1
|
Wu Y, Cui Y, Zheng X, Yao X, Sun G. Integrated machine learning to predict the prognosis of lung adenocarcinoma patients based on SARS-COV-2 and lung adenocarcinoma crosstalk genes. Cancer Sci 2024. [PMID: 39489517 DOI: 10.1111/cas.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Viruses are widely recognized to be intricately associated with both solid and hematological malignancies in humans. The primary goal of this research is to elucidate the interplay of genes between SARS-CoV-2 infection and lung adenocarcinoma (LUAD), with a preliminary investigation into their clinical significance and underlying molecular mechanisms. Transcriptome data for SARS-CoV-2 infection and LUAD were sourced from public databases. Differentially expressed genes (DEGs) associated with SARS-CoV-2 infection were identified and subsequently overlapped with TCGA-LUAD DEGs to discern the crosstalk genes (CGs). In addition, CGs pertaining to both diseases were further refined using LUAD TCGA and GEO datasets. Univariate Cox regression was conducted to identify genes associated with LUAD prognosis, and these genes were subsequently incorporated into the construction of a prognosis signature using 10 different machine learning algorithms. Additional investigations, including tumor mutation burden assessment, TME landscape, immunotherapy response assessment, as well as analysis of sensitivity to antitumor drugs, were also undertaken. We discovered the risk stratification based on the prognostic signature revealed that the low-risk group demonstrated superior clinical outcomes (p < 0.001). Gene set enrichment analysis results predominantly exhibited enrichment in pathways related to cell cycle. Our analyses also indicated that the low-risk group displayed elevated levels of infiltration by immunocytes (p < 0.001) and superior immunotherapy response (p < 0.001). In our study, we reveal a close association between CGs and the immune microenvironment of LUAD. This provides preliminary insight for further exploring the mechanism and interaction between the two diseases.
Collapse
Affiliation(s)
- Yanan Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemin Yao
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Guogui Sun
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
2
|
Stulpinas A, Tenkutytė M, Imbrasaitė A, Kalvelytė AV. The Role and Efficacy of JNK Inhibition in Inducing Lung Cancer Cell Death Depend on the Concentration of Cisplatin. ACS OMEGA 2024; 9:28311-28322. [PMID: 38973918 PMCID: PMC11223245 DOI: 10.1021/acsomega.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Toxicity and the emergence of resistance are the main challenges in cancer treatment. The optimal dose of cisplatin, one of the most widely used chemotherapeutic anticancer drugs, is currently being widely debated. Furthermore, the dose-dependent molecular mechanisms of its action are poorly understood. To assess the role of protein kinase JNK (cJun N-terminal kinase) signaling in lung cancer treatment, we combined small-molecule JNK inhibitors and cisplatin. Wild-type p53 (tumor suppressor transcription factor TP53) and mutated RAS-bearing lung adenocarcinoma cell line A549 was used as a model in our studies. Here, we demonstrate cisplatin concentration-dependent opposing roles of JNK in killing cancer cells: a cell-protective role at low cisplatin concentrations and an apoptosis-promoting (or neutral) role at high concentrations. Time- and dose-dependent activation of pro-survival protein kinase AKT and TP53 was shown, with similar activation dynamics in cells exposed to different (low and high) cisplatin concentrations. Selective inhibition of AKT and activation of TP53 (expression and phosphorylation) led to a decrease in cell survival, indicating their involvement in cisplatin-induced cell death regulation. The activation levels of TP53 and AKT in cisplatin-treated A549 cells after cotreatment with the JNK inhibitor SP600125 correlated with their role in regulating cell death. TP53 and AKT were proposed as signaling proteins mediating the outcome of JNK inhibition in A549 cells exposed to different concentrations of cisplatin. Our findings suggest that a combination of stress kinase JNK inhibition and low-dose cisplatin, together with manipulation of drug-induced signaling, could be considered as a promising treatment strategy for certain lung cancers.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Monika Tenkutytė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Aušra Imbrasaitė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Audronė V. Kalvelytė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| |
Collapse
|
3
|
In Vitro Anticancer Activity of Novel Ciprofloxacin Mannich Base in Lung Adenocarcinoma and High-Grade Serous Ovarian Cancer Cell Lines via Attenuating MAPK Signaling Pathway. Molecules 2023; 28:molecules28031137. [PMID: 36770806 PMCID: PMC9921546 DOI: 10.3390/molecules28031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Novel drugs are desperately needed in order to combat a significant challenge due to chemo-therapeutic resistance and bad prognosis. This research aimed to assess the anticancer activity of a newly synthesized ciprofloxacin Mannich base (CMB) on ovarian cancer (OVCAR-3) and lung cancer (A-549) cell lines and to investigate probable involved molecular mechanisms. The cytotoxic and pro-apoptotic impact of CMB on both cell lines was investigated using MTT assay, Annexin V assay, and cell cycle analysis, as well as caspase-3 activation. Western blotting was carried out to evaluate downstream targets of the MAPK pathway, while qRT PCR was used to evaluate the gene expression pattern of the p53/Bax/Bcl2 pathway. CMB treatment showed significantly reduced cell proliferation in both OVCAR-3 and A-549 cells with half maximum inhibitory concentration (IC50) = 11.60 and 16.22 µg/mL, respectively. CMB also induced apoptosis, S phase cell cycle arrest, and up-regulated expression of p53, p21, and Bax while down-regulated Bcl2 expression. CMB also halted cell proliferation by deactivating the MAPK pathway. In conclusion, CMB may be regarded as a potential antiproliferative agent for lung and ovarian cancers due to anti-proliferative and pro-apoptotic actions via inhibition of the MAPK pathway and p53/Bax/Bcl2.
Collapse
|
4
|
Wang H, Han S, Chen H, Li P, Li S, Wu Y, Zhang C, Fu Y, Tian Y, Liu T, Hou H, Hu Q. In Vitro Toxicological Investigation and Risk Assessment of E-Cigarette Aerosols Based on a Novel Solvent-Free Extraction Method. ACS OMEGA 2022; 7:48403-48415. [PMID: 36591148 PMCID: PMC9798774 DOI: 10.1021/acsomega.2c06663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Cigarettes, potentially safer alternatives to combustible cigarettes, have been reported to increase the health risk for long-term users, so accumulating information about their potential toxicity is of great concern. However, toxicological evaluations of e-cigarette aerosols are limited, which may be attributed to the lack of a simple and efficient extraction method. Here, we developed a high-speed centrifugal method for extracting e-cigarette aerosol collected mass (ACM) and prepared ACM samples of 26 representative e-cigarettes, and 10 samples were further selected based on their cytotoxicity for systematic toxicological assessments. The average extraction efficiency of ACM, primary aerosol components, and typical carbonyls exceeded 85%. The toxicological evaluation showed that the IC50 value range of e-cigarettes for cytotoxicity was 2-52 mg/mL ACM, all e-cigarettes can induce the risk of DNA damage, mitochondrial depolarization, and c-Jun-related signal disturbances; most e-cigarettes significantly caused disturbance of oxidative stress balance. E-cigarettes with higher cytotoxicity appeared to cause a higher degree of damage, while no e-cigarette promoted mutagenicity and cytochrome c release. The toxicity difference among e-cigarettes using nicotine equivalent was significantly lower than that of ACM. This study provides a novel extraction method and a comprehensive in vitro toxicity risk profile of e-cigarette aerosols.
