1
|
OGG1 Inhibition Reduces Acinar Cell Injury in a Mouse Model of Acute Pancreatitis. Biomedicines 2022; 10:biomedicines10102543. [PMID: 36289805 PMCID: PMC9599718 DOI: 10.3390/biomedicines10102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease with a complex pathology including oxidative stress. Oxidative stress triggers oxidative DNA lesions such as formation of 7,8-dihydro-8-oxo-2′-oxoguanine (8-oxoG) and also causes DNA strand breaks. DNA breaks can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) which contributes to AP pathology. 8-oxoG is recognized by 8-oxoG glycosylase 1 (OGG1) resulting in the removal of 8-oxoG from DNA as an initial step of base excision repair. Since OGG1 also possesses a DNA nicking activity, OGG1 activation may also trigger PARP1 activation. In the present study we investigated the role played by OGG1 in AP. We found that the OGG1 inhibitor compound TH5487 reduced edema formation, inflammatory cell migration and necrosis in a cerulein-induced AP model in mice. Moreover, TH5487 caused 8-oxoG accumulation and reduced tissue poly(ADP-ribose) levels. Consistent with the indirect PARP inhibitory effect, TH5487 shifted necrotic cell death (LDH release and Sytox green uptake) towards apoptosis (caspase activity) in isolated pancreatic acinar cells. In the in vivo AP model, TH5487 treatment suppressed the expression of various cytokine and chemokine mRNAs such as those of TNF, IL-1β, IL1ra, IL6, IL16, IL23, CSF, CCL2, CCL4, CCL12, IL10 and TREM as measured with a cytokine array and verified by RT-qPCR. As a potential mechanism underlying the transcriptional inhibitory effect of the OGG1 inhibitor we showed that while 8-oxoG accumulation in the DNA facilitates NF-κB binding to its consensus sequence, when OGG1 is inhibited, target site occupancy of NF-κB is impaired. In summary, OGG1 inhibition provides protection from tissue injury in AP and these effects are likely due to interference with the PARP1 and NF-κB activation pathways.
Collapse
|
2
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
4
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
5
|
Giovanetti A, Tortolici F, Rufini S. Why Do the Cosmic Rays Induce Aging? Front Physiol 2020; 11:955. [PMID: 32903447 PMCID: PMC7434975 DOI: 10.3389/fphys.2020.00955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues. These cellular phenomena may explain why spending time in space was found to cause the onset of a series of diseases normally related to aging. These changes that mimic aging but take place more quickly make space flights also an opportunity to study the mechanisms underlying aging. In this short review, we describe the biological mechanisms underlying cell senescence and aging; the peculiar characteristics of HZE ions, their interaction with living matter and the effects on the organism; the key role of mitochondria in HZE ion-induced health effects and aging-related phenomena.
Collapse
Affiliation(s)
- Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Shah A, Gray K, Figg N, Finigan A, Starks L, Bennett M. Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis. Circulation 2019; 138:1446-1462. [PMID: 29643057 PMCID: PMC6053042 DOI: 10.1161/circulationaha.117.033249] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Atherosclerotic plaques demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine (8oxoG) lesions. 8oxoG is repaired by base excision repair enzymes; however, the mechanisms regulating 8oxoG accumulation in vascular smooth muscle cells (VSMCs) and its effects on their function and in atherosclerosis are unknown. Methods: We studied levels of 8oxoG and its regulatory enzymes in human atherosclerosis, the mechanisms regulating 8oxoG repair and the base excision repair enzyme 8oxoG DNA glycosylase I (OGG1) in VSMCs in vitro, and the effects of reducing 8oxoG in VSMCs in atherosclerosis in ApoE−/− mice. Results: Human plaque VSMCs showed defective nuclear 8oxoG repair, associated with reduced acetylation of OGG1. OGG1 was a key regulatory enzyme of 8oxoG repair in VSMCs, and its acetylation was crucial to its repair function through regulation of protein stability and expression. p300 and sirtuin 1 were identified as the OGG1 acetyltransferase and deacetylase regulators, respectively, and both proteins interacted with OGG1 and regulated OGG1 acetylation at endogenous levels. However, p300 levels were decreased in human plaque VSMCs and in response to oxidative stress, suggesting that reactive oxygen species–induced regulation of OGG1 acetylation could be caused by reactive oxygen species–induced decrease in p300 expression. We generated mice that express VSMC-restricted OGG1 or an acetylation defective version (SM22α-OGG1 and SM22α-OGG1K-R mice) and crossed them with ApoE−/− mice. We also studied ApoE−/− mice deficient in OGG1 (OGG1−/−). OGG1−/− mice showed increased 8oxoG in vivo and increased atherosclerosis, whereas mice expressing VSMC-specific OGG1 but not the acetylation mutant OGG1K-R showed markedly reduced intracellular 8oxoG and reduced atherosclerosis. VSMC OGG1 reduced telomere 8oxoG accumulation, DNA strand breaks, cell death and senescence after oxidant stress, and activation of proinflammatory pathways. Conclusions: We identify defective 8oxoG base excision repair in human atherosclerotic plaque VSMCs, OGG1 as a major 8oxoG repair enzyme in VSMCs, and p300/sirtuin 1 as major regulators of OGG1 through acetylation/deacetylation. Reducing oxidative damage by rescuing OGG1 activity reduces plaque development, indicating the detrimental effects of 8oxoG on VSMC function.
