1
|
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight JR, López-Giráldez F, Choi H, Socci ND, Merghoub T, Awad M, Getz G, Gainor J, Hellmann MD, Caron É, Kaech SM, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. J Exp Med 2025; 222:e20231106. [PMID: 39585348 PMCID: PMC11602551 DOI: 10.1084/jem.20231106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Despite the established use of immune checkpoint inhibitors (ICIs) to treat non-small cell lung cancer (NSCLC), only a subset of patients benefit from treatment and ∼50% of patients whose tumors respond eventually develop acquired resistance (AR). To identify novel drivers of AR, we generated murine Msh2 knock-out (KO) lung tumors that initially responded but eventually developed AR to anti-PD-1, alone or in combination with anti-CTLA-4. Resistant tumors harbored decreased infiltrating T cells and reduced cancer cell-intrinsic MHC-I and MHC-II levels, yet remained responsive to IFNγ. Resistant tumors contained extensive regions of hypoxia, and a hypoxia signature derived from single-cell transcriptional profiling of resistant cancer cells was associated with decreased progression-free survival in a cohort of NSCLC patients treated with anti-PD-1/PD-L1 therapy. Targeting hypoxic tumor regions using a hypoxia-activated pro-drug delayed AR to ICIs in murine Msh2 KO tumors. Thus, this work provides a rationale for targeting tumor metabolic features, such as hypoxia, in combination with immune checkpoint inhibition.
Collapse
Affiliation(s)
| | | | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Arvind Ravi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - James R. Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Hyejin Choi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program & Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research and Department of Pathology, Massachusetts Genral Hospital, Boston, MA, USA
| | - Justin Gainor
- Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Étienne Caron
- CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Chakravorty A, Simons BD, Yoshida S, Cai L. Spatial Transcriptomics Reveals the Temporal Architecture of the Seminiferous Epithelial Cycle and Precise Sertoli-Germ Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620681. [PMID: 39554074 PMCID: PMC11565904 DOI: 10.1101/2024.10.28.620681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Spermatogenesis is characterized by the seminiferous epithelial cycle, a periodic pattern of germ cell differentiation with a wave-like progression along the length of seminiferous tubules. While key signaling and metabolic components of the cycle are known, the transcriptional changes across the cycle and the correlations between germ cell and somatic lineages remain undefined. Here, we use spatial transcriptomics via RNA SeqFISH+ to profile 2,638 genes in 216,090 cells in mouse testis and identify a periodic transcriptional pattern across tubules that precisely recapitulates the seminiferous epithelial cycle, enabling us to map cells to specific timepoints along the developmental cycle. Analyzing gene expression in somatic cells reveals that Sertoli cells exhibit a cyclic transcriptional profile closely synchronized with germ cell development while other somatic cells do not demonstrate such synchronization. Remarkably, in mouse testis with drug-induced ablation of germ cells, Sertoli cells independently maintain their cyclic transcriptional dynamics. By analyzing expression data, we identify an innate retinoic acid cycle, a network of transcription factors with cyclic activation, and signaling from germ cells that could interact with this network. Together, this work leverages spatial geometries for mapping the temporal dynamics and reveals a regulatory mechanism in spermatogenesis where Sertoli cells oscillate and coordinate with the cyclical progression of germ cell development.
Collapse
|
3
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Asanoma K, Yagi H, Onoyama I, Cui L, Hori E, Kawakami M, Maenohara S, Hachisuga K, Tomonobe H, Kodama K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kitao H, Kato K. The BHLHE40‒PPM1F‒AMPK pathway regulates energy metabolism and is associated with the aggressiveness of endometrial cancer. J Biol Chem 2024; 300:105695. [PMID: 38301894 PMCID: PMC10904277 DOI: 10.1016/j.jbc.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Tomonobe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Bandopadhyay S, Patranabis S. Mechanisms of HIF-driven immunosuppression in tumour microenvironment. J Egypt Natl Canc Inst 2023; 35:27. [PMID: 37646847 DOI: 10.1186/s43046-023-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hypoxia arises due to insufficient oxygen delivery to rapidly proliferating tumour cells that outpace the available blood supply. It is a characteristic feature of most solid tumour microenvironments and plays a critical role in regulating anti-tumour immunity, enhancing tumoral heterogeneity, and promoting therapeutic resistance and poor clinical outcomes. Hypoxia-inducible factors (HIFs) are the major hypoxia-responsive transcription factors that are activated under low oxygenation conditions and have been identified to drive multifunctional roles in tumour immune evasion. The HIF signalling network serves as an attractive target for targeted therapeutic approaches. This review aims to provide a comprehensive overview of the most crucial mechanisms by which HIF controls the expression of immunosuppressive molecules and immune checkpoints, disrupts cancer immunogenicity, and induces immunotherapeutic resistance.
Collapse
Affiliation(s)
| | - Somi Patranabis
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
6
|
Jeknić S, Kudo T, Song JJ, Covert MW. An optimized reporter of the transcription factor hypoxia-inducible factor 1α reveals complex HIF-1α activation dynamics in single cells. J Biol Chem 2023; 299:104599. [PMID: 36907438 PMCID: PMC10124923 DOI: 10.1016/j.jbc.2023.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Immune cells adopt a variety of metabolic states to support their many biological functions, which include fighting pathogens, removing tissue debris, and tissue remodeling. One of the key mediators of these metabolic changes is the transcription factor hypoxia-inducible factor 1α (HIF-1α). Single-cell dynamics have been shown to be an important determinant of cell behavior; however, despite the importance of HIF-1α, little is known about its single-cell dynamics or their effect on metabolism. To address this knowledge gap, here we optimized a HIF-1α fluorescent reporter and applied it to study single-cell dynamics. First, we showed that single cells are likely able to differentiate multiple levels of prolyl hydroxylase inhibition, a marker of metabolic change, via HIF-1α activity. We then applied a physiological stimulus known to trigger metabolic change, interferon-γ, and observed heterogeneous, oscillatory HIF-1α responses in single cells. Finally, we input these dynamics into a mathematical model of HIF-1α-regulated metabolism and discovered a profound difference between cells exhibiting high versus low HIF-1α activation. Specifically, we found cells with high HIF-1α activation are able to meaningfully reduce flux through the tricarboxylic acid cycle and show a notable increase in the NAD+/NADH ratio compared with cells displaying low HIF-1α activation. Altogether, this work demonstrates an optimized reporter for studying HIF-1α in single cells and reveals previously unknown principles of HIF-1α activation.
Collapse
Affiliation(s)
- Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - Joanna J Song
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA.
| |
Collapse
|
7
|
Li X, Zhang X, Hou X, Bing X, Zhu F, Wu X, Guo N, Zhao H, Xu F, Xia M. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis 2022; 28:432-446. [PMID: 36484960 DOI: 10.1007/s10495-022-01797-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is a common risk factor for pulmonary arterial hypertension (PAH). As a hypoxia-induced transcription factor, differentially expressed in chondrocytes (DEC1) negatively regulates the transcription of peroxisome proliferative activated receptor-γ (PPARγ), a recognized protective factor of PAH. However, whether and how DEC1 is associated with PAH pathogenesis remains unclear. In the present study, we found that DEC1 was increased in lungs and pulmonary arterial smooth muscle cells (PASMCs) of rat models of OSA-associated PAH. Oxidative indicators and inflammatory cytokines were also elevated in the blood of the rats. Similarly, hypoxia-treated PASMCs displayed enhanced DEC1 expression and reduced PPARγ expression in vitro. Functionally, DEC1 overexpression exacerbated reactive oxygen species (ROS) production and the expression of pro-inflammatory cytokines (such as TNFα, IL-1β, IL-6, and MCP-1) in PASMCs. Conversely, shRNA knockdown of Dec1 increased PPARγ expression but attenuated hypoxia-induced oxidative stress and inflammatory responses in PASMCs. Additionally, DEC1 overexpression promoted PASMC proliferation, which was drastically attenuated by a PPARγ agonist rosiglitazone. Collectively, these results suggest that hypoxia-induced DEC1 inhibits PPARγ, and that this is a predominant mechanism underpinning oxidative stress and inflammatory responses in PASMCs during PAH. DEC1 could be used as a potential target to treat PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaozhi Hou
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
A systematic study of HIF1A cofactors in hypoxic cancer cells. Sci Rep 2022; 12:18962. [PMID: 36347941 PMCID: PMC9643333 DOI: 10.1038/s41598-022-23060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hypoxia inducible factor 1 alpha (HIF1A) is a transcription factor (TF) that forms highly structural and functional protein-protein interactions with other TFs to promote gene expression in hypoxic cancer cells. However, despite the importance of these TF-TF interactions, we still lack a comprehensive view of many of the TF cofactors involved and how they cooperate. In this study, we systematically studied HIF1A cofactors in eight cancer cell lines using the computational motif mining tool, SIOMICS, and discovered 201 potential HIF1A cofactors, which included 21 of the 29 known HIF1A cofactors in public databases. These 201 cofactors were statistically and biologically significant, with 19 of the top 37 cofactors in our study directly validated in the literature. The remaining 18 were novel cofactors. These discovered cofactors can be essential to HIF1A's regulatory functions and may lead to the discovery of new therapeutic targets in cancer treatment.
