the study calls for better understanding and elucidation of the pathways and biological roles of both AEG-1 and its interactor proteins that might enable their application as biomarkers and therapeutic targets in various diseases in the very near future.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Suman K Nandy
- Department of Histopathology, Tata Medical Centre, Kolkata, 700160, India.
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
12
|
Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, Liu Y, Li D, Zou J, Sun D, Torre V, Zhang Q, Chai R, Tang M. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces 2021; 200:111590. [PMID: 33529926 DOI: 10.1016/j.colsurfb.2021.111590] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Neural stem cell (NSC)-based therapy is a promising candidate for treating neurodegenerative diseases and the preclinical researches call an urgent need for regulating the growth and differentiation of such cells. The recognition that three-dimensional culture has the potential to be a biologically significant system has stimulated an extraordinary impetus for scientific researches in tissue engineering and regenerative medicine. Here, A novel scaffold for culturing NSCs, three-dimensional bacterial cellulose-graphene foam (3D-BC/G), which was prepared via in situ bacterial cellulose interfacial polymerization on the skeleton surface of porous graphene foam has been reported. 3D-BC/G not only supports NSC growth and adhesion, but also maintains NSC stemness and enhances their proliferative capacity. Further phenotypic analysis indicated that 3D-BC/G induces NSCs to selectively differentiate into neurons, forming a neural network in a short amount of time. The scaffold has good biocompatibility with primary cortical neurons enhancing the neuronal network activities. To explore the underlying mechanisms, RNA-Seq analysis to identify genes and signaling pathways was performed and it suggests that 3D-BC/G offers a more promising three-dimensional conductive substrate for NSC research and neural tissue engineering, and the repertoire of gene expression serves as a basis for further studies to better understand NSC biology.
Collapse
Affiliation(s)
- Rongrong Guo
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jian Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China; International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Dan Li
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China; Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Vincent Torre
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China; Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
13
|
Fu X, Zhang P, Song H, Wu C, Li S, Li S, Yan C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J Transl Med 2020; 18:391. [PMID: 33059753 PMCID: PMC7566028 DOI: 10.1186/s12967-020-02509-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain. Diagnosis and treatment of GBM may lead to psychological disorders such as depressive and anxiety disorders. There was no research focusing on the correlation between depressive/anxiety disorder and the outcome of GBM. Thus, the aim of this study was to investigate the possibility of depressive/anxiety disorder correlated with the outcome of GBM patients, as well as the overlapped mechanism bridge which could link depressive/anxiety disorders and GBM. Methods Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder (GAD-7) were used to investigate the psychological condition of GBM patients in our department. To further explore the potential mechanism, bioinformatic methods were used to screen out genes that could be indicators of outcome in GBM, followed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) analysis. Further, cellular experiments were conducted to evaluate the proliferation, migration capacity of primary GBM cells from the patients. Results It was revealed that patients with higher PHQ-9 and GAD-7 scores had significantly worse prognosis than their lower-scored counterparts. Bioinformatic mining revealed that LTBP1 could be a potential genetic mechanism in both depressive/anxiety disorder and GBM. Primary GBM cells with different expression level of LTBP1 should significantly different proliferation and migration capacity. GO, KEGG analysis confirmed that extracellular matrix (ECM) was the most enriched function of LTBP1. PPI network showed the interaction of proteins altered by LTBP1. Hub genes COL1A2, COL5A1 and COL10A1, as well as mesenchymal marker CD44 and Vimentin were statistically higher expressed in LTBP1 high group; while proneural marker E-cadherin was significantly higher expressed in low LTBP1 group. Conclusion There is closely correlation between depressive/anxiety disorders and GBM. LTBP1 could be a potential bridge linking the two diseases through the regulation of ECM.
Collapse
Affiliation(s)
- Xiaojun Fu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.,Capital Medical University, Beijing, People's Republic of China
| | - Pei Zhang
- Beijing Institute of Technology, Beijing, China
| | - Hongwang Song
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chenxing Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China
| | | | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Xiangshanyikesong 50#, HaiDian District, Beijing, 100093, China.
| |
Collapse
|
14
|
Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through Sonic hedgehog pathway. Life Sci 2020; 257:118027. [PMID: 32622951 DOI: 10.1016/j.lfs.2020.118027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
AIM Glioblastoma is an extremely aggressive glioma, resistant to radio and chemotherapy usually performed with temozolomide. One of the main reasons for glioblastoma resistance to conventional therapies is due to the presence of cancer stem-like cells. These cells could recapitulate some signaling pathways important for embryonic development, such as Sonic hedgehog. Here, we investigated if the inhibitor of the Sonic hedgehog pathway, cyclopamine, could potentiate the temozolomide effect in cancer stem-like cells and glioblastoma cell lines in vitro. MAIN METHODS The viability of glioblastoma cells exposed to cyclopamine and temozolomide treatment was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while the induction of apoptosis was assessed by western blot. The stemness properties of glioma cells were verified by clonogenic and differentiation assay and the expression of stem cell markers were measured by fluorescence microscopy and western blot. KEY FINDINGS The glioblastoma viability was reduced by cyclopamine treatment. Cyclopamine potentiated temozolomide treatment in glioblastoma cell lines by inducing apoptosis through activation of caspase-3 cleaved. Conversely, the combined treatment of cyclopamine and temozolomide potentiated the stemness properties of glioblastoma cells by inducing the expression of SOX-2 and OCT-4. SIGNIFICANCE Cyclopamine plays an effect on glioblastoma cell lines but also sensibilize them to temozolomide treatment. Thus, first-line treatment with Sonic hedgehog inhibitor followed by temozolomide could be used as a new therapeutic strategy for glioblastoma patients.