Collapse
MESH Headings
- Acetylation
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/metabolism
- Cells, Cultured
- DNA Damage
- DNA Glycosylases/deficiency
- DNA Glycosylases/genetics
- DNA Glycosylases/metabolism
- DNA Repair
- Disease Models, Animal
- Female
- Guanine/analogs & derivatives
- Guanine/metabolism
- Humans
- Male
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Plaque, Atherosclerotic
- Protein Processing, Post-Translational
- Rats
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Aarti Shah
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| | - Kelly Gray
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| | - Alison Finigan
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| | - Lakshi Starks
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Centre for Clinical Investigation, Addenbrooke’s Hospital, United Kingdom. Dr Gray is currently at Cardiovascular Safety, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
8
|
Scheffler K, Bjørås KØ, Bjørås M. Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair (Amst) 2019; 81:102665. [PMID: 31327582 DOI: 10.1016/j.dnarep.2019.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous and exogenous oxidative agents continuously damage genomic DNA, with the brain being particularly vulnerable. Thus, preserving genomic integrity is key for brain health and neuronal function. Accumulation of DNA damage is one of the causative factors of ageing and increases the risk of a wide range of neurological disorders. Base excision repair is the major pathway for removal of oxidized bases in the genome and initiated by DNA glycosylases. Emerging evidence suggest that DNA glycosylases have non-canonical functions important for genome regulation. Understanding canonical and non-canonical functions of DNA glycosylases processing oxidative base lesions modulating brain function will be crucial for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katja Scheffler
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway
| | - Karine Øian Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491 Trondheim, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, N-0424 Oslo, Norway.
| |
Collapse
|
9
|
Kovalchuk A, Ilnytskyy Y, Rodriguez-Juarez R, Shpyleva S, Melnyk S, Pogribny I, Katz A, Sidransky D, Kovalchuk O, Kolb B. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice. Aging (Albany NY) 2018; 9:1660-1676. [PMID: 28758896 PMCID: PMC5559168 DOI: 10.18632/aging.101243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, T2N 1N4, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Rocio Rodriguez-Juarez
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Svitlana Shpyleva
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Amanda Katz
- Department of Oncology, Champions Oncology, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Oncology, Champions Oncology, Baltimore, MD 21205, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6T5, Canada
| |
Collapse
|
10
|
Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med 2018; 41:1817-1825. [PMID: 29393357 DOI: 10.3892/ijmm.2018.3406] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 12/13/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress is increasingly recognized as a central event contributing to the degeneration of dopaminergic neurons in the pathogenesis of Parkinson's disease (PD). Although reactive oxygen species (ROS) production is implicated as a causative factor in PD, the cellular and molecular mechanisms linking oxidative stress with dopaminergic neuron death are complex and not well characterized. The primary insults cause the greatest production of ROS, which contributes to oxidative damage by attacking all macromolecules, including lipids, proteins and nucleic acids, leading to defects in their physiological function. Consequently, the defects in these macromolecules result in mitochondrial dysfunction and neuroinflammation, which subsequently enhance the production of ROS and ultimately neuronal damage. The interaction between these various mechanisms forms a positive feedback loop that drives the progressive loss of dopaminergic neurons in PD, and oxidative stress‑mediated neuron damage appears to serve a central role in the neurodegenerative process. Thus, understanding the cellular and molecular mechanisms by which oxidative stress contributes to the loss of dopaminergic neurons may provide a promising therapeutic approach in PD treatment.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Department of Neurology, The First Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Liang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
Abstract
Telomeres, the repetitive sequences that protect the ends of chromosomes, help to maintain genomic integrity and are of key importance to human health. Telomeres progressively shorten throughout life and a number of studies have shown shorter telomere length to be associated with lifestyle disorders. Previous studies also indicate that yoga and lifestyle-based intervention have significant role on oxidative DNA damage and cellular aging. However, very few publications investigate telomere stability and its implication from the point of view of asana, pranayama, and meditation. In this context, a review was conducted to systematically assess the available data on the effectiveness of asana, pranayama, and meditation in maintaining telomere and telomerase. Literature search was performed using the following electronic databases: Cochrane Library, NCBI, PubMed, Google Scholar, EMBASE, and Web of Science. We explored the possible mechanisms of how asana, pranayama, and meditation might be affecting telomere length and telomerase. Moreover, results showed that asana and pranayama increase the oxygen flow to the cells and meditation reduces the stress level by modulating the hypothalamic–pituitary–adrenal axis. Summing up the result, it can be concluded that practice of asana, pranayama, and meditation can help to maintain genomic integrity and are of key importance to human health and lifestyle disorders.
