1
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Malone M, Maeyama A, Ogden N, Perry KN, Kramer A, Bates C, Marble C, Orlando R, Rausch A, Smeraldi C, Lowey C, Fees B, Dyson HJ, Dorrell M, Kast-Woelbern H, Jansma AL. The effect of phosphorylation efficiency on the oncogenic properties of the protein E7 from high-risk HPV. Virus Res 2024; 348:199446. [PMID: 39127239 PMCID: PMC11375142 DOI: 10.1016/j.virusres.2024.199446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.
Collapse
Affiliation(s)
- Madison Malone
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ava Maeyama
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Naomi Ogden
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Kayla N Perry
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Andrew Kramer
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Bates
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Camryn Marble
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ryan Orlando
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Amy Rausch
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Smeraldi
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Connor Lowey
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Bronson Fees
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Michael Dorrell
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Heidi Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| | - Ariane L Jansma
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| |
Collapse
|
3
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
4
|
Akash S, Bayıl I, Hossain MS, Islam MR, Hosen ME, Mekonnen AB, Nafidi HA, Bin Jardan YA, Bourhia M, Bin Emran T. Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives. Sci Rep 2023; 13:16565. [PMID: 37783745 PMCID: PMC10545697 DOI: 10.1038/s41598-023-43175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The present study deals with the advanced in-silico analyses of several Apigenin derivatives to explore human papillomavirus-associated cervical cancer and DNA polymerase theta inhibitor properties by molecular docking, molecular dynamics, QSAR, drug-likeness, PCA, a dynamic cross-correlation matrix and quantum calculation properties. The initial literature study revealed the potent antimicrobial and anticancer properties of Apigenin, prompting the selection of its potential derivatives to investigate their abilities as inhibitors of human papillomavirus-associated cervical cancer and DNA polymerase theta. In silico molecular docking was employed to streamline the findings, revealing promising energy-binding interactions between all Apigenin derivatives and the targeted proteins. Notably, Apigenin 4'-O-Rhamnoside and Apigenin-4'-Alpha-L-Rhamnoside demonstrated higher potency against the HPV45 oncoprotein E7 (PDB ID 2EWL), while Apigenin and Apigenin 5-O-Beta-D-Glucopyranoside exhibited significant binding energy against the L1 protein in humans. Similarly, a binding affinity range of - 7.5 kcal/mol to - 8.8 kcal/mol was achieved against DNA polymerase theta, indicating the potential of Apigenin derivatives to inhibit this enzyme (PDB ID 8E23). This finding was further validated through molecular dynamic simulation for 100 ns, analyzing parameters such as RMSD, RMSF, SASA, H-bond, and RoG profiles. The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADMET, pharmacokinetics, and drug-likeness properties, fulfilling all the necessary criteria. QSAR, PCA, dynamic cross-correlation matrix, and quantum calculations were conducted, yielding satisfactory outcomes. Since this study utilized in silico computational approaches and obtained outstanding results, further validation is crucial. Therefore, additional wet-lab experiments should be conducted under in vivo and in vitro conditions to confirm the findings.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh.
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Md Saddam Hossain
- Department of Biomedical Engineering, Faculty of Engineering & Technology, Islamic University, Kushtia, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC, G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
5
|
Bertagnin C, Messa L, Pavan M, Celegato M, Sturlese M, Mercorelli B, Moro S, Loregian A. A small molecule targeting the interaction between human papillomavirus E7 oncoprotein and cellular phosphatase PTPN14 exerts antitumoral activity in cervical cancer cells. Cancer Lett 2023; 571:216331. [PMID: 37532093 DOI: 10.1016/j.canlet.2023.216331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Human papillomavirus (HPV)-induced cancers still represent a major health issue for worldwide population and lack specific therapeutic regimens. Despite substantial advancements in anti-HPV vaccination, the incidence of HPV-related cancers remains high, thus there is an urgent need for specific anti-HPV drugs. The HPV E7 oncoprotein is a major driver of carcinogenesis that acts by inducing the degradation of several host factors. A target is represented by the cellular phosphatase PTPN14 and its E7-mediated degradation was shown to be crucial in HPV oncogenesis. Here, by exploiting the crystal structure of E7 bound to PTPN14, we performed an in silico screening of small-molecule compounds targeting the C-terminal CR3 domain of E7 involved in the interaction with PTPN14. We discovered a compound able to inhibit the E7/PTPN14 interaction in vitro and to rescue PTPN14 levels in cells, leading to a reduction in viability, proliferation, migration, and cancer-stem cell potential of HPV-positive cervical cancer cells. Mechanistically, as a consequence of PTPN14 rescue, treatment of cancer cells with this compound altered the Yes-associated protein (YAP) nuclear-cytoplasmic shuttling and downstream signaling. Notably, this compound was active against cervical cancer cells transformed by different high-risk (HR)-HPV genotypes indicating a potential broad-spectrum activity. Overall, our study reports the first-in-class inhibitor of E7/PTPN14 interaction and provides the proof-of-principle that pharmacological inhibition of this interaction by small-molecule compounds could be a feasible therapeutic strategy for the development of novel antitumoral drugs specific for HPV-associated cancers.