Collapse
|
15
|
De Martino M, Fusco A, Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat Anticancer Drug Discov 2020; 14:258-267. [PMID: 31538905 DOI: 10.2174/1574892814666190919152001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high mobility group A proteins modulate the transcription of numerous genes by interacting with transcription factors and/or altering the structure of chromatin. These proteins are involved in both benign and malignant neoplasias as a result of several pathways. A large amount of benign human mesenchymal tumors has rearrangements of HMGA genes. On the contrary, malignant tumors show unarranged HMGA overexpression that is frequently and causally related to neoplastic cell transformation. Here, we review the function of the HMGA proteins in human neoplastic disorders, the pathways by which they contribute to carcinogenesis and the new patents focused on targeting HMGA proteins. OBJECTIVE Current review was conducted to check the involvement of HMGA as a druggable target in cancer treatment. METHODS We reviewed the most recent patents focused on targeting HMGA in cancer treatment analyzing patent literature published during the last years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. RESULTS HMGA proteins are intriguing targets for cancer therapy and are objects of different patents based on the use of DNA aptamers, inhibitors, oncolytic viruses, antisense molecules able to block their oncogenic functions. CONCLUSION Powerful strategies able to selectively interfere with HMGA expression and function could represent a helpful approach in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy.,Department of Psychology, University of Campania, Caserta 81100, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| |
Collapse
|
16
|
Kalasauskas D, Sorokin M, Sprang B, Elmasri A, Viehweg S, Salinas G, Opitz L, Rave-Fraenk M, Schulz-Schaeffer W, Kantelhardt SR, Giese A, Buzdin A, Kim EL. Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes. Cancers (Basel) 2020; 12:cancers12030570. [PMID: 32121554 PMCID: PMC7139840 DOI: 10.3390/cancers12030570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hypofractionated radiotherapy is the mainstay of the current treatment for glioblastoma. However, the efficacy of radiotherapy is hindered by the high degree of radioresistance associated with glioma stem cells comprising a heterogeneous compartment of cell lineages differing in their phenotypic characteristics, molecular signatures, and biological responses to external signals. Reconstruction of radiation responses in glioma stem cells is necessary for understanding the biological and molecular determinants of glioblastoma radioresistance. To date, there is a paucity of information on the longitudinal outcomes of hypofractionated radiation in glioma stem cells. This study addresses long-term outcomes of hypofractionated radiation in human glioma stem cells by using a combinatorial approach integrating parallel assessments of the tumor-propagating capacity, stemness-associated properties, and array-based profiling of gene expression. The study reveals a broad spectrum of changes in the tumor-propagating capacity of glioma stem cells after radiation and finds association with proliferative changes at the onset of differentiation. Evidence is provided that parallel transcriptomic patterns and a cumulative impact of pathways involved in the regulation of apoptosis, neural differentiation, and cell proliferation underly similarities in tumorigenicity changes after radiation.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (D.K.); (B.S.); (A.E.); (S.V.)
- Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany;
| | - Maxim Sorokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (M.S.); (A.B.)
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Omicsway Corp., Walnut, CA 91789, USA
| | - Bettina Sprang
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (D.K.); (B.S.); (A.E.); (S.V.)
| | - Alhassan Elmasri
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (D.K.); (B.S.); (A.E.); (S.V.)
| | - Sina Viehweg
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (D.K.); (B.S.); (A.E.); (S.V.)
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), Institute for Human Genetics, University Medical Centre, 37077 Göttingen, Germany; (G.S.); (L.O.)
| | - Lennart Opitz
- NGS Integrative Genomics Core Unit (NIG), Institute for Human Genetics, University Medical Centre, 37077 Göttingen, Germany; (G.S.); (L.O.)
| | - Margret Rave-Fraenk
- Department of Radiotherapy and Radiooncology, University Medical Centre, 37077 Göttingen, Germany;
| | | | - Sven Reiner Kantelhardt
- Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany;
| | - Alf Giese
- OrthoCentrum Hamburg, Department of Tumor Spinal Surgery, 20149 Hamburg, Germany;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (M.S.); (A.B.)
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Oncobox ltd., 121205 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia
| | - Ella L. Kim
- Laboratory for Experimental Neurooncology, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (D.K.); (B.S.); (A.E.); (S.V.)
- Correspondence:
| |
Collapse
|
17
|
Honorato JR, Hauser-Davis RA, Saggioro EM, Correia FV, Sales-Junior SF, Soares LOS, Lima LDR, Moura-Neto V, Lopes GPDF, Spohr TCLDS. Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. J Cell Physiol 2019; 235:3798-3814. [PMID: 31613002 DOI: 10.1002/jcp.29274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The first-line chemotherapy treatment for Glioblastoma (GBM) - the most aggressive and frequent brain tumor - is temozolomide (TMZ). The Sonic hedgehog (SHH) pathway is involved with GBM tumorigenesis and TMZ chemoresistance. The role of SHH pathway inhibition in the potentiation of TMZ's effects using T98G, U251, and GBM11 cell lines is investigated herein. The combination of GANT-61 and TMZ over 72 hr suggested a synergistic effect. All TMZ-resistant cell lines displayed a significant decrease in cell viability, increased DNA fragmentation and loss of membrane integrity. For T98G cells, G2 /M arrest was observed, while U251 cells presented a significant increase in reactive oxygen species production and catalase activity. All the cell lines presented acidic vesicles formation correlated to Beclin-1 overexpression. The combined treatment also enhanced GLI1 expression, indicating the presence of select resistant cells. The selective inhibition of the SHH pathway potentiated the cytotoxic effect of TMZ, thus becoming a promising in vitro strategy for GBM treatment.
