1
|
Wasik A, Podhorska-Okolow M, Dziegiel P, Piotrowska A, Kulus MJ, Kmiecik A, Ratajczak-Wielgomas K. Correlation between Periostin Expression and Pro-Angiogenic Factors in Non-Small-Cell Lung Carcinoma. Cells 2024; 13:1406. [PMID: 39272978 PMCID: PMC11394527 DOI: 10.3390/cells13171406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The role of periostin (POSTN) in remodeling the microenvironment surrounding solid tumors and its effect on the tumor cells in non-small-cell lung carcinoma (NSCLC) have not yet been fully understood. The aim of this study was to determine the relationship between POSTN expression (in tumor cells [NSCLC cells] and the tumor stroma) and pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and microvascular density (MVD) in NSCLC. In addition, these associations were analyzed in individual histological subtypes of NSCLC (SCC, AC, and LCC) and their correlations with clinicopathological factors and prognosis were examined. Immunohistochemistry using tissue microarrays (TMAs) was used to assess the expression of POSTN (in tumor cells and cancer-associated fibroblasts [CAFs]) and the pro-angiogenic factors. A significant positive correlation was found between the expression of POSTN (in cancer cells/CAFs) and the expression of the analyzed pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and MVD in the entire population of patients with NSCLC and individual histological subtypes (AC, SCC). In addition, this study found that POSTN expression (in tumor cells/CAFs) increased with tumor size (pT), histopathological grade (G), and lymph-node involvement (pN). In addition, a high expression of POSTN (in tumor cells and CAFs) was associated with shorter survival among patients with NSCLC. In conclusion, a high expression of POSTN (in cancer cells and CAFs) may be crucial for angiogenesis and NSCLC progression and can constitute an independent prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Michal Jerzy Kulus
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| | - Vladimir A Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia
| |
Collapse
|
3
|
Miyako S, Koma YI, Nakanishi T, Tsukamoto S, Yamanaka K, Ishihara N, Azumi Y, Urakami S, Shimizu M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. Periostin in Cancer-Associated Fibroblasts Promotes Esophageal Squamous Cell Carcinoma Progression by Enhancing Cancer and Stromal Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:828-848. [PMID: 38320632 DOI: 10.1016/j.ajpath.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are involved in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). CAF-like cells were generated through direct co-culture of human bone marrow-derived mesenchymal stem cells, one of CAF origins, with ESCC cells. Periostin (POSTN) was found to be highly expressed in CAF-like cells. After direct co-culture, ESCC cells showed increased malignant phenotypes, such as survival, growth, and migration, as well as increased phosphorylation of Akt and extracellular signal-regulated kinase (Erk). Recombinant human POSTN activated Akt and Erk signaling pathways in ESCC cells, enhancing survival and migration. The suppression of POSTN in CAF-like cells by siRNA during direct co-culture also suppressed enhanced survival and migration in ESCC cells. In ESCC cells, knockdown of POSTN receptor integrin β4 inhibited Akt and Erk phosphorylation, and survival and migration increased by POSTN. POSTN also enhanced mesenchymal stem cell and macrophage migration and endowed macrophages with tumor-associated macrophage-like properties. Immunohistochemistry showed that high POSTN expression in the cancer stroma was significantly associated with tumor invasion depth, lymphatic and blood vessel invasion, higher pathologic stage, CAF marker expression, and infiltrating tumor-associated macrophage numbers. Moreover, patients with ESCC with high POSTN expression exhibited poor postoperative outcomes. Thus, CAF-secreted POSTN contributed to tumor microenvironment development. These results indicate that POSTN may be a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Shimizu
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Komura M, Wang C, Ito S, Kato S, Ueki A, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takiguchi S, Takahashi S, Inaguma S. Simultaneous Expression of CD70 and POSTN in Cancer-Associated Fibroblasts Predicts Worse Survival of Colorectal Cancer Patients. Int J Mol Sci 2024; 25:2537. [PMID: 38473788 DOI: 10.3390/ijms25052537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.
Collapse
Affiliation(s)
- Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shunsuke Kato
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Toyonori Tsuzuki
- Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 480-1195, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
| |
Collapse
|
5
|
Lih TM, Cao L, Minoo P, Omenn GS, Hruban RH, Chan DW, Bathe OF, Zhang H. Detection of Pancreatic Ductal Adenocarcinoma-Associated Proteins in Serum. Mol Cell Proteomics 2024; 23:100687. [PMID: 38029961 PMCID: PMC10792492 DOI: 10.1016/j.mcpro.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.
Collapse
Affiliation(s)
- T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Liwei Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Parham Minoo
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Liu X, Tuerxusssn Z, Balati Y, Gong P, Zhang Z, Bao Z, Yang Y, He P, Muhuyati. The Effect and Mechanism of POSTN and Its Alternative Splicing on the Apoptosis of Myocardial Cells in Acute Myocardial Infarction: A Study in Vitro. Cell Biochem Biophys 2023; 81:481-491. [PMID: 37572219 PMCID: PMC10465634 DOI: 10.1007/s12013-023-01157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Our study aimed to investigate key molecular targets in the pathogenesis of AMI, and provide new strategy for the treatment. In this work, the myocardial ischemia and hypoxia model was constructed by using HL-1 mouse cardiomyocytes. The over-expressing POSTN wild-type, mutant and negative control lentiviruses (GV492-POSTNWT,GV492-POSTN-MUT, GV492-NC) was conducted and transfected. Cardiomyocytes were examined for cell proliferation and apoptosis to explore the effects of POSTN and its alternative splicing. The endoplasmic reticulum stess-related apoptosis proteins were selected and detected. We found that POSTN could promote the proliferation of normal and hypoxic cardiomyocytes and inhibit their apoptosis. The mechanism by which POSTN inhibited cardiomyocyte apoptosis may be through inhibiting the GRP78-eIF2α-ATF4-CHOP pathway of endoplasmic reticulum stress. Alternative splicing of POSTN could inhibit the apoptosis of ischemic and hypoxic cardiomyocytes, and its mechanism needs to be confirmed by further studies. We drawed the conclusion that POSTN might be a potential therapeutic target for AMI.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Zulikaier Tuerxusssn
- The Second Department of Coronary Heart Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yumaierjiang Balati
- The Second Department of Coronary Heart Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Pengfei Gong
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Ze Zhang
- The Second Department of Coronary Heart Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Zhen Bao
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuchun Yang
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Pengyi He
- The Second Department of Coronary Heart Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Muhuyati
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
7
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
8
|
Samuel T, Rapic S, O’Brien C, Edson M, Zhong Y, DaCosta RS. Quantitative intravital imaging for real-time monitoring of pancreatic tumor cell hypoxia and stroma in an orthotopic mouse model. SCIENCE ADVANCES 2023; 9:eade8672. [PMID: 37285434 PMCID: PMC10246908 DOI: 10.1126/sciadv.ade8672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/05/2023] [Indexed: 06/09/2023]
Abstract
Pancreatic cancer is a lethal disease with few successful treatment options. Recent evidence demonstrates that tumor hypoxia promotes pancreatic tumor invasion, metastasis, and therapy resistance. However, little is known about the complex relationship between hypoxia and the pancreatic tumor microenvironment (TME). In this study, we developed a novel intravital fluorescence microscopy platform with an orthotopic mouse model of pancreatic cancer to study tumor cell hypoxia within the TME in vivo, at cellular resolution, over time. Using a fluorescent BxPC3-DsRed tumor cell line with a hypoxia-response element (HRE)/green fluorescent protein (GFP) reporter, we showed that HRE/GFP is a reliable biomarker of pancreatic tumor hypoxia, responding dynamically and reversibly to changing oxygen concentrations within the TME. We also characterized the spatial relationships between tumor hypoxia, microvasculature, and tumor-associated collagen structures using in vivo second harmonic generation microscopy. This quantitative multimodal imaging platform enables the unprecedented study of hypoxia within the pancreatic TME in vivo.