Collapse
Affiliation(s)
- Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Lim J, Lilie H, Kalbacher H, Roos N, Frecot DI, Feige M, Conrady M, Votteler T, Cousido-Siah A, Corradini Bartoli G, Iftner T, Trave G, Simon C. Evidence for direct interaction between the oncogenic proteins E6 and E7 of high-risk human papillomavirus (HPV). J Biol Chem 2023; 299:104954. [PMID: 37354975 PMCID: PMC10372912 DOI: 10.1016/j.jbc.2023.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Human papillomaviruses (HPVs) are DNA tumor viruses that infect mucosal and cutaneous epithelial cells of more than 20 vertebrates. High-risk HPV causes about 5% of human cancers worldwide, and the viral proteins E6 and E7 promote carcinogenesis by interacting with tumor suppressors and interfering with many cellular pathways. As a consequence, they immortalize cells more efficiently in concert than individually. So far, the networks of E6 and E7 with their respective cellular targets have been studied extensively but independently. However, we hypothesized that E6 and E7 might also interact directly with each other in a novel interaction affecting HPV-related carcinogenesis. Here, we report a direct interaction between E6 and E7 proteins from carcinogenic HPV types 16 and 31. We demonstrated this interaction via cellular assays using two orthogonal methods: coimmunoprecipitation and flow cytometry-based FRET assays. Analytical ultracentrifugation of the recombinant proteins revealed that the stoichiometry of the E6/E7 complex involves two E7 molecules and two E6 molecules. In addition, fluorescence polarization showed that (I) E6 binds to E7 with a similar affinity for HPV16 and HPV31 (in the same micromolar range) and (II) that the binding interface involves the unstructured N-terminal region of E7. The direct interaction of these highly conserved papillomaviral oncoproteins may provide a new perspective for studying HPV-associated carcinogenesis and the overall viral life cycle.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittemberg, Halle-Wittemberg, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Maximilian Feige
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcel Conrady
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Tobias Votteler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Alexandra Cousido-Siah
- Equipe Labellisée Ligue 2015, Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, Illkirch, France
| | - Giada Corradini Bartoli
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Gilles Trave
- Equipe Labellisée Ligue 2015, Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, Illkirch, France
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Hidayatullah A, Putra WE, Sustiprijatno S, Rifa'i M, Widiastuti D, Heikal MF, Permatasari GW. Concatenation of molecular docking and dynamics simulation of human papillomavirus type 16 E7 oncoprotein targeted ligands: In quest of cervical cancer's treatment. AN ACAD BRAS CIENC 2023; 95:e20220633. [PMID: 37466536 DOI: 10.1590/0001-3765202320220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/23/2022] [Indexed: 07/20/2023] Open
Abstract
The Human papillomaviruses type 16 E7 oncoprotein is a 98-amino-acid, 11-kilodalton acidic oncoprotein with three conserved portions. Due to its interaction with the pRb-E2F complex, CKII, CKI (mostly p21), and even HDAC1, it possesses strong transformative and carcinogenic qualities that inhibit normal differentiation and cell cycle regulation. Here, we target the E7 oncoprotein using two prior research active compounds: asarinin and thiazolo[3,2-a]benzimidazole-3(2H)-one,2-(2-fluorobenzylideno)-7,8-dimethyl (thiazolo), and valproic acid as a control. We are performing molecular docking followed by molecular dynamic analysis. By acting as competitive inhibitors in the binding site, it was hypothesized that both drugs would inhibit E7-mediated pRb degradation and E7-mediated p21 degradation, resulting in decreased cell cycle progression, immortalization, and proliferation. In addition, we expect that the direct inhibitory action of valproic acid in E7 will target the CKII-mediated phosphorylation pathway necessary for destabilizing p130 and pRb. According to the results of the dynamic simulation, stable interactions exist between every compound. Despite the instability of E7 protein, stability results indicate that both natural chemicals are preferable, with thiazolo outperforming valproic acid.
Collapse
Affiliation(s)
- Arief Hidayatullah
- United Nations Development Programme Indonesia, Health Governance Initiative, Eijkman-RSCM Building, Jakarta, 10430, Indonesia
| | - Wira E Putra
- Universitas Negeri Malang, Biotechnology Study Program, Department of Applied Sciences, Faculty of Mathematics and Natural Sciences, East Java 65145, Indonesia
| | - Sustiprijatno Sustiprijatno
- National Research and Innovation Agency, Research Center for Plant Conservation, Botanic Gardens and Forestry, Cibinong-Bogor, West Java 45262, Indonesia
| | - Muhaimin Rifa'i
- Brawijaya University, Department of Biology, Faculty of Mathematics and Natural Sciences, East Java, 65145, Indonesia
| | - Diana Widiastuti
- Universitas Pakuan, Department of Chemistry, Faculty of Mathematics and Natural Science, West Java, 45262, Indonesia
| | - Muhammad F Heikal
- Khon Kaen University, Tropical Medicine International Program, Faculty of Medicine, Khon Kaen 40000, Thailand
| | - Galuh W Permatasari
- Indonesian Research Institute for Biotechnology and Bioindustry, Bogor, West Java, 45262, Indonesia
| |
Collapse
|
8
|
Elkhalifa AME, Nabi SU, Shah OS, Bashir SM, Muzaffer U, Ali SI, Wani IA, Alzerwi NAN, Elderdery AY, Alanazi A, Alenazy FO, Alharbi AHA. Insight into Oncogenic Viral Pathways as Drivers of Viral Cancers: Implication for Effective Therapy. Curr Oncol 2023; 30:1924-1944. [PMID: 36826111 PMCID: PMC9955780 DOI: 10.3390/curroncol30020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
As per a recent study conducted by the WHO, 15.4% of all cancers are caused by infectious agents of various categories, and more than 10% of them are attributed to viruses. The emergence of COVID-19 has once again diverted the scientific community's attention toward viral diseases. Some researchers have postulated that SARS-CoV-2 will add its name to the growing list of oncogenic viruses in the long run. However, owing to the complexities in carcinogenesis of viral origin, researchers across the world are struggling to identify the common thread that runs across different oncogenic viruses. Classical pathways of viral oncogenesis have identified oncogenic mediators in oncogenic viruses, but these mediators have been reported to act on diverse cellular and multiple omics pathways. In addition to viral mediators of carcinogenesis, researchers have identified various host factors responsible for viral carcinogenesis. Henceforth owing to viral and host complexities in viral carcinogenesis, a singular mechanistic pathway remains yet to be established; hence there is an urgent need to integrate concepts from system biology, cancer microenvironment, evolutionary perspective, and thermodynamics to understand the role of viruses as drivers of cancer. In the present manuscript, we provide a holistic view of the pathogenic pathways involved in viral oncogenesis with special emphasis on alteration in the tumor microenvironment, genomic alteration, biological entropy, evolutionary selection, and host determinants involved in the pathogenesis of viral tumor genesis. These concepts can provide important insight into viral cancers, which can have an important implication for developing novel, effective, and personalized therapeutic options for treating viral cancers.
Collapse
Affiliation(s)
- Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
- Correspondence:
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Ovais Shabir Shah
- Department of Sheep Husbandry Kashmir, Government of Jammu and Kashmir, Srinagar 182301, Jammu and Kashmir, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Umar Muzaffer
- Department of Medicine, Government Medical College and Associated Hospital, Srinagar 190010, Jammu and Kashmir, India
| | - Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Imtiyaz Ahmad Wani
- Clinical Research Laboratory, SKIMS, Srinagar 190011, Jammu and Kashmir, India
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Fawaz O. Alenazy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | | |
Collapse
|
9
|
Fei M, Yu Y, Hu X, Xu H, Liu F. The Value of Immunocytochemical Staining for the HPV E7 Protein in the Diagnosis of Cervical Lesions. Int J Gen Med 2023; 16:1081-1089. [PMID: 36999008 PMCID: PMC10046121 DOI: 10.2147/ijgm.s402759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
Purpose To investigate the value of immunocytochemical (ICC) staining for human papillomavirus (HPV) E7 protein (E7-ICC staining) as a new-generation immunological method in the cytological diagnosis of cervical lesions. Methods The exfoliated cervical cell samples of 690 women were subjected to a liquid-based cytology test (LCT), high-risk HPV (HR-HPV) test, E7-ICC staining, and cervical biopsy for pathological diagnosis. Results E7-ICC staining as a preliminary screening scheme for cervical precancerous lesions was comparable to the HR-HPV test in sensitivity and to the LCT in specificity. E7-ICC staining was advantageous in facilitating the secondary triage of HR-HPV-positive patients; therefore, this method can be used as an auxiliary scheme to routine LCT for diagnostic grading to improve the accuracy of cervical cytology. Conclusion E7-ICC staining as a primary or auxiliary cytological screening scheme can effectively reduce the colposcopy referral rate.