Collapse
Affiliation(s)
- Jessica R Honorato
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel A Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Enrico M Saggioro
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Fábio V Correia
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Sidney F Sales-Junior
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lorena O S Soares
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Leandro da R Lima
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle P de F Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Tania C L de S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Intronic miR-744 Inhibits Glioblastoma Migration by Functionally Antagonizing Its Host Gene MAP2K4. Cancers (Basel) 2018; 10:cancers10110400. [PMID: 30366472 PMCID: PMC6266622 DOI: 10.3390/cancers10110400] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: The second intron of Mitogen-Activated Protein Kinase Kinase 4 (MAP2K4), an important hub in the pro-invasive MAPK pathway, harbors miR-744. There is accumulating evidence that intronic micro-RNAs (miRNAs) are capable of either supporting or restraining functional pathways of their host genes, thereby creating intricate regulative networks. We thus hypothesized that miR-744 regulates glioma migration by interacting with its host’s pathways. Methods: Patients’ tumor specimens were obtained stereotactically. MiR-744 was overexpressed in U87, T98G, and primary glioblastoma (GBM) cell lines. Cell mobility was studied using migration and Boyden chamber assays. Protein and mRNA expression was quantified by SDS-PAGE and qRT-PCR. Interactions of miR-744 and 3’UTRs were analyzed by luciferase reporter assays, and SMAD2/3, p38, and beta-Catenin activities by TOP/FOPflash reporter gene assays. Results: As compared to a normal brain, miR-744 levels were dramatically decreased in GBM samples and in primary GBM cell lines. Astrocytoma WHO grade II/III exhibited intermediate expression levels. Re-expression of miR-744 in U87, T98G, and primary GBM cell lines induced focal growth and impaired cell mobility. Luciferase activity of 3’UTR reporter constructs revealed the pro-invasive factors TGFB1 and DVL2 as direct targets of miR-744. Re-expression of miR-744 reduced levels of TGFB1, DVL2, and the host MAP2K4, and mitigated activity of TGFB1 and DVL2 downstream targets SMAD2/3 and beta-Catenin. TGFB1 knock-down repressed MAP2K4 expression. Conclusion: MiR-744 acts as an intrinsic brake on its host. It impedes MAP2K4 functional pathways through simultaneously targeting SMAD-, beta-Catenin, and MAPK signaling networks, thereby strongly mitigating pro-migratory effects of MAP2K4. MiR-744 is strongly repressed in glioma, and its re-expression might attenuate tumor invasiveness.
Collapse
|
19
|
Eser PÖ, Jänne PA. TGFβ pathway inhibition in the treatment of non-small cell lung cancer. Pharmacol Ther 2018; 184:112-130. [DOI: 10.1016/j.pharmthera.2017.11.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLDSE. A highlight on Sonic hedgehog pathway. Cell Commun Signal 2018; 16:11. [PMID: 29558958 PMCID: PMC5861627 DOI: 10.1186/s12964-018-0220-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an essential role during vertebrate embryonic development and tumorigenesis. It is already known that Sonic hedgehog (Shh) pathway is important for the evolution of radio and chemo-resistance of several types of tumors. Most of the brain tumors are resistant to chemotherapeutic drugs, consequently, they have a poor prognosis. So, a better knowledge of the Shh pathway opens an opportunity for targeted therapies against brain tumors considering a multi-factorial molecular overview. Therefore, emerging studies are being conducted in order to find new inhibitors for Shh signaling pathway, which could be safely used in clinical trials. Shh can signal through a canonical and non-canonical way, and it also has important points of interaction with other pathways during brain tumorigenesis. So, a better knowledge of Shh signaling pathway opens an avenue of possibilities for the treatment of not only for brain tumors but also for other types of cancers. In this review, we will also highlight some clinical trials that use the Shh pathway as a target for treating brain cancer.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Ribeiro Honorato
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Pinto Farias de Lopes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.
| |
Collapse
|
21
|
Mehta S, Lo Cascio C. Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci 2018; 75:385-402. [PMID: 28821904 PMCID: PMC5765207 DOI: 10.1007/s00018-017-2608-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
Abstract
Malignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis. In this review, we summarize the role of developmentally regulated signaling pathways that have been found to facilitate glioma growth and invasion. Furthermore, we discuss how the microenvironment and treatment-induced perturbations of these highly interconnected signaling networks can trigger a shift in cellular phenotype and tumor subtype.
Collapse
Affiliation(s)
- Shwetal Mehta
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| | - Costanza Lo Cascio
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
22
|
Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA, Lim D. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci 2018; 47:211-221. [DOI: 10.1111/ejn.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Matteo Cerruti
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Isabella Biocotino
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Francesca Rocchio
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences; Università degli Studi del Piemonte Orientale “Amedeo Avogadro”; 28100 Novara Italy
| |
Collapse
|
23
|
Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol 2018; 1842:3-27. [PMID: 30196398 DOI: 10.1007/978-1-4939-8697-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The seeming setbacks noted for stem cells underscore the need for experimental studies for safe and efficacious application to patients. Both clinical and experimental researchers have gained valuable knowledge on the characteristics of stem cells, and their behavior in different microenvironment. This introductory chapter focuses on adult mesenchymal stem cells (MSCs) based on the predominance in the clinic. MSCs can be influenced by inflammatory mediators to exert immune suppressive properties, commonly referred to as "licensing." Interestingly, while there are questions if other stem cells can be delivered across allogeneic barrier, there is no question on the ability of MSCs to provide this benefit. This property has been a great advantage since MSCs could be available for immediate application as "off-the-shelf" stem cells for several disorders, tissue repair and gene/drug delivery. Despite the benefit of MSCs, it is imperative that research continues with the various types of stem cells. The method needed to isolate these cells is outlined in this book. In parallel, safety studies are needed; particularly links to oncogenic event. In summary, this introductory chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies. The method described in this chapter could be extrapolated to the field of chimeric antigen receptor T-cells (CAR-T). This will require application to stem cell hierarchy of memory T-cells.
Collapse
Affiliation(s)
- Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
24
|
Srivastava RK, Bulte JWM, Walczak P, Janowski M. Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia 2017; 66:907-919. [PMID: 29266673 DOI: 10.1002/glia.23275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality.