Collapse
|
9
|
Shan E, Hao Y, Wang H, Zhang Z, Hu J, Wang G, Liu W, Yan B, Hiroaki H, Yang J. Differentiated embryonic chondrocyte expressed gene-1 (DEC1) enhances the development of colorectal cancer with an involvement of the STAT3 signaling. Neoplasia 2022; 27:100783. [PMID: 35334277 PMCID: PMC8956864 DOI: 10.1016/j.neo.2022.100783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023]
Abstract
Colorectal cancer (CRC) is the second deadly and the third most common malignancy worldwide. It has been projected that annual new cases of CRC will increase by 63% in 2040, constituting an even greater health challenge for decades to come. This study has linked DEC1 (differentiated embryonic chondrocyte expressed gene 1) to the pathogenesis of CRC. Based on the analysis of patient samples and database data, DEC1 is expressed much higher in CRC than the adjacent normal tissues. CRC patients with higher DEC1 expression have a shorter survival time. The carcinogenesis protocol with azoxymethane/dextran sulfate induces a higher number of tumors with larger sizes in DEC1+/+ than DEC1−/− mice. Overexpression of DEC1 increases the expression of proliferation- and antiapoptosis-related genes, but decreases the level of proapoptotic genes. Mechanistically, this study has shown that DEC1 is functionally looped to the IL-6/STAT3 signaling pathway (interleukin-6/signal transducer and activator of transcription 3). IL-6 induces DEC1, and DEC1 enhances the phosphorylation of STAT3, resulting in increased pSTAT3/STAT3 ratio. DEC1 and STAT3 are present in reciprocal immunocomplexes, pointing to physical interactions (presumably with pSTAT3). These findings establish that DEC1 is a CRC enhancer. The enhancement is achieved largely through the IL-6/STAT3 pathway. The potential of the physical interaction between DEC1 and STAT3 will likely serve as a foundation to develop intervention strategies for CRC prevention and therapy.
Collapse
|
10
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Mi C, Ye B, Gao Z, Du J, Li R, Huang D. BHLHE40 plays a pathological role in pre-eclampsia through upregulating SNX16 by transcriptional inhibition of miR-196a-5p. Mol Hum Reprod 2021; 26:532-548. [PMID: 32579212 DOI: 10.1093/molehr/gaaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-eclampsia (PE), which results from abnormal placentation, is a primary cause of maternal and neonatal morbidity and mortality. However, the causes of abnormal development of the placenta remain poorly understood. BHLHE40 is a transcriptional repressor in response to hypoxia. Bioinformatics analysis demonstrated that BHLHE40 negatively regulates miR-196a-5p expression, which may decrease miR-196a-5p to target SNX16. Since SNX16 exerts an inhibitory effect on cell migration, it may disrupt trophoblast cell migration in placentation. Therefore, the objective of this study was to explore a possible role of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis. BHLHE40, miR-196a-5p and SNX16 mRNA and/or protein levels were detected in PE and normal placenta tissues. PE models in vitro and in vivo were constructed by culturing trophoblasts under hypoxia and reducing the uterine perfusion pressure in pregnant C57/BL6N mice, respectively. BHLHE40 and SNX16 were upregulated in PE placenta, while miR-196a-5p was downregulated. Knockdown of BHLHE40 reversed miR-196a-5p expression in trophoblasts under hypoxia, and upregulation of miR-196a-5p inhibited SNX16 expression. As indicated by ChIP assay, BHLHE40 bound to the promoter of the miR-196a-5p gene; luciferase reporter analysis showed that miR-196a-5p could bind to the 3'-untranslated region of SNX16 mRNA. Knockdown of either BHLHE40 or SNX16, or an increase in miR-196a-5p, restored cell viability, migration, invasion and matrix metalloprotein (MMP)-2 and MMP-9 expression under hypoxia. BHLHE40 knockdown also alleviated PE symptoms in pregnant C57/BL6N mice. This study supports involvement of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis; Proper adjustment of the BHLHE40/miR-196a-5p/SNX16 axis is able to attenuate PE symptoms.
Collapse
Affiliation(s)
- Chunmei Mi
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Bin Ye
- Departmen of Radiological, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Zhou Gao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jinzhi Du
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ruizhen Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
12
|
Fregni G, Perier A, Avril MF, Caignard A. NK cells sense tumors, course of disease and treatments: Consequences for NK-based therapies. Oncoimmunology 2021; 1:38-47. [PMID: 22720210 PMCID: PMC3376977 DOI: 10.4161/onci.1.1.18312] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The recent findings on NK activation indicate that these cells are important antitumor effectors. NK cells participate in the graft-vs.-leukemia effect to control the relapse in leukemic patients transplanted with allogeneic hematopoietic stem cells. In various tumors, correlation between NK cell infiltrates and prognosis were reported. However, tumor-infiltrating NK cells are yet poorly characterized. We here summarize our results and the recent studies of the literature on tumor-infiltrating NK cells, and discuss the impact of these novel insights into NK cell responses against tumors for the design of NK cell-based therapies.