Collapse
Affiliation(s)
- Mingjian Fei
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
- Correspondence: Mingjian Fei, Department of Pathology, The Second Hospital of Jiaxing, 1518 Huanchen North Road, Jiaxing, Zhejiang, 314000, People’s Republic of China, Email
| | - Yawei Yu
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaolan Hu
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Haimiao Xu
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Fang Liu
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
ZER1 Contributes to the Carcinogenic Activity of High-Risk HPV E7 Proteins. mBio 2022; 13:e0203322. [PMID: 36346242 PMCID: PMC9765665 DOI: 10.1128/mbio.02033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human papillomavirus (HPV) E7 proteins bind to host cell proteins to facilitate virus replication. Interactions between HPV E7 and host cell proteins can also drive cancer progression. We hypothesize that HPV E7-host protein interactions specific for high-risk E7 contribute to the carcinogenic activity of high-risk HPV. The cellular protein ZER1 interacts with the E7 protein from HPV16, the genotype most frequently associated with human cancers. The HPV16 E7-ZER1 interaction is unique among HPV E7 tested to date. Other E7 proteins, even from closely related HPV genotypes, do not bind ZER1, which is a substrate specificity factor for a CUL2-RING ubiquitin ligase. In the present study, we investigated the contribution of ZER1 to the carcinogenic activity of HPV16 E7. First, we mapped the ZER1 binding site to specific residues on the C terminus of HPV16 E7. We showed that the mutant HPV16 E7 that cannot bind ZER1 is impaired in the ability to promote the growth of primary keratinocytes. We found that ZER1 and CUL2 contribute to, but are not required for, HPV16 E7 to degrade RB1. Cancer dependency data show that ZER1 is an essential gene in most HPV-positive, but not HPV-negative, cancer cell lines. Depleting ZER1 impaired the growth of primary keratinocytes expressing HPV16 E7 or HPV18 E7 and of HPV16-and HPV18-positive cervical cancer cell lines. Taken together, our work demonstrates that ZER1 contributes to HPV-mediated carcinogenesis and is essential for the growth of HPV-positive cells. IMPORTANCE HPV16 is highly carcinogenic and is the most predominant HPV genotype associated with human cancers. The mechanisms that underlie differences between high-risk HPV genotypes are currently unknown, but many of these differences are likely attributable to the activities of the oncogenic HPV proteins, including E7. The HPV E7 oncoprotein is essential for HPV-mediated carcinogenesis. A large number of HPV E7 targets have been identified. However, it is unclear which of these many interactions contributes to the carcinogenic activity of HPV E7. Here, we characterized the interaction between HPV16 E7 and the host cell protein ZER1, testing whether this genotype-specific interaction could enable some of the carcinogenic activity of HPV16 E7. We found that ZER1 binding contributes to the growth-promoting activity of HPV16 E7 and to the growth of HPV-positive cervical cancer cells. We propose that ZER1 makes an important contribution to HPV-mediated carcinogenesis.
Collapse
|
11
|
Jaiswal N, Nandi D, Cheema PS, Nag A. The anaphase-promoting complex/cyclosome co-activator, Cdh1, is a novel target of human papillomavirus 16 E7 oncoprotein in cervical oncogenesis. Carcinogenesis 2022; 43:988-1001. [PMID: 35738876 DOI: 10.1093/carcin/bgac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023] Open
Abstract
The transforming properties of the high-risk human papillomavirus (HPV) E7 oncoprotein are indispensable for driving the virus life cycle and pathogenesis. Besides inactivation of the retinoblastoma family of tumor suppressors as part of its oncogenic endeavors, E7-mediated perturbations of eminent cell cycle regulators, checkpoint proteins and proto-oncogenes are considered to be the tricks of its transformative traits. However, many such critical interactions are still unknown. In the present study, we have identified the anaphase-promoting complex/cyclosome (APC) co-activator, Cdh1, as a novel interacting partner and a degradation target of E7. We found that HPV16 E7-induced inactivation of Cdh1 promoted abnormal accumulation of multiple Cdh1 substrates. Such a mode of deregulation possibly contributes to HPV-mediated cervical oncogenesis. Our mapping studies recognized the C-terminal zinc-finger motif of E7 to associate with Cdh1 and interfere with the timely degradation of FoxM1, a bona fide Cdh1 substrate and a potent oncogene. Importantly, the E7 mutant with impaired interaction with Cdh1 exhibited defects in its ability for overriding typical cell cycle transition and oncogenic transformation, thereby validating the functional and pathological significance of the E7-Cdh1 axis during cervical carcinoma progression. Altogether, the findings from our study discover a unique nexus between E7 and APC/C-Cdh1, thereby adding to our understanding of the mechanism of E7-induced carcinogenesis and provide a promising target for the management of cervical carcinoma.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| |
Collapse
|
12
|
Yu M, Chi X, Huang S, Wang Z, Chen J, Qian C, Han F, Cao L, Li J, Sun H, Zhou L, Li T, Wang Y, Zheng Q, Yu H, Zhang J, Xia N, Li S, Gu Y. A bacterially expressed triple-type chimeric vaccine against human papillomavirus types 51, 69, and 26. Vaccine 2022; 40:6141-6152. [PMID: 36117002 DOI: 10.1016/j.vaccine.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Persistent infection of high-risk human papillomavirus (HPV) is a leading cause of some cancers, including cervical cancer. However, with over 20 carcinogenic HPV types, it is difficult to design a multivalent vaccine that can offer complete protection. Here, we describe the design and optimization of a HPV51/69/26 triple-type chimeric virus-like particle (VLP) for vaccine development. Using E. coli and a serial N-terminal truncation strategy, we created double- and triple-type chimeric VLPs through loop-swapping at equivalent surface loops. The lead candidate, H69-51BC-26FG, conferred similar particulate properties as that of its parental VLPs and comparable immunogenicity against HPV51, -69 and -26. When produced in a GMP-like facility, these H69-51BC-26FG VLPs were verified to have excellent qualities for the development of a multivalent HPV vaccine. This study showcases an amenable way to create a single VLP using type-specific epitope clustering for the design of a triple-type vaccine.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Xin Chi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shiwen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ciying Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Feng Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Lin Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jinjin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Lou H, Boland JF, Li H, Burk R, Yeager M, Anderson SK, Wentzensen N, Schiffman M, Mirabello L, Dean M. HPV16 E7 Nucleotide Variants Found in Cancer-Free Subjects Affect E7 Protein Expression and Transformation. Cancers (Basel) 2022; 14:4895. [PMID: 36230818 PMCID: PMC9562847 DOI: 10.3390/cancers14194895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The human papillomavirus (HPV) type 16 E7 oncogene is critical to carcinogenesis and highly conserved. Previous studies identified a preponderance of non-synonymous E7 variants amongst HPV16-positive cancer-free controls compared to those with cervical cancer. To investigate the function of E7 variants, we constructed full-length HPV16 E7 genes and tested variants at positions H9R, D21N, N29S, E33K, T56I, D62N, S63F, S63P, T64M, E80K, D81N, P92L, and P92S (found only in controls); D14E, N29H cervical intraepithelial neoplasia (CIN2), and P6L, H51N, R77S (CIN3). We determined the steady-state level of cytoplasmic and nuclear HPV16 E7 protein. All variants from controls showed a reduced level of E7 protein, with 7/13 variants having lower protein levels. In contrast, 2/3 variants from the CIN3 precancer group had near-wild type E7 levels. We assayed the activity of representative variants in stably transfected NIH3T3 cells. The H9R, E33K, P92L, and P92S variants found in control subjects had lower transforming activity than D14E and N29H variants (CIN2), and the R77S (CIN3) had activity only slightly reduced from wild-type E7. In addition, R77S and WT E7 caused increased migration of NIH3T3 cells in a wound-healing assay compared with H9R, E33K, P92L, and P92S (controls) and D14E (CIN2). These data provide evidence that the E7 variants found in HPV16-positive cancer-free women are partially defective for transformation and cell migration, further demonstrating the importance of fully active E7 in cancer development.