Collapse
Affiliation(s)
| | - Jessy Abraham
- Department of Biochemistry, AIIMS, Raipur, Chhattisgarh, India
| |
Collapse
|
12
|
Tempka D, Tokarz P, Chmielewska K, Kluska M, Pietrzak J, Rygielska Ż, Virág L, Robaszkiewicz A. Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair. Redox Biol 2017; 15:316-326. [PMID: 29306194 PMCID: PMC5975074 DOI: 10.1016/j.redox.2017.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/24/2023] Open
Abstract
Hallmarks of cancer cells include uncontrolled growth and rapid proliferation; thus, cyclin-dependent kinases are a therapeutic target for cancer treatment. Treating non-small lung cancer cells with sublethal concentrations of the CDK4/6 inhibitors, ribociclib (LEE011) and palbociclib (PD0332991), which are approved by the FDA for anticancer therapies, caused cell cycle arrest in the G1 phase and suppression of poly(ADP-ribose) polymerase 1 (PARP1) transcription by inducing recruitment of the RB1-E2F1-HDAC1-EZH2 repressive complex to the PARP1 promoter. Downregulation of PARP1 made cancer cells vulnerable to death triggered by the anticancer drugs (WP631 and etoposide) and H2O2. All agents brought about redox imbalance and DNA strand breaks. The lack of PARP1 and poly(ADP-ribosyl)ation impaired the 8-oxoguanine glycosylase (OGG1)-dependent base excision DNA repair pathway, which is critical for maintaining the viability of cells treated with CDK4/6 inhibitors during oxidative stress. Upon G1 arrest of PARP1 overexpressing cells, OGG1 formed an immunoprecipitable complex with PARP1. Similar to cells with downregulated PARP1 expression, inhibition of PARP1 or OGG1 in PARP1 overexpressing cells resulted in DNA damage and decreased viability. Thus, PARP1 and OGG1 act in the same regulatory pathway, and PARP1 activity is required for OGG1-mediated repair of oxidative DNA damage in G1-arrested cells. In conclusion, the action of CDK4/6 inhibitors is not limited to the inhibition of cell growth. CDK4/6 inhibitors also lead to accumulation of DNA damage by repressing PARP1 in oxidatively stressed cells. Thus, CDK4/6 inhibitors sensitize G1-arrested cells to anticancer drugs, since these cells require PARP1-OGG1 functional interaction for cell survival. CDK4/6 inhibitors arrest cell proliferation in G1 phase. iCDK4/6 sensitize cells to DNA damage-induced cell death by repressing PARP1. PARP1 is required for OGG1 activity upon growth inhibition. OGG1 repairs DNA damaged by WP631, etoposide, or H2O2 in G1-arrested cells.
Collapse
Affiliation(s)
- Dominika Tempka
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Paulina Tokarz
- Department of Molecular Genetics, Institute of Biochemistry, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kinga Chmielewska
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Magdalena Kluska
- Department of Molecular Genetics, Institute of Biochemistry, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Julita Pietrzak
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Żaneta Rygielska
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
13
|
Hofer T, Duale N, Muusse M, Eide DM, Dahl H, Boix F, Andersen JM, Olsen AK, Myhre O. Restoration of Cognitive Performance in Mice Carrying a Deficient Allele of 8-Oxoguanine DNA Glycosylase by X-ray Irradiation. Neurotox Res 2017; 33:824-836. [DOI: 10.1007/s12640-017-9833-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
|
14
|
No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci Rep 2017; 7:4384. [PMID: 28663564 PMCID: PMC5491499 DOI: 10.1038/s41598-017-04472-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1−/−/Neil2−/−) double and NEIL1, NEIL2 and NEIL3 (Neil1−/−/Neil2−/−/Neil3−/−) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.
Collapse
|
15
|
Donley N, Jaruga P, Coskun E, Dizdaroglu M, McCullough AK, Lloyd RS. Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). ACS Chem Biol 2015. [PMID: 26218629 DOI: 10.1021/acschembio.5b00452] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest that inhibiting certain enzymes in the BER pathway can be a useful anticancer strategy when combined with certain DNA-damaging agents or tumor-specific genetic deficiencies. Despite this general validation of BER enzymes as drug targets, there are many enzymes that function in the BER pathway that have few, if any, specific inhibitors. There is a growing body of evidence that suggests inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) could be useful as a monotherapy or in combination therapy to treat certain types of cancer. To identify inhibitors of OGG1, a fluorescence-based screen was developed to analyze OGG1 activity in a high-throughput manner. From a primary screen of ∼50,000 molecules, 13 inhibitors were identified, 12 of which were hydrazides or acyl hydrazones. Five inhibitors with an IC50 value of less than 1 μM were chosen for further experimentation and verified using two additional biochemical assays. None of the five OGG1 inhibitors reduced DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate, but all five inhibited Schiff base formation during OGG1-mediated catalysis. All of these inhibitors displayed a >100-fold selectivity for OGG1 relative to several other DNA glycosylases involved in repair of oxidatively damaged bases. These inhibitors represent the most potent and selective OGG1 inhibitors identified to date.