Collapse
Affiliation(s)
- Giulia Fregni
- Institut Cochin-INSERM U06; CNRS UMR 804; Université Paris Descartes; Paris, France
| | | | | | | |
Collapse
|
13
|
Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H. Genomic characterization reveals novel mechanisms underlying the valosin-containing protein-mediated cardiac protection against heart failure. Redox Biol 2020; 36:101662. [PMID: 32795937 PMCID: PMC7426568 DOI: 10.1016/j.redox.2020.101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic hypertension is a key risk factor for heart failure. However, the underlying molecular mechanisms are not fully understood. Our previous studies found that the valosin-containing protein (VCP), an ATPase-associated protein, was significantly decreased in the hypertensive heart tissues. In this study, we tested the hypothesis that restoration of VCP protected the heart against pressure overload-induced heart failure. With a cardiac-specific transgenic (TG) mouse model, we showed that a moderate increase of VCP was able to attenuate chronic pressure overload-induced maladaptive cardiac hypertrophy and dysfunction. RNA sequencing and a comprehensive bioinformatic analysis further demonstrated that overexpression of VCP in the heart normalized the pressure overload-stimulated hypertrophic signals and repressed the stress-induced inflammatory response. In addition, VCP overexpression promoted cell survival by enhancing the mitochondria resistance to the oxidative stress via activating the Rictor-mediated-gene networks. VCP was also found to be involved in the regulation of the alternative splicing and differential isoform expression for some genes that are related to ATP production and protein synthesis by interacting with long no-coding RNAs and histone deacetylases, indicating a novel epigenetic regulation of VCP in integrating coding and noncoding genomic network in the stressed heart. In summary, our study demonstrated that the rescuing of a deficient VCP in the heart could prevent pressure overload-induced heart failure by rectifying cardiac hypertrophic and inflammatory signaling and enhancing the cardiac resistance to oxidative stress, which brought in novel insights into the understanding of the mechanism of VCP in protecting patients from hypertensive heart failure. Deficiency of VCP contributes to the pathogenesis of hypertensive heart failure. Rescue of VCP prevents stress-induced cardiac remodeling and cell death. VCP attenuates stress-induced inflammatory and hypertrophic signaling. VCP promotes cardiac resistance to oxidative stress. VCP mediates a novel epigenetic integrating regulation in the stressed heart.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xin Chen
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jing Xi
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ben Ma
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Christiana Leimena
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Shaunrick Stoll
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| | - Hongyu Qiu
- Division of Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA; Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
14
|
Xu W, Zhang K, Zhang Y, Ma S, Jin D. Downregulation of DEC1 by RNA interference attenuates ischemia/reperfusion-induced myocardial inflammation by inhibiting the TLR4/NF-κB signaling pathway. Exp Ther Med 2020; 20:343-350. [PMID: 32537000 PMCID: PMC7282085 DOI: 10.3892/etm.2020.8706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation has been implicated in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury (MIRI). Previous studies have confirmed that deleted in esophageal cancer 1 (DEC1) is an important transcription factor in inflammation. However, the role of DEC1 in MIRI remains unclear. The present study aimed to determine whether the downregulation of DEC1 by RNA interference alleviated inflammation to protect against MIRI. Adult Sprague-Dawley rats (n=48) were randomly divided into four groups: Sham; I/R; adenovirus expressing green fluorescent protein control (Ad-G-Control); and DEC1-targeting RNA interference (Ad-G-DEC1) groups. Following gene delivery 4 days later, the rat myocardial I/R model was established and myocardial enzymes [creatine kinase (CK) and lactate dehydrogenase (LDH)] were detected. Hematoxylin and eosin (H&E) staining was performed to evaluate the myocardial damage and the infarct area was assessed using Evans Blue/triphenyltetrazolium chloride staining. The inflammatory mediators interleukin (IL)-β and tumor necrosis factor (TNF)-α were also detected using ELISA kits to assess the inflammatory response. Finally, western blotting and reverse transcription-quantitative PCR were used to analyze the expression levels of associated proteins and mRNAs. Ad-G-DEC1 RNA interference markedly decreased DEC1 expression levels. In addition, following the downregulation of DEC1 expression, the infarct size, CK, LDH, Toll-like receptor (TLR)4, NF-κB, IL-β and TNF-α levels were all significantly decreased. In conclusion, the results of the present study suggested that the downregulation of DEC1 may decrease the inflammation by suppressing the TLR4/NF-κB signaling pathway, which may represent a therapeutic target for MIRI.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Kai Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Yi Zhang
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Shanxue Ma
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| | - Daoqun Jin
- Department of Cardiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei 435000, P.R. China
| |
Collapse
|
15
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Kiss Z, Mudryj M, Ghosh PM. Non-circadian aspects of BHLHE40 cellular function in cancer. Genes Cancer 2020; 11:1-19. [PMID: 32577154 PMCID: PMC7289903 DOI: 10.18632/genesandcancer.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
While many genes specifically act as oncogenes or tumor suppressors, others are tumor promoters or suppressors in a context-dependent manner. Here we will review the basic-helix-loop-helix (BHLH) protein BHLHE40, (also known as BHLHB2, STRA13, DEC1, or SHARP2) which is overexpressed in gastric, breast, and brain tumors; and downregulated in colorectal, esophageal, pancreatic and lung cancer. As a transcription factor, BHLHE40 is expressed in the nucleus, where it binds to target gene promoters containing the E-box hexanucleotide sequence, but can also be expressed in the cytoplasm, where it stabilizes cyclin E, preventing cyclin E-mediated DNA replication and cell cycle progression. In different organs BHLHE40 regulates different targets; hence may have different impacts on tumorigenesis. BHLHE40 promotes PI3K/Akt/mTOR activation in breast cancer, activating tumor progression, but suppresses STAT1 expression in clear cell carcinoma, triggering tumor suppression. Target specificity likely depends on cooperation with other transcription factors. BHLHE40 is activated in lung and esophageal carcinoma by the tumor suppressor p53 inducing senescence and suppressing tumor growth, but is also activated under hypoxic conditions by HIF-1α in gastric cancer and hepatocellular carcinomas, stimulating tumor progression. Thus, BHLHE40 is a multi-functional protein that mediates the promotion or suppression of cancer in a context dependent manner.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Mudryj
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Microbiology and Immunology, University of California, Davis, CA, USA
| | - Paramita M. Ghosh
- VA Northern California Health Care System, Sacramento, CA, USA
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
17
|
Pan X, Fang X, Wang F, Li H, Niu W, Liang W, Wu C, Li J, Tu X, Pan L, Sun J. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol 2019; 176:4446-4461. [PMID: 31347703 PMCID: PMC6932943 DOI: 10.1111/bph.14806] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is a common acute abdominal condition, frequently associated with intestinal barrier dysfunction, which aggravates AP retroactively. Butyrate exhibits anti-inflammatory effects in a variety of inflammatory diseases. However, its potential beneficial effect on AP and the underlying mechanisms have not been investigated. EXPERIMENTAL APPROACH Experimental AP was induced by caerulein hyperstimulation in wild-type and GPR109A-/- mice. Sodium butyrate was administered intragastrically for 7 days prior to caerulein hyperstimulation. Anti-inflammatory mechanisms of butyrate were further investigated in peritoneal macrophages. KEY RESULTS Butyrate prophylaxis attenuated AP as shown by reduced serum amylase and lipase levels, pancreatic oedema, myeloperoxidase activity, and improved pancreatic morphology. Amelioration of pancreatic damage by butyrate was associated with reduced levels of TNF-α, IL-6, and CCL2 and suppressed activation of the NLRP3 inflammasome in both pancreas and colon. Further, butyrate ameliorated pancreatic inflammation by suppressing interactions between histone deacetylase 1 (HDAC1) and AP1 and STAT1 with increased histone acetylation at H3K9, H3K14, H3K18, and H3K27 loci, resulting in suppression of NLRP3 inflammasome activation and modulation of immune cell infiltration in pancreas. Additionally, butyrate mediated STAT1/AP1-NLRP3 inflammasome suppression via HDAC1 inhibition was demonstrated in peritoneal macrophage. In colon, butyrate inhibited NLRP3 inflammasome activation via GPR109A. Accordingly, the modulatory effects of butyrate on AP, AP-associated gut dysfunction, and NLRP3 inflammasome activation were diminished in GPR109A-/- mice. CONCLUSION AND IMPLICATIONS Our study dissected tissue-specific anti-inflammatory mechanisms of butyrate during AP, suggesting that increased colonic levels of butyrate may be a strategy to protect against AP.
Collapse
MESH Headings
- Acute Disease
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/analysis
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Butyrates/administration & dosage
- Butyrates/analysis
- Butyrates/pharmacology
- Ceruletide
- Female
- Intestinal Diseases/chemically induced
- Intestinal Diseases/drug therapy
- Intestinal Diseases/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreatitis/chemically induced
- Pancreatitis/drug therapy
- Pancreatitis/metabolism
Collapse
Affiliation(s)
- Xiaohua Pan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xin Fang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of MedicineJiangnan UniversityWuxiChina
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji HospitalTongji University School of MedicineShanghaiChina
| | - Hongli Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Wenying Niu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of MedicineJiangnan UniversityWuxiChina
| | - Wenjie Liang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of MedicineJiangnan UniversityWuxiChina
| | - Chengfei Wu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jiahong Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xing Tu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Li‐Long Pan
- School of MedicineJiangnan UniversityWuxiChina
| | - Jia Sun
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
18
|
Chen SY, Liu ST, Lin WR, Lin CK, Huang SM. The Mechanisms Underlying the Cytotoxic Effects of Copper Via Differentiated Embryonic Chondrocyte Gene 1. Int J Mol Sci 2019; 20:ijms20205225. [PMID: 31652494 PMCID: PMC6834119 DOI: 10.3390/ijms20205225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Copper is an essential trace element within cells, but it also exerts cytotoxic effects through induction of reactive oxygen species (ROS) production. To determine the mechanisms underlying copper-induced ROS production, we examined the effects of copper sulfate in HeLa cells. Exposure to copper sulfate led to dose-dependent decreases in HeLa cell viability, along with increases in the subG1 and G2/M populations and corresponding decreases in the G1 population. Copper sulfate also increased the levels of apoptosis, senescence, mitochondrial dysfunction, autophagy, ROS, and the expression of several stress proteins, including ATF3, c-Fos, DEC1 (differentiated embryonic chondrocyte gene 1), p21, p53, and HIF-1α (hypoxia-inducible factor 1 alpha). The suppression of copper-induced ROS generation by the ROS scavenger N-acetyl cysteine verified copper’s functional role, while the suppression of copper’s effects by the copper chelator disulfiram, confirmed its specificity. Selective induction of HIF-1α, p53, and phosphorylated ERK proteins by copper was blocked by the knockdown of the transcription factor DEC1, suggesting copper’s effects are mediated by DEC1. In addition to HeLa cells, copper also exerted cytotoxic effects in human endometrial (HEC-1-A) and lung (A549) adenocarcinoma cells, but not in normal human kidney (HEK293) or bronchial (Beas-2B) epithelial cells. These findings shed new light on the functional roles of copper within cells.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan.