Collapse
Affiliation(s)
- Hong Lou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Joseph F. Boland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meredith Yeager
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nicolas Wentzensen
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Mark Schiffman
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Lisa Mirabello
- Laboratory of Cancer Genetics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| |
Collapse
|
14
|
Indole-3-Carbinol, a Phytochemical Aryl Hydrocarbon Receptor-Ligand, Induces the mRNA Overexpression of UBE2L3 and Cell Proliferation Arrest. Curr Issues Mol Biol 2022; 44:2054-2068. [PMID: 35678668 PMCID: PMC9164055 DOI: 10.3390/cimb44050139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer (CC) is one of the most common cancers in women, and is linked to human papillomavirus (HPV) infection. The virus oncoprotein E6 binds to p53, resulting in its degradation and allowing uncontrolled cell proliferation. Meanwhile, the HPV E7 protein maintains host cell differentiation by targeting retinoblastoma tumor suppressor. The host cell can ubiquitinate E6 and E7 through UBE2L3, whose expression depends on the interaction between the aryl hydrocarbon receptor (AhR) with Xenobiotic Responsive Elements (XREs) located in the UBE2L3 gene promoter. In this study, we used cell culture to determine the effect of indole-3-carbinol (I3C) over cellular viability, apoptosis, cell proliferation, and mRNA levels of UBE2L3 and CYP1A1. In addition, patients’ samples were used to determine the mRNA levels of UBE2L3 and CYP1A1 genes. We found that I3C promotes the activation of AhR and decreases cell proliferation, possibly through UBE2L3 mRNA induction, which would result in the ubiquitination of HPV E7. Since there is a strong requirement for selective and cost-effective cancer treatments, natural AhR ligands such as I3C could represent a novel strategy for cancer treatment.
Collapse
|
15
|
Risør MW, Jansma AL, Medici N, Thomas B, Dyson HJ, Wright PE. Characterization of the High-Affinity Fuzzy Complex between the Disordered Domain of the E7 Oncoprotein from High-Risk HPV and the TAZ2 Domain of CBP. Biochemistry 2021; 60:3887-3898. [PMID: 34905914 PMCID: PMC8865373 DOI: 10.1021/acs.biochem.1c00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intrinsically disordered N-terminal region of the E7 protein from high-risk human papillomavirus (HPV) strains is responsible for oncogenic transformation of host cells through its interaction with a number of cellular factors, including the TAZ2 domain of the transcriptional coactivator CREB-binding protein. Using a variety of spectroscopic and biochemical tools, we find that despite its nanomolar affinity, the HPV16 E7 complex with TAZ2 is disordered and highly dynamic. The disordered domain of HPV16 E7 protein does not adopt a single conformation on the surface of TAZ2 but engages promiscuously with its target through multiple interactions involving two conserved motifs, termed CR1 and CR2, that occupy an extensive binding surface on TAZ2. The fuzzy nature of the complex is a reflection of the promiscuous binding repertoire of viral proteins, which must efficiently dysregulate host cell processes by binding to a variety of host factors in the cellular environment.
Collapse
Affiliation(s)
- Michael W. Risør
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Joint first author
| | - Ariane L. Jansma
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A.,Joint first author
| | - Natasha Medici
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - Brittany Thomas
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| |
Collapse
|
16
|
Abstract
INTRODUCTION High-risk HPV infections are related to several epithelial cancers. Despite the availability of prophylactic vaccines, HPV infections are still responsible for about 5% of all human malignancies worldwide. While therapeutic vaccines are ongoing clinical trials, genotoxic agents and surgical interventions represent current clinical treatments, with no specific anti-HPV drugs yet available in the clinics. AREAS COVERED We offer a comprehensive report of small molecules in preclinical studies proposed as potential anticancer agents against HPV-driven tumors. Given the importance of HPV oncoproteins for cancer maintenance, particularly E6 and E7, we present a classification of both non-targeted and targeted agents, with a further subdivision of the latter into two categories according to their either direct or indirect activity against viral protein functions. EXPERT OPINION Prophylactic vaccines can prevent the insurgence of HPV-related cancers, but have no effect against pre-existing infections. Moreover, their high cost, genotype-restricted effect and the growing worldwide distrust for vaccines make the availability of a specific drug an unmet medical need. Different viral early proteins emerge as ideal candidates for drug development. We highlight the most promising strategies and address future challenges in this field to herald the prospect of a specific therapeutic regimen against HPV-related cancers.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, 35121, Italy.,Clinical Microbiology and Virology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
17
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
18
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
19
|
Lee HS, Kim MW, Jin KS, Shin HC, Kim WK, Lee SC, Kim SJ, Lee EW, Ku B. Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18. Mol Cells 2021; 44:26-37. [PMID: 33431714 PMCID: PMC7854179 DOI: 10.14348/molcells.2020.0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
20
|
Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 2021; 22:ijms22031400. [PMID: 33573298 PMCID: PMC7866783 DOI: 10.3390/ijms22031400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023] Open
Abstract
The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.