Collapse
Affiliation(s)
- Timothy Samuel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sara Rapic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Cristiana O’Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Edson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yuan Zhong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ralph S. DaCosta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Ge Y, Bruno M, Nash MS, Coates NH, Chorley BN, Cave MC, Beier JI. Vinyl chloride enhances high-fat diet-induced proteome alterations in the mouse pancreas related to metabolic dysfunction. Toxicol Sci 2023; 193:103-114. [PMID: 36892438 PMCID: PMC10176240 DOI: 10.1093/toxsci/kfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Alterations in physiological processes in pancreas have been associated with various metabolic dysfunctions and can result from environmental exposures, such as chemicals and diet. It was reported that environmental vinyl chloride (VC) exposure, a common industrial organochlorine and environmental pollutant, significantly exacerbated metabolic-related phenotypes in mice fed concurrently with high-fat diet (HFD) but not low-fat diet (LFD). However, little is known about the role of the pancreas in this interplay, especially at a proteomic level. The present study was undertaken to examine the protein responses to VC exposure in pancreas tissues of C57BL/6J mice fed LFD or HFD, with focus on the investigation of protein expression and/or phosphorylation levels of key protein biomarkers of carbohydrate, lipid, and energy metabolism, oxidative stress and detoxification, insulin secretion and regulation, cell growth, development, and communication, immunological responses and inflammation, and biomarkers of pancreatic diseases and cancers. We found that the protein alterations may indicate diet-mediated susceptibility in mouse pancreas induced by HFD to concurrent exposure of low levels of inhaled VC. These proteome biomarkers may lead to a better understanding of pancreas-mediated adaptive or adverse response and susceptibility to metabolic disease.
Collapse
Affiliation(s)
- Yue Ge
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Maribel Bruno
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Maliha S Nash
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Najwa Haykal Coates
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Brian N Chorley
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Matthew C Cave
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202, USA
| | - Juliane I Beier
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
10
|
Knipper K, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Lyu SI. Specific Subtypes of Carcinoma-Associated Fibroblasts Are Correlated with Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15072049. [PMID: 37046710 PMCID: PMC10093167 DOI: 10.3390/cancers15072049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE The pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer entities. Effective therapy options are still lacking. The tumor microenvironment possibly bears further treatment possibilities. This study aimed to describe the expression patterns of four established carcinoma-associated fibroblast (CAFs) markers and their correlation in PDAC tissue samples. METHODS This project included 321 patients with PDAC who underwent surgery with a curative intent in one of the PANCALYZE study centers. Immunohistochemical stainings for FAP, PDGFR, periostin, and SMA were performed. The expression patterns of each marker were divided into low- and high-expressing CAFs and correlated with patients' survival. RESULTS Tumors showing SMAhigh-, PeriostinhighSMAhigh-, or PeriostinhighSMAlowPDGFRlowFAPhigh-positive CAFs demonstrated significantly worse survival. Additionally, a high expression of SMA in PDAC tissue samples was shown to be an independent risk factor for worse survival. CONCLUSION This project identified three subgroups of PDAC with different expression patterns of CAF markers which showed significantly worse survival. This could be the base for the further characterization of the fibroblast subgroups in PDAC and contribute to the development of new targeted therapy options against CAFs.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander I Damanakis
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Felix C Popp
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
11
|
Jacobs CA, Keller LE, Zhang S, Fu Q, Hunt ER, Stone AV, Conley CEW, Lattermann C, Fortier LA. Periostin regulation and cartilage degradation early after anterior cruciate ligament reconstruction. Inflamm Res 2023; 72:387-394. [PMID: 36562795 DOI: 10.1007/s00011-022-01678-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The purpose of this study was to explore pathological processes during the first 4 weeks after anterior cruciate ligament reconstruction (ACLR). SUBJECTS Sixteen ACL-injured patients (8 females/8 males, mean age = 19.1, mean BMI = 28.6). METHODS Arthrocentesis was performed 1 and 4 weeks after ACLR. Proteins in the synovial fluid were identified using nanoLC-ESI-MS/MS. Differentially up- or down-regulated proteins were identified and quantified, and a pathway analysis was performed. All identified proteins were mapped into a protein-protein interaction (PPI) network, and networks of PPIs with a combined score > 0.9 were then visualized. RESULTS Seven pathways were upregulated after ACLR: PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, focal adhesion, protein digestion and absorption, ameobiasis, and platelet activation. Network analyses identified 8 proteins that were differentially upregulated with strong PPI interactions (periostin and 7 collagen-related proteins). Increases in periostin moderately correlated with increases in a synovial fluid biomarker of type II cartilage degradation (ρ = 0.51, p = 0.06). CONCLUSION Pro-inflammatory pathways and periostin were upregulated after ACLR. Periostin demonstrated strong network connections with markers of collagen breakdown, and future work is needed to determine whether periostin may offer a biomarker of early cartilage degradation after ACLR and/or play an active role in early post-traumatic osteoarthritis (PTOA) progression.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA.
- Brigham and Women's Hospital, MA, Boston, USA.
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA.
| | | | | | - Qin Fu
- Cornell University, Ithaca, NY, USA
| | | | - Austin V Stone
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Caitlin E W Conley
- University of Kentucky, 740 S. Limestone, Suite K401, Lexington, KY, 40536-0284, USA
| | - Christian Lattermann
- Brigham and Women's Hospital, MA, Boston, USA
- Massachusetts General Brigham Sports Medicine, 20 Patriot Pl, 3rd floor, 02035, Foxborough, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Wenhua S, Tsunematsu T, Umeda M, Tawara H, Fujiwara N, Mouri Y, Arakaki R, Ishimaru N, Kudo Y. Cancer cell-derived novel periostin isoform promotes invasion in head and neck squamous cell carcinoma. Cancer Med 2023; 12:8510-8525. [PMID: 36691359 PMCID: PMC10134278 DOI: 10.1002/cam4.5601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
It recently has been reported that partial-epithelial-mesenchymal transition (p-EMT) program is associated with metastasis in head and neck squamous cell carcinoma (HNSCC). We previously have identified POSTN (which encodes periostin) as an invasion-promoting molecule in HNSCC. Interestingly, POSTN expression is frequently observed in cancer cells with higher p-EMT score by using a previous single-cell transcriptomic data of HNSCC cases. Although it is known that POSTN has 11 splicing variants, the role of them has not been determined in HNSCC. Here, we found that HNSCC cells with EMT features expressed POSTN isoforms, Iso3 (lacking exon 17 and 21) and Iso5 (lacking exon 17), whereas fibroblast expressed Iso3 and Iso4 (lacking exon 17, 18, and 21). The expression of POSTN Iso3 and Iso4 are known to be widely observed in various cell types including stromal cells. Therefore, we focused on the role of novel cancer cell-derived POSTN isoform, Iso5, in HNSCC. Single overexpression of POSTN Iso5 as well as Iso3 promoted invasion. Surprisingly, Iso5 synergistically promoted invasion together with Iso3. Notably, Iso5 as well as Iso3 upregulated p-EMT-related genes. We suggest that a novel cancer-specific POSTN isoform lacking exon 17 (Iso5) can be a useful marker for detecting cancer cells undergoing p-EMT. Moreover, a POSTN Iso5 can be a novel target for diagnosis and therapy in HNSCC.
Collapse
Affiliation(s)
- Shao Wenhua
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaaki Umeda
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroaki Tawara
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Natsumi Fujiwara
- Department of Oral Healthcare Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasuhiro Mouri
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
13
|
Ueki A, Komura M, Koshino A, Wang C, Nagao K, Homochi M, Tsukada Y, Ebi M, Ogasawara N, Tsuzuki T, Kasai K, Kasugai K, Takahashi S, Inaguma S. Stromal POSTN Enhances Motility of Both Cancer and Stromal Cells and Predicts Poor Survival in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15030606. [PMID: 36765564 PMCID: PMC9913098 DOI: 10.3390/cancers15030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) has rapidly been accumulating. To uncover clinicopathological importance of periostin (POSTN) expression in colorectal cancer (CRC), the present study immunohistochemically examined its expression status. Furthermore, to reveal its mechanisms involved, molecular experiments were performed. In CRC tissues, 44% of the cases (119/269) exhibited POSTN expression in the CAFs. In contrast, CRC cells expressed POSTN at almost undetectable levels. Survival analyses identified that patients with POSTN-positive CRC had a significantly worse 5-year survival rate (63.2% vs. 81.2%; p = 0.011). Univariate analyses revealed that POSTN positivity was associated with peritoneal (p = 0.0031) and distant organ metastasis (p < 0.001). Furthermore, immunohistochemical analyses identified a significant association between POSTN and p53 complete loss status in CRC cells. Decorin and fibroblast activation protein expression in CAFs was also associated with POSTN. POSTN significantly enhanced the migration of both CRC cells and fibroblasts with FAK and AKT or STAT3 activation, and co-culture assays demonstrated the communication between CRC cells and fibroblasts, which enhanced STAT3 activation in fibroblasts. On the basis of our results, we speculated that stromal POSTN accelerated metastasis via stromal remodeling capacity and activated the migration of both tumor and stromal cells.