Collapse
Affiliation(s)
- Rohit K Srivastava
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of NeuroRepair, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci Rep 2017; 7:11496. [PMID: 28904337 PMCID: PMC5597608 DOI: 10.1038/s41598-017-10675-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Collapse
Affiliation(s)
- Huân M Ngô
- The University of Chicago, Chicago, IL, 60637, USA.,Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,BrainMicro LLC, New Haven, CT, 06511, USA
| | - Ying Zhou
- The University of Chicago, Chicago, IL, 60637, USA
| | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ernest Mui
- The University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | - Fiona L Henriquez
- The University of Chicago, Chicago, IL, 60637, USA.,FLH, IBEHR School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Alexandre Montpetit
- Genome Quebec, Montréal, QC H3B 1S6, Canada; McGill University, Montréal, QC H3A 0G4, Canada
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.,Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | - Charles Cobbs
- California Pacific Medical Center, San Francisco, CA, 94114, USA
| | - Dennis A Steindler
- JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Kenneth Boyer
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - A Gwendolyn Noble
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Charles N Swisher
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Peter Rabiah
- Northshore University Health System, Evanston, IL, 60201, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rima McLeod
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Zhang Z, Gong Q, Li M, Xu J, Zheng Y, Ge P, Chi G. MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. Int J Mol Med 2017; 40:1226-1234. [PMID: 28791348 DOI: 10.3892/ijmm.2017.3088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-124 (miR-124) has been shown to be downregulated in glioma; however, its biological functions in glioma are not yet fully understood. The aim of this study was to examine the Smad4‑dependent effects of miR‑124 on C6 glioma cell proliferation. In this study, the level of miR‑124 was found to be enhanced in C6 cells upon transfection with miR‑124 mimics, and the mechanisms of action of miR‑124 in C6 cells were investigated by reverse transcriptase-quantitative polymerase chain reaction, MTT assay, western blot analysis and luciferase reporter assays in vitro. The results revealed that miR‑124 expression was significantly lower in the C6 cells than in either normal rat brain tissue or astrocytes. Upon the overexpression of miR‑124, the proliferation of the C6 cells decreased and Smad4 expression was significantly suppressed. Smad4 was identified as a direct target of miR‑124 through luciferase reporter assays. Furthermore, miR‑124 was found to modulate signal transducer and activator of transcription 3 (Stat3) by downregulating Smad4 expression. Using small interfering RNA targeting Smad4 mRNA, we also confirmed that miR‑124 downregulated c‑Myc by modulating Smad4 expression. In addition, caspase‑3 expression was induced by miR‑124 overexpression, but not via Smad4 downregulation. On the whole, our results demonstrate that miR‑124 upregulation inhibits the growth of C6 glioma cells by targeting Smad4 directly. These findings may be clinically useful for the development of therapeutic strategies directed toward miR‑124 function in patients with glioma.
Collapse
Affiliation(s)
- Zechuan Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Ghosh D, Funk CC, Caballero J, Shah N, Rouleau K, Earls JC, Soroceanu L, Foltz G, Cobbs CS, Price ND, Hood L. A Cell-Surface Membrane Protein Signature for Glioblastoma. Cell Syst 2017; 4:516-529.e7. [PMID: 28365151 DOI: 10.1016/j.cels.2017.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/08/2016] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
We present a systems strategy that facilitated the development of a molecular signature for glioblastoma (GBM), composed of 33 cell-surface transmembrane proteins. This molecular signature, GBMSig, was developed through the integration of cell-surface proteomics and transcriptomics from patient tumors in the REMBRANDT (n = 228) and TCGA datasets (n = 547) and can separate GBM patients from control individuals with a Matthew's correlation coefficient value of 0.87 in a lock-down test. Functionally, 17/33 GBMSig proteins are associated with transforming growth factor β signaling pathways, including CD47, SLC16A1, HMOX1, and MRC2. Knockdown of these genes impaired GBM invasion, reflecting their role in disease-perturbed changes in GBM. ELISA assays for a subset of GBMSig (CD44, VCAM1, HMOX1, and BIGH3) on 84 plasma specimens from multiple clinical sites revealed a high degree of separation of GBM patients from healthy control individuals (area under the curve is 0.98 in receiver operating characteristic). In addition, a classifier based on these four proteins differentiated the blood of pre- and post-tumor resections, demonstrating potential clinical value as biomarkers.
Collapse
Affiliation(s)
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Nameeta Shah
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - John C Earls
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Greg Foltz
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Charles S Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Miyauchi JT, Chen D, Choi M, Nissen JC, Shroyer KR, Djordevic S, Zachary IC, Selwood D, Tsirka SE. Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 2016; 7:9801-14. [PMID: 26755653 PMCID: PMC4891085 DOI: 10.18632/oncotarget.6877] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 01/09/2023] Open
Abstract
Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression.
Collapse
Affiliation(s)
- Jeremy T Miyauchi
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Danling Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Matthew Choi
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Jillian C Nissen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Snezana Djordevic
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London, UK
| | - David Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Stella E Tsirka
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
29
|
Kzhyshkowska J, Yin S, Liu T, Riabov V, Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem 2016; 397:231-47. [PMID: 26733160 DOI: 10.1515/hsz-2015-0269] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022]
Abstract
Chitinase-like proteins (CLPs) are lectins combining properties of cytokines and growth factors. Human CLPs include YKL-40, YKL-39 and SI-CLP that are secreted by cancer cells, macrophages, neutrophils, synoviocytes, chondrocytes and other cells. The best investigated CLP in cancer is YKL-40. Serum and plasma levels of YKL-40 correlate with poor prognosis in breast, lung, prostate, liver, bladder, colon and other types of cancers. In combination with other circulating factors YKL-40 can be used as a predictive biomarker of cancer outcome. In experimental models YKL-40 supports tumor initiation through binding to RAGE, and is able to induce cancer cell proliferation via ERK1/2-MAPK pathway. YKL-40 supports tumor angiogenesis by interaction with syndecan-1 on endothelial cells and metastatic spread by stimulating production of pro-inflammatory and pro-invasive factors MMP9, CCL2 and CXCL2. CLPs induce production of pro- and anti-inflammatory cytokines and chemokines, and are potential modulators of inflammatory tumor microenvironment. Targeting YKL-40 using neutralizing antibodies exerts anti-cancer effect in preclinical animal models. Multifunctional role of CLPs in regulation of inflammation and intratumoral processes makes them attractive candidates for tumor therapy and immunomodulation. In this review we comprehensively analyze recent data about expression pattern, and involvement of human CLPs in cancer.