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan.
| | - Wun-Rong Lin
- Department of Urology, Mackay Memorial Hospital, Taipei 104, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan.
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei 112, Taiwan.
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
19
|
Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells. Oncotarget 2019; 10:4640-4654. [PMID: 31384392 PMCID: PMC6659797 DOI: 10.18632/oncotarget.27061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors involved in multiple cell activities including epithelial-to-mesenchymal transition (EMT). However, the expression mechanism of BHLHE40/41 in EMT remains unclear. In the present study, we showed that the expression levels of BHLHE40/41 were negatively correlated with those of the microRNA (MIR) 130 family in endometrial cancer (EC) specimens. Our in vitro assays indicated that the expression of BHLHE40/41 was suppressed directly by the MIR130 family in a 3'-untranslated region-mediated manner. In EC cells, the MIR130 family promoted EMT and tumor cell invasion by suppressing the expression of BHLHE40/41. We identified the critical promoter region of the MIR301B-MIR130B cluster for its basal transcription by the transcription factor, SP1. We also found that BHLHE40/41 suppressed the expression of MIR301B and MIR130B, and we identified a binding site in the promoter region for BHLHE40/41. This study is the first to report that BHLHE40/41 and the MIR301B-MIR130B cluster suppressed each other to regulate EMT and invasion of EC cells. We propose that BHLHE40/41 and the MIR130 family are excellent markers to predict the progression of EC cases, and that molecular therapy targeting the MIR130 family-BHLHE40/41 axis may effectively control EC extension.
Collapse
|
20
|
Kuo CL, Hsieh Li SM, Liang SY, Liu ST, Huang LC, Wang WM, Yen LC, Huang SM. The antitumor properties of metformin and phenformin reflect their ability to inhibit the actions of differentiated embryo chondrocyte 1. Cancer Manag Res 2019; 11:6567-6579. [PMID: 31410055 PMCID: PMC6643064 DOI: 10.2147/cmar.s210637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Differentiated embryo chondrocyte 1 (DEC1) is a helix-loop-helix transcription factor that directly binds to the class B E-box in target genes. DEC1 exerts both pro-survival and pro-apoptotic effects in a cell- and tissue-dependent manner. Its actions play role the progression of cancer remains unclear. Methods We first examined the functional roles of DEC1 using the transient promoter reporter assay. Then, the knockdown of DEC1 expression was performed with the short hairpin RNA strategy in HeLa and A2058 cancer cell lines to check the cell cycle and mitochondrial function profile using the flow cytometry and Seahorse assays. We later clarified the role of DEC1 in the tumorigenesis using the colony formation, anchorage-independent growth assay, and cellular proliferation analysis. Results In the present study, we tested two guanide-containing drugs, metformin and phenformin, and found that both exhibit cytotoxicity against HeLa cervical carcinoma and A2058 melanoma cells. This effect was mediated, at least in part, through activation of the AMPK pathway; degradation of important cellular proteins, such as DEC1 and p53; and suppression of mitochondrial function, colony formation, and anchorage-independent cell proliferation. Our results further suggest that the cytotoxicity of metformin and phenformin reflect the impact of the repressive actions of DEC1 on gene expression, including DEC1 itself. This in turn suppresses both anchorage-independent growth and cell proliferation. Conclusion These findings provide several lines of evidence suggesting that DEC1 activity contributes to tumorigenicity and that the antitumor properties of biguanides reflect their ability to inhibit DEC1 functions.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Man Hsieh Li
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Yi Liang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Wei-Ming Wang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Li-Chen Yen
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China.,Department of Microbiology and Immunology, National Defense Medical Center, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
21
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Jia Y, Hu R, Li P, Zheng Y, Wang Y, Ma X. DEC1 is required for anti-apoptotic activity of gastric cancer cells under hypoxia by promoting Survivin expression. Gastric Cancer 2018; 21:632-642. [PMID: 29204860 DOI: 10.1007/s10120-017-0780-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human differentiated embryonic chondrocyte-expressed gene 1 (DEC1), which has been reported to be overexpressed in several types of cancer, is associated with tumorigenesis through participation in several biological processes. However, the complex mechanisms underlying DEC1 during carcinogenesis are controversial, and its roles in the development and malignancy of gastric cancer (GC) remain unclear. METHODS We measured DEC1 expression in human GC cell lines. DEC1 levels in GC cells were downregulated by shRNA lentivirus infection. We also evaluated the effect of DEC1 downregulation on xenograft growth in vivo. The viability and apoptosis of the cells were assayed using the CCK8 assay and flow cytometry. The levels of DEC1, Survivin, and Bcl-2 were evaluated by Western blotting. Luciferase reporter was used to verify the downstream target of DEC1. The association of DEC1 and Survivin expression with prognosis was investigated by immunohistochemistry. RESULTS Downregulation of DEC1 inhibits GC cell proliferation in vitro and tumorigenicity in vivo. We observed that hypoxia-induced expression of DEC1 protects GC cells from apoptosis via transcriptional upregulation of Survivin. Furthermore, positive correlations between DEC1 with Survivin expression were observed in tissue sections from GC patients. Notably, GC patients with high expression levels of DEC1 and Survivin showed poor prognosis. CONCLUSIONS DEC1 acts as an anti-apoptotic regulator in GC cells under hypoxia by promoting Survivin expression. Our study demonstrates the critical role of the DEC1 in oncogenesis and highlights a novel role for DEC1 in the regulation of cell apoptosis in GC.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Rui Hu
- Department of Reproduction, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Ping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yan Zheng
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China. .,Shandong Province Key Lab of Tumor Target Molecule, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China.
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
23
|
Batie M, Del Peso L, Rocha S. Hypoxia and Chromatin: A Focus on Transcriptional Repression Mechanisms. Biomedicines 2018; 6:biomedicines6020047. [PMID: 29690561 PMCID: PMC6027312 DOI: 10.3390/biomedicines6020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Hypoxia or reduced oxygen availability has been studied extensively for its ability to activate specific genes. Hypoxia-induced gene expression is mediated by the HIF transcription factors, but not exclusively so. Despite the extensive knowledge about how hypoxia activates genes, much less is known about how hypoxia promotes gene repression. In this review, we discuss the potential mechanisms underlying hypoxia-induced transcriptional repression responses. We highlight HIF-dependent and independent mechanisms as well as the potential roles of dioxygenases with functions at the nucleosome and DNA level. Lastly, we discuss recent evidence regarding the involvement of transcriptional repressor complexes in hypoxia.
Collapse
Affiliation(s)
- Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| | - Luis Del Peso
- Department of Biochemistry, Institute of Biomedical Research, Autonomous Madrid University, Arturo Duperier, 4. 28029 Madrid, Spain.
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, UK.
| |
Collapse
|
24
|
DEC1/STRA13 is a key negative regulator of activation-induced proliferation of human B cells highly expressed in anergic cells. Immunol Lett 2018; 198:7-11. [PMID: 29601939 DOI: 10.1016/j.imlet.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor DEC1/STRA13 (also known as BHLHE40 and SHARP2) is involved in a number of processes including inhibition of cell proliferation and delay of cell cycle, and is a negative regulator of B cell activation and development in mice. We show here that, unlike in mice, DEC1/STRA13 expression is induced in human naïve and memory resting B cells by activation through the B-cell receptor (BCR) or Toll-like receptor 9 (TLR9). siRNA silencing of DEC1/STRA13 increases the capacity of activated B cells to perform a high number of divisions after TLR9 ligation. This identifies DEC1/STRA13 as a critical negative regulator of clonal expansion of activated human B cells. We also show that DEC1/STRA13 is upregulated in human anergic CD21low B cells clonally expanded in patients with HCV-associated mixed cryoglobulinemia, which fail to proliferate in response to BCR or TLR9 ligation. siRNA knockdown of DEC1/STRA13, however, fails to restore responsiveness to stimuli in these cells, although it might improve the proliferative capacity in a subset of anergic cells with less pronounced proliferative defect.