Collapse
Affiliation(s)
- Akane Ueki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Akira Koshino
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Chengbo Wang
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kazuhiro Nagao
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Mai Homochi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuki Tsukada
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Masahide Ebi
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Naotaka Ogasawara
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Toyonori Tsuzuki
- Surgical Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Kunio Kasugai
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute 408-1195, Japan
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence:
| |
Collapse
|
14
|
Khatun M, Siddique AE, Wahed AS, Haque N, Tony SR, Islam J, Alam S, Sarker MK, Kabir I, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Association between serum periostin levels and the severity of arsenic-induced skin lesions. PLoS One 2023; 18:e0279893. [PMID: 36598904 PMCID: PMC9812306 DOI: 10.1371/journal.pone.0279893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a potent environmental toxicant and human carcinogen. Skin lesions are the most common manifestations of chronic exposure to arsenic. Advanced-stage skin lesions, particularly hyperkeratosis have been recognized as precancerous diseases. However, the underlying mechanism of arsenic-induced skin lesions remains unknown. Periostin, a matricellular protein, is implicated in the pathogenesis of many forms of skin lesions. The objective of this study was to examine whether periostin is associated with arsenic-induced skin lesions. A total of 442 individuals from low- (n = 123) and high-arsenic exposure areas (n = 319) in rural Bangladesh were evaluated for the presence of arsenic-induced skin lesions (Yes/No). Participants with skin lesions were further categorized into two groups: early-stage skin lesions (melanosis and keratosis) and advanced-stage skin lesions (hyperkeratosis). Drinking water, hair, and nail arsenic concentrations were considered as the participants' exposure levels. The higher levels of arsenic and serum periostin were significantly associated with skin lesions. Causal mediation analysis revealed the significant effect of arsenic on skin lesions through the mediator, periostin, suggesting that periostin contributes to the development of skin lesions. When skin lesion was used as a three-category outcome (none, early-stage, and advanced-stage skin lesions), higher serum periostin levels were significantly associated with both early-stage and advanced-stage skin lesions. Median (IQR) periostin levels were progressively increased with the increasing severity of skin lesions. Furthermore, there were general trends in increasing serum type 2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and immunoglobulin E (IgE) levels with the progression of the disease. The median (IQR) of IL-4, IL-5, IL-13, eotaxin, and IgE levels were significantly higher in the early-and advanced-stage skin lesions compared to the group of participants without skin lesions. The results of this study suggest that periostin is implicated in the pathogenesis and progression of arsenic-induced skin lesions through the dysregulation of type 2 immune response.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abdus S. Wahed
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahnur Alam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
15
|
Neuzillet C, Nicolle R, Raffenne J, Tijeras‐Raballand A, Brunel A, Astorgues‐Xerri L, Vacher S, Arbateraz F, Fanjul M, Hilmi M, Samain R, Klein C, Perraud A, Rebours V, Mathonnet M, Bièche I, Kocher H, Cros J, Bousquet C. Periostin- and podoplanin-positive cancer-associated fibroblast subtypes cooperate to shape the inflamed tumor microenvironment in aggressive pancreatic adenocarcinoma. J Pathol 2022; 258:408-425. [PMID: 36102377 PMCID: PMC9828775 DOI: 10.1002/path.6011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 01/19/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are orchestrators of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Previously we described four CAF subtypes with specific molecular and functional features. Here, we have refined our CAF subtype signatures using RNAseq and immunostaining with the goal of defining bioinformatically the phenotypic stromal and tumor epithelial states associated with CAF diversity. We used primary CAF cultures grown from patient PDAC tumors, human data sets (in-house and public, including single-cell analyses), genetically engineered mouse PDAC tissues, and patient-derived xenografts (PDX) grown in mice. We found that CAF subtype RNAseq signatures correlated with immunostaining. Tumors rich in periostin-positive CAFs were significantly associated with shorter overall survival of patients. Periostin-positive CAFs were characterized by high proliferation and protein synthesis rates and low α-smooth muscle actin expression and were found in peri-/pre-tumoral areas. They were associated with highly cellular tumors and with macrophage infiltrates. Podoplanin-positive CAFs were associated with immune-related signatures and recruitment of dendritic cells. Importantly, we showed that the combination of periostin-positive CAFs and podoplanin-positive CAFs was associated with specific tumor microenvironment features in terms of stromal abundance and immune cell infiltrates. Podoplanin-positive CAFs identified an inflammatory CAF (iCAF)-like subset, whereas periostin-positive CAFs were not correlated with the published myofibroblastic CAF (myCAF)/iCAF classification. Taken together, these results suggest that a periostin-positive CAF is an early, activated CAF, associated with aggressive tumors, whereas a podoplanin-positive CAF is associated with an immune-related phenotype. These two subpopulations cooperate to define specific tumor microenvironment and patient prognosis and are of putative interest for future therapeutic stratification of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Department of Medical Oncology, Institut CurieUniversité Versailles Saint‐Quentin, Paris SaclaySaint‐CloudFrance,UMR144, Institut CurieParisFrance
| | - Rémy Nicolle
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance
| | - Jérôme Raffenne
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | | | - Alexia Brunel
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | | | - Sophie Vacher
- Department of GeneticsInstitut Curie, PSL Research UniversityParisFrance
| | - Floriane Arbateraz
- Centre d'Histologie Imagerie et Cytométrie (CHIC), U1138 Centre de Recherche des Cordeliers (CRC)ParisFrance
| | - Marjorie Fanjul
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | - Marc Hilmi
- Department of Medical Oncology, Institut CurieUniversité Versailles Saint‐Quentin, Paris SaclaySaint‐CloudFrance
| | - Rémi Samain
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| | - Christophe Klein
- Centre d'Histologie Imagerie et Cytométrie (CHIC), U1138 Centre de Recherche des Cordeliers (CRC)ParisFrance
| | - Aurélie Perraud
- Department of Digestive SurgeryUniversity Hospital of LimogesLimogesFrance,INSERM UMLR‐1308University of LimogesLimogesFrance
| | - Vinciane Rebours
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance,Department of PancreatologyBeaujon Hospital (APHP)Clichy‐La‐GarenneFrance
| | - Muriel Mathonnet
- Department of Digestive SurgeryUniversity Hospital of LimogesLimogesFrance,INSERM UMLR‐1308University of LimogesLimogesFrance
| | - Ivan Bièche
- Department of GeneticsInstitut Curie, PSL Research UniversityParisFrance
| | - Hemant Kocher
- Centre for Tumour Biology, Barts Cancer Institute ‐ a CR‐UK Centre of ExcellenceQueen Mary University of LondonLondonUK
| | - Jérôme Cros
- INSERM U1149, Centre de Recherche sur l'InflammationParisFrance,Department of Pathology, Beaujon Hospital (APHP)Université de ParisParisFrance
| | - Corinne Bousquet
- INSERM UMR‐1037, Cancer Research Center of Toulouse (CRCT), Team ‘labellisée Ligue Contre le Cancer’University of ToulouseToulouseFrance
| |
Collapse
|
16
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
17
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Wasik A, Ratajczak-Wielgomas K, Badzinski A, Dziegiel P, Podhorska-Okolow M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers (Basel) 2022; 14:cancers14174225. [PMID: 36077762 PMCID: PMC9454705 DOI: 10.3390/cancers14174225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancers are common diseases that affect people of all ages worldwide. For this reason, continuous attempts are being made to improve current therapeutic options. The formation of metastases significantly decreases patient survival. Therefore, understanding the mechanisms that are involved in this process seems to be crucial for effective cancer therapy. Cancer dissemination occurs mainly through blood and lymphatic vessels. As a result, many scientists have conducted a number of studies on the formation of new vessels. Many studies have shown that proangiogenic factors and the extracellular matrix protein, i.e., periostin, may be important in tumor angio- and lymphangiogenesis, thus contributing to metastasis formation and worsening of the prognosis. Abstract Periostin (POSTN) is a protein that is part of the extracellular matrix (ECM) and which significantly affects the control of intracellular signaling pathways (PI3K-AKT, FAK) through binding integrin receptors (αvβ3, αvβ5, α6β4). In addition, increased POSTN expression enhances the expression of VEGF family growth factors and promotes Erk phosphorylation. As a result, this glycoprotein controls the Erk/VEGF pathway. Therefore, it plays a crucial role in the formation of new blood and lymphatic vessels, which may be significant in the process of metastasis. Moreover, POSTN is involved in the proliferation, progression, migration and epithelial-mesenchymal transition (EMT) of tumor cells. Its increased expression has been detected in many cancers, including breast cancer, ovarian cancer, non-small cell lung carcinoma and glioblastoma. Many studies have shown that this protein may be an independent prognostic and predictive factor in many cancers, which may influence the choice of optimal therapy.