Collapse
|
21
|
Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens 2020; 9:pathogens9090685. [PMID: 32839399 PMCID: PMC7557835 DOI: 10.3390/pathogens9090685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomavirus (HR-HPV) is etiologically associated with the development and progression of cervical cancer, although other factors are involved. Epstein-Barr virus (EBV) detection in premalignant and malignant tissues from uterine cervix has been widely reported; however, its contribution to cervical cancer development is still unclear. Here, a comprehensive analysis regarding EBV presence and its potential role in cervical cancer, the frequency of EBV/HR-HPV coinfection in uterine cervix and EBV infection in tissue-infiltrating lymphocytes were revised. Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway), and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression (indirect pathway). In situ hybridization (ISH) and/or immunohistochemical methods are mandatory for discriminating the cell type infected by EBV. However, further studies are needed for a better understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis.
Collapse
|
22
|
Aarthy M, Panwar U, Singh SK. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci Rep 2020; 10:8661. [PMID: 32457393 PMCID: PMC7250877 DOI: 10.1038/s41598-020-65446-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2020] [Indexed: 02/04/2023] Open
Abstract
High risk human papillomaviruses are highly associated with the cervical carcinoma and the other genital tumors. Development of cervical cancer passes through the multistep process initiated from benign cyst to increasingly severe premalignant dysplastic lesions in an epithelium. Replication of this virus occurs in the fatal differentiating epithelium and involves in the activation of cellular DNA replication proteins. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers constrains the cells into S-phase constructing an environment favorable for genome replication and cell proliferation. To date, no suitable drug molecules exist to treat HPV infection whereas anticipation of novel anti-HPV chemotherapies with distinctive mode of actions and identification of potential drugs are crucial to a greater extent. Hence, our present study focused on identification of compounds analogue to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems towards treatment of cancer. A three dimensional similarity search on the small molecule library from natural product database using EGCG identified 11 potential small molecules based on their structural similarity. The docking strategies were implemented with acquired small molecules and identification of the key interactions between protein and compounds were carried out through binding free energy calculations. The conformational changes between the apoprotein and complexes were analyzed through simulation performed thrice demonstrating the dynamical and structural effects of the protein induced by the compounds signifying the domination. The analysis of the conformational stability provoked us to describe the features of the best identified small molecules through electronic structure calculations. Overall, our study provides the basis for structural insights of the identified potential identified small molecules and EGCG. Hence, the identified analogue of EGCG can be potent inhibitors against the HPV 16 E7 oncoprotein.
Collapse
Affiliation(s)
- Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India.
| |
Collapse
|
23
|
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020; 10:3116. [PMID: 32038557 PMCID: PMC6985034 DOI: 10.3389/fmicb.2019.03116] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023] Open
Abstract
Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.
Collapse
Affiliation(s)
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| |
Collapse
|
24
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
25
|
Alvarez-Paggi D, Lorenzo JR, Camporeale G, Montero L, Sánchez IE, de Prat Gay G, Alonso LG. Topology Dictates Evolution of Regulatory Cysteines in a Family of Viral Oncoproteins. Mol Biol Evol 2019; 36:1521-1532. [DOI: 10.1093/molbev/msz085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Juan Ramiro Lorenzo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina
| | - Gabriela Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Luciano Montero
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Ignacio E Sánchez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina
| | - Gonzalo de Prat Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Leonardo G Alonso
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions. Sci Rep 2019; 9:5822. [PMID: 30967564 PMCID: PMC6456579 DOI: 10.1038/s41598-019-41925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.
Collapse
|
27
|
Law PT, Boon SS, Hu C, Lung RW, Cheung GP, Ho WC, Chen Z, Massimi P, Thomas M, Pim D, Banks L, Chan PK. Oncogenic comparison of human papillomavirus type 58 E7 variants. J Cell Mol Med 2018; 23:1517-1527. [PMID: 30575267 PMCID: PMC6349171 DOI: 10.1111/jcmm.14059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/10/2023] Open
Abstract
Human papillomavirus 58 (HPV58) ranks the second or third in East Asian cervical cancers. Current studies on HPV58 are scarce and focus on the prototype. Previously, we identified the three most common circulating HPV58 E7 strains contained amino acid alterations: G41R/G63D (51%), T20I/G63S (22%) and T74A/D76E (14%) respectively. Among them, the T20I/G63S variant (V1) had a stronger epidemiological association with cervical cancer. We therefore suggested that V1 possessed stronger oncogenicity than the other two variants. Here, we performed phenotypic assays to characterize and compare their oncogenicities with HPV58 E7 prototype. Our results showed that overexpression of V1 conferred a higher colony-forming ability to primary murine epithelial cells than prototype (P < 0.05) and other variants, implicating its higher immortalising potential. Further experiments showed that both V1 and prototype enhanced the anchorage-independent growth of NIH/3T3 cells (P < 0.001), implicating their stronger transforming power than the two other variants. Moreover, they possessed an increased ability to degrade pRb (P < 0.001), which is a major effector pathway of E7-driven oncogenesis. Our work represents the first study to compare the oncogenicities of HPV58 E7 prototype and variants. These findings deepened our understanding of HPV58 and might inform clinical screening and follow-up strategy.
Collapse
Affiliation(s)
- Priscilla Ty Law
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Chenghua Hu
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Raymond Wm Lung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Grace Py Cheung
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wendy Cs Ho
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul Ks Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
28
|
Jabbar B, Rafique S, Salo-Ahen OMH, Ali A, Munir M, Idrees M, Mirza MU, Vanmeert M, Shah SZ, Jabbar I, Rana MA. Antigenic Peptide Prediction From E6 and E7 Oncoproteins of HPV Types 16 and 18 for Therapeutic Vaccine Design Using Immunoinformatics and MD Simulation Analysis. Front Immunol 2018; 9:3000. [PMID: 30619353 PMCID: PMC6305797 DOI: 10.3389/fimmu.2018.03000] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Human papillomavirus (HPV) induced cervical cancer is the second most common cause of death, after breast cancer, in females. Three prophylactic vaccines by Merck Sharp & Dohme (MSD) and GlaxoSmithKline (GSK) have been confirmed to prevent high-risk HPV strains but these vaccines have been shown to be effective only in girls who have not been exposed to HPV previously. The constitutively expressed HPV oncoproteins E6 and E7 are usually used as target antigens for HPV therapeutic vaccines. These early (E) proteins are involved, for example, in maintaining the malignant phenotype of the cells. In this study, we predicted antigenic peptides of HPV types 16 and 18, encoded by E6 and E7 genes, using an immunoinformatics approach. To further evaluate the immunogenic potential of the predicted peptides, we studied their ability to bind to class I major histocompatibility complex (MHC-I) molecules in a computational docking study that was supported by molecular dynamics (MD) simulations and estimation of the free energies of binding of the peptides at the MHC-I binding cleft. Some of the predicted peptides exhibited comparable binding free energies and/or pattern of binding to experimentally verified MHC-I-binding epitopes that we used as references in MD simulations. Such peptides with good predicted affinity may serve as candidate epitopes for the development of therapeutic HPV peptide vaccines.