Collapse
|
25
|
Differentiated embryo chondrocyte plays a crucial role in DNA damage response via transcriptional regulation under hypoxic conditions. PLoS One 2018; 13:e0192136. [PMID: 29466367 PMCID: PMC5821451 DOI: 10.1371/journal.pone.0192136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor hypoxia contributes to a biologically aggressive phenotype and therapeutic resistance. Recent studies have revealed that hypoxia reduces expression of several DNA damage recognition and repair (DRR) genes via both hypoxia-inducible factor (HIF)-independent and -dependent pathways, and this induced genomic instability in cancer cells. We show here that one of the HIF-target genes—differentiated embryo chondrocyte (DEC)—plays a role in DNA damage response via transcriptional repression. Comprehensive gene expression and database analyses have revealed systemic repression of DNA-DRR genes in cancer and non-cancer cells under hypoxic conditions. Hypoxic repression in typical cases was confirmed by quantitative RT-PCR and promoter reporter experiments, and knockdown experiments indicated the critical role of DEC2 in such repression. Assessment of histone H2AX phosphorylation revealed that recognition and repair of DNA double-strand breaks (DSBs) induced by bleomycin or γ-ray irradiation were attenuated; moreover, Cleaved Caspase-3 levels were decreased with pre-conditioning under hypoxia: opposing phenomena were ascertained by knockdown of DEC2. Finally, pre-conditioning under hypoxia decreased the sensitivity of cancer cells to DSBs, and knockdown of DEC2 increased γ-ray sensitivity. These data imply that a critical reduction of DNA-DRR occurs via DEC-dependent transcriptional repression and suggest that DEC is a potential molecular target for anti-cancer strategies.
Collapse
|
26
|
Tiana M, Acosta-Iborra B, Puente-Santamaría L, Hernansanz-Agustin P, Worsley-Hunt R, Masson N, García-Rio F, Mole D, Ratcliffe P, Wasserman WW, Jimenez B, del Peso L. The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia. Nucleic Acids Res 2018; 46:120-133. [PMID: 29059365 PMCID: PMC5758878 DOI: 10.1093/nar/gkx951] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/02/2023] Open
Abstract
Cells adapt to environmental changes, including fluctuations in oxygen levels, through the induction of specific gene expression programs. To identify genes regulated by hypoxia at the transcriptional level, we pulse-labeled HUVEC cells with 4-thiouridine and sequenced nascent transcripts. Then, we searched genome-wide binding profiles from the ENCODE project for factors that correlated with changes in transcription and identified binding of several components of the Sin3A co-repressor complex, including SIN3A, SAP30 and HDAC1/2, proximal to genes repressed by hypoxia. SIN3A interference revealed that it participates in the downregulation of 75% of the hypoxia-repressed genes in endothelial cells. Unexpectedly, it also blunted the induction of 47% of the upregulated genes, suggesting a role for this corepressor in gene induction. In agreement, ChIP-seq experiments showed that SIN3A preferentially localizes to the promoter region of actively transcribed genes and that SIN3A signal was enriched in hypoxia-repressed genes, prior exposure to the stimulus. Importantly, SINA3 occupancy was not altered by hypoxia in spite of changes in H3K27ac signal. In summary, our results reveal a prominent role for SIN3A in the transcriptional response to hypoxia and suggest a model where modulation of the associated histone deacetylase activity, rather than its recruitment, determines the transcriptional output.
Collapse
Affiliation(s)
- Maria Tiana
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Barbara Acosta-Iborra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
| | - Pablo Hernansanz-Agustin
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- Servicio Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del hospital de La Princesa, 28006 Madrid, Spain
| | - Rebecca Worsley-Hunt
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Norma Masson
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Francisco García-Rio
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Neumología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria del hospital de La Paz, 28029 Madrid, Spain
| | - David Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Benilde Jimenez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One 2017; 12:e0187314. [PMID: 29155844 PMCID: PMC5695785 DOI: 10.1371/journal.pone.0187314] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022] Open
Abstract
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME.
Collapse
|
28
|
MURAKAMI K, WU Y, IMAIZUMI T, AOKI Y, LIU Q, YAN X, SEINO H, YOSHIZAWA T, MOROHASHI S, KATO Y, KIJIMA H. DEC1 promotes hypoxia-induced epithelial-mesenchymal transition (EMT) in human hepatocellular carcinoma cells . Biomed Res 2017; 38:221-227. [DOI: 10.2220/biomedres.38.221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Keishu MURAKAMI
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Yunyan WU
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Tadaatsu IMAIZUMI
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine
| | - Yuka AOKI
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Qiang LIU
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Xu YAN
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Hiroko SEINO
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Tadashi YOSHIZAWA
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Satoko MOROHASHI
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| | - Yukio KATO
- Department of Dental and Medical Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Hiroshi KIJIMA
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine
| |
Collapse
|
29
|
Li XM, Lin W, Wang J, Zhang W, Yin AA, Huang Y, Zhang J, Yao L, Bian H, Zhang J, Zhang X. Dec1 expression predicts prognosis and the response to temozolomide chemotherapy in patients with glioma. Mol Med Rep 2016; 14:5626-5636. [PMID: 27840944 DOI: 10.3892/mmr.2016.5921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/06/2016] [Indexed: 11/06/2022] Open
Abstract
Differentiated embryo chondrocyte expressed gene 1 (Dec1), a crucial cell differentiation mediator and apoptosis inhibitor, is abundantly expressed in various types of human cancer and is associated with malignant tumor progression. As poor differentiation and low apoptosis are closely associated with poor survival rates and a poor response to radio/chemotherapy in patients with cancer, the prognostic value of Dec1 expression was examined in the present study and its correlation with response to temozolomide (TMZ) chemotherapy was analyzed in patients with glioma. Dec1 expression was analyzed by immunohistochemistry in 157 samples of newly diagnosed glioma and 63 recurrent glioblastoma cases that relapsed during TMZ chemotherapy. Correlations with clinical variables, prognosis and the response to TMZ chemotherapy were analyzed in the newly diagnosed gliomas. Dec1 expression was also compared with the apoptosis index determined by TdT‑mediated dUTP nick ending‑labeling assay in recurrent glioblastomas. The antiglioma effect of TMZ in nude mice xenografts with Dec1 expression was examined in vivo. High expression of Dec1, which was significantly associated with high pathological tumor grade and poor response to TMZ chemotherapy, was demonstrated to be an unfavorable independent prognostic factor and predicted poor survival in patients with newly diagnosed glioma. In patients with recurrent glioblastoma, there was a negative correlation between Dec1 expression and the apoptotic index. In nude mice treated with TMZ, Dec1 overexpression potentiated proliferation, but attenuated TMZ‑induced apoptosis. In conclusion, Dec1 is a prognostic factor for the clinical outcome and a predictive factor for the response to TMZ chemotherapy in patients with glioma.
