1
|
Wang WT, Xing TY, Du KX, Hua W, Guo JR, Duan ZW, Wu YF, Wu JZ, Li Y, Yin H, Shen HR, Wang L, Li JY, Liang JH, Xu W. CD30 protects EBV-positive diffuse large B-cell lymphoma cells against mitochondrial dysfunction through BNIP3-mediated mitophagy. Cancer Lett 2024; 583:216616. [PMID: 38211650 DOI: 10.1016/j.canlet.2024.216616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Epstein-Barr virus (EBV) positive diffuse large B-cell lymphoma (EBV+ DLBCL) predicts poor prognosis and CD30 expression aggravates the worse consequences. Here, we reported that CD30 positivity was an independent prognostic indicator in EBV+ DLBCL patients in a retrospective cohort study. We harnessed CRISPR/Cas9 editing to engineer the first loss-of-function models of CD30 deficiency to identify that CD30 was critical for EBV+ DLBCL growth and survival. We established a pathway that EBV infection mediated CD30 expression through EBV-encoded latent membrane protein 1 (LMP1), which involved NF-κB signaling. CRISPR CD30 knockout significantly repressed BCL2 interacting protein 3 (BNIP3) expression and co-IP assay indicated a binding between CD30 and BNIP3. Moreover, silencing of CD30 induced mitochondrial dysfunction and suppressed mitophagy, resulting in the accumulation of damaged mitochondria by depressing BNIP3 expression. Additionally, CRISPR BNIP3 knockout caused proliferation defects and increased sensitivity to apoptosis. All the findings reveal a strong relationship between mitophagy and adverse prognosis of EBV+ DLBCL and discover a new regulatory mechanism of BNIP3-mediated mitophagy, which may help develop effective treatment regimens with anti-CD30 antibody brentuximab vedotin to improve the prognosis of CD30+ EBV+ DLBCL patients.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Tong-Yao Xing
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Wei Hua
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jing-Ran Guo
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Zi-Wen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi-Fan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| |
Collapse
|
2
|
Dharnidharka VR, Ruzinova MB, Marks LJ. Post-Transplant Lymphoproliferative Disorders. Semin Nephrol 2024; 44:151503. [PMID: 38519279 PMCID: PMC11213680 DOI: 10.1016/j.semnephrol.2024.151503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are a heterogenous set of unregulated lymphoid cell proliferations after organ or tissue transplant. A majority of cases are associated with the Epstein-Barr virus and higher intensity of pharmacologic immunosuppression. The clinical presentations are numerous. The diagnosis is ideally by histology, except in cases where the tumor is inaccessible to biopsy. While some pre-emptive therapies and treatment strategies are available have reasonable success are available, they do not eliminate the high morbidity and significant mortality after PTLD.
Collapse
Affiliation(s)
- Vikas R Dharnidharka
- Division of Pediatric Nephrology, Hypertension and Apheresis, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lianna J Marks
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
3
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
5
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of Target Gene Regulation by the Two Epstein-Barr Virus Oncogene LMP1 Domains Essential for B-cell Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536234. [PMID: 37090591 PMCID: PMC10120669 DOI: 10.1101/2023.04.10.536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1) mimics CD40 signaling and is expressed by multiple malignancies. Two LMP1 C-terminal cytoplasmic tail regions, termed transformation essential sites (TES) 1 and 2, are critical for EBV transformation of B lymphocytes into immortalized lymphoblastoid cell lines (LCL). However, TES1 versus TES2 B-cell target genes have remained incompletely characterized, and whether both are required for LCL survival has remained unknown. To define LCL LMP1 target genes, we profiled transcriptome-wide effects of acute LMP1 CRISPR knockout (KO) prior to cell death. To then characterize specific LCL TES1 and TES2 roles, we conditionally expressed wildtype, TES1 null, TES2 null or double TES1/TES2 null LMP1 alleles upon endogenous LMP1 KO. Unexpectedly, TES1 but not TES2 signaling was critical for LCL survival. The LCL dependency factor cFLIP, which plays obligatory roles in blockade of LCL apoptosis, was highly downmodulated by loss of TES1 signaling. To further characterize TES1 vs TES2 roles, we conditionally expressed wildtype, TES1 and/or TES2 null LMP1 alleles in two Burkitt models. Systematic RNAseq analyses revealed gene clusters that responded more strongly to TES1 versus TES2, that respond strongly to both or that are oppositely regulated. Robust TES1 effects on cFLIP induction were again noted. TES1 and 2 effects on expression of additional LCL dependency factors, including BATF and IRF4, and on EBV super-enhancers were identified. Collectively, these studies suggest a model by which LMP1 TES1 and TES2 jointly remodel the B-cell transcriptome and highlight TES1 as a key therapeutic target.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Amin A, Morello M, Petrara MR, Rizzo B, Argenton F, De Rossi A, Giunco S. Short-Term TERT Inhibition Impairs Cellular Proliferation via a Telomere Length-Independent Mechanism and Can Be Exploited as a Potential Anticancer Approach. Cancers (Basel) 2023; 15:2673. [PMID: 37345011 DOI: 10.3390/cancers15102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), the catalytic component of telomerase, may also contribute to carcinogenesis via telomere-length independent mechanisms. Our previous in vitro and in vivo studies demonstrated that short-term telomerase inhibition by BIBR1532 impairs cell proliferation without affecting telomere length. Here, we show that the impaired cell cycle progression following short-term TERT inhibition by BIBR1532 in in vitro models of B-cell lymphoproliferative disorders, i.e., Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines (LCLs), and B-cell malignancies, i.e., Burkitt's lymphoma (BL) cell lines, is characterized by a significant reduction in NF-κB p65 nuclear levels leading to the downregulation of its target gene MYC. MYC downregulation was associated with increased expression and nuclear localization of P21, thus promoting its cell cycle inhibitory function. Consistently, treatment with BIBR1532 in wild-type zebrafish embryos significantly decreased Myc and increased p21 expression. The combination of BIBR1532 with antineoplastic drugs (cyclophosphamide or fludarabine) significantly reduced xenografted cells' proliferation rate compared to monotherapy in the zebrafish xenograft model. Overall, these findings indicate that short-term inhibition of TERT impairs cell growth through the downregulation of MYC via NF-κB signalling and supports the use of TERT inhibitors in combination with antineoplastic drugs as an efficient anticancer strategy.
Collapse
Affiliation(s)
- Aamir Amin
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Raffaella Petrara
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Beatrice Rizzo
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | | | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
7
|
The lytic phase of Epstein-Barr virus plays an important role in tumorigenesis. Virus Genes 2023; 59:1-12. [PMID: 36242711 DOI: 10.1007/s11262-022-01940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a recognized oncogenic virus that is related to the occurrence of lymphoma, nasopharyngeal carcinoma (NPC), and approximately 10% of gastric cancer (GC). EBV is a herpesvirus, and like other herpesviruses, EBV has a biphasic infection mode made up of latent and lytic infections. It has been established that latent infection promotes tumorigenesis in previous research, but in recent years, there has been new evidence that suggests that the lytic infection mode could also promote tumorigenesis. In this review, we mainly discuss the contribution of the EBV lytic phase to tumorigenesis, and graphically illustrate their relationship in detail. In addition, we described the relationship between the lytic cycle of EBV and autophagy. Finally, we also preliminarily explored the influence of the tumorigenesis effect of the EBV lytic phase on the future treatment of EBV-associated tumors.