Collapse
Affiliation(s)
- Hongjuan Wang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shulei Han
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Huan Chen
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Peizhen Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shigang Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yujuan Wu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Chunxia Zhang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yaning Fu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yushan Tian
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Tong Liu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Hongwei Hou
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Qingyuan Hu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| |
Collapse
|
5
|
Lin EH, Hsu JW, Lee TF, Hsu CF, Lin TH, Jan YH, Chang HY, Cheng CM, Hsu HJ, Chen WW, Chen BH, Tsai HF, Li JJ, Huang CY, Chuang SH, Chang JM, Hsiao M, Wu CW. Targeting cancer stemness mediated by BMI1 and MCL1 for non-small cell lung cancer treatment. J Cell Mol Med 2022; 26:4305-4321. [PMID: 35794816 PMCID: PMC9401641 DOI: 10.1111/jcmm.17453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐associated death, with a global 5‐year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug‐resistance, and is a potential target for drug development. In this study, we found that in non‐small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo‐resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3‐ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small‐molecule, BI‐44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI‐44 provides the basis for a new therapeutic approach in NSCLC treatment.
Collapse
Affiliation(s)
- Erh-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jhen-Wei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fang Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Cheng
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Hui-Jan Hsu
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Wei-Wei Chen
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Bo-Hung Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Jung-Jung Li
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hsien Chuang
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Jia-Ming Chang
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Pathak AK, Husain N, Shukla S, Pandey RK, Kant S, Bala L. Impact of glutathione S transferases P1 (Ile105Val) variants on the risk of GSTp, phosphorylated c-Jun kinase, and P53 phenotypic expression and their implications on overall survival outcomes in non-small cell lung cancer patients treated with chemotherapy. Mutat Res 2022; 824:111775. [PMID: 35124341 DOI: 10.1016/j.mrfmmm.2022.111775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
AIM This study focused on GST-M1, T1 null, and P1 Ile105Val variant genotypes associated with the risk of altered expression of GSTp, pJNK, and P53 in NSCLC patients. These markers and overall survival (OS) were correlated with a key set of clinicopathological characteristics. METHODS Genotyping of GST- M1, T1 (+/-), and P1 (Ile105Val) was performed using PCR-RFLP.The expression of GSTp, pJNK, and P53 phenotypes was assessed by immunohistochemistry. The Spearman test was used to examine the correlation between GSTp, pJNK, and P53. Kaplan-Meier test was used for OS analysis. RESULTS GSTP1 Val/Val and Ile/Val genotypes notably increased GSTp expression by 1.8 and 1.7 fold, respectively (p = 0.04,p = 0.06). GSTP1 Val/Val and Ile/Val genotypes considerably reduced P53 expression by 0.61 and 0.57 fold, respectively (p = 0.03& p = 0.05), respectively. GSTp, pJNK, and P53 were significantly co-expressed (p < 0.001). GSTp and pJNK expression showed a moderate negative correlation (ρ = -0.32, p = 0.046). In contrast, GSTp and P53 expression exhibited a strong negative correlation (ρ = -0.53, p < 0.0001). There was no correlation between P53 and pJNK expression(ρ = 0.07, p = 0.54). The patient's median OS was 8.9 months, and it was significantly related to pack-years, stage, metastasis, and GSTM1(-/-) genotypes (p > 0.05). SQCLC showed poor OS than ADC (5.7 months vs.9.1 months, p = 0.2). Stage IV and metastasis significantly reduced the OS (p = 0.001). The tumour size and lymph nodes reflected poor OS (p = 0.07&p = 0.06). Gemcitabine+Cisplatin and Gefitinib showed a slightly higher rate of survival (9.3 months and 8.1 months) than Pemtrexe+Cisplatin treatment (7.0 months,p = 0.8). Multivariate analysis revealed that pack-years and GSTp were independent predictors for OS (p = 0.03). CONCLUSION GSTp, pJNK, and P53 showed interconnected cascading. Age, pack-year, stage, and GSTp were found to be significant predictive factors for OS.Pack-years, GSTp independent OS predictor.
Collapse
Affiliation(s)
- Anumesh K Pathak
- Department of Pathology, Dr. Ram ManoharLohia Institute of Medical Sciences, Lucknow 226010, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 226018, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram ManoharLohia Institute of Medical Sciences, Lucknow 226010, India.
| | - Saumya Shukla
- Department of Pathology, Dr. Ram ManoharLohia Institute of Medical Sciences, Lucknow 226010, India
| | - Rahul Kumar Pandey
- Department of Pathology, Dr. Ram ManoharLohia Institute of Medical Sciences, Lucknow 226010, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow 226003, India
| | - Lakshmi Bala
- Department of Biochemistry, Babu Banarasi Das University, Lucknow 226018, India
| |
Collapse
|
7
|
Yang Q, Liu J, Wang Z. 4.1N-Mediated Interactions and Functions in Nerve System and Cancer. Front Mol Biosci 2021; 8:711302. [PMID: 34589518 PMCID: PMC8473747 DOI: 10.3389/fmolb.2021.711302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 01/05/2023] Open
Abstract
Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved domains, including U1, U2, and U3. The role of 4.1N was first reported in the nerve system. Then, extensive studies reported the role of 4.1N in cancers and other diseases. 4.1N performs numerous vital functions in signaling transduction by interacting, locating, supporting, and coordinating different partners and is involved in the molecular pathogenesis of various diseases. In this review, recent studies on the interactions between 4.1N and its contactors (including the α7AChr, IP3R1, GluR1/4, GluK1/2/3, mGluR8, KCC2, D2/3Rs, CASK, NuMA, PIKE, IP6K2, CAM 1/3, βII spectrin, flotillin-1, pp1, and 14-3-3) and the 4.1N-related biological functions in the nerve system and cancers are specifically and comprehensively discussed. This review provides critical detailed mechanistic insights into the role of 4.1N in disease relationships.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,School of Medical Laboratory, Shao Yang University, Shaoyang, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Wagner C, Uliczka K, Bossen J, Niu X, Fink C, Thiedmann M, Knop M, Vock C, Abdelsadik A, Zissler UM, Isermann K, Garn H, Pieper M, Wegmann M, Koczulla AR, Vogelmeier CF, Schmidt-Weber CB, Fehrenbach H, König P, Silverman N, Renz H, Pfefferle P, Heine H, Roeder T. Constitutive immune activity promotes JNK- and FoxO-dependent remodeling of Drosophila airways. Cell Rep 2021; 35:108956. [PMID: 33826881 DOI: 10.1016/j.celrep.2021.108956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling. This structural remodeling comprises disorganization of epithelial structures and comprehensive epithelial thickening. We show that these structural changes do not depend on the Imd pathway's canonical branch terminating on nuclear factor κB (NF-κB) activation. Instead, activation of a different segment of the Imd pathway that branches off downstream of Tak1 and comprises activation of c-Jun N-terminal kinase (JNK) and forkhead transcription factor of the O subgroup (FoxO) signaling is necessary and sufficient to mediate the observed structural changes of the airways. Our findings imply that targeting JNK and FoxO signaling in the airways could be a promising strategy to interfere with disease-associated airway remodeling processes.