Collapse
Affiliation(s)
- Xiao-Ming Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiang Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - An-An Yin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Huang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Libo Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huan Bian
- Cadet Brigade Team Three, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Center of Teaching Experiment, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
30
|
Chen HF, Wu KJ. Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine (Taipei) 2016; 6:1. [PMID: 26869355 PMCID: PMC4751095 DOI: 10.7603/s40681-016-0001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia in tumors is primarily a pathophysiologic consequence of structurally and functionally disturbed microcirculation with inadequate supply of oxygen. Tumor hypoxia is strongly associated with tumor propagation, malignant progression, and resistance to therapy. Aberrant epigenetic regulation plays a crucial role in the process of hypoxia-driven malignant progression. Convert of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family enzymes plays important biological functions in embryonic stem cells, development, aging and disease. Recent reports showed that level of 5hmC and TET proteins was altered in various types of cancers. There is a strong correlation between loss of 5hmC and cancer development but research to date indicates that loss of TET activity is associated with the cancer phenotype but it is not clear whether TET proteins function as tumor suppressors or oncogenes. While loss of TET1 and TET2 expression is associated with solid cancers, implying a tumor suppressor role, TET1 exhibits a clear oncogenic role in the context of genomic rearrangements such as in MLL-fusion rearranged leukemia. Interestingly, hypoxia increases global 5hmC levels and upregulates TET1 expression in a HIF1α-dependent manner. Recently, hypoxia-induced TET1 has been demonstrated to play another important role for regulating hypoxia-responsive gene expression and epithelial-mesenchymal transition (EMT) by serving as a transcription co-activator. Furthermore, hypoxia-induced TET1 also regulates glucose metabolism and hypoxia-induced EMT through enhancing the expression of insulin induced gene 1 (INSIG1). The roles and mechanisms of action of 5hmC and TET proteins in ES cell biology and during embryonic development, as well as in cancer biology, will be the main focus in this review.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science and Graduate Inst. of Cancer Biology, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
31
|
Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, Ohgami T, Ichinoe A, Sonoda K, Wake N, Kato K. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol 2015; 35:4096-109. [PMID: 26391953 PMCID: PMC4648814 DOI: 10.1128/mcb.00678-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ge Liu
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takako Yamane
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Miyanari
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoka Takao
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University, Kyoto, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akimasa Ichinoe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenzo Sonoda
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Wake
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS One 2015; 10:e0120602. [PMID: 25803272 PMCID: PMC4372597 DOI: 10.1371/journal.pone.0120602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The bone marrow (BM) microenvironment plays an important role in the pathogenesis of myelodysplastic syndromes (MDS) through a reciprocal interaction with resident BM hematopoietic cells. We investigated the differences between BM mesenchymal stromal cells (MSCs) in MDS and normal individuals and identified genes involved in such differences. Materials and Methods BM-derived MSCs from 7 MDS patients (3 RCMD, 3 RAEB-1, and 1 RAEB-2) and 7 controls were cultured. Global gene expression was analyzed using a microarray. Result We found 314 differentially expressed genes (DEGs) in RCMD vs. control, 68 in RAEB vs. control, and 51 in RAEB vs. RCMD. All comparisons were clearly separated from one another by hierarchical clustering. The overall similarity between differential expression signatures from the RCMD vs. control comparison and the RAEB vs. control comparison was highly significant (p = 0), which indicates a common transcriptomic response in these two MDS subtypes. RCMD and RAEB simultaneously showed an up-regulation of interferon alpha/beta signaling and the ISG15 antiviral mechanism, and a significant fraction of the RAEB vs. control DEGs were also putative targets of transcription factors IRF and ICSBP. Pathways that involved RNA polymerases I and III and mitochondrial transcription were down-regulated in RAEB compared to RCMD. Conclusion Gene expression in the MDS BM microenvironment was different from that in normal BM and exhibited altered expression according to disease progression. The present study provides genetic evidence that inflammation and immune dysregulation responses that involve the interferon signaling pathway in the BM microenvironment are associated with MDS pathogenesis, which suggests BM MSCs as a possible therapeutic target in MDS.
Collapse
|
33
|
Barakat R, Redzic Z. Differential cytokine expression by brain microglia/macrophages in primary culture after oxygen glucose deprivation and their protective effects on astrocytes during anoxia. Fluids Barriers CNS 2015; 12:6. [PMID: 25866619 PMCID: PMC4392752 DOI: 10.1186/s12987-015-0002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 12/23/2022] Open
Abstract
Background Activation of microglia/macrophages following cerebral ischemia may be beneficial or detrimental for the survival of brain cells, an ambiguity in effects that has been explained by findings that ischemia can induce transformation of resting monocytes/macrophages into two different inflammation-related phenotypes, termed M1 and M2. The extent to which this differentiation depends on paracrine signaling from other brain cells is not clear. This study explored if oxygen glucose deprivation (OGD) can trigger expression of phenotype-specific markers in rat microglia/macrophages in primary culture, in absence/low abundance of other brain cells. Time pattern of these changes was assessed and compared to time-pattern that has been revealed in vivo previously. Effects of phenotype-specific cytokines on viability of astrocytes in primary culture during anoxia were also explored. Methods Primary cultures of rat microglia/macrophages were exposed to 2h OGD and then incubated further under normal conditions; this was considered as a recovery period. Expression of mRNA for specific markers and secretion of phenotype-specific cytokines were explored at different time points by real time PCR and ELISA, respectively. Effects of cytokines that were secreted by microglia in primary culture after OGD on viability of astrocytes were determined. Results Expression and secretion of M2 phenotype-specific markers and/or cytokines after OGD increased early after OGD and then decreased in the later stages of the recovery period. Expression and secretion of M1 phenotype-specific markers and cytokines did not show a common time pattern, but there was a tendency for an increase during the recovery period. All M1 phenotype-specific and two out of the three tested M2 phenotype-specific cytokines revealed protective effects on astrocytes during near-anoxia by a marked reduction of apoptosis. Conclusions Time-pattern of expression/secretion of phenotype-specific markers suggested that polarization of the brain microglia/macrophages in vitro to M2 and M1 phenotypes were largely independent and likely dependent on signaling from other brain cells, respectively. Time-pattern of polarization to the M2 phenotype partially resembled time-pattern that has been seen in vivo. Effects of M1 phenotype-specific cytokines on primary culture of astrocytes were protective, thus largely opposite to effects that have been observed in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12987-015-0002-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| |
Collapse
|
34
|
The basic helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates Twist1 through an E-box element. Biochem Biophys Res Commun 2014; 455:390-5. [PMID: 25446074 DOI: 10.1016/j.bbrc.2014.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 11/20/2022]
Abstract
Differentiated embryo chondrocyte 2 (DEC2/Sharp-1/Bhlhe41), a basic helix-loop-helix (bHLH) transcription factor, has been shown to regulate the transcription of target genes by binding to their E-box elements. We identified a possible DEC2-response element (consensus E-box: CACGTG) in the promoter region of Twist1. Forced expression of DEC2 significantly repressed Twist1 promoter activity under normoxia and under hypoxia as assessed by a luciferase reporter assay. In addition, over-expression of DEC2 repressed Twist1 mRNA expression assessed by quantitative real-time PCR. Site-directed mutagenesis studies showed that mutagenesis of the consensus E-box sequence eliminated the ability of DEC2 to reduce the Twist1 promoter activity. Chromatin immunoprecipitation (ChIP) assays confirmed that the DEC2-mediated repression is primarily achieved by binding to the E-box in the Twist1 promoter. Knockdown of DEC2 by siRNA significantly attenuated the repression of Twist1 expression. DEC2 and Twist1 exhibit inversed protein expression patterns during development of mouse tongue embryo tissue. Given the fact that DEC2 protein is emerging as an important regulator in a vast array of cellular events, including cell differentiation, maturation of lymphocytes and the molecular clock, our study elucidates an important mechanism by which DEC2 regulates cellular function by modulating the expression of Twist1.
Collapse
|
35
|
Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci 2014; 4:45. [PMID: 25949794 PMCID: PMC4422217 DOI: 10.1186/2045-3701-4-45] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/26/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH) as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis. Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can modulate protein expression and activity, as well as the role of hypoxia in epigenetic regulation.