Collapse
|
8
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
9
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
10
|
Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct Target Ther 2021; 6:408. [PMID: 34836940 PMCID: PMC8626493 DOI: 10.1038/s41392-021-00787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection is the risk factors for nasopharyngeal carcinoma and cervical carcinoma, respectively. However, clinical analyses demonstrate that EBV or HPV is associated with improved response of patients, although underlying mechanism remains unclear. Here, we reported that the oncoproteins of DNA viruses, such as LMP1 of EBV and E7 of HPV, inhibit PERK activity in cancer cells via the interaction of the viral oncoproteins with PERK through a conserved motif. Inhibition of PERK led to increased level of reactive oxygen species (ROS) that promoted tumor and enhanced the efficacy of chemotherapy in vivo. Consistently, disruption of viral oncoprotein-PERK interactions attenuated tumor growth and chemotherapy in both cancer cells and tumor-bearing mouse models. Our findings uncovered a paradoxical effect of DNA tumor virus oncoproteins on tumors and highlighted that targeting PERK might be an attractive strategy for the treatment of NPC and cervical carcinoma.
Collapse
|
11
|
Zhu QY, Zhao GX, Li Y, Talakatta G, Mai HQ, Le QT, Young LS, Zeng MS. Advances in pathogenesis and precision medicine for nasopharyngeal carcinoma. MedComm (Beijing) 2021; 2:175-206. [PMID: 34766141 PMCID: PMC8491203 DOI: 10.1002/mco2.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous carcinoma with apparent geographical and racial distribution, mostly prevalent in East and Southeast Asia, particularly concentrated in southern China. The epidemiological trend over the past decades has suggested a substantial reduction in the incidence rate and mortality rate due to NPC. These results may reflect changes in lifestyle and environment, and more importantly, a deeper comprehension of the pathogenic mechanism of NPC, leading to much progress in the preventing, screening, and treating for this cancer. Herein, we present the recent advances on the key signal pathways involved in pathogenesis of NPC, the mechanism of Epstein‐Barr virus (EBV) entry into the cell, and the progress of EBV vaccine and screening biomarkers. We will also discuss in depth the development of various therapeutic approaches including radiotherapy, chemotherapy, surgery, targeted therapy, and immunotherapy. These research advancements have led to a new era of precision medicine in NPC.
Collapse
Affiliation(s)
- Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Girish Talakatta
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| | - Quynh-Thu Le
- Department of Radiation Oncology Stanford California
| | - Lawrence S Young
- Warwick Medical School University of Warwick Coventry United Kingdom
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Sun Yat-sen University Cancer Center (SYSUCC) Guangzhou China
| |
Collapse
|
12
|
Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio 2021; 12:e0109721. [PMID: 34488443 PMCID: PMC8546576 DOI: 10.1128/mbio.01097-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023] Open
Abstract
The Epstein-Barr virus (EBV) protein LMP1 serves as a paradigm that engages complicated ubiquitination-mediated mechanisms to activate multiple transcription factors. p62 is a ubiquitin sensor and a signal-transducing adaptor that has multiple functions in diverse contexts. However, the interaction between p62 and oncogenic viruses is poorly understood. We recently reported a crucial role for p62 in oncovirus-mediated oxidative stress by acting as a selective autophagy receptor. In this following pursuit, we further discovered that p62 is upregulated in EBV type 3 compared to type 1 latency, with a significant contribution from NF-κB and AP1 activities downstream of LMP1 signaling. In turn, p62 participates in LMP1 signal transduction through its interaction with TRAF6, promoting TRAF6 ubiquitination and activation. As expected, short hairpin RNA (shRNA)-mediated knockdown (KD) of p62 transcripts reduces LMP1-TRAF6 interaction and TRAF6 ubiquitination, as well as p65 nuclear translocation, which was assessed by Amnis imaging flow cytometry. Strikingly, LMP1-stimulated NF-κB, AP1, and Akt activities are all markedly reduced in p62-/- mouse embryo fibroblasts (MEFs) and in EBV-negative Burkitt's lymphoma (BL) cell lines with CRISPR-mediated knockout (KO) of the p62-encoding gene. However, EBV-positive BL cell lines (type 3 latency) with CRISPR-mediated KO of the p62-encoding gene failed to survive. In consequence, shRNA-mediated p62 KD impairs the ability of LMP1 to regulate its target gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of lymphoblastic cell lines (LCLs). These important findings have revealed a previously unrecognized novel role for p62 in EBV latency and oncogenesis, which advances our understanding of the mechanism underlying virus-mediated oncogenesis. IMPORTANCE As a ubiquitin sensor and a signal-transducing adaptor, p62 is crucial for NF-κB activation, which involves the ubiquitin machinery, in diverse contexts. However, whether p62 is required for EBV LMP1 activation of NF-κB is an open question. In this study, we provide evidence that p62 is upregulated in EBV type 3 latency and, in turn, p62 mediates LMP1 signal transduction to NF-κB, AP1, and Akt by promoting TRAF6 ubiquitination and activation. In consequence, p62 deficiency negatively regulates LMP1-mediated gene expression, promotes etoposide-induced apoptosis, and reduces the proliferation of LCLs. These important findings identified p62 as a novel signaling component of the key viral oncogenic signaling pathway.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Juan Zhao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Shanna R. Horne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Kaylea B. Mohr
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, Tennessee, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
13
|
Targeted Therapies for Epstein-Barr Virus-Associated Lymphomas. Cancers (Basel) 2020; 12:cancers12092565. [PMID: 32916819 PMCID: PMC7564798 DOI: 10.3390/cancers12092565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) is the first-discovered and important human tumor virus. It infects more than 90% of human population and induces various lymphomas. Development of specific targeted therapies is very critical for treatment of EBV-induced lymphomas, but it remains a great challenge. In this review, we introduced the current progress of EBV-specific therapies and the promising approaches that can be developed as novel targeted therapies, which involve protective or therapeutic strategies to target these lymphomas on different levels. This work will provide new insights into the development of new targeted therapies against EBV-associated lymphomas. Abstract The Epstein-Barr virus (EBV) is the first human tumor virus identified that can transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. EBV can establish asymptomatic life-long persistence and is associated with multiple human malignancies, including non-Hodgkin lymphoma and Hodgkin lymphoma, as well as infectious mononucleosis. Although EBV-associated lymphomagenesis has been investigated for over 50 years, viral-mediated transformation is not completely understood, and the development of EBV-specific therapeutic strategies to treat the associated cancers is still a major challenge. However, the rapid development of several novel therapies offers exciting possibilities to target EBV-induced lymphomas. This review highlights targeted therapies with potential for treating EBV-associated lymphomas, including small molecule inhibitors, immunotherapy, cell therapy, preventative and therapeutic vaccines, and other potent approaches, which are novel strategies for controlling, preventing, and treating these viral-induced malignances.
Collapse
|
14
|
Fang WL, Chen MH, Huang KH, Lin CH, Chao Y, Lo SS, Li AFY, Wu CW, Shyr YM. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers (Basel) 2020; 12:cancers12061517. [PMID: 32531970 PMCID: PMC7352714 DOI: 10.3390/cancers12061517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Epstein–Barr virus (EBV)-associated gastric cancer (GC) is one of four major gastric cancer types and is traditionally considered to be related to lymphoepithelioma-like GC. Few studies have investigated the clinical significance of EBV infection in intestinal/solid type, diffuse (poorly cohesive) type, and lymphoepithelioma-like GC. Methods: A total of 460 GC patients receiving curative surgery were enrolled. The clinicopathological features, genetic alterations and prognoses were compared between patients with and without EBV infection. Results: EBV-positive GC patients (n = 43) had more tumors located in the upper and middle stomach, more common in lymphoepithelioma-like carcinoma, more lymphoid stroma, fewer Helicobacter pylori infections, and higher programmed death-ligand 1 (PD-L1) expression than EBV-negative GC patients. For intestinal/solid type GC, EBV-positive tumors were more likely to be located in the upper and middle stomach, have more lymphoid stroma, fewer Helicobacter pylori infections, higher PD-L1 expression, and more liver metastases than EBV-negative tumors. For diffuse (poorly cohesive) type GC, EBV-positive tumors were more likely to be located in the upper stomach, and have more lymphoid stroma than EBV-negative tumors. For lymphoepithelioma-like GC, EBV-positive tumors had more PI3K/AKT pathway mutations than EBV-negative tumors. Conclusions: Intestinal/solid type GC patients with EBV-positive tumors were associated with higher PD-L1 expression and more liver metastases, while lymphoepithelioma-like GC patients with EBV-positive tumors had more PI3K/AKT pathway mutations. Immunotherapy and targeted therapy may be beneficial for these groups of patients. Routine EBV survey is recommended in GC.