Collapse
Affiliation(s)
- Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, Finland
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Mobeen Munir
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Syed Zawar Shah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Jabbar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
29
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|
30
|
Kaliamurthi S, Selvaraj G, Kaushik AC, Gu KR, Wei DQ. Designing of CD8 + and CD8 +-overlapped CD4 + epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics 2018; 12:107-125. [PMID: 30323556 PMCID: PMC6174296 DOI: 10.2147/btt.s177901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Human papillomavirus (HPV) is an oncogenic agent that causes over 90% of cases of cervical cancer in the world. Currently available prophylactic vaccines are type specific and have less therapeutic efficiency. Therefore, we aimed to predict the potential species-specific and therapeutic epitopes from the protein sequences of HPV45 by using different immunoinformatics tools. METHODS Initially, we determined the antigenic potential of late (L1 and L2) and early (E1, E2, E4, E5, E6, and E7) proteins. Then, major histocompatibility complex class I-restricted CD8+ T-cell epitopes were selected based on their immunogenicity. In addition, epitope conservancy, population coverage (PC), and target receptor-binding affinity of the immunogenic epitopes were determined. Moreover, we predicted the possible CD8+, nested interferon gamma (IFN-γ)-producing CD4+, and linear B-cell epitopes. Further, antigenicity, allergenicity, immunogenicity, and system biology-based virtual pathway associated with cervical cancer were predicted to confirm the therapeutic efficiency of overlapped epitopes. RESULTS Twenty-seven immunogenic epitopes were found to exhibit cross-protection (≥55%) against the 15 high-risk HPV strains (16, 18, 31, 33, 35, 39, 51, 52, 56, 58, 59, 68, 69, 73, and 82). The highest PC was observed in Europe (96.30%), North America (93.98%), West Indies (90.34%), North Africa (90.14%), and East Asia (89.47%). Binding affinities of 79 docked complexes observed as global energy ranged from -10.80 to -86.71 kcal/mol. In addition, CD8+ epitope-overlapped segments in CD4+ and B-cell epitopes demonstrated that immunogenicity and IFN-γ-producing efficiency ranged from 0.0483 to 0.5941 and 0.046 to 18, respectively. Further, time core simulation revealed the overlapped epitopes involved in pRb, p53, COX-2, NF-X1, and HPV45 infection signaling pathways. CONCLUSION Even though the results of this study need to be confirmed by further experimental peptide sensitization studies, the findings on immunogenic and IFN-γ-producing CD8+ and overlapped epitopes provide new insights into HPV vaccine development.
Collapse
Affiliation(s)
- Satyavani Kaliamurthi
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
| | - Gurudeeban Selvaraj
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
| | - Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,
| | - Ke-Ren Gu
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, China
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science - Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China,
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,
| |
Collapse
|
31
|
Borkosky SS, Camporeale G, Chemes LB, Risso M, Noval MG, Sánchez IE, Alonso LG, de Prat Gay G. Hidden Structural Codes in Protein Intrinsic Disorder. Biochemistry 2017; 56:5560-5569. [PMID: 28952717 DOI: 10.1021/acs.biochem.7b00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.
Collapse
Affiliation(s)
- Silvia S Borkosky
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| | - Gabriela Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| | - Marikena Risso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| | - María Gabriela Noval
- Department of Microbiology, New York University , Alexandria Center for Life Sciences, New York, New York 10016, United States
| | - Ignacio E Sánchez
- Protein Physiology Laboratory, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Leonardo G Alonso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| | - Gonzalo de Prat Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET , Buenos Aires, Argentina
| |
Collapse
|
32
|
Poirson J, Biquand E, Straub ML, Cassonnet P, Nominé Y, Jones L, van der Werf S, Travé G, Zanier K, Jacob Y, Demeret C, Masson M. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. FEBS J 2017; 284:3171-3201. [PMID: 28786561 DOI: 10.1111/febs.14193] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination and its reverse reaction, deubiquitination, regulate protein stability, protein binding activity, and their subcellular localization. These reactions are catalyzed by the enzymes E1, E2, and E3 ubiquitin (Ub) ligases and deubiquitinases (DUBs). The Ub-proteasome system (UPS) is targeted by viruses for the sake of their replication and to escape host immune response. To identify novel partners of human papillomavirus 16 (HPV16) E6 and E7 proteins, we assembled and screened a library of 590 cDNAs related to the UPS by using the Gaussia princeps luciferase protein complementation assay. HPV16 E6 was found to bind to the homology to E6AP C terminus-type Ub ligase (E6AP), three really interesting new gene (RING)-type Ub ligases (MGRN1, LNX3, LNX4), and the DUB Ub-specific protease 15 (USP15). Except for E6AP, the binding of UPS factors did not require the LxxLL-binding pocket of HPV16 E6. LNX3 bound preferentially to all high-risk mucosal HPV E6 tested, whereas LNX4 bound specifically to HPV16 E6. HPV16 E7 was found to bind to several broad-complex tramtrack and bric-a-brac domain-containing proteins (such as TNFAIP1/KCTD13) that are potential substrate adaptors of Cullin 3-RING Ub ligases, to RING-type Ub ligases implicated in innate immunity (RNF135, TRIM32, TRAF2, TRAF5), to the substrate adaptor DCAF15 of Cullin 4-RING Ub ligase and to some DUBs (USP29, USP33). The binding to UPS factors did not require the LxCxE motif but rather the C-terminal region of HPV16 E7 protein. The identified UPS factors interacted with most of E7 proteins across different HPV types. This study establishes a strategy for the rapid identification of interactions between host or pathogen proteins and the human ubiquitination system.
Collapse
Affiliation(s)
- Juline Poirson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Elise Biquand
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Marie-Laure Straub
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Patricia Cassonnet
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Nominé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Louis Jones
- Biostatistiques et biologie intégrative (C3BI), Institut Pasteur, Centre de bioinformatique, Paris, France
| | - Sylvie van der Werf
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Gilles Travé
- UMR 7104-Inserm U964, CNRS, IGBMC-CBI, Equipe labellisée Ligue 2015, Illkirch, France
| | - Katia Zanier
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| | - Yves Jacob
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Caroline Demeret
- UMR 3569, CNRS, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Murielle Masson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR-7242, CNRS, Université de Strasbourg, Illkirch, France
| |
Collapse
|
33
|
The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. J Virol 2017; 91:JVI.00057-17. [PMID: 28100625 DOI: 10.1128/jvi.00057-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor.