Collapse
Affiliation(s)
- Adrian Wasik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Correspondence:
| | - Arkadiusz Badzinski
- Silesian Nanomicroscopy Center, Silesia LabMed: Research and Implementation Center, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Marzenna Podhorska-Okolow
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Department of Ultrastructural Research, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
19
|
Herkiloglu D, Gokce S, Kaygusuz E, Cevik O. Expression of periostin according to endometrial cancer grade. Oncol Lett 2022; 24:213. [PMID: 35707760 PMCID: PMC9178670 DOI: 10.3892/ol.2022.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
While various molecular profiling methods have been described for the early diagnosis and prognostic process of endometrial cancer, the most common gynaecological cancer, the data obtained remain insufficient. The present study aimed to investigate the protein and gene expression of periostin and its role as a new biomarker in the diagnosis, treatment and prognosis of endometrial cancer. A total of 15 patients diagnosed with endometrial cancer at the Department of Pathology, Zeynep Kamil Training and Research Hospital (Istanbul, Turkey) and 15 patients who were operated on for non-tumour-related reasons, between December 2019 and May 2020, were included in the study. The cases diagnosed with endometrial cancer were divided into three groups: International Federation of Gynaecology and Obstetrics grades I, II and III. Pathology tumour blocks were selected for enzyme-linked immunosorbent assay and PCR studies in which periostin gene expression and protein levels were measured, respectively. A significant increase in periostin gene expression was observed in the endometrial cancer samples compared with that in the controls (3.40±0.66 vs. 2.23±0.47). The protein level of periostin in the tissues was found to be higher in the endometrial cancer samples than that in the control group (1.59±0.31 vs. 0.94±0.22). The levels of periostin protein and gene expression detected in the endometrial cancer samples increased as the grade increased. To the best of our knowledge, the current study is the first to determine the levels of periostin protein and gene expression in endometrial cancer. The results suggested that periostin may be used as a biomarker in the determination of higher histological grade in endometrial cancer.
Collapse
Affiliation(s)
- Dilsad Herkiloglu
- Department of Obstetrics and Gynaecology, Gaziosmanpasa Hospital, Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Sefik Gokce
- Department of Obstetrics and Gynaecology, Gaziosmanpasa Hospital, Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Ecmel Kaygusuz
- Department of Pathology, Zeynep Kamil Training and Research Hospital, Istanbul 2022, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
20
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
21
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
Kolesnikoff N, Chen CH, Samuel M. Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clin Sci (Lond) 2022; 136:361-377. [PMID: 35260891 PMCID: PMC8907655 DOI: 10.1042/cs20210679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Solid tumours are composed of cancer cells characterised by genetic mutations that underpin the disease, but also contain a suite of genetically normal cells and the extracellular matrix (ECM). These two latter components are constituents of the tumour microenvironment (TME), and are key determinants of tumour biology and thereby the outcomes for patients. The tumour ECM has been the subject of intense research over the past two decades, revealing key biochemical and mechanobiological principles that underpin its role in tumour cell proliferation and survival. However, the ECM also strongly influences the genetically normal immune cells within the microenvironment, regulating not only their proliferation and survival, but also their differentiation and access to tumour cells. Here we review recent advances in our knowledge of how the ECM regulates the tumour immune microenvironment and vice versa, comparing normal skin wound healing to the pathological condition of tumour progression.
Collapse
Affiliation(s)
- Natasha Kolesnikoff
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
23
|
Zhang J, Zha T, Zhang N, Sun G. Diagnostic value of periostin in lung cancer-related malignant pleural effusion. J Clin Lab Anal 2022; 36:e24179. [PMID: 35152510 PMCID: PMC8842311 DOI: 10.1002/jcla.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periostin (POSTN) is an extracellular matrix protein that is overexpressed in lung cancer and is considered an effective diagnostic and prognostic biomarker for lung cancer. The purpose of this study was to investigate the diagnostic performance of POSTN and to further evaluate the diagnostic value of POSTN combined with carcinoembryonic antigen (CEA) and cancer ratio [CR: serum lactate dehydrogenase (LDH)/pleural effusion adenosine deaminase (PE ADA)] in lung cancer-related malignant PE (MPE). METHODS A total of 108 patients with PE, including 54 with lung cancer and 54 with benign lung disease, were enrolled in this study. The POSTN levels of PE and serum were detected using an enzyme-linked immunosorbent assay. Information on the expression of PE and serum CEA, serum LDH, and PE ADA was collected from medical records. RESULTS The levels of PE POSTN in MPE of patients with lung cancer were significantly higher than those in patients with benign PE (p < 0.0001). The receiver operating characteristic (ROC) curve indicated that the diagnostic sensitivity and specificity of PE POSTN for lung cancer-related MPE were respectively 77.78% and 68.52% when the cutoff value was determined to be 53.45 ng/ml. The ROC curve analysis demonstrated that PE POSTN has a high diagnostic value in MPE associated with lung cancer [area under the curve (AUC) = 0.764], and the combination of PE POSTN, PE CEA, and CR can improve the diagnostic accuracy of lung cancer-related MPE (AUC = 0.948). CONCLUSION POSTN can be used as a potential marker for lung cancer-related MPE diagnosis.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Tongtong Zha
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Na Zhang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Gengyun Sun
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| |
Collapse
|
24
|
Ratajczak-Wielgomas K, Kmiecik A, Dziegiel P. Role of Periostin Expression in Non-Small Cell Lung Cancer: Periostin Silencing Inhibits the Migration and Invasion of Lung Cancer Cells via Regulation of MMP-2 Expression. Int J Mol Sci 2022; 23:ijms23031240. [PMID: 35163164 PMCID: PMC8835752 DOI: 10.3390/ijms23031240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The involvement of periostin (POSTN) in non-small-cell lung cancer (NSCLC) migration, invasion, and its underlying mechanisms has not been well established. The present study aims to determine epithelial POSTN expression in NSCLC and to assess associations with clinicopathological factors and prognosis as well as to explore the effects of POSTN knockdown on tumor microenvironment and the migration and invasion of lung cancer cells. Immunohistochemistry was used to evaluate epithelial POSTN expression in NSCLC. POSTN mRNA expression in the dissected lung cancer cells was confirmed by laser capture microdissection and real-time PCR. A549 cells were used for transfecting shRNA-POSTN lentiviral particles. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with POSTN-specific short hairpin (sh)RNA. The results demonstrated significantly higher cytoplasmic POSTN expression in the whole NSCLC group compared to non-malignant lung tissue (NMLT). POSTN expression in cancer cells may be considered to be an independent prognostic factor for survival in NSCLC. POSTN knockdown significantly inhibited A549 cell migration and invasion capabilities in vitro. The activity and the expression level of matrix metalloproteinase-2 (MMP-2) were significantly decreased in A549.shRNA compared to control cells. In summary, POSTN may regulate lung cancer cell invasiveness by modulating the expression of MMP-2 and may represent a potential target for novel therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
25
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
27
|
Labrèche C, Cook DP, Abou-Hamad J, Pascoal J, Pryce BR, Al-Zahrani KN, Sabourin LA. Periostin gene expression in neu-positive breast cancer cells is regulated by a FGFR signaling cross talk with TGFβ/PI3K/AKT pathways. Breast Cancer Res 2021; 23:107. [PMID: 34809697 PMCID: PMC8607680 DOI: 10.1186/s13058-021-01487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease with multiple drivers and complex regulatory networks. Periostin (Postn) is a matricellular protein involved in a plethora of cancer types and other diseases. Postn has been shown to be involved in various processes of tumor development, such as angiogenesis, invasion, cell survival and metastasis. The expression of Postn in breast cancer cells has been correlated with a more aggressive phenotype. Despite extensive research, it remains unclear how epithelial cancer cells regulate Postn expression. METHODS Using murine tumor models and human TMAs, we have assessed the proportion of tumor samples that have acquired Postn expression in tumor cells. Using biochemical approaches and tumor cell lines derived from Neu+ murine primary tumors, we have identified major regulators of Postn gene expression in breast cancer cell lines. RESULTS Here, we show that, while the stromal compartment typically always expresses Postn, about 50% of breast tumors acquire Postn expression in the epithelial tumor cells. Furthermore, using an in vitro model, we show a cross-regulation between FGFR, TGFβ and PI3K/AKT pathways to regulate Postn expression. In HER2-positive murine breast cancer cells, we found that basic FGF can repress Postn expression through a PKC-dependent pathway, while TGFβ can induce Postn expression in a SMAD-independent manner. Postn induction following the removal of the FGF-suppressive signal is dependent on PI3K/AKT signaling. CONCLUSION Overall, these results reveal a novel regulatory mechanism and shed light on how breast tumor cells acquire Postn expression. This complex regulation is likely to be cell type and cancer specific as well as have important therapeutic implications.