Collapse
Affiliation(s)
- Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Correspondence:
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| | - Chien-Hsing Lin
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Department of Surgery, National Yang-Ming University Hospital, Yilan 26058, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chew-Wun Wu
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| |
Collapse
|
15
|
Jakovljevic A, Nikolic N, Carkic J, Andric M, Miletic M, Beljic-Ivanovic K, Jovanovic T, Milasin J. Notch - a possible mediator between Epstein-Barr virus infection and bone resorption in apical periodontitis. Acta Odontol Scand 2020; 78:126-131. [PMID: 31570027 DOI: 10.1080/00016357.2019.1658896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: This study aimed to investigate whether Epstein-Barr virus (EBV) positive periapical lesions exhibited higher mRNA levels of Notch signalling molecules (Notch2 and Jagged1), bone resorption regulators (receptor activator of nuclear factor kappa-β ligand (RANKL) and osteoprotegerin (OPG)), and proinflammatory cytokines (tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6) compared to EBV negative lesions. Additionally, the potential correlation between investigated molecules in periapical lesions was analyzed.Materials and methods: Sixty-four apical periodontitis lesions were obtained subsequent to standard apicoectomy procedure. The presence of EBV was determined using nested PCR. Based on the presence of EBV all periapical lesions were divided into two groups, 29 EBV positive and 35 EBV negative lesions. A reverse transcriptase real-time PCR was used to determine mRNA levels of Notch2, Jagged1, RANKL, OPG, TNF-α, IL-1β and IL-6.Results: Significantly higher mRNA levels of Notch2, Jagged1, RANKL and IL-1β were observed in EBV positive compared to EBV negative lesions. Significant positive correlation was present between Notch2 and Jagged1, Jagged1 and RANKL, and IL-β and TNF-α in EBV positive periapical lesions.Conclusions: Notch signalling pathway may be involved in alveolar bone resorption in apical periodontitis lesions infected by EBV.
Collapse
Affiliation(s)
- Aleksandar Jakovljevic
- Department of Pathophysiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslav Andric
- Department of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Miletic
- Department of Pathophysiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Beljic-Ivanovic
- Department of Restorative Odontology and Endodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Tanja Jovanovic
- Department of Virusology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Johnson KE, Tarakanova VL. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol 2020; 33:316-326. [PMID: 31913773 DOI: 10.1089/vim.2019.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.
Collapse
Affiliation(s)
- Kaitlin E Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
17
|
Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019; 93:JVI.00238-19. [PMID: 30971472 PMCID: PMC6580952 DOI: 10.1128/jvi.00238-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus which asymptomatically infects the majority of the world population. Under immunocompromised conditions, EBV can trigger human cancers of epithelial and lymphoid origin. The oncogenic potential of EBV is demonstrated by in vitro infection and transformation of quiescent B cells into lymphoblastoid cell lines (LCLs). These cell lines, along with primary infection using genetically engineered viral particles coupled with recent technological advancements, have elucidated the underlying mechanisms of EBV-induced B-cell lymphomagenesis.
Collapse
|
18
|
Shair KHY, Reddy A, Cooper VS. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:cancers10040086. [PMID: 29561768 PMCID: PMC5923341 DOI: 10.3390/cancers10040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV) oncogenic protein that has no intrinsic enzymatic activity or sequence homology to cellular or viral proteins. The oncogenic potential of LMP1 has been ascribed to pleiotropic signaling properties initiated through protein-protein interactions in cytosolic membrane compartments, but the effects of LMP1 extend to nuclear and extracellular processes. Although LMP1 is one of the latent genes required for EBV-immortalization of B cells, the biology of LMP1 in the pathogenesis of the epithelial cancer nasopharyngeal carcinoma (NPC) is more complex. NPC is prevalent in specific regions of the world with high incidence in southeast China. The epidemiology and time interval from seroconversion to NPC onset in adults would suggest the involvement of multiple risk factors that complement the establishment of a latent and persistent EBV infection. The contribution of LMP1 to EBV pathogenesis in polarized epithelia has only recently begun to be elucidated. Furthermore, the LMP1 gene has emerged as one of the most divergent sequences in the EBV genome. This review will discuss the significance of recent advances in NPC research from elucidating LMP1 function in epithelial cells and lessons that could be learned from mining LMP1 sequence diversity.
Collapse
Affiliation(s)
- Kathy H Y Shair
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akhil Reddy
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
19
|
Song S, Gong S, Singh P, Lyu J, Bai Y. The interaction between mitochondria and oncoviruses. Biochim Biophys Acta Mol Basis Dis 2018; 1864:481-487. [PMID: 28962899 PMCID: PMC8895674 DOI: 10.1016/j.bbadis.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria play important roles in multiple aspects of viral tumorigenesis. Mitochondrial genomes contribute to the host's genetic background. After viruses enter the cell, they modulate mitochondrial function and thus alter bioenergetics and retrograde signaling pathways. At the same time, mitochondria also regulate and mediate viral oncogenesis. In this context, oncogenesis by oncoviruses like Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human papilloma virus (HPV), Human Immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) will be discussed.
Collapse
Affiliation(s)
- Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shasha Gong
- School of Medicine, Taizhou College, Taizhou, Zhejiang, China
| | - Pragya Singh
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| |
Collapse
|
20
|
Gan R, Xie X, He J, Liu X, Hong L, Tang Y, Liu F, Xie H. Gene Analysis of Epstein-Barr Virus-Associated Lymphomas in Hu-PBL/SCID Chimeras. TUMORI JOURNAL 2018; 96:465-72. [DOI: 10.1177/030089161009600315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims and background The mechanisms of Epstein-Barr virus (EBV)-associated tumor development are incompletely understood. The aim of this study was to investigate the gene expression of EBV-associated lymphomas in hu-PBL/SCID mice. Methods Human peripheral blood lymphocytes (hu-PBL) from EBV-seropositive donors were transplanted into severe combined immunodeficiency (SCID) mice. In situ hybridization was used to detect EBV-encoded small RNA-1 (EBER1) in tumor tissues. Mutation of TP53 exons 5–8 in EBV-induced lymphomas was analyzed by PCR-SSCP. Immunohistochemical staining was used to examine EBV gene products and cellular oncoproteins. Results Twenty-one of 29 mice developed tumors. EBER1 was positive in the nuclei of almost all tumor cells. Immunohistochemistry showed positive staining of LMP1, EBNA2 and ZEBRA in a small number of tumor cells. Immunohistochemically detectable p53 protein expression was common (85.7%), but TP53 gene mutations were identified in only four cases (19.1%) of EBV-associated lymphomas. Positivity rates of C-myc, Bcl-2 and Bax expression were 100%, 95.2%, and 90.5%, respectively, in the 21 cases of EBV-associated lymphomas. Conclusions Our preliminary findings suggest that EBV-associated lymphomas in hu-PBL/SCID chimeras show EBV infection, expression of oncogenic viral genes, and overexpression of cellular oncogenes. TP53 gene mutations are rare but p53 protein is commonly expressed in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Runliang Gan
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Xiaoli Xie
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Jie He
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Xiaomin Liu
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Li Hong
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Yunlian Tang
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Fang Liu
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| | - Hailong Xie
- Cancer Research Institute, University of South China, Hengyang City, Hunan 421001, China
| |
Collapse
|
21
|
Wang L, Howell ME, McPeak B, Riggs K, Kohne C, Yohanon JU, Foxler DE, Sharp TV, Moorman JP, Yao ZQ, Ning S. LIMD1 is induced by and required for LMP1 signaling, and protects EBV-transformed cells from DNA damage-induced cell death. Oncotarget 2018; 9:6282-6297. [PMID: 29464072 PMCID: PMC5814212 DOI: 10.18632/oncotarget.23676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
LIMD1 (LIM domain-containing protein 1) is considered as a tumor suppressor, being deregulated in many cancers to include hematological malignancies; however, very little is known about the underlying mechanisms of its deregulation and its roles in carcinogenesis. Epstein-Barr Virus (EBV) is associated with a panel of malignancies of lymphocytic and epithelial origin. Using high throughput expression profiling, we have previously identified LIMD1 as a common marker associated with the oncogenic transcription factor IRF4 in EBV-related lymphomas and other hematological malignancies. In this study, we have identified potential conserved IRF4- and NFκB-binding motifs in the LIMD1 gene promoter, and both are demonstrated functional by promoter-reporter assays. We further show that LIMD1 is partially upregulated by EBV latent membrane protein 1 (LMP1) via IRF4 and NFκB in EBV latency. As to its role in the setting of EBV latent infection, we show that LIMD1 interacts with TRAF6, a crucial mediator of LMP1 signal transduction. Importantly, LIMD1 depletion impairs LMP1 signaling and functions, potentiates ionomycin-induced DNA damage and apoptosis, and inhibits p62-mediated selective autophagy. Taken together, these results show that LIMD1 is upregulated in EBV latency and plays an oncogenic role rather than that of a tumor suppressor. Our findings have identified LIMD1 as a novel player in EBV latency and oncogenesis, and open a novel research avenue, in which LIMD1 and p62 play crucial roles in linking DNA damage response (DDR), apoptosis, and autophagy and their potential interplay during viral oncogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Mary E.A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Brooke McPeak
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Katrina Riggs
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Carissa Kohne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Jether Uel Yohanon
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| | - Daniel E. Foxler
- Centre for Molecular Oncology, Barts Cancer Institute, University of London, London EC1M 6BQ, UK
| | - Tyson V. Sharp
- Centre for Molecular Oncology, Barts Cancer Institute, University of London, London EC1M 6BQ, UK
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City 37614, TN, USA
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City 37614, TN, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City 37614, TN, USA
| |
Collapse
|
22
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
23
|
Abstract
Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma-associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.