Collapse
|
34
|
Nogueira MO, Hošek T, Calçada EO, Castiglia F, Massimi P, Banks L, Felli IC, Pierattelli R. Monitoring HPV-16 E7 phosphorylation events. Virology 2017; 503:70-75. [PMID: 28126639 DOI: 10.1016/j.virol.2016.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 11/25/2022]
Abstract
HPV-16 E7 is one of the key proteins that, by interfering with the host metabolism through many protein-protein interactions, hijacks cell regulation and contributes to malignancy. Here we report the high resolution investigation of the CR3 region of HPV-16 E7, both as an isolated domain and in the full-length protein. This opens the way to the atomic level study of the many interactions in which HPV-16 E7 is involved. Along these lines we show here the effect of one of the key post-translational modifications of HPV-16 E7, the phosphorylation by casein kinase II.
Collapse
Affiliation(s)
- Marcela O Nogueira
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Tomáš Hošek
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Eduardo O Calçada
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Francesca Castiglia
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Isabella C Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, Italy.
| |
Collapse
|
35
|
Lee C, Kim DH, Lee SH, Su J, Han KH. Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Rep 2017; 49:431-6. [PMID: 27418281 PMCID: PMC5070730 DOI: 10.5483/bmbrep.2016.49.8.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the major cause of cervical cancer, a deadly threat to millions of females. The early oncogene product (E7) of the high-risk HPV16 is the primary agent associated with HPV-related cervical cancers. In order to understand how E7 contributes to the transforming activity, we investigated the structural features of the flexible N-terminal region (46 residues) of E7 by carrying out N-15 heteronuclear NMR experiments and replica exchange molecular dynamics simulations. Several NMR parameters as well as simulation ensemble structures indicate that this intrinsically disordered region of E7 contains two transient (10-20% populated) helical pre-structured motifs that overlap with important target binding moieties such as an E2F-mimic motif and a pRb-binding LXCXE segment. Presence of such target-binding motifs in HPV16 E7 provides a reasonable explanation for its promiscuous target-binding behavior associated with its transforming activity. [BMB Reports 2016; 49(8): 431-436]
Collapse
Affiliation(s)
- Chewook Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Si-Hyung Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jiulong Su
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141; Department of Bioinformatics, University of Science and Technology, Daejeon 34113, Korea
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141; Department of Bioinformatics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
36
|
Camporeale G, Lorenzo JR, Thomas MG, Salvatierra E, Borkosky SS, Risso MG, Sánchez IE, de Prat Gay G, Alonso LG. Degenerate cysteine patterns mediate two redox sensing mechanisms in the papillomavirus E7 oncoprotein. Redox Biol 2016; 11:38-50. [PMID: 27863297 PMCID: PMC5278158 DOI: 10.1016/j.redox.2016.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Infection with oncogenic human papillomavirus induces deregulation of cellular redox homeostasis. Virus replication and papillomavirus-induced cell transformation require persistent expression of viral oncoproteins E7 and E6 that must retain their functionality in a persistent oxidative environment. Here, we dissected the molecular mechanisms by which E7 oncoprotein can sense and manage the potentially harmful oxidative environment of the papillomavirus-infected cell. The carboxy terminal domain of E7 protein from most of the 79 papillomavirus viral types of alpha genus, which encloses all the tumorigenic viral types, is a cysteine rich domain that contains two classes of cysteines: strictly conserved low reactive Zn+2 binding and degenerate reactive cysteine residues that can sense reactive oxygen species (ROS). Based on experimental data obtained from E7 proteins from the prototypical viral types 16, 18 and 11, we identified a couple of low pKa nucleophilic cysteines that can form a disulfide bridge upon the exposure to ROS and regulate the cytoplasm to nucleus transport. From sequence analysis and phylogenetic reconstruction of redox sensing states we propose that reactive cysteine acquisition through evolution leads to three separate E7s protein families that differ in the ROS sensing mechanism: non ROS-sensitive E7s; ROS-sensitive E7s using only a single or multiple reactive cysteine sensing mechanisms and ROS-sensitive E7s using a reactive-resolutive cysteine couple sensing mechanism. Transforming protein ROS-sensing. Reactive cysteine acquisition through evolution. Redox-switching mechanism. Papillomavirus-induced cancers.
Collapse
Affiliation(s)
- Gabriela Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Juan R Lorenzo
- ULB-Neuroscience Institute, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Maria G Thomas
- RNA Cell Biology Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Edgardo Salvatierra
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir-CONICET and IIBBA-CONICET, Buenos Aires, Argentina
| | - Silvia S Borkosky
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Marikena G Risso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Ignacio E Sánchez
- Protein Physiology Laboratory, Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Gonzalo de Prat Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.
| | - Leonardo G Alonso
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
38
|
|
39
|
Dyson HJ, Wright PE. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem 2016; 291:6714-22. [PMID: 26851278 DOI: 10.1074/jbc.r115.692020] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators CREB-binding protein (CBP) and p300 undergo a particularly rich set of interactions with disordered and partly ordered partners, as a part of their ubiquitous role in facilitating transcription of genes. CBP and p300 contain a number of small structured domains that provide scaffolds for the interaction of disordered transactivation domains from a wide variety of partners, including p53, hypoxia-inducible factor 1α (HIF-1α), NF-κB, and STAT proteins, and are the targets for the interactions of disordered viral proteins that compete with cellular factors to disrupt signaling and subvert the cell cycle. The functional diversity of the CBP/p300 interactome provides an excellent example of the power of intrinsic disorder to facilitate the complexity of living systems.
Collapse
Affiliation(s)
- H Jane Dyson
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| | - Peter E Wright
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| |
Collapse
|
40
|
Zhuchenko MA, Shamonov NA, Serebriakova MV, Cherepushkin SA. Isolation and identification of hybrid recombinant E7 oncoprotein of type 16 human papilloma virus conjugated with heat shock protein 70. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815080074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
The Subcellular Localisation of the Human Papillomavirus (HPV) 16 E7 Protein in Cervical Cancer Cells and Its Perturbation by RNA Aptamers. Viruses 2015; 7:3443-61. [PMID: 26131956 PMCID: PMC4517109 DOI: 10.3390/v7072780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Human papillomavirus (HPV) is the most common viral infection of the reproductive tract, affecting both men and women. High-risk oncogenic types are responsible for almost 90% of anogenital and oropharyngeal cancers including cervical cancer. Some of the HPV "early" genes, particularly E6 and E7, are known to act as oncogenes that promote tumour growth and malignant transformation. Most notably, HPV-16 E7 interacts with the tumour suppressor protein pRb, promoting its degradation, leading to cell cycle dysregulation in infected cells. We have previously shown that an RNA aptamer (termed A2) selectively binds to HPV16 E7 and is able to induce apoptosis in HPV16-transformed cervical carcinoma cell lines (SiHa) through reduction of E7 levels. In this study, we investigated the effects of the A2 aptamer on E7 localisation in order to define its effects on E7 activity. We demonstrate for the first time that E7 localised to the plasma membrane. In addition, we show that A2 enhanced E7 localisation in the ER and that the A2-mediated reduction of E7 was not associated with proteasomal degradation. These data suggest that A2 perturbs normal E7 trafficking through promoting E7 ER retention.