Collapse
Affiliation(s)
- Christina Wagner
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Karin Uliczka
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Judith Bossen
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Xiao Niu
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christine Fink
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Marcus Thiedmann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Ahmed Abdelsadik
- Zoology, Aswan University, Aswan 81528, Egypt; Molecular Biotechnology Program, Faculty of Advanced Basic Sciences, Galala University, 43552 New Galala, Egypt
| | - Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kerstin Isermann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Mario Pieper
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Andreas R Koczulla
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Peter König
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Neil Silverman
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Harald Renz
- Molecular Diagnostics, Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Petra Pfefferle
- Comprehensive Biobank Marburg, University Medical Center Giessen and Marburg, Medical Faculty, Philipps University Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Roeder
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.
| |
Collapse
|
9
|
Jiang T, Wu H, Lin M, Yin J, Tan L, Ruan Y, Feng M. B4GALNT1 promotes progression and metastasis in lung adenocarcinoma through JNK/c-Jun/Slug pathway. Carcinogenesis 2020; 42:621-630. [PMID: 33367717 DOI: 10.1093/carcin/bgaa141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common types of cancer and has a low survival rate. β-1,4-N-Acetyl galactosaminyltransferase 1 (B4GALNT1), which is involved in the synthesis of complex gangliosides, is highly expressed in the progression of various cancers. This study aimed to elucidate the biological functions of B4GALNT1 in LUAD progression and metastasis. We observed that B4GALNT1 overexpression showed enhanced cell migration and invasion in vitro, and promoted tumor metastasis, with reduced survival in mice. Mechanistically, B4GALNT1 regulated metastatic potential of LUAD through activating the JNK/c-Jun/Slug pathway, and with the form of its enzymatic activity. Clinical samples confirmed that B4GALNT1 expression was upregulated in LUAD, and B4GALNT1 was correlated with c-Jun/Slug expression, lymph node involvement, advanced clinical stage, and reduced overall survival. Collectively, our results suggest that B4GALNT1 promotes progression and metastasis of LUAD through activating JNK/c-Jun/Slug signaling, and with the form of its enzymatic activity.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Hao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Clinical Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| |
Collapse
|
10
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
11
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
12
|
Intronic miR-744 Inhibits Glioblastoma Migration by Functionally Antagonizing Its Host Gene MAP2K4. Cancers (Basel) 2018; 10:cancers10110400. [PMID: 30366472 PMCID: PMC6266622 DOI: 10.3390/cancers10110400] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background: The second intron of Mitogen-Activated Protein Kinase Kinase 4 (MAP2K4), an important hub in the pro-invasive MAPK pathway, harbors miR-744. There is accumulating evidence that intronic micro-RNAs (miRNAs) are capable of either supporting or restraining functional pathways of their host genes, thereby creating intricate regulative networks. We thus hypothesized that miR-744 regulates glioma migration by interacting with its host’s pathways. Methods: Patients’ tumor specimens were obtained stereotactically. MiR-744 was overexpressed in U87, T98G, and primary glioblastoma (GBM) cell lines. Cell mobility was studied using migration and Boyden chamber assays. Protein and mRNA expression was quantified by SDS-PAGE and qRT-PCR. Interactions of miR-744 and 3’UTRs were analyzed by luciferase reporter assays, and SMAD2/3, p38, and beta-Catenin activities by TOP/FOPflash reporter gene assays. Results: As compared to a normal brain, miR-744 levels were dramatically decreased in GBM samples and in primary GBM cell lines. Astrocytoma WHO grade II/III exhibited intermediate expression levels. Re-expression of miR-744 in U87, T98G, and primary GBM cell lines induced focal growth and impaired cell mobility. Luciferase activity of 3’UTR reporter constructs revealed the pro-invasive factors TGFB1 and DVL2 as direct targets of miR-744. Re-expression of miR-744 reduced levels of TGFB1, DVL2, and the host MAP2K4, and mitigated activity of TGFB1 and DVL2 downstream targets SMAD2/3 and beta-Catenin. TGFB1 knock-down repressed MAP2K4 expression. Conclusion: MiR-744 acts as an intrinsic brake on its host. It impedes MAP2K4 functional pathways through simultaneously targeting SMAD-, beta-Catenin, and MAPK signaling networks, thereby strongly mitigating pro-migratory effects of MAP2K4. MiR-744 is strongly repressed in glioma, and its re-expression might attenuate tumor invasiveness.
Collapse
|
13
|
Lombard CK, Davis AL, Inukai T, Maly DJ. Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 2018; 57:5897-5909. [PMID: 30211540 DOI: 10.1021/acs.biochem.8b00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) play a wide variety of roles in cellular signaling processes, dictating important, and even divergent, cellular fates. These essential kinases possess docking surfaces distal to their active sites that interact with diverse binding partners, including upstream activators, downstream substrates, and protein scaffolds. Prior studies have suggested that the interactions of certain protein-binding partners with one such JNK docking surface, termed the D-recruitment site (DRS), can allosterically influence the conformational state of the ATP-binding pocket of JNKs. To further explore the allosteric relationship between the ATP-binding pockets and DRSs of JNKs, we investigated how the interactions of the scaffolding protein JIP1, as well as the upstream activators MKK4 and MKK7, are allosterically influenced by the ATP-binding site occupancy of the JNKs. We show that the affinity of the JNKs for JIP1 can be divergently modulated with ATP-competitive inhibitors, with a >50-fold difference in dissociation constant observed between the lowest- and highest-affinity JNK1-inhibitor complexes. Furthermore, we found that we could promote or attenuate phosphorylation of JNK1's activation loop by MKK4 and MKK7, by varying the ATP-binding site occupancy. Given that JIP1, MKK4, and MKK7 all interact with JNK DRSs, these results demonstrate that there is functional allostery between the ATP-binding sites and DRSs of these kinases. Furthermore, our studies suggest that ATP-competitive inhibitors can allosterically influence the intracellular binding partners of the JNKs.
Collapse
Affiliation(s)
- Chloe K Lombard
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Audrey L Davis
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories , Ono Pharmaceutical Company, Ltd. , 3-1-1 Sakurai , Shimamoto, Mishima, Osaka 618-8585 , Japan
| | - Dustin J Maly
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States.,Department of Biochemistry , University of Washington , Seattle , Washington 98117 , United States
| |
Collapse
|
14
|
Khan I, Steeg PS. Metastasis suppressors: functional pathways. J Transl Med 2018; 98:198-210. [PMID: 28967874 PMCID: PMC6545599 DOI: 10.1038/labinvest.2017.104] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
|
15
|
Feng X, Liu H, Zhang Z, Gu Y, Qiu H, He Z. Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:123. [PMID: 28886730 PMCID: PMC5591524 DOI: 10.1186/s13046-017-0594-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Development of resistance to therapy continues to be a serious clinical problem in lung cancer management. We previously identified that Annexin A2 is significantly up-regulated in cisplatin-resistant non-small cell lung cancer (NSCLC) A549/DDP cells. However, the exact function and molecular mechanism of Annexin A2 in cisplatin resistance of NSCLCs has not been determined. METHODS Western blot and qRT-PCR were performed to analyze the protein and mRNA level of indicated molecules, respectively. Immunohistochemistry was performed to analyze the expression of Annexin A2 in NSCLC tissue samples. MTS assay, Colony formation assays, AnnexinV/PI apoptosis assay, Luciferase Reporter Assay, Chromatin-immunoprecipitation, and nude mice xenograft assay were used to visualize the function of Annexin A2 on cisplatin resistance. RESULTS Our results demonstrated that knockdown of Annexin A2 increased cisplatin sensitivity of cisplatin-resistant A549/DDP cells both in vitro and in vivo, whereas overexpression of Annexin A2 increased cisplatin resistance of A549, H460 and H1650 cells. Moreover, we found that Annexin A2 enhanced cisplatin resistance via inhibition of cisplatin-induced cell apoptosis. Our studies showed that Annexin A2 suppressed the expression of p53 through activation of JNK/c-Jun signaling, which in turn resulted in a decrease in the expression of p53-regulated apoptotic genes p21, GADD45 and BAX, as well as p53-dependent cell apoptosis. Furthermore, we found that in NSCLC cases that Annexin A2 is highly expressed; it is positively correlated with a poor prognosis, as well as correlated with short disease-free survival for patients who received chemotherapy after surgery. CONCLUSIONS These data suggested that Annexin A2 induces cisplatin resistance of NSCLCs via regulation of JNK/c-Jun/p53 signaling, and provided an evidence that blockade of Annexin A2 could serve as a novel therapeutic approach for overcoming drug resistance in NSCLCs.