Collapse
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705;
| |
Collapse
|
24
|
Teow SY, Liew K, Khoo ASB, Peh SC. Pathogenic Role of Exosomes in Epstein-Barr Virus (EBV)-Associated Cancers. Int J Biol Sci 2017; 13:1276-1286. [PMID: 29104494 PMCID: PMC5666526 DOI: 10.7150/ijbs.19531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 40- to 100-nm membrane-bound small vesicles that carry a great variety of cellular cargoes including proteins, DNA, messenger RNAs (mRNAs), and microRNAs (miRNAs). These nanovesicles are detected in various biological fluids such as serum, urine, saliva, and seminal fluids. Exosomes serve as key mediators in intercellular communication by facilitating the transfer and exchange of cellular components from cells to cells. They contain various pathogenic factors whereby their adverse effects have been implicated in multiple viral infections and cancers. Interestingly, accumulating evidences showed that exosomes derived from tumour viruses or oncoviruses, exacerbate virus-associated cancers by remodelling the tumour microenvironment. In this review, we summarize the contributing factors of Epstein-Barr virus (EBV) products-containing exosomes in viral pathogenesis and their potential implications in EBV-driven malignancies. Understanding the biological role of these exosomes in the disease would undoubtedly boost the development of a more comprehensive strategy to combat EBV-associated cancers and to better predict the therapeutic outcomes. Furthermore, we also highlight the potentials and challenges of EBV products-containing exosomes being employed as diagnostic markers and therapeutic targets for EBV-related cancers. Since these aspects are rather underexplored, we attempt to underline interesting areas that warrant further investigations in the future.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Kitson Liew
- Molecular Pathology Unit, Cancer Research Centre (CaRC), Institute for Medical Research (IMR), Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre (CaRC), Institute for Medical Research (IMR), Jalan Pahang, 50588 Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation, International Medical University (IMU), Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Suat-Cheng Peh
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.,Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Kikuchi K, Inoue H, Miyazaki Y, Ide F, Kojima M, Kusama K. Epstein-Barr virus (EBV)-associated epithelial and non-epithelial lesions of the oral cavity. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:95-109. [PMID: 28725300 PMCID: PMC5501733 DOI: 10.1016/j.jdsr.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Epstein–Barr virus (EBV) is known to be associated with the development of malignant lymphoma and lymphoproliferative disorders (LPDs) in immunocompromised patients. EBV, a B-lymphotropic gamma-herpesvirus, causes infectious mononucleosis and oral hairy leukoplakia, as well as various pathological types of lymphoid malignancy. Furthermore, EBV is associated with epithelial malignancies such as nasopharyngeal carcinoma (NPC), salivary gland tumor, gastric carcinoma and breast carcinoma. In terms of oral disease, there have been several reports of EBV-related oral squamous cell carcinoma (OSCC) worldwide. However, the role of EBV in tumorigenesis of human oral epithelial or lymphoid tissue is unclear. This review summarizes EBV-related epithelial and non-epithelial tumors or tumor-like lesions of the oral cavity. In addition, we describe EBV latent genes and their expression in normal epithelium, inflamed gingiva, epithelial dysplasia and SCC, as well as considering LPDs (MTX- and age-related) and DLBCLs of the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masaru Kojima
- Department of Anatomic and Diagnostic Pathology, Dokkyo Medical University School of Medicine, 880 Oaza-kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
26
|
Wang L, Ren J, Li G, Moorman JP, Yao ZQ, Ning S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene 2016; 36:2265-2274. [PMID: 27819673 DOI: 10.1038/onc.2016.380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Interferon (IFN) regulatory factors (IRFs) have crucial roles in immune regulation and oncogenesis. We have recently shown that IRF4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells. However, the intracellular signaling pathway triggering Src activation of IRF4 remains unknown. In this study, we provide evidence that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promotes IRF4 phosphorylation and markedly stimulates IRF4 transcriptional activity, and that Src mediates LMP1 activation of IRF4. As to more precise mechanism, we show that LMP1 physically interacts with c-Src, and the phosphatidylinositol 3 kinase (PI3K) subunit P85 mediates their interaction. Depletion of P85 by P85-specific short hairpin RNAs disrupts their interaction and diminishes IRF4 phosphorylation in EBV-transformed cells. Furthermore, we show that Src is upstream of PI3K for activation of both IRF4 and Akt. In turn, inhibition of PI3K kinase activity by the PI3K-speicfic inhibitor LY294002 impairs Src activity. Our results show that LMP1 signaling is responsible for IRF4 activation, and further characterize the IRF4 regulatory network that is a promising therapeutic target for specific hematological malignancies.
Collapse
Affiliation(s)
- L Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J Ren
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - G Li
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J P Moorman
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Z Q Yao
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - S Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
27
|
Battle-Lopez A, Gonzalez de Villambrosia S, Nuñez J, Cagigal ML, Montes-Moreno S, Conde E, Piris MA. Epstein-Barr virus-associated diffuse large B-cell lymphoma: diagnosis, difficulties and therapeutic options. Expert Rev Anticancer Ther 2016; 16:411-21. [PMID: 26838128 DOI: 10.1586/14737140.2016.1149065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Epstein Barr Virus (EBV)-positive diffuse large B cell lymphoma (DLBCL) most frequently affects elderly patients, without previous immunosuppression, with frequent extra-nodal involvement and whose disease runs an aggressive clinical course with high International Prognostic Index (IPI) scores. Various EBV-related transforming mechanisms, much favored by immunosenescence, have been described, including activation of the NFKB transcriptional program. Elderly patients show poor survival after treatment with conventional CHOP regimens, even after addition of Rituximab. Younger patients, however, have a better outcome with a similar prognosis to EBV-negative DLBCL cases. New therapeutic strategies, including treatments targeting EBV, new drugs directed against specific pathways constitutively activated in these lymphomas, and new specific conjugate antibodies against molecules usually expressed in the tumor cells, such as CD30, are described.