Collapse
Affiliation(s)
- Cédrik Labrèche
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Pascoal
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
| | - Benjamin R Pryce
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalid N Al-Zahrani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Luc A Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, ON, UK.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
28
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
29
|
Jia YY, Yu Y, Li HJ. POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through ILK/AKT/mTOR pathway. J Cancer 2021; 12:4183-4195. [PMID: 34093819 PMCID: PMC8176408 DOI: 10.7150/jca.51253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 05/01/2021] [Indexed: 12/05/2022] Open
Abstract
Periostin (POSTN) is an extracellular matrix (ECM) protein, involved in various diseases. This research focused on the detailed mechanisms study of periostin (POSTN) overexpression in renal cell carcinoma (RCC) invasion and migration. Western blot and RT-PCR were performed to explore POSTN expression in various RCC cells. Cells were transfected with siRNAs or lentivirus to regulate the expression of POSTN. The effects of POSTN on cell viability, apoptosis, migration, invasion and epithelial-to-mesenchymal transition (EMT) of RCC cells were determined by CCK-8, flow cytometry, migration and invasion assay and Western blot analysis. POSTN expression was significantly enhanced in RCC cells compared with renal tubular epithelial cells. In vitro experiments showed that POSTN knockdown could dramatically inhibit RCC cell proliferation, migration and invasion, while overexpression of POSTN could promote these biological behaviors. We further demonstrated that POSTN knockdown suppressed epithelial-mesenchymal transition (EMT), which was mediated via upregulation of E-cadherin and downregulation of N-cadherin and vimentin, through IKL/AKT/mTOR pathway. In contrast, overexpression of POSTN could promote EMT in RCC cells via the activation of IKL /AKT/mTOR pathway. Next, we demonstrated that higher POSTN expression promoted angiogenesis in vivo in an RCC xenograft tumor via activating IKL /AKT/mTOR pathway. Our study showed that POSTN could promote EMT through ILK/AKT/mTOR pathway and might be an alternative therapeutic strategy for RCC treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Jia
- Department of Health Management Medical Center, China-Japan Union Hospital of Jilin University,126 Xiantai Street,Changchun, Jilin, China
| | - Yue Yu
- Department of endocrinology and metabolism, China-Japan Union Hospital of Jilin University, 126 Xiantai Street,Changchun, Jilin,China
| | - Hong-Jun Li
- Department of Health Management Medical Center, China-Japan Union Hospital of Jilin University,126 Xiantai Street,Changchun, Jilin, China
| |
Collapse
|
30
|
Su JY, Yu CC, Peng CY, Liao YW, Hsieh PL, Yang LC, Yu CH, Chou MY. Silencing periostin inhibits myofibroblast transdifferentiation of fibrotic buccal mucosal fibroblasts. J Formos Med Assoc 2021; 120:2010-2015. [PMID: 33965260 DOI: 10.1016/j.jfma.2021.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/PURPOSE Oral submucous fibrosis (OSF) a well-recognized oral premalignant disorder. Several studies have demonstrated that periostin, a matricellular protein, is involved in the development and pathogenesis of fibrosis diseases. Nevertheless, the contribution of periostin in OSF remains to be uncovered. The purpose of the study was to illustrate the functional role of periostin involved in OSF pathogenesis. METHODS RNA-sequencing was employed to screen for differentially expressed genes in normal and OSF tissues. Validation of the upregulation of periostin in OSF specimens and fibrotic buccal mucosal fibroblasts (fBMFs) was conducted by qRT-PCR. The correlation of the gene expression of periostin and various fibrosis markers was analyzed. In addition, the functional role of periostin in myofibroblast features was tested using collagen gel contraction and transwell migration assays. RESULTS We observed overexpression of periostin in OSF specimens using RNA-sequencing and confirmed its upregulation in OSF tissues and patient-derived fBMFs. Besides, there was a positive relationship between the expression of periostin and several fibrosis-associated markers, including ACTA2 (α-smooth muscle actin; α-SMA), COL1A1 (type 1 collagen α1 chain), TGFB1 (TGF-β1), and FN1 (fibronectin). Furthermore, we examined the effect of silencing periostin on the maintenance of myofibroblast characteristics and showed that knockdown of periostin suppressed the expression of α-SMA. Also, inhibition of periostin markedly downregulated the myofibroblast activities (collagen gel contraction and migration capacities). CONCLUSION Our results indicate the aberrant expression of periostin in OSF tissues and myofibroblasts. Moreover, the expression of periostin is positively associated with fibrosis markers, and repression of periostin may be a promising direction to alleviate the progression of OSF.
Collapse
Affiliation(s)
- Jyun-Yang Su
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Chiu Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
31
|
Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One 2021; 16:e0250109. [PMID: 33905434 PMCID: PMC8078755 DOI: 10.1371/journal.pone.0250109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.
Collapse
Affiliation(s)
- Mervi Kreus
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Siri Lehtonen
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Sini Skarp
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
32
|
Periostin Is Required for the Maintenance of Muscle Fibers during Muscle Regeneration. Int J Mol Sci 2021; 22:ijms22073627. [PMID: 33807264 PMCID: PMC8036386 DOI: 10.3390/ijms22073627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Skeletal muscle regeneration is a well-organized process that requires remodeling of the extracellular matrix (ECM). In this study, we revealed the protective role of periostin, a matricellular protein that binds to several ECM proteins during muscle regeneration. In intact muscle, periostin was localized at the neuromuscular junction, muscle spindle, and myotendinous junction, which are connection sites between muscle fibers and nerves or tendons. During muscle regeneration, periostin exhibited robustly increased expression and localization at the interstitial space. Periostin-null mice showed decreased muscle weight due to the loss of muscle fibers during repeated muscle regeneration. Cultured muscle progenitor cells from periostin-null mice showed no deficiencies in their proliferation, differentiation, and the expression of Pax7, MyoD, and myogenin, suggesting that the loss of muscle fibers in periostin-null mice was not due to the impaired function of muscle stem/progenitor cells. Periostin-null mice displayed a decreased number of CD31-positive blood vessels during muscle regeneration, suggesting that the decreased nutritional supply from blood vessels was the cause of muscle fiber loss in periostin-null mice. These results highlight the novel role of periostin in maintaining muscle mass during muscle regeneration.
Collapse
|
33
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Kobayashi T, Kanno K, Nguyen PT, Sugiyama A, Kawahara A, Otani Y, Kishikawa N, Ito M, Tazuma S. Periostin antisense oligonucleotide prevents hepatic steatosis and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2020; 35:2140-2150. [PMID: 32365405 DOI: 10.1111/jgh.15088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation, and hepatocellular injury with varying degrees of fibrosis. There are currently no established treatment approaches for NASH other than lifestyle interventions. Periostin, a matricellular protein required for tissue remodeling and fibrosis, plays an important role in hepatic steatosis and fibrosis and could be a potential target for NASH treatment. Advances in molecular biology and biochemical engineering have led to the development of antisense oligonucleotides (ASOs) that can inhibit target genes with no significant toxic effects. Herein, we investigated the therapeutic effects of periostin-targeting ASO (PNASO) in NASH. METHODS C57BL/6J mice were fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with or without intraperitoneal injection of mouse PNASO. To explore the role of periostin in hepatocellular steatosis, Hc3716 cells, an immortalized human hepatocyte line, were treated with recombinant periostin in vitro. RESULTS The induced periostin expression in the liver of CDAHFD-fed mice was significantly suppressed by PNASO. The deletion of hepatic periostin by PNASO significantly ameliorated hepatic steatosis while restoring the expression levels of peroxisome proliferator-activated receptor-alpha (PPAR-α) and its target genes. PNASO also inhibited hepatic fibrosis, reflected by the reduction of alpha-smooth muscle actin, collagen type I, and other fibrotic markers. In vitro experiments demonstrated that treatment with recombinant periostin increased cellular lipid accumulation in Hc3716 cells accompanied with the downregulation of PPAR-α. CONCLUSIONS Periostin-targeting ASO is a potential therapeutic approach for the efficient treatment of hepatic steatosis and fibrosis in NASH.