Collapse
Affiliation(s)
- Xiaomin Feng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zhijie Zhang
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Yixue Gu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Huisi Qiu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, No.78 hengzhigang Road, Guangzhou, 510095, People's Republic of China.
| |
Collapse
|
16
|
Kim JS, Kim EJ, Kim HS, Kurie JM, Ahn YH. MKK4 activates non-canonical NFκB signaling by promoting NFκB2-p100 processing. Biochem Biophys Res Commun 2017; 491:337-342. [PMID: 28733031 DOI: 10.1016/j.bbrc.2017.07.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The NFκB family of transcription factors is crucial for innate or adaptive immunity, inflammation, and diseases including cancer. The two NFκB signaling pathways (canonical and non-canonical) differ from each other in extracellular signals, membrane receptors, signaling adaptors, and dimer subunits. The p52 (NFκB2) subunit, which participates in the non-canonical pathway, is generated by ubiquitin-mediated processing of the p100 precursor. Here, we found that NFκB2 processing and activation were mediated by mitogen-activated protein kinase kinase-4 (MKK4) and its substrate c-Jun N-terminal kinase (JNK). In MKK4-null mouse embryonic fibroblasts (MEFs), serum- and lymphotoxin β receptor (LTβR) antibody-induced processing of p100 and nuclear translocation of p52 were found to be defective. Serum and LTβR antibody activated the MKK4-JNK signaling pathway, and SP600125, a JNK inhibitor, blocked p100 processing. Cellular senescence, one of the responses regulated by the non-canonical NFκB pathway, was observed more frequently in MKK4-null MEFs than in wildtype cells. These results suggest that the MKK4/JNK-dependent pathway regulates NFκB2 processing/activation and, through this mechanism, MKK4 and NFκB2 control cellular growth and senescence.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Eun Ju Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, South Korea
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, South Korea.
| |
Collapse
|
17
|
JNKs function as CDK4-activating kinases by phosphorylating CDK4 and p21. Oncogene 2017; 36:4349-4361. [PMID: 28368408 PMCID: PMC5537611 DOI: 10.1038/onc.2017.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
Abstract
Cyclin D-CDK4/6 are the first cyclin-dependent kinase (CDK) complexes to be activated by mitogenic/oncogenic pathways. They have a central role in the cell multiplication decision and in its deregulation in cancer cells. We identified T172 phosphorylation of CDK4 rather than cyclin D accumulation as the distinctly regulated step determining CDK4 activation. This finding challenges the view that the only identified metazoan CDK-activating kinase, cyclin H-CDK7-Mat1 (CAK), which is constitutively active, is responsible for the activating phosphorylation of all cell cycle CDKs. We previously showed that T172 phosphorylation of CDK4 is conditioned by an adjacent proline (P173), which is not present in CDK6 and CDK1/2. Although CDK7 activity was recently shown to be required for CDK4 activation, we proposed that proline-directed kinases might specifically initiate the activation of CDK4. Here, we report that JNKs, but not ERK1/2 or CAK, can be direct CDK4-activating kinases for cyclin D-CDK4 complexes that are inactivated by p21-mediated stabilization. JNKs and ERK1/2 also phosphorylated p21 at S130 and T57, which might facilitate CDK7-dependent activation of p21-bound CDK4, however, mutation of these sites did not impair the phosphorylation of CDK4 by JNKs. In two selected tumor cells, two different JNK inhibitors inhibited the phosphorylation and activation of cyclin D1-CDK4-p21 but not the activation of cyclin D3-CDK4 that is mainly associated to p27. Specific inhibition by chemical genetics in MEFs confirmed the involvement of JNK2 in cyclin D1-CDK4 activation. Therefore, JNKs could be activating kinases for cyclin D1-CDK4 bound to p21, by independently phosphorylating both CDK4 and p21.
Collapse
|
18
|
Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, Zhang B, Zhu M, Yang Q, Zeng Y, Sun Y, Sun S, Wang Y, Zhang Y, Weng H, Chen L, Ye M, An X, Liu J. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget 2016; 7:509-23. [PMID: 26575790 PMCID: PMC4808014 DOI: 10.18632/oncotarget.6312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Protein 4.1N is a member of protein 4.1 family and has been recognized as a potential tumor suppressor in solid tumors. Here, we aimed to investigate the role and mechanisms of 4.1N in non-small cell lung cancer (NSCLC). We confirmed that the expression level of 4.1N was inversely correlated with the metastatic properties of NSCLC cell lines and histological grade of clinical NSCLC tissues. Specific knockdown of 4.1N promoted tumor cell proliferation, migration and adhesion in vitro, and tumor growth and metastasis in mouse xenograft models. Furthermore, we identified PP1 as a novel 4.1N-interacting molecule, and the FERM domain of 4.1N mediated the interaction between 4.1N and PP1. Further, ectopic expression of 4.1N could inactivate JNK-c-Jun signaling pathway through enhancing PP1 activity and interaction between PP1 and p-JNK. Correspondingly, expression of potential downstream metastasis targets (ezrin and MMP9) and cell cycle targets (p53, p21 and p19) of JNK-c-Jun pathway were also regulated by 4.1N. Our data suggest that down-regulation of 4.1N expression is a critical step for NSCLC development and that repression of JNK-c-Jun signaling through PP1 is one of the key anti-tumor mechanisms of 4.1N.