Collapse
Affiliation(s)
- Ana Battle-Lopez
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| | | | - Javier Nuñez
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| | - Maria-Luisa Cagigal
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| | - Santiago Montes-Moreno
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| | - Eulogio Conde
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| | - Miguel A Piris
- a Services of Haematology and Pathology , Hospital Universitario Marques de Valdecilla , Santander , Spain
| |
Collapse
|
28
|
Kikuchi K, Noguchi Y, de Rivera MWGN, Hoshino M, Sakashita H, Yamada T, Inoue H, Miyazaki Y, Nozaki T, González-López BS, Ide F, Kusama K. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol 2015; 37:3389-404. [PMID: 26449822 DOI: 10.1007/s13277-015-4167-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022] Open
Abstract
A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.
Collapse
Affiliation(s)
- Kentaro Kikuchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
| | - Yoshihiro Noguchi
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | | | - Miyako Hoshino
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Hideaki Sakashita
- Second Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Harumi Inoue
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Yuji Miyazaki
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Tadashige Nozaki
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, 573-1211, Japan
| | - Blanca Silvia González-López
- Department of Oral Pathology, Faculty of Dentistry, Autonomous University State of México, Jesús Carranza esquina paseo Tollocan, C.P. 50130, Toluca, Mexico
| | - Fumio Ide
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Kaoru Kusama
- Division of Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|
29
|
Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-κB pathway. Oncol Rep 2015; 34:3264-71. [PMID: 26397141 DOI: 10.3892/or.2015.4305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/07/2015] [Indexed: 11/05/2022] Open
Abstract
Nasal natural killer T-cell lymphoma (NKTL) is a highly malignant tumor that is closely associated with Epstein-Barr virus (EBV) infection. Latent membrane protein 1 (LMP1) is encoded by EBV and plays an important role in EBV-induced cell transformation. Therefore, we assessed the function of LMP1 as a stimulant of NKTL progression and the underlying mechanism. A human EBV-positive NKTL cell line (SNK-6) was transfected with pcDNA3.1-LMP1, LV-LMP1 shRNA or LV-eukaryotic translation initiation factor 4E (eIF4E)-shRNA. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the proliferation of SNK-6 cells, and cell migration and invasion were analyzed by transwell chamber assay. Flow cytometry was used to analyze the cell cycle and apoptosis. The results showed LMP1 was highly expressed in SNK-6 cells compared with control groups. Following pretreatment with LMP1 shRNA, the proliferation of SNK-6 cells was inhibited and resulted in a G0/G1 phase arrest. A reduction in invasion and migration was also observed. LMP1 silencing promoted cell apoptosis. Further mechanistic analysis suggested that LMP1 overexpression induced the expression of eIF4E, while eIF4E-shRNA dramatically attenuated the increase in cell proliferation, invasion, migration and the inhibition of apoptosis triggered by LMP-1 upregulation. Moreover, the effect of LMP1 on eIF4E expression was mediated by the NF-κB pathway. Therefore, this finding may provide a potential target against NKTL.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pathology, Hainan Branch of PLA General Hospital, Sanya 572000, P.R. China
| | - Yu Zhao
- Department of Hematology, PLA General Hospital, Beijing 100853, P.R. China
| | - Huaiyin Shi
- Department of Pathology, PLA General Hospital, Beijing 100853, P.R. China
| | - Chao Ma
- Department of Hematology, PLA General Hospital, Beijing 100853, P.R. China
| | - Lixin Wei
- Department of Pathology, PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
30
|
Cárdenas-Mondragón MG, Torres J, Flores-Luna L, Camorlinga-Ponce M, Carreón-Talavera R, Gomez-Delgado A, Kasamatsu E, Fuentes-Pananá EM. Case–control study of Epstein–Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. Br J Cancer 2015; 112:1866-73. [PMID: 25996206 PMCID: PMC4580389 DOI: 10.1038/bjc.2015.175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Chronic tissue damage induced by Helicobacter pylori (HP)-driven inflammation is considered the main risk of gastric carcinoma (GC). Epstein–Barr virus (EBV) infection has also been associated with GC. In this study, we aim to address the role of EBV in inflammatory GC precursor lesions and its added risk to HP infection. Methods: Antibodies against EBV, HP and the bacterial virulence factor CagA were measured in sera from 525 Mexican and Paraguayan patients with gastric disease. Gastric samples were characterised according to the updated Sydney classification and associations were estimated between antibody responses and severity of both tissue damage and inflammation. Results: We found significant associations (odd ratios and trends) between EBV and HP copositivity and premalignant lesions and intestinal-type GC. The EBV and HP coinfection was also significantly associated with increased infiltration of immune cells. No association was found between EBV and the less inflammation-driven diffuse-type GC. Conclusions: Our study suggests that EBV co-participates with HP to induce severe inflammation, increasing the risk of progression to intestinal-type GC.
Collapse
Affiliation(s)
- M G Cárdenas-Mondragón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias (UIMEIP), Hospital de Pediatría, CMN Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Avenida Cuauhtémoc 330, Colonia Doctores, Delegación Cuauhtémoc, Ciudad de México, DF, CP 06720, México
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins. J Virol 2015; 89:7277-90. [PMID: 25948738 DOI: 10.1128/jvi.00321-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affected LMP1-induced signaling. BiFC between the identified proteins and LMP1 was localized to lipid raft domains and was dependent on LMP1-induced signaling. Proximity biotinylation assays with LMP1 induced biotinylation of the actin-associated proteins, which were shifted in molecular mass. Together, the findings of this study suggest that the association of LMP1 with lipid rafts is mediated at least in part through interactions with the actin cytoskeleton. IMPORTANCE LMP1 signaling requires oligomerization, lipid raft partitioning, and binding to cellular adaptors. The current study utilized a genome-wide screen to identify several actin-associated proteins as candidate LMP1-binding proteins. The interaction between LMP1 and these proteins was localized to lipid rafts and dependent on LMP1 signaling. This suggests that the association of LMP1 with lipid rafts is mediated through interactions with actin-associated proteins.
Collapse
|
32
|
SUN LU, ZHAO YU, SHI HUAIYIN, MA CHAO, WEI LIXIN. LMP-1 induces survivin expression to inhibit cell apoptosis through the NF-κB and PI3K/Akt signaling pathways in nasal NK/T-cell lymphoma. Oncol Rep 2015; 33:2253-60. [DOI: 10.3892/or.2015.3847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/09/2015] [Indexed: 11/05/2022] Open
|
33
|
Zhou H, Guo W, Long C, Wang H, Wang J, Sun X. Triptolide inhibits proliferation of Epstein-Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1. Biochem Biophys Res Commun 2014; 456:815-20. [PMID: 25511707 DOI: 10.1016/j.bbrc.2014.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
Epstein-Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein-Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Cong Long
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Huan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Jingchao Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xiaoping Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
34
|
Zhao Y, Pang TY, Wang Y, Wang S, Kang HX, Ding WB, Yong WW, Bie YH, Cheng XG, Zeng C, Yao YH, Li Q, Hu XR. LMP1 stimulates the transcription of eIF4E to promote the proliferation, migration and invasion of human nasopharyngeal carcinoma. FEBS J 2014; 281:3004-18. [PMID: 24814906 DOI: 10.1111/febs.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 05/07/2014] [Indexed: 01/09/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting translation initiation factor for many oncogenes. Previous studies have shown eIF4E overexpression in nasopharyngeal carcinoma (NPC). We aimed to study whether viral oncogene latent membrane protein 1 (LMP1) stimulates the transcription of eIF4E to promote NPC malignancy. In NPC cell lines (CNE1 and CNE2), ectopic LMP1 significantly increased the mRNA and protein levels of eIF4E and the transcriptional activity of the eIF4E promoter in a LMP1-plasmid-transfected dose-dependent manner. As a backward experiment, knocking down of LMP1 significantly reduced eIF4E mRNA in B95-8 cells. In the high LMP1 expression condition, knocking down of c-Myc significantly reduced eIF4E mRNA in both NPC and B95-8 cells, and knocking down of eIF4E significantly inhibited the tumor proliferation, migration and invasion promoted by LMP1. The results indicated that LMP1 stimulates the transcription of eIF4E via c-Myc to promote NPC. To the best of our knowledge, this is the first evidence that LMP1 stimulates the transcription of eIF4E. This might be an important cause of the overexpression of eIF4E in NPC and be the novel mechanism by which LMP1 initiates cancer. LMP1-stimulated eIF4E initiates the translation of those oncogenes transcriptionally activated by LMP1 to amplify and pass down the carcinogenesis signals launched by LMP1.