Collapse
Affiliation(s)
- Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Phuong Thao Nguyen
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
35
|
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L, Wang W. Periostin + cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol 2020; 15:210-227. [PMID: 33124726 PMCID: PMC7782076 DOI: 10.1002/1878-0261.12837] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Lymph node metastasis (LNM), a critical prognostic determinant in cancer patients, is critically influenced by the presence of numerous heterogeneous cancer‐associated fibroblasts (CAFs) in the tumor microenvironment. However, the phenotypes and characteristics of the various pro‐metastatic CAF subsets in cervical squamous cell carcinoma (CSCC) remain unknown. Here, we describe a CAF subpopulation with elevated periostin expression (periostin+CAFs), located in the primary tumor sites and metastatic lymph nodes, that positively correlated with LNM and poor survival in CSCC patients. Mechanistically, periostin+CAFs impaired lymphatic endothelial barriers by activating the integrin‐FAK/Src‐VE‐cadherin signaling pathway in lymphatic endothelial cells and consequently enhanced metastatic dissemination. In contrast, inhibition of the FAK/Src signaling pathway alleviated periostin‐induced lymphatic endothelial barrier dysfunction and its related effects. Notably, periostin‐CAFs were incapable of impairing endothelial barrier integrity, which may explain the occurrence of CAF‐enriched cases without LNM. In conclusion, we identified a specific periostin+CAF subset that promotes LNM in CSCC, mainly by impairing the lymphatic endothelial barriers, thus providing the basis for potential stromal fibroblast‐targeted interventions that block CAF‐dependent metastasis.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zheng Hu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
36
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
37
|
Nie X, Shen C, Tan J, Wu Z, Wang W, Chen Y, Dai Y, Yang X, Ye S, Chen J, Bian JS. Periostin. Circ Res 2020; 127:1138-1152. [PMID: 32752980 DOI: 10.1161/circresaha.120.316943] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
POSTN (Periostin) is an ECM (extracellular matrix) protein involved in tissue remodeling in response to injury and a contributing factor in tumorigenesis, suggesting that POSTN plays a role in the pathogenesis of pulmonary hypertension (PH).
Objective:
We aimed to gain insight into the mechanistic contribution of POSTN in experimental mouse models of PH and correlate these findings with PH in humans.
Methods and Results:
We used genetic epistasis approaches in human pulmonary artery endothelial cells (hPAECs), human pulmonary artery smooth muscle cells, and experimental mouse models of PH (Sugen 5416/hypoxia or chronic hypoxia) to discern the role of POSTN and its relationship to HIF (hypoxia-inducible factor)-1α signaling. We found that POSTN expression was correlated with the extent of PH in mouse models and in humans. Decreasing POSTN improved hemodynamic and cardiac responses in PH mice, blunted the release of growth factors and HIF-1α, and reversed the downregulated BMPR (bone morphogenetic protein receptor)-2 expression in hPAECs from patients with PH, whereas increasing POSTIN had the opposite effects and induced a hyperproliferative and promigratory phenotype in both hPAECs and human pulmonary artery smooth muscle cells. Overexpression of POSTN-induced activation of HIFs and increased the production of ET (endothelin)-1 and VEGF (vascular endothelial growth factor) in hPAECs. SiRNA-mediated knockdown of HIF-1α abolished the proangiogenic effect of POSTN. Blockade of TrkB (tyrosine kinase receptor B) attenuated the effect of POSTN on HIF-1α expression, while inhibition of HIF-1α reduced the expression of POSTN and TrkB. These results suggest that hPAECs produce POSTN via a HIF-1α-dependent mechanism.
Conclusions:
Our study reveals that POSTN expression is increased in human and animal models of PH and fosters PH development via a positive feedback loop between HIF-1α and POSTN during hypoxia. We propose that manipulating POSTIN expression may be an efficacious therapeutic target in the treatment of PH. Our results also suggest that POSTN may serve as a biomarker to estimate the severity of PH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital (X.N.), Southern University of Science and Technology, Guangdong Province, PR China
| | - Chenyou Shen
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jianxin Tan
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Z.W., J.-S.B.)
| | - Wei Wang
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Youai Dai
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Xusheng Yang
- Center of Clinical Research, Wuxi People’s Hospital of Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.D., X.Y.)
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Shugao Ye
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jingyu Chen
- Lung Transplant Group, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Jiangsu, PR China (X.N., C.S., J.T., W.W., Y.C., Y.D., X.Y., S.Y., J.C.)
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine (J.-S.B.), Southern University of Science and Technology, Guangdong Province, PR China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Z.W., J.-S.B.)
| |
Collapse
|
38
|
Thongchot S, Singsuksawat E, Sumransub N, Pongpaibul A, Trakarnsanga A, Thuwajit P, Thuwajit C. Periostin regulates autophagy through integrin α5β1 or α6β4 and an AKT-dependent pathway in colorectal cancer cell migration. J Cell Mol Med 2020; 24:12421-12432. [PMID: 32990415 PMCID: PMC7686974 DOI: 10.1111/jcmm.15756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers with highly invasive properties. The progression of CRC is determined by the driving force of periostin (PN) from cancer‐associated fibroblasts (CAFs) in the tumour microenvironment. This present work aims to investigate autophagy‐mediated CRC invasion via the receptor integrin (ITG) by PN. The level of PN in 410 clinical CRC tissues was found increased and was an independent poor prognosis marker (HR = 2.578, 95% CI = 1.218‐5.457, P‐value = .013) with a significant correlation with overall survival time (P‐value < .001). PN activated proliferation, migration and invasion of CRC cells, but with reduced autophagy. Interestingly, the reduction of LC3 autophagic protein corresponded to the increased ability of CRC cell migration. The siITGα5‐treated HT‐29 and siITGβ4‐treated HCT‐116 CRC cells attenuated epithelial‐to‐mesenchymal transitions (EMT)‐related genes and pAKT compared with those in siITG‐untreated cells. The reduction of pAKT by a PI3K inhibitor significantly restored autophagy in CRC cells. These evidences confirmed the effect of PN through either ITGα5β1 or ITGα6β4 and the AKT‐dependent pathway to control autophagy‐regulated cell migration. In conclusion, these results exhibited the impact of PN activation of ITGα5β1 or ITGα6β4 through pAKT in autophagy‐mediated EMT and migration in CRC cells.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekapot Singsuksawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttavut Sumransub
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Attaporn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Prognostic Significance of Stromal Periostin Expression in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21197025. [PMID: 32987711 PMCID: PMC7582720 DOI: 10.3390/ijms21197025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The microenvironment of solid tumours is significant in cancer development and progression. The aim of this study was to determine periostin (POSTN) expression by cancer-associated fibroblasts (CAFs) in non-small-cell lung cancer (NSCLC), as well as to assess associations with clinicopathological factors and prognosis. Materials and Methods: Immunohistochemical analysis of POSTN expression was performed on NSCLC (N = 700) and non-malignant lung tissue (NMLT) (N = 110) using tissue microarrays. Laser capture microdissection (LCM) for isolation of stromal and cancer cells of NSCLC was employed, and subsequently, POSTN mRNA expression was detected by real-time PCR. Immunofluorescence reaction and colocalisation analysis were performed by confocal microscopy. Results: Expression of POSTN in CAFs was significantly higher in NSCLC and in the adenocarcinoma (AC) and squamous cell carcinoma (SCC) subtypes compared to NMLT. POSTN expression in CAFs increased with clinical cancer stage, grades (G) of malignancy, and lymph node involvement in NSCLC. Higher POSTN expression in CAFs was an independent prognostic factor for overall survival (OS). LCM confirmed significantly higher POSTN mRNA expression in the stromal cells (CAFs) compared to the lung cancer cells. Conclusions: POSTN produced by CAFs might be crucial for NSCLC progression and can be an independent negative prognostic factor in NSCLC.