Collapse
Affiliation(s)
- Nathan Donley
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Pawel Jaruga
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Erdem Coskun
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Miral Dizdaroglu
- Biomolecular
Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Amanda K. McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
16
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
17
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
18
|
Allgayer J, Kitsera N, von der Lippen C, Epe B, Khobta A. Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence. Nucleic Acids Res 2013; 41:8559-71. [PMID: 23863843 PMCID: PMC3794583 DOI: 10.1093/nar/gkt620] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
8-Oxoguanine (8-oxoG) is a major product of oxidative DNA damage, which induces replication errors and interferes with transcription. By varying the position of single 8-oxoG in a functional gene and manipulating the nucleotide sequence surrounding the lesion, we found that the degree of transcriptional inhibition is independent of the distance from the transcription start or the localization within the transcribed or the non-transcribed DNA strand. However, it is strongly dependent on the sequence context and also proportional to cellular expression of 8-oxoguanine DNA glycosylase (OGG1)-demonstrating that transcriptional arrest does not take place at unrepaired 8-oxoG and proving a causal connection between 8-oxoG excision and the inhibition of transcription. We identified the 5'-CAGGGC[8-oxoG]GACTG-3' motif as having only minimal transcription-inhibitory potential in cells, based on which we predicted that 8-oxoG excision is particularly inefficient in this sequence context. This anticipation was fully confirmed by direct biochemical assays. Furthermore, in DNA containing a bistranded Cp[8-oxoG]/Cp[8-oxoG] clustered lesion, the excision rates differed between the two strands at least by a factor of 9, clearly demonstrating that the excision preference is defined by the DNA strand asymmetry rather than the overall geometry of the double helix or local duplex stability.
Collapse
Affiliation(s)
- Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
19
|
Morris SM, Petibone DM, Lin WJ, Chen JJ, Vitiello B, Witt KL, Mattison DR. The genetic toxicity of methylphenidate: a review of the current literature. J Appl Toxicol 2012; 32:756-64. [PMID: 22337063 DOI: 10.1002/jat.2721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/23/2011] [Indexed: 12/15/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD), a common children's behavioral disorder, is characterized by inattention, hyperactivity and impulsivity. The disorder is thought to stem from abnormalities in the catecholamine pathway and the symptoms of the disorder have been successfully treated with methylphenidate (MPH) since the FDA approved the drug in the 1950s. MPH underwent the appropriate safety testing as part of the FDA approval process; however, a publication in 2005 that reported significant increases in cytogenetic damage in the lymphocytes of MPH-treated pediatric patients caused concern for patients and their families, the pharmaceutical industry and regulatory agencies. This communication will review the many studies that were subsequently initiated worldwide to address the genetic safety of MPH in both animal models and human subjects. Animal experiments broadened the study protocols used in the 2005 investigation to include a wider dose-range, a longer treatment period and automated scoring of biological endpoints, where possible, to reduce observer bias. The human subject studies replicated the experimental design used in the 2005 study, but increased the treatment periods and the sizes of the study populations. Neither the laboratory animal nor human subject studies found an increase in any of the measures of genetic damage that were evaluated. Taken together, these new studies are consistent with the original safety evaluation of the FDA and do not support the hypothesis that MPH treatment increases the risk of genetic damage in ADHD patients. Published 2012. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Suzanne M Morris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dizdaroglu M. Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 2012; 327:26-47. [PMID: 22293091 DOI: 10.1016/j.canlet.2012.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022]
Abstract
Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced DNA damage is repaired in living cells by different pathways that involve a large number of proteins. Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Mutations also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resistance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential biomarkers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its repair are important factors in the development of human cancers. Thus this field deserves more research to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches to better understand and fight cancer.