Collapse
Affiliation(s)
- Yi Zhao
- Pathology Department, Cancer Institute of Guangdong Medical College, Dongguan, China; Microbiology and Immunology Department, Guangdong Medical College, Dongguan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, Puga I, Klein E, Gabrielsson S, Cerutti A, Scheynius A. Exosomes derived from Burkitt's lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5852-62. [PMID: 24829410 DOI: 10.4049/jimmunol.1302068] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes, nano-sized membrane vesicles, are released by various cells and are found in many human body fluids. They are active players in intercellular communication and have immune-suppressive, immune-regulatory, and immune-stimulatory functions. EBV is a ubiquitous human herpesvirus that is associated with various lymphoid and epithelial malignancies. EBV infection of B cells in vitro induces the release of exosomes that harbor the viral latent membrane protein 1 (LMP1). LMP1 per se mimics CD40 signaling and induces proliferation of B lymphocytes and T cell-independent class-switch recombination. Constitutive LMP1 signaling within B cells is blunted through the shedding of LMP1 via exosomes. In this study, we investigated the functional effect of exosomes derived from the DG75 Burkitt's lymphoma cell line and its sublines (LMP1 transfected and EBV infected), with the hypothesis that they might mimic exosomes released during EBV-associated diseases. We show that exosomes released during primary EBV infection of B cells harbored LMP1, and similar levels were detected in exosomes from LMP1-transfected DG75 cells. DG75 exosomes efficiently bound to human B cells within PBMCs and were internalized by isolated B cells. In turn, this led to proliferation, induction of activation-induced cytidine deaminase, and the production of circle and germline transcripts for IgG1 in B cells. Finally, exosomes harboring LMP1 enhanced proliferation and drove B cell differentiation toward a plasmablast-like phenotype. In conclusion, our results suggest that exosomes released from EBV-infected B cells have a stimulatory capacity and interfere with the fate of human B cells.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden;
| | - Noemi Nagy
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maurizio Gentile
- Institut Hospital del la Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain; and
| | - Katarina Lyberg
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Janine Gumz
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Helen Vallhov
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Irene Puga
- Institut Hospital del la Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain; and
| | - Eva Klein
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Gabrielsson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Andrea Cerutti
- Institut Hospital del la Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain; and
| | - Annika Scheynius
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
| |
Collapse
|
36
|
Yin CC, Jones D. Molecular approaches towards characterization, monitoring and targeting of viral-associated hematological malignancies. Expert Rev Mol Diagn 2014; 6:831-41. [PMID: 17140370 DOI: 10.1586/14737159.6.6.831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Viral-associated malignancies usually arise in the setting of altered immunity or with declines in immune function associated with aging. The main culprits are the lymphotropic herpesvirus, including Epstein-Barr virus (EBV) and human herpesvirus-8, which are the focus of this review. Chronic persistent infection and viral reactivation are the main risk factors for development of herpesvirus-associated malignancies and have provided the rationale for intensive monitoring of viral loads in some clinical contexts. Quantitative detection of EBV levels in the post-transplant period and following treatment of EBV-associated malignancies now have a proven role in outcome prediction. Both T-cell immunotherapy and humoral immunotherapies directed against latent viral antigens represent promising interventional approaches to treatment of viral-associated malignancies.
Collapse
Affiliation(s)
- C Cameron Yin
- The University of Texas MD Anderson Cancer Center, Department of Hematopathology, Houston, TX, 77030, USA.
| | | |
Collapse
|
37
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
38
|
Mao Y, Lu MP, Lin H, Zhang DW, Liu Y, Li QD, Lv ZG, Xu JR, Chen RJ, Zhu J. Prognostic significance of EBV latent membrane protein 1 expression in lymphomas: evidence from 15 studies. PLoS One 2013; 8:e60313. [PMID: 23613723 PMCID: PMC3629080 DOI: 10.1371/journal.pone.0060313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/26/2013] [Indexed: 01/18/2023] Open
Abstract
Background Epstein-Barr virus (EBV) infection has been associated with lymphoma development. EBV latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation and progression of different human cells, including lymphocytes. This meta-analysis investigated LMP1 expression with prognosis of patients with lymphoma. Methods The electronic databases of PubMed, Embase, and Chinese Biomedicine Databases were searched. There were 15 published studies available for a random effects model analysis. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale for cohort studies. A funnel plot was used to investigate publication bias, and sources of heterogeneity were identified by meta-regression analysis. The combined hazard ratios (HR) and their corresponding 95% confidence intervals of LMP1 expression were calculated by comparison to the overall survival. Results Overall, there was no statistical significance found between LMP1 expression and survival of lymphoma patients (HR 1.25 [95% CI, 0.92–1.68]). In subgroup analyses, LMP1 expression was associated with survival in patients with non-Hodgkin lymphoma (NHL) (HR = 1.84, 95% CI: 1.02–3.34), but not with survival of patients with Hodgkin disease (HD) (HR = 1.03, 95% CI: 0.74–1.44). In addition, significant heterogeneity was present and the meta-regression revealed that the outcome of analysis was mainly influenced by the cutoff value. Conclusions This meta-analysis demonstrated that LMP1 expression appears to be an unfavorable prognostic factor for overall survival of NHL patients. The data suggested that EBV infection and LMP1 expression may be an important factor for NHL development or progression.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Province Official Hospital, Nanjing, China
- Huadong Medical Institute of Biotechnology, Nanjing, China
| | - Mei Ping Lu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Lin
- Jiangsu Provincial Blood Center, Nanjing, China
| | - Da Wei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Province Official Hospital, Nanjing, China
| | - Qing Dong Li
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Province Official Hospital, Nanjing, China
| | - Zhi Gang Lv
- Department of Clinical Laboratory, Jiangsu Province Official Hospital, Nanjing, China
| | - Jia Ren Xu
- Department of Hematology and Oncology, Jiangsu Province Official Hospital, Nanjing, China
- * E-mail: (JRX); (RJC); (JZ)
| | - Ren Jie Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JRX); (RJC); (JZ)
| | - Jin Zhu
- Huadong Medical Institute of Biotechnology, Nanjing, China
- The Key Laboratory of Cancer Biomarkers, Prevention & Treatment Cancer Center and The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
- * E-mail: (JRX); (RJC); (JZ)
| |
Collapse
|
39
|
Chen J. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications. World J Virol 2012; 1:154-61. [PMID: 24175221 PMCID: PMC3782276 DOI: 10.5501/wjv.v1.i6.154] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/16/2012] [Accepted: 11/07/2012] [Indexed: 02/05/2023] Open
Abstract
Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus (EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins (LMP) 1 and LMP2A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers.