Collapse
|
30
|
Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, Rodon J, Cleverly A, Smith C, Gueorguieva I, Miles C, Guba SC, Desaiah D, Lahn MM, Wick W. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol 2016; 18:1146-56. [PMID: 26902851 PMCID: PMC4933481 DOI: 10.1093/neuonc/now009] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The combination of galunisertib, a transforming growth factor (TGF)-β receptor (R)1 kinase inhibitor, and lomustine was found to have antitumor activity in murine models of glioblastoma. METHODS Galunisertib (300 mg/day) was given orally 14 days on/14 days off (intermittent dosing). Lomustine was given as approved. Patients were randomized in a 2:1:1 ratio to galunisertib + lomustine, galunisertib monotherapy, or placebo + lomustine. The primary objective was overall survival (OS); secondary objectives were safety, pharmacokinetics (PKs), and antitumor activity. RESULTS One hundred fifty-eight patients were randomized: galunisertib + lomustine (N = 79), galunisertib (N = 39), and placebo + lomustine (N = 40). Baseline characteristics were: male (64.6%), white (75.3%), median age 58 years, ECOG performance status (PS) 1 (63.3%), and primary glioblastoma (93.7%). The PKs of galunisertib were not altered with lomustine, and galunisertib had a median half-life of ∼8 hours. Median OS in months (95% credible interval [CrI]) for galunisertib + lomustine was 6.7 (range: 5.3-8.5), 8.0 (range: 5.7-11.7) for galunisertib alone, and 7.5 (range: 5.6-10.3) for placebo + lomustine. There was no difference in OS for patients treated with galunisertib + lomustine compared with placebo + lomustine [P (HR < 1) = 26%]. Median progression-free survival of ∼2 months was observed in all 3 arms. Among 8 patients with IDH1 mutation, 7 patients were treated with galunisertib (monotherapy or with lomustine); OS ranged from 4 to 17 months. Patients treated with galunisertib alone had fewer drug-related grade 3/4 adverse events (n = 34) compared with lomustine-treated patients (10% vs 26%). Baseline PS, post-discontinuation of bevacizumab, tumor size, and baseline levels of MDC/CCL22 were correlated with OS. CONCLUSIONS Galunisertib + lomustine failed to demonstrate improved OS relative to placebo + lomustine. Efficacy outcomes were similar in all 3 arms. CLINICAL TRIAL REGISTRATION NCT01582269, ClinicalTrials.gov.
Collapse
Affiliation(s)
- Alba A Brandes
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Antoine F Carpentier
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Santosh Kesari
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Juan M Sepulveda-Sanchez
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Helen R Wheeler
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Olivier Chinot
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Lawrence Cher
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Joachim P Steinbach
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - David Capper
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Pol Specenier
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Jordi Rodon
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Ann Cleverly
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Claire Smith
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Ivelina Gueorguieva
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Colin Miles
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Susan C Guba
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Durisala Desaiah
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Michael M Lahn
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| | - Wolfgang Wick
- Medical Oncology Department, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy (A.A.B.); Hôpital Avicenne, Paris 13 University, Bobigny, France (A.F.C.); University of California San Diego Health System, La Jolla, California (S.K.); Hospital Universitario 12 de Octubre, Madrid, Spain (J.M.S.-S.); Department of Oncology, Royal North Shore Hospital, St Leonards, Australia (H.R.W.); CHU Hôspital De La Timone, Rue Saint Pierre, France (O.C.); Austin Hospital, Heidelberg, Australia (L.C.); Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Frankfurt, Germany (J.P.S.); Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany (D.C.); Antwerp University Hospital, Edegem, Belgium (P.S.); Medical Oncology, Vall d'Hebron University Hospital and Universitat Autònoma de Barcelona, Barcelona, Spain (J.R.); Eli Lilly and Company, Erl Wood, England (A.C., C.S., I.G., C.M.); Eli Lilly and Company, Indianapolis, Indiana (S.C.G., D.D., M.M.L.); Neurology Clinic, University of Heidelberg, Heidelberg, Germany (W.W.)
| |
Collapse
|
31
|
Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L, Cobbs CS. TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells 2016; 34:2276-89. [PMID: 27354342 DOI: 10.1002/stem.2411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/09/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date, no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations, justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry, here we present five cell-surface markers HMOX1, SLC16A1, CADM1, SCAMP3, and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM, substantiating the histopathological hallmarks of GBM. In a prospective study (N = 8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness, we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition, surgical resection of GBM tumors caused declines (18% ± 5.1SEM) in the level of plasma HMOX1 as measured by ELISA, in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
Collapse
Affiliation(s)
- Dhiman Ghosh
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| | - Ilya V Ulasov
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - LiPing Chen
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Lualhati E Harkins
- Department of Pathology and Laboratory Medicine, Birmingham Veterans Hospital, Birmingham
| | | | - Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Steven Rostad
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle.,CellNetix Pathology and Laboratories, Seattle
| | | | - Charles S Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| |
Collapse
|
32
|
Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 2015; 589:1588-97. [PMID: 25957771 DOI: 10.1016/j.febslet.2015.04.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Members of the transforming growth factor β (TGF-β) family are implicated in the biology of several cancers. Here we focus on malignancies of the brain and examine the TGFβ and the bone morphogenetic protein (BMP) signaling branches of the family. These pathways exhibit context-dependent actions during tumorigenesis, acting either as tumor suppressors or as pro-tumorigenic agents. In the brain, the TGF-βs associate with oncogenic development and progression to the more malignant state. Inversely, the BMPs suppress tumorigenic potential by acting as agents that induce tumor cell differentiation. The latter has been best demonstrated in grade IV astrocytomas, otherwise known as glioblastoma multiforme. We discuss how the actions of TGF-βs and BMPs on cancer stem cells may explain their effects on tumor progression, and try to highlight intricate mechanisms that may link tumor cell differentiation to invasion. The focus on TGF-β and BMP and their actions in brain malignancies provides a rich territory for mechanistic understanding of tumor heterogeneity and suggests ways for improved therapeutic intervention, currently being addressed by clinical trials.