Collapse
Affiliation(s)
- Miral Dizdaroglu
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
21
|
La Maestra S, Kisby GE, Micale RT, Johnson J, Kow YW, Bao G, Sheppard C, Stanfield S, Tran H, Woltjer RL, D'Agostini F, Steele VE, De Flora S. Cigarette smoke induces DNA damage and alters base-excision repair and tau levels in the brain of neonatal mice. Toxicol Sci 2011; 123:471-9. [PMID: 21778470 PMCID: PMC3179679 DOI: 10.1093/toxsci/kfr187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/12/2022] Open
Abstract
The prenatal and perinatal periods of brain development are especially vulnerable to insults by environmental agents. Early life exposure to cigarette smoke (CS), which contains both genotoxicants and oxidants, is considered an important risk factor for both neurodevelopmental and neurodegenerative disorders. Yet, little is known regarding the underlying pathogenetic mechanisms. In the present study, neonatal Swiss ICR (CD-1) albino mice were exposed to various concentrations of CS for 4 weeks and the brain examined for lipid peroxides, DNA damage, base-excision repair (BER) enzymes, apoptosis, and levels of the microtubule protein tau. CS induced a dose-dependent increase in both malondialdehyde and various types of DNA damage, including single-strand breaks, double-strand breaks, and DNA-protein cross-links. However, the CS-induced DNA damage in the brain returned to basal levels 1 week after smoking cessation. CS also modulated the activity and distribution of the BER enzymes 8-oxoguanine-DNA-glycosylase (OGG1) and apyrimidinic/apurinic endonuclease (APE1) in several brain regions. Normal tau (i.e., three-repeat tau, 3R tau) and various pathological forms of tau were also measured in the brain of CS-exposed neonatal mice, but only 3R tau and tau phosphorylated at serine 199 were significantly elevated. The oxidative stress, genomic dysregulation, and alterations in tau metabolism caused by CS during a critical period of brain development could explain why CS is an important risk factor for both neurodevelopmental and neurodegenerative disorders appearing in later life.
Collapse
Affiliation(s)
| | - Glen E. Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | - Rosanna T. Micale
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| | - Jessica Johnson
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon 97239
| | - Yoke W. Kow
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Gaobin Bao
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Clayton Sheppard
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sarah Stanfield
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | - Huong Tran
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Vernon E. Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland 20892-7322
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, I-16132 Genoa, Italy
| |
Collapse
|
22
|
Marchesi VT. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J 2011; 25:5-13. [PMID: 21205781 DOI: 10.1096/fj.11-0102ufm] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There is a widely shared view among Alzheimer's disease (AD) investigators that the amyloid hypothesis best describes the pathogenic cascade that leads, ultimately, to neuronal degeneration and irreversible dementia. The most persuasive evidence comes from studies of damaged brains of patients in the late stages of AD and from animal studies that attempt to mimic the hereditary forms of early-onset dementia. Despite this impressive body of knowledge, we still lack the means to either arrest or prevent this horrible contagion. This essay attempts to describe what we know, and do not know, about the earliest stages of the disease, focusing on the possibility that the initial pathological changes involve oxidative-induced inflammatory damage to small blood vessels. The resulting ischemia activates amyloid-processing enzymes and other proinflammatory factors that eventually compromise neuronal functions, leading, over time, to the complex lesions that characterize advanced disease. The idea that blood vessel damage is primary has a long history and many prior advocates. The novel addition offered here is the speculation that low-abundance, gain-of-function somatic mutations of the amyloid precursor protein may be part of the triggering mechanism.
Collapse
Affiliation(s)
- Vincent T Marchesi
- Department of Pathology, Boyer Center for Molecular Medicine, Yale University, 295 Congress Ave., P.O. Box 9812, New Haven, CT 06536-0812, USA.
| |
Collapse
|
23
|
Langie SAS, Cameron KM, Waldron KJ, Fletcher KPR, von Zglinicki T, Mathers JC. Measuring DNA repair incision activity of mouse tissue extracts towards singlet oxygen-induced DNA damage: a comet-based in vitro repair assay. Mutagenesis 2011; 26:461-71. [PMID: 21355044 DOI: 10.1093/mutage/ger005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the past two decades, the comet-based in vitro DNA repair assay has been used regularly to measure base excision repair (BER)-related DNA incision activity. Most studies focus on the assessment of BER in human lymphocytes or cultured cells by estimating the activity of a cell extract on substrate DNA containing specific lesions such as 8-oxoguanine. However, for many 'real-life' studies, it would be preferable to measure BER in the tissues of interest instead of using in vitro models or surrogate 'tissues' such as lymphocytes. Various attempts have been made to use the comet-based repair assay for BER with extracts from rodent tissues, but high non-specific nuclease activity in such tissues were a significant impediment to robust estimates of BER. Our aim in this study was to optimise the in vitro repair assay for BER for use with rodent tissues using extracts from liver and brain from C57/BL mice. Because the DNA incision activity of an extract is dependent on its protein concentration, the first optimisation step in preventing interference by non-specific nuclease activity was to determine the protein concentration at which there is a maximal difference between the total and non-specific damage recognition. This protein concentration was 5 mg/ml for mouse liver extracts and 1 mg/ml for brain extracts. Next, we tested addition of proteinase inhibitors during the preparation of the tissue extracts, but this did not improve the sensitivity of the assay. However, addition of 1.5 μM aphidicolin to the tissue extracts improved the detection of DNA repair incision activity by reducing non-specific nuclease activity and possibly by blocking residual DNA polymerase activity. Finally, the assay was tested on tissue samples from an ageing mouse colony and in mice undergoing dietary restriction and proved capable of detecting significant inter-animal differences and nutritional effects on BER-related DNA incision activity.