Collapse
Affiliation(s)
- Jiezhong Chen
- Jiezhong Chen, Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, NSW 2522, Australia
| |
Collapse
|
40
|
Espinoza JL, Takami A, Trung LQ, Kato S, Nakao S. Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV-immortalized human B cells. PLoS One 2012; 7:e51306. [PMID: 23251493 PMCID: PMC3519585 DOI: 10.1371/journal.pone.0051306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/30/2012] [Indexed: 12/15/2022] Open
Abstract
Background Epstein Barr virus-associated lymphoproliferative disease is an increasing complication in patients with immunosuppressive conditions. Although the current therapies for this disorder are effective, they are also associated with significant toxicity. In an attempt to identify newer therapeutic agents, this study investigated the effects of Resveratrol, a naturally occurring polyphenolic compound, on the EBV transformation of human B cells. Methodology/Principal Findings This study demonstrates that resveratrol prevents EBV transformation in human B cells. These effects are mediated by specific cytotoxic activities of resveratrol against EBV-infected B cells that are associated with the downregulation of the anti-apoptotic proteins Mcl-1 and survivin. This occurs as a consequence of the inhibition of EBV-induced NFκB and STAT-3 signaling pathways and a resveratrol-induced decrease in the expression of the oncogenic viral product LMP1 in EBV-infected B cells. In addition, resveratrol decreased the expression of miR-155 and miR-34a in EBV-infected B cells, blocked the expression of the anti-apoptotic viral gene BHRF1, and thus interrupted events that are critical for EBV transformation and the survival of EBV-transformed cells. Conclusions/Significance These results suggest that resveratrol may therefore be a potentially effective therapeutic alternative for preventing EBV-associated lymphoproliferative diseases in immune compromised patients.
Collapse
Affiliation(s)
- J. Luis Espinoza
- Cellular Transplantation Biology, Kanazawa University, Kanazawa, Japan
| | - Akiyoshi Takami
- Department of Hematology and Oncology, Kanazawa University Hospital, Kanazawa, Japan
- * E-mail:
| | - Ly Quoc Trung
- Cellular Transplantation Biology, Kanazawa University, Kanazawa, Japan
| | - Shunichi Kato
- Department of Cell Transplantation, Tokai University School of Medicine, Isehara, Japan
| | - Shinji Nakao
- Cellular Transplantation Biology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
41
|
Transcriptome changes induced by Epstein-Barr virus LMP1 and LMP2A in transgenic lymphocytes and lymphoma. mBio 2012; 3:mBio.00288-12. [PMID: 22991431 PMCID: PMC3448168 DOI: 10.1128/mbio.00288-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Latent membrane protein 1 (LMP1) and LMP2A affect cell growth in both epithelial cells and lymphocytes. In this study, the effects on cellular gene expression were determined by microarray analysis of transgenic mice expressing LMP1, LMP2A, or both using the immunoglobulin heavy chain promoter and enhancer. Large differential changes were detected, indicating that LMP1 and LMP2A can both potently affect host gene transcription, inducing distinct transcriptional profiles. Seventy percent of the changes detected in LMP1/2A doubly transgenic lymphocytes were also modulated by LMP1 or LMP2A alone. These common and unique expression changes indicate that the combined effects of LMP1 and LMP2A may be additive, synergistic, or inhibitory. Using significant pathway analysis, the expression changes detected in LMP1, LMP2A, and LMP1/2A transgenic B lymphocytes were predicted to commonly target cancer and inflammatory pathways. Additionally, using the correlation coefficient to calculate the regulation of known c-Rel and Stat3 transcriptional targets, both were found to be enhanced in LMP1 lymphocytes and lymphomas, and a selection of Stat3 targets was further evaluated and confirmed using quantitative reverse transcription-PCR (RT-PCR). Analyses of the effects on cell growth and viability revealed that LMP2A transgenic lymphocytes had the greatest enhanced viability in vitro; however, doubly transgenic lymphocytes (LMP1/2A) did not have enhanced survival in culture and these mice were similar to negative littermates. These findings indicate that the combined expression of LMP1 and LMP2A has potentially different biological outcomes than when the two proteins are expressed individually. The Epstein-Barr virus proteins latent membrane protein 1 (LMP1) and LMP2A have potent effects on cell growth. In transgenic mice that express these proteins in B lymphocytes, the cell growth and survival properties are also affected. LMP1 transgenic mice have increased development of lymphoma, and the LMP1 lymphocytes have increased viability in culture. LMP2A transgenic lymphocytes have altered B cell development and enhanced survival. In this study, analysis of the cellular gene expression changes in transgenic LMP1 and LMP2A lymphocytes and LMP1 lymphomas revealed that both transgenes individually and in combination affected pathways important for the development of cancer and inflammation. Importantly, the combined expression of the two proteins had unique effects on cellular expression and cell viability. This is the first study to look at the combined effects of LMP1 and LMP2A on global changes in host gene expression.
Collapse
|
42
|
Identification of transmembrane protein 134 as a novel LMP1-binding protein by using bimolecular fluorescence complementation and an enhanced retroviral mutagen. J Virol 2012; 86:11345-55. [PMID: 22855487 DOI: 10.1128/jvi.00523-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.
Collapse
|
43
|
Zhao Y, Chen X, Jing M, Du H, Zeng Y. Expression of miRNA-146a in nasopharyngeal carcinoma is upregulated by Epstein-Barr virus latent membrane protein 1. Oncol Rep 2012; 28:1237-42. [PMID: 22843060 DOI: 10.3892/or.2012.1933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/24/2012] [Indexed: 11/06/2022] Open
Abstract
We aimed to investigate the relationship between miRNA-146a and latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC). The expression levels of LMP1 in 40 cases of NPC, 28 cases of chronic nasopharyngitis and NPC cell lines CNE1 and CNE1-GL (in which LMP1 was stably transfected) were detected by immunohistochemical staining. The expression of miRNA-146a in 16 cases of NPC, 13 cases of chronic nasopharyngitis and cell lines was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. A plasmid containing the luciferase gene under the control of miRNA-146a promoter (pri-miRNA-146a) was constructed and transfected into NPC cells, and the luciferase activity was detected. LMP1 was positive in 17.9% (5/28) of chronic nasopharyngitis cases and 62.5% (25/40) of NPC cases (p<0.01). The miRNA-146a levels in NPC were significantly higher than that in chronic nasopharyngitis (p<0.01), and were higher in CNE1-GL cells than those in CNE1 cells (p<0.01). The expression of miRNA-146a in human NPC was elevated by EBV-associated antigen LMP1, probably through the activation of the miRNA-146a promoter.
Collapse
Affiliation(s)
- Yinghai Zhao
- Department of Pathology, Guangdong Medical College, Zhanjiang 524023, PR China
| | | | | | | | | |
Collapse
|
44
|
Montes-Moreno S, Odqvist L, Diaz-Perez JA, Lopez AB, de Villambrosía SG, Mazorra F, Castillo ME, Lopez M, Pajares R, García JF, Mollejo M, Camacho FI, Ruiz-Marcellán C, Adrados M, Ortiz N, Franco R, Ortiz-Hidalgo C, Suarez-Gauthier A, Young KH, Piris MA. EBV-positive diffuse large B-cell lymphoma of the elderly is an aggressive post-germinal center B-cell neoplasm characterized by prominent nuclear factor-kB activation. Mod Pathol 2012; 25:968-82. [PMID: 22538516 DOI: 10.1038/modpathol.2012.52] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here, we report a retrospective series of 47 EBV-positive diffuse large B-cell lymphoma associated with advanced age. Histopathology allowed to the identification of different histological patterns: cases with polymorphic diffuse large B-cell lymphoma (29 cases), Hodgkin-like (8 cases) and polymorphic lymphoproliferative disorder-like (9 cases) patterns. One case was purely monomorphic diffuse large B-cell lymphoma. We show that this lymphoma type is a neoplasm with prominent classical and alternative nuclear factor-kB pathway activation in neoplastic cells (79% of the cases showed nuclear staining for p105/p50, 74% for p100/p52 and 63% for both proteins), with higher frequency than that observed in a control series of EBV-negative diffuse large B-cell lymphoma (χ(2) <0.001). Most cases showed an activated phenotype (95% non-germinal center (Hans algorithm); 78% activated B cell (Choi algorithm)). Clonality testing demonstrated IgH and/or K/Kde/L monoclonal rearrangements in 64% of cases and clonal T-cell populations in 24% of cases. C-MYC (1 case), BCL6 (2 cases) or IgH (3 cases) translocations were detected by FISH in 18% cases. These tumors had a poor overall survival and progression-free survival (the estimated 2-year overall survival was 40 ± 10% and the estimated 2-year progression-free survival was 36 ± 9%). Thus, alternative therapies, based on the tumor biology, need to be tested in patients with EBV-positive diffuse large B-cell lymphoma of the elderly.