Collapse
Affiliation(s)
- Eva Baxter
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Karolina Windloch
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| |
Collapse
|
36
|
Guarnerio J, Coltella N, Ala U, Tonon G, Pandolfi PP, Bernardi R. Bone marrow endosteal mesenchymal progenitors depend on HIF factors for maintenance and regulation of hematopoiesis. Stem Cell Reports 2014; 2:794-809. [PMID: 24936467 PMCID: PMC4050345 DOI: 10.1016/j.stemcr.2014.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 12/24/2022] Open
Abstract
Maintenance and differentiation of hematopoietic stem cells (HSCs) is regulated through cell-autonomous and non-cell-autonomous mechanisms within specialized bone marrow microenvironments. Recent evidence demonstrates that signaling by HIF-1α contributes to cell-autonomous regulation of HSC maintenance. By investigating the role of HIF factors in bone marrow mesenchymal progenitors, we found that murine endosteal mesenchymal progenitors express high levels of HIF-1α and HIF-2α and proliferate preferentially in hypoxic conditions ex vivo. Inactivation of either HIF-1α or HIF-2α dramatically affects their phenotype, propagation, and differentiation. Also, downregulation of HIF factors provokes an increase in interferon-responsive genes and triggers expansion and differentiation of hematopoietic progenitors by a STAT1-mediated mechanism. Interestingly, in conditions of demand-driven hematopoiesis HIF factors are specifically downregulated in mesenchymal progenitors in vivo. In conclusion, our findings indicate that HIF factors also regulate hematopoiesis non-cell-autonomously by preventing activation of a latent program in mesenchymal progenitors that promotes hematopoiesis. Endosteal mesenchymal progenitors exhibit a hypoxic state HIF factors cell autonomously regulate the biology of mesenchymal progenitors HIF factors repress interferon-responsive programs in mesenchymal progenitors HIF factors regulate hematopoiesis through non-cell-autonomous mechanisms
Collapse
Affiliation(s)
- Jlenia Guarnerio
- Division of Molecular Oncology, Leukemia Unit, San Raffaele Scientific Institute, Milan 20132, Italy ; Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Nadia Coltella
- Division of Molecular Oncology, Leukemia Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ugo Ala
- Università degli Studi di Torino, Dipartimento di Scienze Cliniche e Biologiche, Turin 10124, Italy
| | - Giovanni Tonon
- Division of Molecular Oncology, Leukemia Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rosa Bernardi
- Division of Molecular Oncology, Leukemia Unit, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
37
|
DEC1 coordinates with HDAC8 to differentially regulate TAp73 and ΔNp73 expression. PLoS One 2014; 9:e84015. [PMID: 24404147 PMCID: PMC3880278 DOI: 10.1371/journal.pone.0084015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 01/21/2023] Open
Abstract
P73, a member of the p53 family, plays a critical role in neural development and tumorigenesis. Due to the usage of two different promoters, p73 is expressed as two major isoforms, TAp73 and ΔNp73, often with opposing functions. Here, we reported that transcriptional factor DEC1, a target of the p53 family, exerts a distinct control of TAp73 and ΔNp73 expression. In particular, we showed that DEC1 was able to increase TAp73 expression via transcriptional activation of the TAp73 promoter. By contrast, Np73 transcription was inhibited by DEC1 via transcriptional repression of the ΔNp73 promoter. To further explore the underlying mechanism, we showed that DEC1 was unable to increase TAp73 expression in the absence of HDAC8, suggesting that HDAC8 is required for DEC1 to enhance TAp73 expression. Furthermore, we found that DEC1 was able to interact with HDAC8 and recruit HDAC8 to the TAp73, but not the ΔNp73, promoter. Together, our data provide evidence that DEC1 and HDAC8 in differentially regulate TAp73 and ΔNp73 expression, suggesting that this regulation may lay a foundation for a therapeutic strategy to enhance the chemosensitivity of tumor cells.
Collapse
|
38
|
Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R. Stra13 and Sharp-1, the Non-Grouchy Regulators of Development and Disease. Curr Top Dev Biol 2014; 110:317-38. [DOI: 10.1016/b978-0-12-405943-6.00009-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N. The oncolytic activity of Newcastle disease virus in clear cell renal carcinoma cells in normoxic and hypoxic conditions: the interplay between von Hippel-Lindau and interferon-β signaling. J Interferon Cytokine Res 2013; 33:346-54. [PMID: 23506478 DOI: 10.1089/jir.2012.0095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
Collapse
Affiliation(s)
- Wei-Choong Ch'ng
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Malaysia
| | | | | | | |
Collapse
|
40
|
KANNO HIROSHI, SATO HIDEMITSU, YOKOYAMA TAKAAKIRA, YOSHIZUMI TETSUYA, YAMADA SACHIKO. The VHL tumor suppressor protein regulates tumorigenicity of U87-derived glioma stem-like cells by inhibiting the JAK/STAT signaling pathway. Int J Oncol 2013; 42:881-6. [DOI: 10.3892/ijo.2013.1773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022] Open
|
41
|
Adding protein context to the human protein-protein interaction network to reveal meaningful interactions. PLoS Comput Biol 2013; 9:e1002860. [PMID: 23300433 PMCID: PMC3536619 DOI: 10.1371/journal.pcbi.1002860] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/09/2012] [Indexed: 01/31/2023] Open
Abstract
Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer's disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific networks in several ways. Protein-protein-interactions (PPIs) participate in virtually all biological processes. However, the PPI map is not static but the pairs of proteins that interact depends on the type of cell, the subcellular localization and modifications of the participating proteins, among many other factors. Therefore, it is important to understand the specific conditions under which a PPI happens. Unfortunately, experimental methods often do not provide this information or, even worse, measure PPIs under artificial conditions not found in biological systems. We developed a method to infer this missing information from properties of the interacting proteins, such as in which cell types the proteins are found, which functions they fulfill and whether they are known to play a role in disease. We show that PPIs for which we can infer conditions under which they happen have a higher experimental reliability. Also, our inference agrees well with known pathways and disease proteins. Since diseases usually affect specific cell types, we study PPI networks of influenza proteins in lung tissues and of Alzheimer's disease proteins in neural tissues. In both cases, we can highlight interesting interactions potentially playing a role in disease progression.
Collapse
|
42
|
Ren Y, Hao P, Dutta B, Cheow ESH, Sim KH, Gan CS, Lim SK, Sze SK. Hypoxia modulates A431 cellular pathways association to tumor radioresistance and enhanced migration revealed by comprehensive proteomic and functional studies. Mol Cell Proteomics 2012. [PMID: 23204318 DOI: 10.1074/mcp.m112.018325] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia induces cancer cell angiogenesis, invasiveness, treatment resistance, and contributes to poor clinical outcome. However, the molecular mechanism by which tumor hypoxia exerts a coordinated effect on different molecular pathways to enhance tumor growth and survival and lead to poor clinical outcome is not fully understood. In this study, we attempt to elucidate the global protein expression and functional changes in A431 epithelial carcinoma cells induced by hypoxia and reoxygenation using iTRAQ quantitative proteomics and biochemical functional assays. Quantitative proteomics results showed that 4316 proteins were quantified with FDR<1%, in which over 1200 proteins were modulated >1.2 fold, and DNA repair, glycolysis, integrin, glycoprotein turnover, and STAT1 pathways were perturbed by hypoxia and reoxygenation-induced oxidative stress. For the first time, hypoxia was shown to up-regulate the nonhomologous end-joining pathway, which plays a central role in DNA repair of irradiated cells, thereby potentially contributing to the radioresistance of hypoxic A431 cells. The up-regulation of Ku70/Ku80 dimer, a key molecular complex in the nonhomologous end-joining pathway, was confirmed by Western blot and liquid chromatography/tandem mass spectrometry-MRM methods. Functional studies confirmed that up-regulation of glycolysis, integrin, glycoprotein synthesis, and down-regulation of STAT1 pathways during hypoxia enhanced metastastic activity of A431 cells. Migration of A431 cells was dramatically repressed by glycolysis inhibitor (2-Deoxy-d-glucose), glycoprotein synthesis inhibitor (1-Deoxynojirimycin Hydrochloride), and STAT1α overexpression that enhanced the integrin-mediated cell adhesion. These results revealed that hypoxia induced several biological processes involved in tumor migration and radioresistance and provided potential new targets for tumor therapy.
Collapse
Affiliation(s)
- Yan Ren
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
43
|
SUMO modification of Stra13 is required for repression of cyclin D1 expression and cellular growth arrest. PLoS One 2012; 7:e43137. [PMID: 22905217 PMCID: PMC3419196 DOI: 10.1371/journal.pone.0043137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/16/2012] [Indexed: 12/18/2022] Open
Abstract
Stra13, a basic helix-loop-helix (bHLH) transcription factor is involved in myriad biological functions including cellular growth arrest, differentiation and senescence. However, the mechanisms by which its transcriptional activity and function are regulated remain unclear. In this study, we provide evidence that post-translational modification of Stra13 by Small Ubiquitin-like Modifier (SUMO) dramatically potentiates its ability to transcriptionally repress cyclin D1 and mediate G1 cell cycle arrest in fibroblast cells. Mutation of SUMO acceptor lysines 159 and 279 located in the C-terminal repression domain has no impact on nuclear localization; however, it abrogates association with the co-repressor histone deacetylase 1 (HDAC1), attenuates repression of cyclin D1, and prevents Stra13-mediated growth suppression. HDAC1, which promotes cellular proliferation and cell cycle progression, antagonizes Stra13 sumoylation-dependent growth arrest. Our results uncover an unidentified regulatory axis between Stra13 and HDAC1 in progression through the G1/S phase of the cell cycle, and provide new mechanistic insights into regulation of Stra13-mediated transcriptional repression by sumoylation.