Collapse
Affiliation(s)
- Sabine A S Langie
- Centre for Brain Ageing and Vitality, Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J Cereb Blood Flow Metab 2011; 31:680-92. [PMID: 20736962 PMCID: PMC3049522 DOI: 10.1038/jcbfm.2010.147] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.
Collapse
|
25
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
26
|
Goula AV, Berquist BR, Wilson DM, Wheeler VC, Trottier Y, Merienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 2009; 5:e1000749. [PMID: 19997493 PMCID: PMC2778875 DOI: 10.1371/journal.pgen.1000749] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 11/02/2009] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion. Huntington's disease (HD) is a neurodegenerative disorder that belongs to a family of genetic diseases caused by abnormal expansion of CAG/CTG repetitive sequences. The instability of trinucleotide repeat expansions in germline and somatic cells has deleterious clinical consequences in HD. For instance, transmission of longer repeats to offspring results in an earlier onset of disease, where extensive somatic expansion in the striatum, the brain region primarily affected in HD, is proposed to accelerate disease pathology. Thus, understanding the mechanisms of trinucleotide repeat instability is a major interest. We have examined the role of oxidative DNA damage and base excision repair (BER) in somatic instability, which is tissue-selective and age-dependent. We show that oxidative DNA lesions abnormally accumulate at CAG expansions in a length-dependent, yet age- and tissue-independent manners, likely due to the secondary structures formed by CAG repeats that limit access of enzymes initiating BER. In addition, our data indicate that repair by BER enzymes of some of the accessible lesions results in somatic expansion when the ratio of FEN1 to POLβ is low, as found to occur in the striatum. Our results support BER enzyme stoichiometry as a contributor to the tissue selectivity of somatic CAG expansion in HD.
Collapse
Affiliation(s)
- Agathi-Vassiliki Goula
- Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
| | - Brian R. Berquist
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA)/National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA)/National Institutes of Health (NIH), Baltimore, Maryland, United States of America
| | - Vanessa C. Wheeler
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachussetts, United States of America
| | - Yvon Trottier
- Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
- * E-mail: (KM); (YT)
| | - Karine Merienne
- Department of Neurobiology and Genetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR 7104-CNRS/INSERM/UdS, Illkirch, France
- * E-mail: (KM); (YT)
| |
Collapse
|
27
|
Sattler UGA, Mueller-Klieser W. The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 2009; 85:963-71. [DOI: 10.3109/09553000903258889] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
The genetic toxicology of methylphenidate hydrochloride in non-human primates. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 673:59-66. [DOI: 10.1016/j.mrgentox.2008.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 02/06/2023]
|
29
|
Kisby GE, Olivas A, Park T, Churchwell M, Doerge D, Samson LD, Gerson SL, Turker MS. DNA repair modulates the vulnerability of the developing brain to alkylating agents. DNA Repair (Amst) 2009; 8:400-12. [PMID: 19162564 DOI: 10.1016/j.dnarep.2008.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag(-/-)) or O(6)-methylguanine methyltransferase (Mgmt(-/-)), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt(-/-) neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag(-/-) neurons were for the most part significantly less sensitive than wild type or Mgmt(-/-) neurons to MAM and HN2. Aag(-/-) neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt(-/-) mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag(-/-) or MGMT-overexpressing (Mgmt(Tg+)) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt(Tg+) mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, OR 97239, United States.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 2008; 28:9047-54. [PMID: 18768699 DOI: 10.1523/jneurosci.2557-08.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In utero methamphetamine (METH) exposure enhances the oxidative DNA lesion 7,8-dihydro-8-oxoguanine (8-oxoG) in CD-1 fetal mouse brain, and causes long-term postnatal motor coordination deficits. Herein we used oxoguanine glycosylase 1 (ogg1) knock-out mice to determine the pathogenic roles of 8-oxoG and OGG1, which repairs 8-oxoG, in METH-initiated neurodevelopmental anomalies. Administration of METH (20 or 40 mg/kg) on gestational day 17 to pregnant +/- OGG1-deficient females caused a drug dose- and gene dose-dependent increase in 8-oxoG levels in OGG1-deficient fetal brains (p < 0.05). Female ogg1 knock-out offspring exposed in utero to high-dose METH exhibited gene dose-dependent enhanced motor coordination deficits for at least 12 weeks postnatally (p < 0.05). Contrary to METH-treated adult mice, METH-exposed CD-1 fetal brains did not exhibit altered apoptosis or DNA synthesis, and OGG1-deficient offspring exposed in utero to METH did not exhibit postnatal dopaminergic nerve terminal degeneration, suggesting different mechanisms. Enhanced 8-oxoG repair activity in fetal relative to adult organs suggests an important developmental protective role of OGG1 against in utero genotoxic stress. These observations provide the most direct evidence to date that 8-oxoG constitutes an embryopathic molecular lesion, and that functional fetal DNA repair protects against METH teratogenicity.