Collapse
|
42
|
E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 2015; 6:e02068-14. [PMID: 25691589 PMCID: PMC4337564 DOI: 10.1128/mbio.02068-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy. HPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicing cis elements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.
Collapse
|
43
|
Jansma AL, Martinez-Yamout MA, Liao R, Sun P, Dyson HJ, Wright PE. The high-risk HPV16 E7 oncoprotein mediates interaction between the transcriptional coactivator CBP and the retinoblastoma protein pRb. J Mol Biol 2014; 426:4030-4048. [PMID: 25451029 DOI: 10.1016/j.jmb.2014.10.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
Abstract
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.
Collapse
Affiliation(s)
- Ariane L Jansma
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rong Liao
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peiqing Sun
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Kaiser A, Jenewein B, Pircher H, Rostek U, Jansen-Dürr P, Zwerschke W. Analysis of human papillomavirus E7 protein status in C-33A cervical cancer cells. Virus Genes 2014; 50:12-21. [DOI: 10.1007/s11262-014-1129-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/11/2014] [Indexed: 12/20/2022]
|
45
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Chemes LB, Camporeale G, Sánchez IE, de Prat-Gay G, Alonso LG. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles. Biochemistry 2014; 53:1680-96. [PMID: 24559112 DOI: 10.1021/bi401562e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The E7 protein from high-risk human papillomavirus is essential for cell transformation in cervical, oropharyngeal, and other HPV-related cancers, mainly through the inactivation of the retinoblastoma (Rb) tumor suppressor. Its high cysteine content (~7%) and the observation that HPV-transformed cells are under oxidative stress prompted us to investigate the redox properties of the HPV16 E7 protein under biologically compatible oxidative conditions. The seven cysteines in HPV16 E7 remain reduced in conditions resembling the basal reduced state of a cell. However, under oxidative stress, a stable disulfide bridge forms between cysteines 59 and 68. Residue 59 has a protective effect on the other cysteines, and its mutation leads to an overall increase in the oxidation propensity of E7, including cysteine 24 central to the Rb binding motif. Gluthationylation of Cys 24 abolishes Rb binding, which is reversibly recovered upon reduction. Cysteines 59 and 68 are located 18.6 Å apart, and the formation of the disulfide bridge leads to a large structural rearrangement while retaining strong Zn association. These conformational and covalent changes are fully reversible upon restoration of the reductive environment. In addition, this is the first evidence of an interaction between the N-terminal intrinsically disordered and the C-terminal globular domains, known to be highly and separately conserved among human papillomaviruses. The significant conservation of such noncanonical cysteines in HPV E7 proteins leads us to propose a functional redox activity. Such an activity adds to the previously discovered chaperone activity of E7 and supports the picture of a moonlighting pathological role of this paradigmatic viral oncoprotein.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
47
|
Human papillomavirus E7 oncoprotein increases production of the anti-inflammatory interleukin-18 binding protein in keratinocytes. J Virol 2014; 88:4173-9. [PMID: 24478434 DOI: 10.1128/jvi.02546-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human papillomavirus (HPV) can successfully evade the host immune response to establish a persistent infection. We show here that expression of the E7 oncoprotein in primary human keratinocytes results in increased production of interleukin-18 (IL-18) binding protein (IL-18BP). This anti-inflammatory cytokine binding protein is a natural antagonist of IL-18 and is necessary for skin homeostasis. We map increased IL-18BP production to the CR3 region of E7 and demonstrate that this ability is shared among E7 proteins from different HPV types. Furthermore, mutagenesis shows that increased IL-18BP production is mediated by a gamma-activated sequence (GAS) in the IL-18BP promoter. Importantly, the increased IL-18BP levels seen in E7-expressing keratinocytes are capable of diminishing IL-18-mediated CD4 lymphocyte activation. This study provides the first evidence for a virus protein that targets IL-18BP and further validates E7 as a key component of the HPV immune evasion armor. IMPORTANCE Infection with human papillomavirus is a leading cause of morbidity and mortality worldwide. This study demonstrates that the E7 protein increases production of the anti-inflammatory IL-18BP, a major regulator of epithelial homeostasis. A number of E7 proteins can increase IL-18BP production, and a region within the CR3 of E7 is necessary for mediating the increase. A consequence of increased IL-18BP production is a reduction in CD4-positive lymphocyte activation in response to IL-18 costimulation. These findings may shed light on the immune evasion abilities of HPV.
Collapse
|
48
|
Jiang P, Yue Y. Human papillomavirus oncoproteins and apoptosis (Review). Exp Ther Med 2013; 7:3-7. [PMID: 24348754 PMCID: PMC3860870 DOI: 10.3892/etm.2013.1374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway; and oncoprotein E7 is involved in apoptosis activation and inhibition. In addition, HPV oncoproteins are involved in activating or repressing the transcription of E6/E7. In conclusion, HPV oncoproteins, including E5, E6 and E7 protein, may interfere with apoptosis via certain regulatory principles.
Collapse
Affiliation(s)
- Peiyue Jiang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Yue
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
49
|
Calçada EO, Felli IC, Hošek T, Pierattelli R. The Heterogeneous Structural Behavior of E7 from HPV16 Revealed by NMR Spectroscopy. Chembiochem 2013; 14:1876-82. [DOI: 10.1002/cbic.201300172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 12/19/2022]
|
50
|
Van Doorslaer K. Evolution of the papillomaviridae. Virology 2013; 445:11-20. [PMID: 23769415 DOI: 10.1016/j.virol.2013.05.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 02/08/2023]
Abstract
Viruses belonging to the Papillomaviridae family have been isolated from a variety of mammals, birds and non-avian reptiles. It is likely that most, if not all, amniotes carry a broad array of viral types. To date, the complete genomic sequence of more than 240 distinct viral types has been characterized at the nucleotide level. The analysis of this sequence information has begun to shed light on the evolutionary history of this important virus family. The available data suggests that many different evolutionary mechanisms have influenced the papillomavirus phylogenetic tree. Increasing evidence supports that the ancestral papillomavirus initially specialized to infect different ecological niches on the host. This episode of niche sorting was followed by extensive episodes of co-speciation with the host. This review attempts to summarize our current understanding of the papillomavirus evolution.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 209892, USA.
| |
Collapse
|