Collapse
|
33
|
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29:732-45. [PMID: 25838542 PMCID: PMC4387715 DOI: 10.1101/gad.257394.114] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Emily S Day
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Youjia Hua
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chian-Yu Peng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Timothy J Merkel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Markus A Queisser
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Carissa Ritner
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Hailei Zhang
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lynda Chin
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - John A Kessler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
34
|
Krishnamurthy S, Ng VW, Gao S, Tan MH, Yang YY. Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells in vitro and in vivo. Biomaterials 2014; 35:9177-86. [DOI: 10.1016/j.biomaterials.2014.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022]
|
35
|
Yu X, Jiang Y, Wei W, Cong P, Ding Y, Xiang L, Wu K. Androgen receptor signaling regulates growth of glioblastoma multiforme in men. Tumour Biol 2014; 36:967-72. [PMID: 25315188 DOI: 10.1007/s13277-014-2709-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
Although glioblastoma multiforme (GBM) is the most malignant primary human brain cancer with surprisingly high incidence rate in adult men than in women, the exact mechanism underlying this pronounced epidemiology is unclear. Here, we showed significant upregulated androgen receptor (AR) expression in the GBM tissue compared to the periphery normal brain tissue in patients. An expression of AR was further detected in all eight examined human GBM cell lines. To figure out whether AR signaling may play a role in GBM, we used high AR-expressing U87-MG GBM line for further study. We found that activation of transforming growth factor β (TGFβ) receptor signaling by TGFβ1 in GBM significantly inhibited cell growth and increased apoptosis. Moreover, application of active AR ligand 5α-dihydrotestosterone (DHT) significantly decreased the effect of TGFβ1 on GBM growth and apoptosis, suggesting that AR signaling pathway may contradict the effect of TGFβ receptor signaling in GBM. However, neither total protein nor the phosphorylated protein of SMAD3, a major TGFβ receptor signaling downstream effector in GBM, was affected by DHT, suggesting that AR activation may not affect the SMAD3 protein production or phosphorylation of TGFβ receptor and SMAD3. Finally, immunoprecipitation followed by immunoblot confirmed binding of pAR to pSMAD3, which may prevent the DNA binding of pSMAD3 and subsequently prevent its effect on cell growth in GBM. Taken together, our study suggests that AR signaling may promote tumorigenesis of GBM in adult men by inhibiting TGFβ receptor signaling.
Collapse
Affiliation(s)
- Xiaoming Yu
- Department of Oncology, the Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2014; 2:5. [PMID: 25364713 PMCID: PMC4207033 DOI: 10.3389/fcell.2014.00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 01/12/2023] Open
Abstract
High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer.
Collapse
Affiliation(s)
- Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| |
Collapse
|
37
|
Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists. Proc Natl Acad Sci U S A 2013; 111:781-6. [PMID: 24379381 DOI: 10.1073/pnas.1322622111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.
Collapse
|
38
|
Jaszberenyi M, Schally AV, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Rick FG. Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol 2013; 8:281-90. [PMID: 23371031 DOI: 10.1007/s11523-013-0264-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
Abstract
Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-β-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFβ, and TGFβ, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.
Collapse
|
39
|
The neural adhesion molecule L1CAM confers chemoresistance in human glioblastomas. Neurochem Int 2012; 61:1183-91. [PMID: 22948185 DOI: 10.1016/j.neuint.2012.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/31/2012] [Accepted: 08/18/2012] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) represents the most common and malignant brain tumor. GBM tissues exhibit elevated expression of the transforming growth factor-beta1 (TGF-β1) and the adhesion molecule L1CAM. This study investigated the mechanism of L1CAM regulation in GBM cells and its role in the mediation of chemoresistance. L1CAM expression levels varied in GBM cells being highest in A172 cells and low in T98G cells. Inhibition of TGF-β1 signaling in A172 cells reduced L1CAM expression and vice versa stimulation with exogenous TGF-β1 led to upregulation of L1CAM in T98G cells. Additionally, TGF-β1 and L1CAM expression increased during differentiation of glioma stem-like cells. L1CAM expressing GBM cells and differentiated glioma stem-like cells showed a reduced apoptotic response after treatment with the chemotherapeutic drug temozolomide. Accordingly, siRNA-mediated knock-down of L1CAM in A172 cells and differentiated glioma stem-like cells increased chemosensitivity, whereas overexpression of L1CAM in T98G cells and glioma spheroids diminished the apoptotic response. Elevated L1CAM expression caused a diminished expression of caspase-8 in GBM and differentiated glioma stem-like cells. These data show that TGF-β1 dependent upregulation of L1CAM expression in GBM cells leads to the downregulation of caspase-8 and apoptosis resistance pointing to L1CAM as potential target for improved therapy of GBM patients.
Collapse
|
40
|
Guo J, Niu R, Huang W, Zhou M, Shi J, Zhang L, Liao H. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro. Pathol Oncol Res 2012; 18:1047-57. [PMID: 22996727 DOI: 10.1007/s12253-012-9543-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.
Collapse
Affiliation(s)
- JingJing Guo
- Neurobiology Lab, Jiangsu Center for Drug Screening, China Pharmaceutical University, 24# Tong Jiaxiang road, Nanjing, 210009, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Sher F, Boddeke E, Olah M, Copray S. Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes. PLoS One 2012; 7:e40399. [PMID: 22808153 PMCID: PMC3395718 DOI: 10.1371/journal.pone.0040399] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background The polycomb group protein Ezh2 is an epigenetic repressor of transcription originally found to prevent untimely differentiation of pluripotent embryonic stem cells. We previously demonstrated that Ezh2 is also expressed in multipotent neural stem cells (NSCs). We showed that Ezh2 expression is downregulated during NSC differentiation into astrocytes or neurons. However, high levels of Ezh2 remained present in differentiating oligodendrocytes until myelinating. This study aimed to elucidate the target genes of Ezh2 in NSCs and in premyelinating oligodendrocytes (pOLs). Methodology/Principal Findings We performed chromatin immunoprecipitation followed by high-throughput sequencing to detect the target genes of Ezh2 in NSCs and pOLs. We found 1532 target genes of Ezh2 in NSCs. During NSC differentiation, the occupancy of these genes by Ezh2 was alleviated. However, when the NSCs differentiated into oligodendrocytes, 393 of these genes remained targets of Ezh2. Analysis of the target genes indicated that the repressive activity of Ezh2 in NSCs concerns genes involved in stem cell maintenance, in cell cycle control and in preventing neural differentiation. Among the genes in pOLs that were still repressed by Ezh2 were most prominently those associated with neuronal and astrocytic committed cell lineages. Suppression of Ezh2 activity in NSCs caused loss of stem cell characteristics, blocked their proliferation and ultimately induced apoptosis. Suppression of Ezh2 activity in pOLs resulted in derangement of the oligodendrocytic phenotype, due to re-expression of neuronal and astrocytic genes, and ultimately in apoptosis. Conclusions/Significance Our data indicate that the epigenetic repressor Ezh2 in NSCs is crucial for proliferative activity and maintenance of neural stemness. During differentiation towards oligodendrocytes, Ezh2 repression continues particularly to suppress other neural fate choices. Ezh2 is completely downregulated during differentiation towards neurons and astrocytes allowing transcription of these differentiation programs. The specific fate choice towards astrocytes or neurons is apparently controlled by epigenetic regulators other than Ezh2.