Collapse
|
31
|
Gredilla R, Garm C, Holm R, Bohr VA, Stevnsner T. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. Neurobiol Aging 2008; 31:993-1002. [PMID: 18701195 DOI: 10.1016/j.neurobiolaging.2008.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 12/26/2022]
Abstract
Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center of Molecular Gerontology, University of Aarhus, Department of Molecular Biology, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
32
|
Rolseth V, Rundén-Pran E, Luna L, McMurray C, Bjørås M, Ottersen OP. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains. DNA Repair (Amst) 2008; 7:1578-88. [PMID: 18603019 DOI: 10.1016/j.dnarep.2008.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 12/22/2022]
Abstract
High metabolic activity and low levels of antioxidant enzymes make neurons particularly prone to damage by reactive oxygen species. Thus, repair of oxidative DNA damage is essential for normal brain function. Base excision repair is the major pathway for repair of oxidative DNA damage, and is initiated by DNA glycosylases recognizing and removing the damaged base. In mammalian cells at least five different DNA glycosylases with overlapping substrate specificity, NEIL1, NEIL2, NEIL3, OGG1 and NTH1, remove oxidative DNA base lesions. Here we report mRNA expression and distribution of these five DNA glycosylases in human and rodent brains using in situ hybridization and Northern blotting supported by glycosylase activity assays. NEIL1, NEIL2, OGG1 and NTH1 showed widespread expression at all ages. In situ hybridization studies in mouse brain showed that expression of mNeil1 increased with age. In newborn mouse brain, mNeil3 revealed a discrete expression pattern in brain regions known to harbour stem cell populations, i.e., the subventricular zone, the rostral migratory stream, and the hilar region of the hippocampal formation. Expression of mNeil3 decreased with age, and in old mice brains could be detected only in layer V of neocortex. MNth1 was constitutively expressed during lifespan. In Northern blots, mOgg1 expression showed a transient decrease followed by an increase after 8 weeks of age. Assays for faPy DNA glycosylase activity revealed increased activity level with age in all brain regions analyzed. The widespread but differential expression of the DNA glycosylases recognizing oxidative base lesions suggests distinct and age dependent roles of these enzymes in genome maintenance in brain. The distribution of mNeil3 is particularly intriguing and points to a specific role of this enzyme in stem cell differentiation.
Collapse
Affiliation(s)
- Veslemøy Rolseth
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet HF, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
33
|
Hirano T. Repair system of 7, 8-dihydro-8-oxoguanine as a defense line against carcinogenesis. JOURNAL OF RADIATION RESEARCH 2008; 49:329-340. [PMID: 18596371 DOI: 10.1269/jrr.08049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are essentially harmful for living organisms, including human beings. It is well known that ROS-induced damage of cellular components may lead to human diseases, such as inflammatory diseases, degenerative diseases, or cancer. In particular, oxidative DNA damage is premutagenic, and thus, the generation of DNA damage and the failure of its removal are critical events for tumorigenesis or carcinogenesis. To prevent this disadvantage, living organisms have defense mechanisms against ROS-induced gene instability. Studies of 8-oxo-Gua and its main repair enzyme, 8-oxoguanine DNA glycosylase 1 (OGG1), are informative and useful, because 8-oxo-Gua is commonly observed in DNA, and OGG1 enzymes exist in a wide variety of living organisms. The importance of OGG1 was confirmed by polymorphism analyses and studies using knockout mice. Moreover, analyses of the influences of environmental factors on DNA damage and repair systems have confirmed the effects of heavy metals on 8-oxo-Gua formation and OGG1 expression. These studies revealed that the 8-oxo-Gua repair system is crucial for the prevention of mutation-related diseases, such as cancer. In this review, the advances in this field during the last two decades are described.
Collapse
Affiliation(s)
- Takeshi Hirano
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
34
|
Klementiev B, Novikova T, Korshunova I, Berezin V, Bock E. The NCAM-derived P2 peptide facilitates recovery of cognitive and motor function and ameliorates neuropathology following traumatic brain injury. Eur J Neurosci 2008; 27:2885-96. [DOI: 10.1111/j.1460-9568.2008.06245.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Abstract
This article summarizes data from experimental and clinical oncology which are indicative of a pivotal role of tumor carbohydrate metabolism in malignant behavior and outcome of treatment. In primary tumors, such as cervix carcinomas, head and neck squamous cell carcinomas or rectum adenocarcinomas, elevated lactate levels as a mirror of a high glycolytic activity, are correlated even at the initial diagnosis with a high level of malignancy as indicated by increased formation of metastases or an elevated radiotherapy resistance. The relationship between therapeutic resistance and glycolysis may at least partially be due to the radical scavenging potential of glycolytic intermediates, mainly pyruvate and lactate and to the link between these metabolites and the cellular redox status. On the basis of these data and other considerations, a novel technique has been developed for imaging the lactate/pyruvate ratio in tumor biopsies using quantitative bioluminescence. More research effort should, therefore, be focussed on the redox status of tumors in oncological studies in the future.