Collapse
Affiliation(s)
- Zi Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China.,Department of Medicine, University of California, Irvine, CA, USA
| | - Bianyin Ma
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Hui Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Weihua Zhou
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China.,Department of Biochemistry, College of Medicine, Jishou University, Jishou, China
| | - Feng Liu
- Department of Medicine, University of California, Irvine, CA, USA
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Zhu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Qin Yang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yayue Zeng
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
| | - Shuming Sun
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yanpeng Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yibin Zhang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Haibo Weng
- College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Lixiang Chen
- College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China
| | - Xiuli An
- College of Life Sciences, Zhengzhou University, Zhengzhou, China.,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Jing Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
19
|
The expression pattern and functional role of REIC/Dkk-3 in the development of cutaneous squamous cell carcinoma. J Dermatol Sci 2016; 84:88-96. [DOI: 10.1016/j.jdermsci.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/30/2022]
|
20
|
Zheng X, Tian Z, Wei H. Lung specific X protein as a novel therapeutic target for lung cancer. Oncoimmunology 2015; 4:e1052931. [PMID: 26587325 PMCID: PMC4635906 DOI: 10.1080/2162402x.2015.1052931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 10/31/2022] Open
Abstract
The identification of novel therapeutic targets in lung cancer is an urgent challenge. We found lung-specific X protein (LunX) is overexpressed in lung cancer and promotes primary tumor growth and metastatic colonization. The antibody against LunX appears to be potentially applicable for therapeutic use in the future, given its efficacy in preclinical models.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease; School of Life Science and Medical Center; University of Science and Technology of China ; Hefei, China ; Hefei National Laboratory for Physical Sciences at Microscale; University of Science and Technology of China ; Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease; School of Life Science and Medical Center; University of Science and Technology of China ; Hefei, China ; Hefei National Laboratory for Physical Sciences at Microscale; University of Science and Technology of China ; Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease; School of Life Science and Medical Center; University of Science and Technology of China ; Hefei, China ; Hefei National Laboratory for Physical Sciences at Microscale; University of Science and Technology of China ; Hefei, China
| |
Collapse
|
21
|
5-Nitro-5′-hydroxy-indirubin-3′-oxime (AGM130), an indirubin-3′-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci 2015; 79:122-31. [PMID: 26342773 DOI: 10.1016/j.ejps.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
|
22
|
Okamura T, Antoun G, Keir ST, Friedman H, Bigner DD, Ali-Osman F. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells. J Biol Chem 2015; 290:30866-78. [PMID: 26429914 DOI: 10.1074/jbc.m115.656140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs.
Collapse
Affiliation(s)
| | | | - Stephen T Keir
- From the Departments of Neurosurgery and the Preston Robert Tisch Brain Tumor Center
| | - Henry Friedman
- From the Departments of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute and Duke University School of Medicine, Durham, North Carolina 27710
| | - Darell D Bigner
- From the Departments of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute and Duke University School of Medicine, Durham, North Carolina 27710 Pathology and
| | - Francis Ali-Osman
- From the Departments of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute and Duke University School of Medicine, Durham, North Carolina 27710 Pathology and
| |
Collapse
|
23
|
Vasilevskaya IA, Selvakumaran M, Hierro LC, Goldstein SR, Winkler JD, O'Dwyer PJ. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA-Damaging Agents. Clin Cancer Res 2015; 21:4143-52. [PMID: 26023085 DOI: 10.1158/1078-0432.ccr-15-0352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE We showed previously that in HT29 colon cancer cells, modulation of hypoxia-induced stress signaling affects oxaliplatin cytotoxicity. To further study the significance of hypoxia-induced signaling through JNK, we set out to investigate how modulation of kinase activities influences cellular responses of hypoxic colon cancer cells to cytotoxic drugs. EXPERIMENTAL DESIGN In a panel of cell lines, we investigated effects of pharmacologic and molecular inhibition of JNK on sensitivity to oxaliplatin, SN-38, and 5-FU. Combination studies for the drugs and JNK inhibitor CC-401 were carried out in vitro and in vivo. RESULTS Hypoxia-induced JNK activation was associated with resistance to oxaliplatin. CC-401 in combination with chemotherapy demonstrates synergism in colon cancer cell lines, although synergy is not always hypoxia specific. A more detailed analysis focused on HT29 and SW620 (responsive), and HCT116 (nonresponsive) lines. In HT29 and SW620 cells, CC-401 treatment results in greater DNA damage in the sensitive cells. In vivo, potentiation of bevacizumab, oxaliplatin, and the combination by JNK inhibition was confirmed in HT29-derived mouse xenografts, in which tumor growth delay was greater in the presence of CC-401. Finally, stable introduction of a dominant negative JNK1, but not JNK2, construct into HT29 cells rendered them more sensitive to oxaliplatin under hypoxia, suggesting differing input of JNK isoforms in cellular responses to chemotherapy. CONCLUSIONS These findings demonstrate that signaling through JNK is a determinant of response to therapy in colon cancer models, and support the testing of JNK inhibition to sensitize colon tumors in the clinic.
Collapse
Affiliation(s)
| | - Muthu Selvakumaran
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lucia Cabal Hierro
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara R Goldstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Lee JH, Kim JE, Jang YJ, Lee CC, Lim TG, Jung SK, Lee E, Lim SS, Heo YS, Seo SG, Son JE, Kim JR, Lee CY, Lee HJ, Lee KW. Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K. Mol Carcinog 2015; 55:552-62. [DOI: 10.1002/mc.22302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/26/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Ji Hoon Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Young Jin Jang
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Charles C. Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
| | - Tae-Gyu Lim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Division of Creative Food Science for Health; Korea Food Research Institute; Seongnam Republic of Korea
| | - Eunjung Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Traditional Alcoholic Beverage Research Team; Korea Food Research Institute; Seongnam Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Yong Seok Heo
- Department of Chemistry; Konkuk University; Seoul Republic of Korea
| | - Sang Gwon Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Joe Eun Son
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Jong Rhan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| | - Chang Yong Lee
- Department of Food Science and Technology; Cornell University; Ithaca NY 14456 USA
- Department of Biochemistry; King Abdulaziz University; Jeddah SA
| | - Hyong Joo Lee
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
- Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology; Seoul National University; Pyeongchang Republic of Korea
- Institute on Aging; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
25
|
Tsay JCJ, Li Z, Yie TA, Wu F, Segal L, Greenberg AK, Leibert E, Weiden MD, Pass H, Munger J, Statnikov A, Tchou-Wong KM, Rom WN. Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma. PLoS One 2015; 10:e0118132. [PMID: 25705890 PMCID: PMC4338284 DOI: 10.1371/journal.pone.0118132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
Field of cancerization in the airway epithelium has been increasingly examined to understand early pathogenesis of non-small cell lung cancer. However, the extent of field of cancerization throughout the lung airways is unclear. Here we sought to determine the differential gene and microRNA expressions associated with field of cancerization in the peripheral airway epithelial cells of patients with lung adenocarcinoma. We obtained peripheral airway brushings from smoker controls (n=13) and from the lung contralateral to the tumor in cancer patients (n=17). We performed gene and microRNA expression profiling on these peripheral airway epithelial cells using Affymetrix GeneChip and TaqMan Array. Integrated gene and microRNA analysis was performed to identify significant molecular pathways. We identified 26 mRNAs and 5 miRNAs that were significantly (FDR <0.1) up-regulated and 38 mRNAs and 12 miRNAs that were significantly down-regulated in the cancer patients when compared to smoker controls. Functional analysis identified differential transcriptomic expressions related to tumorigenesis. Integration of miRNA-mRNA data into interaction network analysis showed modulation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in the contralateral lung field of cancerization. In conclusion, patients with lung adenocarcinoma have tumor related molecules and pathways in histologically normal appearing peripheral airway epithelial cells, a substantial distance from the tumor itself. This finding can potentially provide new biomarkers for early detection of lung cancer and novel therapeutic targets.