Collapse
|
40
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Bolm L, Zghurskyi P, Lapshyn H, Petrova E, Zemskov S, Vashist YK, Deichmann S, Honselmann KC, Bronsert P, Keck T, Wellner UF. Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer-An analysis of stromal morphology. PLoS One 2020; 15:e0234568. [PMID: 32658932 PMCID: PMC7357746 DOI: 10.1371/journal.pone.0234568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to define histo-morphological stroma characteristics by analyzing stromal components, and to evaluate their impact on local and systemic tumor spread and overall survival in pancreatic ductal adenocarcinoma (PDAC). Methods and materials Patients who underwent oncologic resections with curative intent for PDAC were identified from a prospectively maintained database. Histological specimens were re-evaluated for morphological stroma features as stromal fibers, fibroblast morphology, stroma matrix density, microvessel density and distribution of immune cell populations. Results A total of 108 patients were identified undergoing curative resection for PDAC in the period from 2011–2016. 33 (30.6%) patients showed parallel alignment of stroma fibers while 75 (69.4%) had randomly oriented stroma fibers. As compared to parallel alignment, random orientation of stroma fibers was associated with larger tumor size (median 3.62 cm vs. median 2.87cm, p = 0.037), nodal positive disease (76.0% vs. 54.5%, p = 0.040), higher margin positive resection rates (41.9% vs. 15.2%, p = 0.008) and a trend for higher rates of T3/4 tumors (33.3% vs. 15.2%, p = 0.064). In univariate analysis, patients with parallel alignment of stroma fibers had improved overall survival rates as compared to patients with random orientation of stroma fibers (42 months vs. 22 months, p = 0.046). The combination of random orientation of stroma fibers and low microvessel density was associated with impaired overall survival rates (16 months vs. 36 months, p = 0.019). A high CD4/CD3 ratio (16 months vs. 33 months, p = 0.040) and high stromal density of CD163 positive cells were associated with reduced overall survival (27 months vs. 34 months, p = 0.039). In multivariable analysis, the combination of random orientation of stroma fibers and low microvessel density (HR 1.592, 95%CI 1.098–2.733, p = 0.029), high CD4/CD3 ratio (HR 2.044, 95%CI 1.203–3.508, p = 0.028) and high density of CD163 positive cells (HR 1.596, 95%CI 1.367–1.968, p = 0.036) remained independent prognostic factors. Conclusion Alignment of stroma fibers and microvessel density are simple histomorphological features serving as surrogate markers of local tumor progression dissemination and surgical resectability and determine prognosis in PDAC patients. High CD4/CD3 ratio and CD163 positive cell counts determine poor prognosis.
Collapse
Affiliation(s)
- Louisa Bolm
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Petro Zghurskyi
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Hryhoriy Lapshyn
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Ekaterina Petrova
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Sergiy Zemskov
- Department of General Surgery #1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yogesh K. Vashist
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Kim C. Honselmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Peter Bronsert
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Keck
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
- * E-mail:
| | - Ulrich F. Wellner
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| |
Collapse
|
42
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Nagai T, Ishida C, Nakamura T, Iwase A, Mori M, Murase T, Bayasula, Osuka S, Takikawa S, Goto M, Kotani T, Kikkawa F. Focal Adhesion Kinase-Mediated Sequences, Including Cell Adhesion, Inflammatory Response, and Fibrosis, as a Therapeutic Target in Endometriosis. Reprod Sci 2020; 27:1400-1410. [PMID: 32329031 DOI: 10.1007/s43032-019-00044-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Endometriosis has several distinguishing features in the ectopic endometrium, including chronic inflammation and fibrosis. According to the retrograde menstruation theory, endometriotic cells are derived from eutopic endometrial cells, and adhesion of endometrial cells to the extracellular matrix can be the initial step in the development of endometriosis. Therefore, we hypothesized that cell adhesion, which mediates a sequence of events in the development of endometriosis triggering inflammatory responses and tissue fibrosis could be a possible therapeutic target for endometriosis. We found co-upregulation of focal adhesion kinase (FAK) and monocyte chemoattractant protein-1 (MCP-1) in the endometriotic tissues compared with that in the normal endometrium. MCP-1 secretion was significantly higher in the endometriotic stromal cells than in the eutopic endometrial stromal cells. Furthermore, co-culture of U937 cells and endometriotic stromal cells upregulated secretion of transforming growth factor-β1 (TGF-β1). A FAK inhibitor significantly inhibited the secretion of MCP-1 in the endometriotic stromal cells and TGF-β1 in the co-culture with macrophages. FAK inhibitor treatment in the murine endometriosis model demonstrated a decrease in the formation of endometriotic lesions as well as the expression of MCP-1 and TGF-β1. Our results suggest that the FAK-mediated sequential development of endometriosis, including inflammatory response and tissue fibrosis, can be a new therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Chiharu Ishida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Japan
| | - Masahiko Mori
- Department of Gynecologic Oncology, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Bayasula
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sachiko Takikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
44
|
Piano MA, Brunello A, Cappellesso R, Del Bianco P, Mattiolo A, Fritegotto C, Montini B, Zamuner C, Del Fiore P, Rastrelli M, Sommariva A, De Salvo GL, Montesco MC, Rossi CR, Zagonel V, Calabrò ML. Periostin and Epithelial-Mesenchymal Transition Score as Novel Prognostic Markers for Leiomyosarcoma, Myxofibrosarcoma, and Undifferentiated Pleomorphic Sarcoma. Clin Cancer Res 2020; 26:2921-2931. [PMID: 32127392 DOI: 10.1158/1078-0432.ccr-19-2297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Interpatient clinical variability in soft-tissue sarcomas (STS) highlights the need for novel prognostic markers supporting patient risk stratification. As sarcomas might exhibit a more mesenchymal or a more epithelial state, we focused on epithelial-mesenchymal and mesenchymal-epithelial transitions (EMT/MET) for prognostic clues, and selected three histotypes with variable aggressiveness. EXPERIMENTAL DESIGN The expression of EMT/MET-related factors was measured by qRT-PCR in 55 tumor samples from patients with leiomyosarcoma, myxofibrosarcoma, or undifferentiated pleomorphic sarcoma. The identified marker was further evaluated by IHC in 31 leiomyosarcomas and by measuring its circulating levels in 67 patients. The prognostic value of a sarcoma-tailored EMT score was analyzed. Epirubicin chemosensitivity and migration were studied in primary STS cultures. Associations with overall survival (OS) were assessed using Kaplan-Meier and Cox regression methods. RESULTS High expression of periostin, a mesenchymal matricellular protein, in sarcoma tissues (P = 0.0024), its high stromal accumulation in leiomyosarcomas (P = 0.0075), and increased circulation (>20 ng/mL, P = 0.0008) were associated with reduced OS. High periostin expression [HR 2.9; 95% confidence interval (CI), 1.3-6.9; P = 0.0134] and circulation (HR 2.6; 95% CI, 1.3-5.1; P = 0.0086), and a mesenchymal EMT score (mesenchymal vs. transitioning; HR, 5.2; 95% CI, 2.1-13.0, P = 0.0005) were associated with increased risk in multivariable models. An intrinsic or induced mesenchymal state enhanced chemoresistance and migration in sarcoma cell lines. CONCLUSIONS Although limited to a pilot study, these findings suggest that periostin might contribute prognostic information in the three studied STS histotypes. Moreover, a transitioning EMT score measured in the tumor might predict a less active and a more chemosensitive disease.
Collapse
Affiliation(s)
- Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonella Brunello
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rocco Cappellesso
- Surgical Pathology and Cytopathology, Department of Medicine, University of Padua, Padua, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Fritegotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Carolina Zamuner
- Anatomy and Pathological Histology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Rastrelli
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Sommariva
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Gian Luca De Salvo
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Carlo Riccardo Rossi
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
45
|
Sonongbua J, Siritungyong S, Thongchot S, Kamolhan T, Utispan K, Thuwajit P, Pongpaibul A, Wongkham S, Thuwajit C. Periostin induces epithelial‑to‑mesenchymal transition via the integrin α5β1/TWIST‑2 axis in cholangiocarcinoma. Oncol Rep 2020; 43:1147-1158. [PMID: 32020235 PMCID: PMC7057947 DOI: 10.3892/or.2020.7485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Periostin (PN) (also known as osteoblast-specific factor OSF-2) is a protein that in humans is encoded by the POSTN gene and has been correlated with a reduced survival of cholangiocarcinoma (CCA) patients, with the well-known effect of inducing epithelial-to-mesenchymal transition (EMT). The present study investigated the effect of PN, through integrin (ITG)α5β1, in EMT-mediated CCA aggressiveness. The alterations in EMT-related gene and protein expression were investigated by real-time PCR, western blot analysis and zymogram. The effects of PN on migration and the level of TWIST-2 were assessed in CCA cells with and without siITGα5 transfection. PN was found to induce CCA cell migration and EMT features, including increments in Twist-related protein 2 (TWIST-2), zinc finger protein SNAI1 (SNAIL-1), α-smooth muscle actin (ASMA), vimentin (VIM) and matrix metallopeptidase 9 (MMP-9), and a reduction in cytokeratin 19 (CK-19) together with cytoplasmic translocation of E-cadherin (CDH-1). Additionally, PN markedly induced MMP-9 activity. TWIST-2 was significantly induced in PN-treated CCA cells; this effect was attenuated in the ITGα5β1-knockdown cells and corresponded to reduced migration of the cancer cells. These results indicated that PN induced CCA migration through ITGα5β1/TWIST-2-mediated EMT. Moreover, clinical samples from CCA patients showed that higher levels of TWIST-2 were significantly correlated with shorter survival time. In conclusion, the ITGα5β1-mediated TWIST-2 signaling pathway regulates PN-induced EMT in CCA progression, and TWIST-2 is a prognostic marker of poor survival in CCA patients.