Collapse
|
44
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
45
|
Rahat MA, Bitterman H, Lahat N. Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol 2011; 2:45. [PMID: 22566835 PMCID: PMC3342364 DOI: 10.3389/fimmu.2011.00045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022] Open
Abstract
Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunology Research Unit, Carmel Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Haifa, Israel.
| | | | | |
Collapse
|
46
|
Ishdorj G, Johnston JB, Gibson SB. Inhibition of constitutive activation of STAT3 by curcurbitacin-I (JSI-124) sensitized human B-leukemia cells to apoptosis. Mol Cancer Ther 2011; 9:3302-14. [PMID: 21159613 DOI: 10.1158/1535-7163.mct-10-0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorylation of STAT3 on serine 727 regulates gene expression and is found to be elevated in many B-leukemia cells including chronic lymphocytic leukemia (CLL). It is, however, unclear whether targeting STAT3 will be an effective antileukemia therapy. In this study, we assessed in vitro antileukemia activity of the STAT3 inhibitor JSI-124 (cucurbitacin I). JSI-124 potently induces apoptosis in 3 B-leukemia cell lines (BJAB, I-83, and NALM-6) and in primary CLL cells and was associated with a reduction in serine 727 phosphorylation of STAT3. Similarly, knockdown of STAT3 expression induced apoptosis in these leukemia cells. In addition, we found that JSI-124 and knockdown of STAT3 decreased antiapoptotic protein XIAP expression and overexpression of XIAP blocked JSI-124-induced apoptosis. Furthermore, we found that combined treatment of JSI-124 and TRAIL increased apoptosis associated with an increase in death receptor 4 expression. Besides apoptosis, we found that JSI-124 also induced cell-cycle arrest prior to apoptosis in B-leukemia cells. This corresponded with reduced expression of the cell-cycle regulatory gene, cdc-2. Thus, we present here for the first time that JSI-124 induced suppression of serine 727 phosphorylation of STAT3, leading to apoptosis and cell-cycle arrest through alterations in gene transcription in B-leukemia cells.
Collapse
Affiliation(s)
- Ganchimeg Ishdorj
- Departments of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
47
|
Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma. Oncogene 2011; 30:2622-32. [PMID: 21258414 DOI: 10.1038/onc.2010.638] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tumor suppressor gene von Hippel-Lindau (VHL) is involved in the development of sporadic clear-cell renal cell carcinoma (RCC). VHL interferes with angiogenesis and also controls cell adhesion and invasion. Therapies that target VHL-controlled genes are currently being evaluated in RCC patients. RCC is a immunogenic tumor and treatment with interleukin-2 (IL2) or interferon (IFN)-α results in regression in some patients. We used two renal tumor cell lines (RCC6 and RCC4) carrying VHL loss-of-function mutations to investigate the role of mutant VHL in susceptibility to natural killer (NK) cell-mediated lysis. The RCC6 and RCC4 cell lines were transfected with the wild-type gene to restore the function of VHL. The presence of the gene in RCC cells downregulated hypoxia-inducible factor (HIF)-1α and subsequently decreased vascular endothelial growth factor (VEGF) production. Relative to control transfectants and parental cells, pVHL-transfected cell lines activated resting and IL2-activated NK cells less strongly, as assessed by IFNγ secretion, NK degranulation and cell lysis. NKG2A, a human leukocyte antigen (HLA)-I-specific inhibitory NK receptor, controls the lysis of tumor targets. We show that HLA-I expression in RCC-pVHL cells is stronger than that in parental and controls cells, although the expression of activating receptor NK ligands remains unchanged. Blocking NKG2A/HLA-I interactions substantially increased lysis of RCC-pVHL, but had little effect on the lysis of VHL-mutated RCC cell lines. In addition, in response to IFNα, the exponential growth of RCC-pVHL was inhibited more than that of RCC-pE cells, indicating that VHL mutations may be involved in IFNα resistance. These results indicate that a decreased expression of HLA-I molecules in mutated VHL renal tumor cells sensitizes them to NK-mediated lysis. These results suggest that combined immunotherapy with anti-angiogenic drugs may be beneficial for patients with mutated VHL.
Collapse
|
48
|
Jeon HW, Lee YM. Inhibition of Histone Deacetylase Attenuates Hypoxia-Induced Migration and Invasion of Cancer Cells via the Restoration of RECK Expression. Mol Cancer Ther 2010; 9:1361-70. [DOI: 10.1158/1535-7163.mct-09-0717] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zheng Y, Jia Y, Wang Y, Wang M, Li B, Shi X, Ma X, Xiao D, Sun Y. The hypoxia-regulated transcription factor DEC1 (Stra13, SHARP-2) and its expression in gastric cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2009; 13:301-6. [PMID: 19624270 DOI: 10.1089/omi.2009.0014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Differentiated embryo-chondrocyte expressed gene 1 (DEC1), as a bHLH transcriptional factor, plays important roles in cell differentiation, proliferation, and apoptosis. The expression of DEC1 and its role in human gastric cancer are unknown. This study was designed to characterize the DEC1 gene profiling of human gastric cancer tissues. The expression of DEC1 in gastric cancer tissues was analyzed by cDNA microarray, reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical studies. Microarray assay demonstrated that DEC1 was one of the upregulated genes in gastric cancer when compared with normal tissues. The expression of DEC1 mRNA was increased in gastric cancer as determined by RT-PCR. An increased DEC1 protein expression in gastric cancer was verified by Western blot analysis. Immunohistochemical studies showed that the 83.02% gastric cancer tissues (44/53) were stained positive for DEC1. The DEC1 expression was increased during the tumor progression from well differentiated (50%, 4/8) to moderately differentiated (76%, 13/17), and poorly differentiated (96%, 27/28) tumor tissues. In contrast, a weak staining for DEC1 (low expression) was observed in 10 % normal tissues (1/10). Statistical analysis found a significant correlation between increased DEC1 expression and poorly differentiated cancer tissues. These data characterized DEC1 expression in gastric cancer and identified a correlation between upregulation of DEC1 expression and differentiation of gastric cancer, suggesting that DEC1 may play an important role in the differentiation and progression of gastric cancer.
Collapse
Affiliation(s)
- Yan Zheng
- Central Laboratory, Jinan Central Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
De Cecco L, Musella V, Veneroni S, Cappelletti V, Bongarzone I, Callari M, Valeri B, Pierotti MA, Daidone MG. Impact of biospecimens handling on biomarker research in breast cancer. BMC Cancer 2009; 9:409. [PMID: 19930681 PMCID: PMC2787533 DOI: 10.1186/1471-2407-9-409] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/24/2009] [Indexed: 01/07/2023] Open
Abstract
Background Gene expression profiling is moving from the research setting to the practical clinical use. Gene signatures able to correctly identify high risk breast cancer patients as well as to predict response to treatment are currently under intense investigation. While technical issues dealing with RNA preparation, choice of array platforms, statistical analytical tools are taken into account, the tissue collection process is seldom considered. The time elapsed between surgical tissue removal and freezing of samples for biological characterizations is rarely well defined and/or recorded even for recently stored samples, despite the publications of standard operating procedures for biological sample collection for tissue banks. Methods Breast cancer samples from 11 patients were collected immediately after surgical removal and subdivided into aliquots. One was immediately frozen and the others were maintained at room temperature for respectively 2, 6 and 24 hrs. RNA was extracted and gene expression profile was determined using cDNA arrays. Phosphoprotein profiles were studied in parallel. Results Delayed freezing affected the RNA quality only in 3 samples, which were not subjected to gene profiling. In the 8 breast cancer cases with apparently intact RNA also in sample aliquots frozen at delayed times, 461 genes were modulated simply as a function of freezing timing. Some of these genes were included in gene signatures biologically and clinically relevant for breast cancer. Delayed freezing also affected detection of phosphoproteins, whose pattern may be crucial for clinical decision on target-directed drugs. Conclusion Time elapsed between surgery and freezing of samples appears to have a strong impact and should be considered as a mandatory variable to control for clinical implications of inadequate tissue handling.
Collapse
Affiliation(s)
- Loris De Cecco
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello16, 20139 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|