Collapse
Affiliation(s)
- Jun-Chieh J. Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| | - Zhiguo Li
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, New York, United States of America
| | - Ting-An Yie
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Leopoldo Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Alissa K. Greenberg
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Eric Leibert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Michael D. Weiden
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Harvey Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, New York University School of Medicine, New York, New York, United States of America
| | - John Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Alexander Statnikov
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, New York, United States of America
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Kam-Meng Tchou-Wong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - William N. Rom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
26
|
Zheng X, Cheng M, Fu B, Fan X, Wang Q, Yu X, Sun R, Tian Z, Wei H. Targeting LUNX inhibits non-small cell lung cancer growth and metastasis. Cancer Res 2015; 75:1080-90. [PMID: 25600649 DOI: 10.1158/0008-5472.can-14-1831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There remains a great need for effective therapies for lung cancer, the majority of which are non-small cell lung cancers (NSCLC). Here, we report the identification of a novel candidate therapeutic target, LUNX, as a molecule overexpressed in primary NSCLC and lymph node metastases that is associated with reduced postoperative survival. Functional studies demonstrated that LUNX overexpression promoted lung cancer cell migration and proliferation by interactions with the chaperone protein 14-3-3. Conversely, LUNX silencing disrupted primary tumor growth, local invasion, and metastatic colonization. The finding that LUNX was expressed on cell membranes prompted us to generate and characterize LUNX antibodies as a candidate therapeutic. Anti-LUNX could downregulate LUNX and reduce lung cancer cell proliferation and migration in vitro. Administered in vivo to mice bearing lung cancer xenografts, anti-LUNX could slow tumor growth and metastasis and improve mouse survival. Together, our work provides a preclinical proof of concept for LUNX as a novel candidate target for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Min Cheng
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Anhui Province Hospital Affiliated Anhui Medical University, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolei Fan
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing Wang
- Anhui Chest Hospital, Hefei, Anhui, China
| | - Xiaoqing Yu
- The First People's Hospital of Hefei, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
27
|
Trucco LD, Andreoli V, Núñez NG, Maccioni M, Bocco JL. Krüppel-like factor 6 interferes with cellular transformation induced by the H-ras oncogene. FASEB J 2014; 28:5262-76. [PMID: 25212220 DOI: 10.1096/fj.14-251884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
KLF6 is a member of the Krüppel-like factor family of transcription factors, with diverse roles in the regulation of cell physiology, including proliferation, signal transduction, and apoptosis. Mutations or down-regulation of KLF6 have been described in several human cancers. In this work, we found that KLF6-knockdown resulted in the formation of transformed foci and allowed the spontaneous conversion of NIH3T3 cells to a tumorigenic state. We further assessed the role of KLF6 in the context of oncogenic Ras. We showed that KLF6 was up-regulated by H-Ras(G12V) expression in a Jun N-terminal kinase (JNK)-dependent manner, correlated with enhanced klf6 promoter activity. We found that ectopic KLF6 expression induced a G1-phase cell cycle arrest, thereby decreasing the cell proliferation rate. In addition, constitutive KLF6 expression impaired H-Ras(G12V)-mediated loss of density-dependent growth inhibition and anchorage-independent growth. Moreover, growth of H-Ras(G12V)-driven tumors was reduced in mice challenged with cells stably expressing KLF6. KLF6 expression correlated with the up-regulation of p21, whereas neither p53 induction nor apoptotic cell death was detected. Further, p21 knockdown impaired KLF6-induced cell cycle arrest. These findings provide novel evidence highlighting KLF6 function in response to malignant transformation, suggesting the relevance of KLF6 in controlling cell proliferation and hindering tumorigenesis.
Collapse
Affiliation(s)
- Lucas Daniel Trucco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gonzalo Núñez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
28
|
Kitanaka C, Sato A, Okada M. JNK Signaling in the Control of the Tumor-Initiating Capacity Associated with Cancer Stem Cells. Genes Cancer 2014; 4:388-96. [PMID: 24349636 DOI: 10.1177/1947601912474892] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Deregulation of c-Jun NH2-terminal kinase (JNK) signaling occurs frequently in a variety of human cancers, yet the exact role(s) of JNK deregulation in cancer cell biology remains to be fully elucidated. Our recent demonstration that the activity of JNK is required not only for self-renewal of glioma stem cells but also for their tumor initiation has, however, identified a new role for JNK in the control of the stemness and tumor-initiating capacity of cancer cells. Significantly, transient JNK inhibition was sufficient to cause sustained loss of the tumor-initiating capacity of glioma stem cells, suggesting that the phenotype of "lost tumor-initiating capacity" may be as stable as the differentiated state and that the tumor-initiating capacity might therefore be under the control of JNK through an epigenetic mechanism that also governs stemness and differentiation. Here, in this article, we review the role and mechanism of JNK in the control of this "stemness-associated tumor-initiating capacity" (STATIC), a new hypothetical concept we introduce in this review article. Since the idea of STATIC is essentially applicable to both cancer types that do and do not follow the cancer stem cell hypothesis, we also give consideration to the possible involvement of JNK-mediated control of STATIC in a wide range of human cancers in which JNK is aberrantly activated. Theoretically, successful targeting of STATIC through JNK could contribute to long-term control of cancer. Issues to be considered before clinical application of therapies targeting this JNK-STATIC axis are also discussed.
Collapse
Affiliation(s)
- Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan ; Oncology Research Center, Research Institute for Advanced Molecular Epidemiology, Yamagata University, Yamagata, Japan ; Global Center of Excellence (COE) Program for Medical Sciences, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sato
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan ; Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
29
|
Aqueous extract of Taxus Chinensis (Pilger) Rehd inhibits lung carcinoma A549 cells through the epidermal growth factor receptor/mitogen-activated protein kinase pathway in vitro and in vivo. J TRADIT CHIN MED 2014; 34:293-301. [DOI: 10.1016/s0254-6272(14)60093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Haeusgen W, Tueffers L, Herdegen T, Waetzig V. Map2k4δ — Identification and functional characterization of a novel Map2k4 splice variant. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:875-84. [DOI: 10.1016/j.bbamcr.2014.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/20/2023]
|
31
|
Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res 2014; 74:2444-54. [PMID: 24607842 DOI: 10.1158/0008-5472.can-13-2136] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here, we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a c-JUN-NH2-kinase (JNK) inhibitor, recapitulated defects in EPHA2-deficient tumor cells, whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells (CSC). RNA interference-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH(+) cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH(+) populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung CSCs. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in CSC function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. Cancer Res; 74(9); 2444-54. ©2014 AACR.