Collapse
Affiliation(s)
- U G A Sattler
- Institut für Physiologie und Pathophysiologie, Johannes Gutenberg-Universität, Duesbergweg 6, 55099 Mainz, Deutschland
| | | | | |
Collapse
|
36
|
Nordstrand LM, Ringvoll J, Larsen E, Klungland A. Genome instability and DNA damage accumulation in gene-targeted mice. Neuroscience 2007; 145:1309-17. [PMID: 17218062 DOI: 10.1016/j.neuroscience.2006.10.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/29/2006] [Accepted: 10/30/2006] [Indexed: 01/02/2023]
Abstract
Six major pathways for DNA repair have been identified. These include (1) DNA repair by direct reversal, (2) base excision repair, (3) mismatch repair, (4) nucleotide excision repair, (5) homologous recombination, and (6) non-homologous end-joining. In addition, several other cellular processes influence the response to DNA damage. The generation of gene-targeted organisms is crucial for assessing the relative contribution of single DNA repair proteins and DNA repair pathways in maintaining genome stability. In particular, the accumulation of DNA damage, mutations and cancer in unexposed gene-targeted animals illuminates the spontaneous load of a particular lesion and the relative significance of a single gene in a specific pathway. Strategies for the generation of gene-targeted mice have been available for 15 years and more than 100 different genes relevant to DNA repair have been targeted. This review describes some important progress made toward understanding spontaneous DNA damage and its repair, exemplified through one, or a few, gene-targeted mice from each major DNA repair pathway.
Collapse
Affiliation(s)
- L M Nordstrand
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Durant ST, Paffett KS, Shrivastav M, Timmins GS, Morgan WF, Nickoloff JA. UV radiation induces delayed hyperrecombination associated with hypermutation in human cells. Mol Cell Biol 2006; 26:6047-55. [PMID: 16880516 PMCID: PMC1592811 DOI: 10.1128/mcb.00444-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation induces delayed genomic instability in human cells, including chromosomal abnormalities and hyperrecombination. Here, we investigate delayed genome instability of cells exposed to UV radiation. We examined homologous recombination-mediated reactivation of a green fluorescent protein (GFP) gene in p53-proficient human cells. We observed an approximately 5-fold enhancement of delayed hyperrecombination (DHR) among cells surviving a low dose of UV-C (5 J/m2), revealed as mixed GFP+/- colonies. UV-B did not induce DHR at an equitoxic (75 J/m2) dose or a higher dose (150 J/m2). UV is known to induce delayed hypermutation associated with increased oxidative stress. We found that hypoxanthine phosphoribosyltransferase (HPRT) mutation frequencies were approximately 5-fold higher in strains derived from GFP+/- (DHR) colonies than in strains in which recombination was directly induced by UV (GFP+ colonies). To determine whether hypermutation was directly caused by hyperrecombination, we analyzed hprt mutation spectra. Large-scale alterations reflecting large deletions and insertions were observed in 25% of GFP+ strains, and most mutants had a single change in HPRT. In striking contrast, all mutations arising in the hypermutable GFP+/- strains were small (1- to 2-base) changes, including substitutions, deletions, and insertions (reminiscent of mutagenesis from oxidative damage), and the majority were compound, with an average of four hprt mutations per mutant. The absence of large hprt deletions in DHR strains indicates that DHR does not cause hypermutation. We propose that UV-induced DHR and hypermutation result from a common source, namely, increased oxidative stress. These two forms of delayed genome instability may collaborate in skin cancer initiation and progression.
Collapse
Affiliation(s)
- Stephen T Durant
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wilson DM, McNeill DR. Base excision repair and the central nervous system. Neuroscience 2006; 145:1187-200. [PMID: 16934943 DOI: 10.1016/j.neuroscience.2006.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/10/2006] [Accepted: 07/14/2006] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species generated during normal cellular metabolism react with lipids, proteins, and nucleic acid. Evidence indicates that the accumulation of oxidative damage results in cellular dysfunction or deterioration. In particular, oxidative DNA damage can induce mutagenic replicative outcomes, leading to altered cellular function and/or cellular transformation. Additionally, oxidative DNA modifications can block essential biological processes, namely replication and transcription, triggering cell death responses. The major pathway responsible for removing oxidative DNA damage and restoring the integrity of the genome is base excision repair (BER). We highlight herein what is known about BER protein function(s) in the CNS, which in cooperation with the peripheral nervous system operates to control physical responses, motor coordination, and brain operation. Moreover, we describe evidence indicating that defective BER processing can promote post-mitotic (i.e. non-dividing) neuronal cell death and neurodegenerative disease. The focus of the review is on the core mammalian BER participants, i.e. the DNA glycosylases, AP endonuclease 1, DNA polymerase beta, X-ray cross-complementing 1, and the DNA ligases.
Collapse
Affiliation(s)
- D M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|