Collapse
Affiliation(s)
- Jumaporn Sonongbua
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchada Siritungyong
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanpawee Kamolhan
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
46
|
Liao Y, Li G, Zhang X, Huang W, Xie D, Dai G, Zhu S, Lu D, Zhang Z, Lin J, Wu B, Lin W, Chen Y, Chen Z, Peng C, Wang M, Chen X, Jiang MH, Xiang AP. Cardiac Nestin + Mesenchymal Stromal Cells Enhance Healing of Ischemic Heart through Periostin-Mediated M2 Macrophage Polarization. Mol Ther 2020; 28:855-873. [PMID: 31991111 DOI: 10.1016/j.ymthe.2020.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) show potential for treating cardiovascular diseases, but their therapeutic efficacy exhibits significant heterogeneity depending on the tissue of origin. This study sought to identify an optimal source of MSCs for cardiovascular disease therapy. We demonstrated that Nestin was a suitable marker for cardiac MSCs (Nes+cMSCs), which were identified by their self-renewal ability, tri-lineage differentiation potential, and expression of MSC markers. Furthermore, compared with bone marrow-derived MSCs (Nes+bmMSCs) or saline-treated myocardial infarction (MI) controls, intramyocardial injection of Nes+cMSCs significantly improved cardiac function and decreased infarct size after acute MI (AMI) through paracrine actions, rather than transdifferentiation into cardiac cells in infarcted heart. We further revealed that Nes+cMSC treatment notably reduced pan-macrophage infiltration while inducing macrophages toward an anti-inflammatory M2 phenotype in ischemic myocardium. Interestingly, Periostin, which was highly expressed in Nes+cMSCs, could promote the polarization of M2-subtype macrophages, and knockdown or neutralization of Periostin remarkably reduced the therapeutic effects of Nes+cMSCs by decreasing M2 macrophages at lesion sites. Thus, the present work systemically shows that Nes+cMSCs have greater efficacy than do Nes+bmMSCs for cardiac healing after AMI, and that this occurs at least partly through Periostin-mediated M2 macrophage polarization.
Collapse
Affiliation(s)
- Yan Liao
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiaoran Zhang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weijun Huang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongmei Xie
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China; Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuanghua Zhu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dihan Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhongyuan Zhang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junyi Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yang Chen
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhihong Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maosheng Wang
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong 525200, China
| | - Xinxin Chen
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China.
| | - Mei Hua Jiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Andy Peng Xiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510623, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510080, China.
| |
Collapse
|
47
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
48
|
Xu DF, Wang LS, Zhou JH. Long non‑coding RNA CASC2 suppresses pancreatic cancer cell growth and progression by regulating the miR‑24/MUC6 axis. Int J Oncol 2019; 56:494-507. [PMID: 31894271 PMCID: PMC6959463 DOI: 10.3892/ijo.2019.4937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Recent evidence indicates that the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is involved in tumorigenesis of several types of cancer through targeting microRNAs (miRs); however, the molecular mechanism of CASC2 in pancreatic cancer remains elusive. In the present study, the expression levels of CASC2, miR-24 and mucin 6 (MUC6) were measured in pancreatic cancer specimens and cell lines by reverse transcription-quantitative PCR. Western blotting was used to determine the protein expression levels of MUC6, Integrin β4 (ITGB4), phosphorylated (p)-focal adhesion kinase (FAK) and several epithelial-to-mesenchymal transition markers in pancreatic cancer cells. MTT, colony formation, wound healing, Transwell and flow cytometry assays were performed to detect cell proliferation, colony formation, migration, invasion and apoptosis, respectively,in vitro. Morphological changes of pancreatic cancer cells were assessed by light microscopy. The interactions between CASC2, miR-24 and MUC6 were assessed by the dual-luciferase reporter assay. A tumor xenograft model was generated to investigate tumor growth in vivo. CASC2 and MUC6 were downregulated, and miR-24 was upregulated in pancreatic cancer specimens and cell lines. Functionally, CASC2 overexpression or miR-24 knockdown suppressed pancreatic cancer cell proliferation, colony formation, migration and invasion, and promoted apoptosis. Additionally, they altered cell-cell adhesion as demonstrated by the attenuated ITGB4, p-FAK and N-cadherin protein levels, as well as morphological changes. Mechanistically, CASC2 sponged miR-24 and activated its downstream target MUC6 to suppress pancreatic cancer growth and progression. CASC2 exerted tumor-suppressive functions in pancreatic cancer through the miR-24/MUC6 axis, which may be a promising target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Da-Fang Xu
- Department of Hepatic‑Biliary‑Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Li-Shan Wang
- Department of Hepatic‑Biliary‑Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jia-Hua Zhou
- Department of Hepatic‑Biliary‑Pancreatic Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
49
|
Zhou YY, Chen LP, Zhang Y, Hu SK, Dong ZJ, Wu M, Chen QX, Zhuang ZZ, Du XJ. Integrated transcriptomic analysis reveals hub genes involved in diagnosis and prognosis of pancreatic cancer. Mol Med 2019; 25:47. [PMID: 31706267 PMCID: PMC6842480 DOI: 10.1186/s10020-019-0113-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which makes it more urgent to find the ideal tumor markers. METHODS Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes (DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to build a prognostic model. RESULTS Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP), log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = - 1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count). CONCLUSION Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.
Collapse
Affiliation(s)
- Yang-Yang Zhou
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Li-Ping Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yi Zhang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Sun-Kuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhao-Jun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Ming Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Qiu-Xiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Zhi-Zhi Zhuang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Xiao-Jing Du
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
50
|
Carpino G, Overi D, Melandro F, Grimaldi A, Cardinale V, Di Matteo S, Mennini G, Rossi M, Alvaro D, Barnaba V, Gaudio E, Mancone C. Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clin Proteomics 2019; 16:37. [PMID: 31687002 PMCID: PMC6821022 DOI: 10.1186/s12014-019-9257-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a malignancy that arises from the intrahepatic biliary tree, showing high mortality rates due to its late clinical presentation and limited treatment options. iCCA is characterized by a dense, reactive desmoplastic stroma marked by a dramatic accumulation of extracellular matrix (ECM). Although recent results strongly suggest a relationship between increasing desmoplastic stroma and the enhanced malignant behaviour of iCCA, the importance of ECM proteins in the pathogenesis of iCCA still have to be addressed. Methods iCCA ECM fibrillar structural organization was characterized by histological analysis. ECM proteome profiles from decellularized iCCA and surrounding noncancerous tissues were analysed by nLC coupled to MALDI-TOF/TOF analysis. Results iCCA tissues displayed high levels of collagen fibers and low abundance of reticular and elastic fibers, suggesting stiffness and loss of polarity. The ECM proteome profiles of iCCA samples, when compared to those obtained from the surrounding noncancerous tissues showed a dismantling of the basement membrane, a reduced angiogenesis and a downregulation of oncosuppressive activity. In particular, we focused on the effects of the overexpression of collagen type III alpha 1 chain (COL3A1) in iCCA, thus providing evidences that COL3A1 promotes iCCA cells migration and is a component of tumor-associated aligned collagen. Conclusions Overall, this study contributes to the understanding of molecular basis underlying desmoplasia in iCCA and indicates the type III collagen as a promising therapeutic target.
Collapse
Affiliation(s)
- Guido Carpino
- 1Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Diletta Overi
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Fabio Melandro
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Alessio Grimaldi
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Cardinale
- 5Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sabina Di Matteo
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Gianluca Mennini
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Massimo Rossi
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Domenico Alvaro
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Barnaba
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Eugenio Gaudio
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Carmine Mancone
- 7Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|