Collapse
Affiliation(s)
- Wenqiang Song
- Authors' Affiliations: Veterans Affairs Medical Center, Tennessee Valley Healthcare System; Division of Rheumatology and Immunology, Department of Medicine; Departments of Neurological Surgery, Cancer Biology, and Cell and Developmental Biology; and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
32
|
Luan L, Zhao Y, Xu Z, Jiang G, Zhang X, Fan C, Liu D, Zhao H, Xu K, Wang M, Yu X, Wang E. Diversin increases the proliferation and invasion ability of non-small-cell lung cancer cells via JNK pathway. Cancer Lett 2014; 344:232-8. [DOI: 10.1016/j.canlet.2013.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
33
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Matesic DF, Ali A, Sidorova TS, Burns TJ. A Cell-Cell Communication Marker for Identifying Targeted Tumor Therapies. ACTA ACUST UNITED AC 2014; 9:255-262. [PMID: 25404879 DOI: 10.2174/157340720903140119155322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-cell communication through gap junctions is aberrant or absent in a majority of human cancer cells, compared to cells in corresponding normal tissues. This and other evidence has led to the hypothesis that gap junction channels, comprised of connexin proteins, are important in growth control and cancer progression. The major goal of this ongoing study was to identify bioactive compounds that specifically upregulate gap junction channel-mediated cell-cell communication as potential anti-tumor therapies. Control of cell-cell communication is linked to growth regulatory intracellular signaling pathways; we therefore further aimed to identify signaling pathways modulated by these compounds in order to assess their potential as targeted anti-tumor therapies. Compounds were screened for their ability to upregulate gap junction-mediated cell-cell communication by using a fluorescent dye transfer assay to measure cell-cell communication between tumor promoter-treated astroglial cells or ras-transformed epithelial cells. Western blotting using connexin-specific and phosphorylation site-specific antibodies was used to monitor phosphorylation changes in signaling pathway proteins. Our results identified three compounds that upregulate gap junction-mediated cell-cell communication in our screening assays, chaetoglobosin K(ChK), 4-phenyl-3-butenoic acid (PBA) and the methyl ester of PBA (PBA-Me). Further analyses demonstrated that in tumorigenic cells, ChK downregulates phosphorylation of Akt kinase, an enzyme in the PI3-kinase signaling pathway that is found to be upregulated in a number of human cancers, on a key activation site. However, ChK did not inhibit PI-3 kinase in vitro as did the classic PI-3 kinase inhibitor, Wortmannin. PBA and PBA-Me were found to upregulate phosphorylation of p38 MAPK on a key activation site in tumorigenic cells, which is downregulated in several human cancer cell types. ChK and PBA also decreased activation of SAPK/JNK, another kinase found to be upregulated in a number of human cancers. These studies highlight the potential of monitoring gap junction intercellular communication for identifying experimental anti-tumor compounds.
Collapse
Affiliation(s)
- Diane F Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University Atlanta, Georgia 30341
| | - Amna Ali
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University Atlanta, Georgia 30341
| | - Tatyana S Sidorova
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University Atlanta, Georgia 30341
| | - Timothy J Burns
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University Atlanta, Georgia 30341
| |
Collapse
|
35
|
Okada M, Shibuya K, Sato A, Seino S, Watanabe E, Suzuki S, Seino M, Kitanaka C. Specific role of JNK in the maintenance of the tumor-initiating capacity of A549 human non-small cell lung cancer cells. Oncol Rep 2013; 30:1957-64. [PMID: 23912840 DOI: 10.3892/or.2013.2655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022] Open
Abstract
Deregulation of c-Jun NH2-terminal kinase (JNK) signaling is now increasingly reported in a variety of human malignancies. Non-small cell lung cancer (NSCLC) is among such human malignancies with aberrant JNK activation; yet the exact role(s) of JNK deregulation in NSCLC biology, in particular in vivo, remains unclear. Here, we demonstrated a specific role of JNK in the control of the tumor-initiating capacity of A549 cells derived from human lung adenocarcinoma, a major subtype of NSCLC. Despite its potent inhibitory activity on A549 cell growth in vitro, SP600125, a reversible JNK inhibitor, failed to inhibit the growth of pre-established A549 xenografts in vivo when systemically administered. Nevertheless, the same SP600125 treatment caused a marked reduction in the tumor-initiating population within the A549 tumors, suggesting that JNK may be specifically required in vivo for the maintenance of the tumor-initiating population of tumor cells rather than for proliferation and survival of the entire cell population. Furthermore, A549 cells either pre-treated with SP600125 or transiently transfected with siRNAs against the JNK genes in vitro showed substantially reduced ability to initiate tumor formation upon implantation into nude mice, implying that the cell intrinsic JNK activity of A549 cells is essential for the maintenance of their tumor-initiating capacity. To our knowledge, this is the first demonstration that JNK is involved in the control of the tumor-initiating capacity of NSCLC cells. Our findings also give rise to an intriguing possibility that therapies targeting JNK could contribute to prevention of relapse and/or metastasis of NSCLC through elimination of tumor-initiating cells.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang C, Xu Z, Jin G, Hu Z, Dai J, Ma H, Jiang Y, Hu L, Chu M, Cao S, Shen H. Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese. J Biomed Res 2013; 27:208-14. [PMID: 23720676 PMCID: PMC3664727 DOI: 10.7555/jbr.27.20130017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/27/2013] [Accepted: 03/14/2013] [Indexed: 12/02/2022] Open
Abstract
Runs of homozygosity (ROHs) are a class of important but poorly studied genomic variations and may be involved in individual susceptibility to diseases. To better understand ROH and its relationship with lung cancer, we performed a genome-wide ROH analysis of a subset of a previous genome-wide case-control study (1,473 cases and 1,962 controls) in a Han Chinese population. ROHs were classified into two classes, based on lengths, intermediate and long ROHs, to evaluate their association with lung cancer risk using existing genome-wide single nucleotide polymorphism (SNP) data. We found that the overall level of intermediate ROHs was significantly associated with a decreased risk of lung cancer (odds ratio = 0.63; 95% confidence interval: 0.51-0.77; P = 4.78×10−6 ), while the long ROHs seemed to be a risk factor of lung cancer. We also identified one ROH region at 14q23.1 that was consistently associated with lung cancer risk in the study. These results indicated that ROHs may be a new class of variation which may be associated with lung cancer risk, and genetic variants at 14q23.1 may be involved in the development of lung cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ali A, Sidorova TS, Matesic DF. Dual modulation of JNK and Akt signaling pathways by chaetoglobosin K in human lung carcinoma and ras-transformed epithelial cells. Invest New Drugs 2012; 31:525-34. [PMID: 23054210 DOI: 10.1007/s10637-012-9883-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
Chaetoglobosin K (ChK) is a natural product that inhibits anchorage-dependent and anchorage-independent growth of ras-transformed cells, prevents tumor-promoter disruption of cell-cell communication, and reduces Akt activation in tumorigenic cells. This study demonstrates how ChK modulates the JNK pathway in ras-transformed and human lung carcinoma cells and investigates regulatory mechanisms controlling ChK's effect on the Akt and JNK signaling pathways. Human lung carcinoma and ras-transformed epithelial cell lines treated with ChK or vehicle for varying times were assayed for cell growth or extracted for total proteins for western blot analysis using phosphorylation site-specific antibodies to monitor changes in activation of JNK, Akt, and other signaling enzymes. Results show that ChK inhibited both Akt and JNK phosphorylation at key activation sites in ras-transformed cells as well as human lung carcinoma cells. Downstream effectors of both kinases were accordingly affected. Direct upstream kinases of JNK were not affected by ChK. Wortmannin and LY294002, two PI3 kinase inhibitors, inhibited Akt but not JNK phosphorylation in ras-transformed cells. This report establishes the dual inhibitory effect of ChK on both the Akt and JNK signaling pathways in ras-transformed epithelial and human carcinoma cells. The unique effect of ChK on these two key pathways involved in carcinogenesis earmarks ChK for further studies to determine its molecular target(s) and in vivo anti-tumor potential.