Collapse
Affiliation(s)
- Falak Sher
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Boddeke
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marta Olah
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjef Copray
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Lima FRS, Kahn SA, Soletti RC, Biasoli D, Alves T, da Fonseca ACC, Garcia C, Romão L, Brito J, Holanda-Afonso R, Faria J, Borges H, Moura-Neto V. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta Rev Cancer 2012; 1826:338-49. [PMID: 22677165 DOI: 10.1016/j.bbcan.2012.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive human cancers. Despite current advances in multimodality therapies, such as surgery, radiotherapy and chemotherapy, the outcome for patients with high grade glioma remains fatal. The knowledge of how glioma cells develop and depend on the tumor environment might open opportunities for new therapies. There is now a growing awareness that the main limitations in understanding and successfully treating GBM might be bypassed by the identification of a distinct cell type that has defining properties of somatic stem cells, as well as cancer-initiating capacity - brain tumor stem cells, which could represent a therapeutic target. In addition, experimental studies have demonstrated that the combination of antiangiogenic therapy, based on the disruption of tumor blood vessels, with conventional chemotherapy generates encouraging results. Emerging reports have also shown that microglial cells can be used as therapeutic vectors to transport genes and/or substances to the tumor site, which opens up new perspectives for the development of GBM therapies targeting microglial cells. Finally, recent studies have shown that natural toxins can be conjugated to drugs that bind to overexpressed receptors in cancer cells, generating targeted-toxins to selectively kill cancer cells. These targeted-toxins are highly effective against radiation- and chemotherapy-resistant cancer cells, making them good candidates for clinical trials in GBM patients. In this review, we discuss recent studies that reveal new possibilities of GBM treatment taking into account cancer stem cells, angiogenesis, microglial cells and drug delivery in the development of new targeted-therapies.
Collapse
Affiliation(s)
- Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Stem cells are considered as potential therapy for inflammatory disorders, tissue repair, and gene delivery, among others. The heterogeneity of a disease and the underlying disorder of a patient bring up the question on the method by which stem cells should be delivered. This summary discusses potential complex interactions among mediators at sites to tissue insults with stem cells. The chapter selects mesenchymal stem cells (MSCs) as a model, although the discussion is relevant to all stem cells. The review examines how MSCs and their differentiated cells can develop cross communication with soluble factors and cells within the region of tissue damage. Inflammatory cytokines, IL-1, TNFα, and TGFβ are selected to explain how they can affect the responses of MSCs, while predisposing the stem cells to oncogenic event. By understanding the varied functions of MSCs, one will be able to intervene to form a balance in functions, ultimately to achieve safety and efficient application. Cytokines can affect the expression of pluripotent genes such as REST and Oct-4. REST is a critical gene in the decision of a cell to express or repress neural genes. Since cytokines can affect microRNAs, the review incorporates this family of molecules as mediators of cytokine effects. IFNγ, although an inflammatory mediator, is central to the expression of MHC-II on MSCs. Therefore, it is included to discuss its role in the transplantation of stem cells across allogeneic barrier. In summary, this chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies.
Collapse
|
44
|
Gauthaman K, Fong CY, Suganya CA, Subramanian A, Biswas A, Choolani M, Bongso A. Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod Biomed Online 2011; 24:235-46. [PMID: 22196893 DOI: 10.1016/j.rbmo.2011.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 12/21/2022]
Abstract
Tumorigenesis is the major obstacle of tissues derived from human embryonic stem cells (ESC) and human induced pluripotent stem cell (IPSC) for transplantation therapy. This prompted a search for other sources of ESC. This study isolated and characterized stem cells from the extra-embryonic human umbilical cord Wharton's jelly (WJSC). These cells are non-controversial, available in abundance, proliferative, multipotent and hypoimmunogenic. However, their tumorigenic potential has not been properly addressed. Their tumour-producing capabilities were compared with human ESC using the immunodeficient mouse model. Unlabelled human ESC+matrigel (2×10(6)cells/site), labelled human WJSC (red fluorescent protein; 5×10(6)cells/site) and unlabelled human WJSC+matrigel (5×10(6)cells/site) were injected via three routes (s.c., i.m. and i.p.). Animals that received human ESC+matrigel developed teratomas in 6 weeks (s.c. 85%; i.m. 75%; i.p. 100%) that contained tissues of ectoderm, mesoderm and endoderm. No animal that received human WJSC developed tumours or inflammatory reactions at the injection sites when maintained for a prolonged period (20 weeks). Human WJSC produced increases in anti-inflammatory cytokines in contrast to human ESC, which increased pro-inflammatory cytokines. Human WJSC, being hypoimmunogenic and non-tumorigenic, have the potential for safe cell-based therapies.
Collapse
Affiliation(s)
- Kalamegam Gauthaman
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
45
|
Sherman LS, Munoz J, Patel SA, Dave MA, Paige I, Rameshwar P. Moving from the laboratory bench to patients' bedside: considerations for effective therapy with stem cells. Clin Transl Sci 2011; 4:380-6. [PMID: 22029813 PMCID: PMC5439898 DOI: 10.1111/j.1752-8062.2011.00283.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although stem cell therapy is not a new field, the field was limited to transplantation of hematopoietic stem cells. Such transplantation has provided invaluable information for the emerging field with new stem cells. Mesenchymal stem cells (MSCs) are an attractive source for therapy; reduced ethical concern, ease in expansion, as off-the-shelf stem cells. MSCs exert immune suppressive properties, providing them with the potential for immune suppressive therapy such as autoimmunity, asthma, allergic rhinitis and graft versus host disease. In addition, MSCs, as well as other stem cells, can be applied for bone and cartilage repair, cardiovascular disease, and neural repair/protection. The data thus far with MSCs are mixed. This review discusses the immune-enhancing properties of MSCs to explain the possible confounds of inflammatory microenvironment in the MSCs therapy. Although this review focuses on MSCs, the information can be extrapolated to other stem cells. The review summarizes the biology of MSCs, including multilineage differentiation potential, transdifferentiation capability, and immunological effects. We emphasize the key concepts that may predict the use of these cells in medicine, namely, the application of these cells from the bench to the bedside. Prospects on immunotherapy, neuroregeneration, and cardiovascular repair are used as examples of tissue repair.