Collapse
Affiliation(s)
- Santiago Montes-Moreno
- Pathology Department, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R. Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 2012; 8:e1002662. [PMID: 22536156 PMCID: PMC3334893 DOI: 10.1371/journal.ppat.1002662] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors. As a ubiquitous human pathogen, Epstein-Barr virus (EBV) infection is associated with several human B cell diseases characterized by inappropriate B cell activation and function, including infectious mononucleosis and certain cancers. EBV latent membrane protein 1 (LMP1) and 2A (LMP2A) hijack cell signaling pathways to alter B cell activation and function, and are detected in EBV-associated diseases. Defining the effect on B cell function when LMP1 and LMP2A are expressed together in the same cell is critical to understanding how EBV subverts normal B cell behavior before disease develops. Using transgenic mice, we have demonstrated that LMP2A dampens cellular proliferation and activation induced by LMP1, which may be due to the LMP2A-associated decrease in the levels of TRAF2, a signaling protein used by LMP1. LMP2A also allows B cells carrying LMP1 to enter the germinal center during an immune response, a site that gives rise to EBV-associated tumors in humans. In sum, this study highlights the biological outcomes of LMP1 and LMP2A co-expression in B cells and contributes to the knowledge of how EBV subverts normal B cell behavior before disease develops.
Collapse
Affiliation(s)
- Alexandra C. Vrazo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Maria Chauchard
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Vitiello M, Galdiero M, Finamore E, Galdiero S, Galdiero M. NF-κB as a potential therapeutic target in microbial diseases. MOLECULAR BIOSYSTEMS 2012; 8:1108-20. [DOI: 10.1039/c2mb05335g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Talaty P, Emery A, Everly DN. Characterization of the latent membrane protein 1 signaling complex of Epstein-Barr virus in the membrane of mammalian cells with bimolecular fluorescence complementation. Virol J 2011; 8:414. [PMID: 21864338 PMCID: PMC3173395 DOI: 10.1186/1743-422x-8-414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023] Open
Abstract
Background Bimolecular fluorescence complementation (BiFC) is a novel technique to examine protein-protein interaction through the assembly of fluorescent proteins. In the present study, BiFC was used to study the assembly of the Epstein-Barr virus latent membrane protein 1 (LMP1) signaling complex within the membrane of mammalian cells. LMP1 signaling requires oligomerization, localization to lipid rafts, and association of the cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor associated factors (TRAFs). Methods LMP1-TRAF and LMP1-LMP1 interactions were assayed by BiFC using fluorescence microscopy and flow cytometry. Function of LMP1 BiFC contructs were confirmed by transformation assays and nuclear factor- κB (NF-κB) reporter assays. Results BiFC was observed between LMP1 and TRAF2 or TRAF3 and mutation of the LMP1 signaling domains reduced complementation. Fluorescence was observed in previously described LMP1 signaling locations. Oligomerization of LMP1 with itself induced complementation and BiFC. LMP1-BiFC constructs were fully functional in rodent fibroblast transformation assays and activation of NF-κB reporter activity. The BiFC domain partially suppressed some LMP1 mutant phenotypes. Conclusions Together these data suggest that BiFC is a unique and novel platform to identify and characterize proteins recruited to the LMP1-signaling complex.
Collapse
Affiliation(s)
- Pooja Talaty
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Illinois 60064, USA
| | | | | |
Collapse
|
48
|
Verweij FJ, van Eijndhoven MAJ, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E, Kieff E, Geerts D, van der Kant R, Neefjes J, Middeldorp JM, Pegtel DM. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 2011; 30:2115-29. [PMID: 21527913 DOI: 10.1038/emboj.2011.123] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/25/2011] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous Epstein Barr virus (EBV) exploits human B-cell development to establish a persistent infection in ∼90% of the world population. Constitutive activation of NF-κB by the viral oncogene latent membrane protein 1 (LMP1) has an important role in persistence, but is a risk factor for EBV-associated lymphomas. Here, we demonstrate that endogenous LMP1 escapes degradation upon accumulation within intraluminal vesicles of multivesicular endosomes and secretion via exosomes. LMP1 associates and traffics with the intracellular tetraspanin CD63 into vesicles that lack MHC II and sustain low cholesterol levels, even in 'cholesterol-trapping' conditions. The lipid-raft anchoring sequence FWLY, nor ubiquitylation of the N-terminus, controls LMP1 sorting into exosomes. Rather, C-terminal modifications that retain LMP1 in Golgi compartments preclude assembly within CD63-enriched domains and/or exosomal discharge leading to NF-κB overstimulation. Interference through shRNAs further proved the antagonizing role of CD63 in LMP1-mediated signalling. Thus, LMP1 exploits CD63-enriched microdomains to restrain downstream NF-κB activation by promoting trafficking in the endosomal-exosomal pathway. CD63 is thus a critical mediator of LMP1 function in- and outside-infected (tumour) cells.
Collapse
Affiliation(s)
- Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
NF-kappaB transcription factors have been suspected to be involved in cancer development since their discovery because of their kinship with the v-Rel oncogene product. Subsequent work led to identification of oncogenic mutations that result in NF-kappaB activation in lymphoid malignancies, but most of these mutations affect upstream components of NF-kappaB signaling pathways, rather than NF-kappaB family members themselves. NF-kappaB activation has also been observed in many solid tumors, but so far no oncogenic mutations responsible for NF-kappaB activation in carcinomas have been identified. In such cancers, NF-kappaB activation is a result of underlying inflammation or the consequence of formation of an inflammatory microenvironment during malignant progression. Most importantly, through its ability to up-regulate the expression of tumor promoting cytokines, such as IL-6 or TNF-alpha, and survival genes, such as Bcl-X(L), NF-kappaB provides a critical link between inflammation and cancer.
Collapse
|
50
|
Lacroix A, Collot-Teixeira S, Mardivirin L, Jaccard A, Petit B, Piguet C, Sturtz F, Preux PM, Bordessoule D, Ranger-Rogez S. Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res 2010; 16:4711-21. [PMID: 20858841 DOI: 10.1158/1078-0432.ccr-10-0470] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hodgkin's lymphoma (HL) is associated with the presence of EBV in Reed-Sternberg (RS) cells in ∼40% of cases. Here, we studied the presence of human herpesvirus type 6 (HHV-6) variant B in RS cells of HL patients and correlated results with clinical parameters. We then examined the implication of HHV-6 DR7B protein in cell deregulation. EXPERIMENTAL DESIGN HHV-6 DR7B protein was produced in a Semliki Forest virus system. Polyclonal antibodies were then generated and used for immunochemical HHV-6 localization in HL biopsies. Binding between DR7B and p53 was studied using a double-hybrid system. Transactivation of NFκB was observed after transient transfection using reporter gene assays. We looked for Id2 factor expression after stable transfection of the BJAB cell line by reverse transcription-PCR and Western blot analysis. RESULTS HHV-6 was more common in nodular sclerosis subtype HL, and DR7B oncoprotein was detected in RS cells for 73.7% of EBV-negative patients. Colocalization of EBV and HHV-6 was observed in RS cells of doubly infected patients. DR7B protein bound to human p53 protein. p105-p50/p65 mRNA expression and activation of the NFκB complex were increased when DR7B was expressed. Stable expression of DR7B exhibited a strong and uniform expression of Id2. A slightly higher percentage of remission was observed in patients with RS cells testing positive for DR7B than in those testing negative. CONCLUSIONS Collectively, these data provide evidence for the implication of a novel agent, HHV-6, in cases of nodular sclerosis HL.
Collapse
|