Collapse
Affiliation(s)
- Lauren S. Sherman
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Jessian Munoz
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
- University of Medicine and Dentistry of New Jersey‐Graduate School of Biomedical Science, Newark Campus, Newark, New Jersey, USA
| | - Shyam A. Patel
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
- University of Medicine and Dentistry of New Jersey‐Graduate School of Biomedical Science, Newark Campus, Newark, New Jersey, USA
| | - Meneka A. Dave
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Ilani Paige
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| | - Pranela Rameshwar
- University of Medicine and Dentistry of New Jersey‐New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
46
|
Rodini CO, Suzuki DE, Nakahata AM, Pereira MCL, Janjoppi L, Toledo SRC, Okamoto OK. Aberrant signaling pathways in medulloblastomas: a stem cell connection. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 68:947-52. [PMID: 21243257 DOI: 10.1590/s0004-282x2010000600021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.
Collapse
|
47
|
Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia 2011; 13:276-85. [PMID: 21390190 DOI: 10.1593/neo.101540] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 01/27/2023] Open
Abstract
Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.
Collapse
|
48
|
Yamada K, Tso J, Ye F, Choe J, Liu Y, Liau LM, Tso CL. Essential gene pathways for glioblastoma stem cells: clinical implications for prevention of tumor recurrence. Cancers (Basel) 2011; 3:1975-95. [PMID: 24212792 PMCID: PMC3757400 DOI: 10.3390/cancers3021975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/19/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (World Health Organization/WHO grade IV) is the most common and most aggressive adult glial tumor. Patients with glioblastoma, despite being treated with gross total resection and post-operative radiation/chemotherapy, will almost always develop tumor recurrence. Glioblastoma stem cells (GSC), a minor subpopulation within the tumor mass, have been recently characterized as tumor-initiating cells and hypothesized to be responsible for post-treatment recurrence because of their enhanced radio-/chemo-resistant phenotype and ability to reconstitute tumors in mouse brains. Genome-wide expression profile analysis uncovered molecular properties of GSC distinct from their differentiated, proliferative progeny that comprise the majority of the tumor mass. In contrast to the hyperproliferative and hyperangiogenic phenotype of glioblastoma tumors, GSC possess neuroectodermal properties and express genes associated with neural stem cells, radial glial cells, and neural crest cells, as well as portray a migratory, quiescent, and undifferentiated phenotype. Thus, cell cycle-targeted radio-chemotherapy, which aims to kill fast-growing tumor cells, may not completely eliminate glioblastoma tumors. To prevent tumor recurrence, a strategy targeting essential gene pathways of GSC must be identified and incorporated into the standard treatment regimen. Identifying intrinsic and extrinsic cues by which GSC maintain stemness properties and sustain both tumorigenesis and anti-apoptotic features may provide new insights into potentially curative strategies for treating brain cancers.
Collapse
Affiliation(s)
- Kazunari Yamada
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
| | - Jonathan Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
| | - Fei Ye
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
| | - Jinny Choe
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
| | - Yue Liu
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; E-Mail: (L.M.L.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Cho-Lea Tso
- Department of Surgery/Surgical Oncology, David Geffen School of Medicine, University of California Los Angeles, 13-260 Factor building, 10833 Le Conte Avenue, Los Angeles, California 90095, USA; E-Mails: (K.Y.); (J.T.); (F.Y.); (J.C.); (Y.L.); (C.L.T.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-310-825-1066; Fax: +1- 310-825-7575
| |
Collapse
|
49
|
Robinson AP, Foraker JE, Ylostalo J, Prockop DJ. Human stem/progenitor cells from bone marrow enhance glial differentiation of rat neural stem cells: a role for transforming growth factor β and Notch signaling. Stem Cells Dev 2011; 20:289-300. [PMID: 20575640 PMCID: PMC3128772 DOI: 10.1089/scd.2009.0444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/23/2010] [Indexed: 12/20/2022] Open
Abstract
Multipotent stem/progenitor cells from bone marrow stroma (mesenchymal stromal cells or MSCs) were previously shown to enhance proliferation and differentiation of neural stem cells (NSCs) in vivo, but the molecular basis of the effect was not defined. Here coculturing human MSCs (hMSCs) with rat NSCs (rNSCs) was found to stimulate astrocyte and oligodendrocyte differentiation of the rNSCs. To survey the signaling pathways involved, RNA from the cocultures was analyzed by species-specific microarrays. In the hMSCs, there was an upregulation of transcripts for several secreted factors linked to differentiation: bone morphogenetic protein 1 (BMP1), hepatocyte growth factor (HGF), and transforming growth factor isoforms (TGFβ1 and TGFβ3). In both the hMSCs and the rNSCs, there was an upregulation of transcripts for Notch signaling. The role of TGFβ1 was verified by the demonstration that hMSCs in coculture increased secretion of TGFβ1, the rNSCs expressed the receptor, and an inhibitor of TGFβ signaling blocked differentiation. The role of Notch signaling was verified by the demonstration that in the cocultures hMSCs expressed a Notch ligand at sites of cell contact with rNSCs, and the rNSCs expressed the receptor, Notch 1. Increased Notch signaling in both cell types was then demonstrated by assays of transcript expression and by a reporter construct for downstream targets of Notch signaling. The results demonstrated that glial differentiation of the rNSCs in the cocultures was driven by increased secretion of soluble factors such as TGFβ1 by the hMSCs and probably through increased cell contact signaling between the hMSCs and rNSCs through the Notch pathway.
Collapse
|
50
|
Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. Chemical Control of Stem Cell Fate and Developmental Potential. Angew Chem Int Ed Engl 2010; 50:200-42. [DOI: 10.1002/anie.201004284] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Costas A. Lyssiotis
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Luke L. Lairson
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Anthony E. Boitano
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Heiko Wurdak
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Shoutian Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Peter G. Schultz
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| |
Collapse
|