Collapse
Affiliation(s)
- Amna Ali
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | | | | |
Collapse
|
38
|
Wang CY, Chen CL, Tseng YL, Fang YT, Lin YS, Su WC, Chen CC, Chang KC, Wang YC, Lin CF. Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem 2012; 287:32512-24. [PMID: 22859294 DOI: 10.1074/jbc.m112.351957] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Annexin A2 (ANXA2) overexpression is required for cancer cell proliferation; however, the molecular mechanisms underlying ANXA2-mediated regulation of the cell cycle are still unknown. ANXA2 is highly expressed in non-small cell lung cancer (NSCLC) and is positively correlated with a poor prognosis. NSCLC A549 cells lacking ANXA2 exhibited defects in tumor growth in vivo and in cell proliferation in vitro without cytotoxicity. ANXA2 knockdown induced cell cycle arrest at G(2) phase. Unexpectedly, ANXA2 silencing increased the expression of p53 and its downstream genes, which resulted in p53-dependent and -independent G(2) arrest. Aberrant JNK inactivation, which was observed in ANXA2-deficient cells, inhibited cell proliferation following G(2) arrest. A lack of ANXA2 caused a loss of JNK-regulated c-Jun expression, resulting in an increase in p53 transcription. These results demonstrate a novel role for ANXA2 in NSCLC cell proliferation by facilitating the cell cycle partly through the regulation of p53 via JNK/c-Jun.
Collapse
Affiliation(s)
- Chi-Yun Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshizuka N, Lai M, Liao R, Cook R, Xiao C, Han J, Sun P. PRAK suppresses oncogenic ras-induced hematopoietic cancer development by antagonizing the JNK pathway. Mol Cancer Res 2012; 10:810-20. [PMID: 22665523 DOI: 10.1158/1541-7786.mcr-11-0576] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway regulates multiple physiologic and pathologic processes, including cancer development. PRAK, a p38 substrate protein kinase, has previously been implicated in the suppression of skin carcinogenesis. In the current study, we show that PRAK deletion accelerates hematopoietic cancer development in a mouse model harboring an oncogenic ras allele, Eμ-N-Ras(G12D), specifically expressed in hematopoietic cells. Further investigation reveals that enhanced hematopoietic tumorigenesis by PRAK deficiency is associated with hyperactivation of the c-jun-NH(2)-kinase (JNK) pathway both in vivo and in primary hematopoietic cells isolated from spleens. In primary splenocytes, PRAK deficiency further enhanced oncogenic ras-induced cell proliferation and promoted ras-mediated colony formation on semisolid medium in a JNK-dependent manner. In addition, deletion of PRAK leads to abrogation of ras-induced accumulation of senescence markers. These findings indicate that PRAK suppresses hematopoietic cancer formation in this mouse model by antagonizing oncogenic ras-induced activation of the JNK pathway. Our results suggest that PRAK may function as a tumor suppressor in multiple types of cancers.
Collapse
Affiliation(s)
- Naoto Yoshizuka
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, Barnett JB, Guo L, Rojanasakul Y. Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells. PLoS One 2012; 7:e37045. [PMID: 22666341 PMCID: PMC3362580 DOI: 10.1371/journal.pone.0037045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022] Open
Abstract
B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI).
Collapse
Affiliation(s)
- Djordje Medan
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Sudjit Luanpitpong
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia, United States of America
| | - Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mary E. Davis
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, United States of America
| | - John B. Barnett
- Department of Immunology, Microbiology and Cell Biology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lan Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Patel MR, Sadiq AA, Jay-Dixon J, Jirakulaporn T, Jacobson BA, Farassati F, Bitterman PB, Kratzke RA. Novel role of c-jun N-terminal kinase in regulating the initiation of cap-dependent translation. Int J Oncol 2011; 40:577-82. [PMID: 22076560 DOI: 10.3892/ijo.2011.1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023] Open
Abstract
Initiation of protein translation by the 5' mRNA cap is a tightly regulated step in cell growth and proliferation. Aberrant activation of cap-dependent translation is a hallmark of many cancers including non-small cell lung cancer. The canonical signaling mechanisms leading to translation initiation include activation of the Akt/mTOR pathway in response to the presence of nutrients and growth factors. We have previously observed that inhibition of c-jun N-terminal kinase (JNK) leads to inactivation of cap-dependent translation in mesothelioma cells. Since JNK is involved in the genesis of non-small cell lung cancer (NSCLC), we hypothesized that JNK could also be involved in activating cap-dependent translation in NSCLC cells and could represent an alternative pathway regulating translation. In a series of NSCLC cell lines, inhibition of JNK using SP600125 resulted in inhibition of 4E-BP1 phosphorylation and a decrease in formation of the cap-dependent translation complex, eIF4F. Furthermore, we show that JNK-mediated inhibition of translation is independent of mTOR. Our data provide evidence that JNK is involved in the regulation of translation and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- University of Minnesota Medical School, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Palmitoyl acyltransferase zD17 mediates neuronal responses in acute ischemic brain injury by regulating JNK activation in a signaling module. J Neurosci 2011; 31:11980-91. [PMID: 21849558 DOI: 10.1523/jneurosci.2510-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the palmitoyl acyltransferase (PAT) zinc-finger DHHC containing 17 (zD17) has been implicated in genetic neurological disorders by regulating protein palmitoylation, the role of zD17 in acute brain injury remains unknown. Here, we report that zD17 contributes to acute ischemic brain injury via a mechanism independent of its PAT activity. We have found that zD17 directly interacts with c-Jun N terminus kinase (JNK) to form a signaling module for JNK activation. Pathological stressors induce the zD17-JNK interaction, which promotes downstream neuronal cell death signals. We have developed novel peptides targeting the JNK-interacting motif on zD17 to selectively block the enhancement of the zD17-JNK interaction and the activation of JNK isoforms 2 and 3. Application of these peptides successfully blocks JNK activation and neuronal cell death pathways, protects cultured neurons from excitotoxicity, and dramatically reduces brain damage and behavioral deficits in a rat model of focal ischemic stroke. Our findings indicate zD17 as a key player in ischemic stroke and suggest the potential therapeutic value of targeting the zD17-JNK interaction for acute brain injury.
Collapse
|
43
|
Qian Y, Takeuchi S, Dugu L, Tsuji G, Xie L, Nakahara T, Takahara M, Moroi Y, Tu YT, Furue M. Hematopoietic Progenitor Kinase 1, Mitogen-Activated Protein/Extracellular Signal-Related Protein Kinase Kinase Kinase 1, and phosphoMitogen-Activated Protein Kinase Kinase 4 are Overexpressed in Extramammary Paget Disease. Am J Dermatopathol 2011; 33:681-6. [DOI: 10.1097/dad.0b013e318215c3fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor γ2 expression. Mol Cell Biol 2011; 31:4270-85. [PMID: 21896780 DOI: 10.1128/mcb.05562-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels.
Collapse
|
45
|
Wu M, Li X, Li X, Li G. Signaling Transduction Network Mediated by Tumor Suppressor/Susceptibility Genes in NPC. Curr Genomics 2011; 10:216-22. [PMID: 19949542 PMCID: PMC2709932 DOI: 10.2174/138920209788488481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/26/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a polygenetic disease. SPLUNC1, UBAP1, BRD7, NAG7, NOR1, NGX6 and LTF genes were found to be tumor suppressor/susceptibility genes in different stages of NPC. SPLUNC1, an early warning molecular diagnosis marker, inhibits the bacteria clone formation, and is an innated immune molecule. SPLUNC1 can negatively regulate the ERK/MAPK signaling transduction pathway to inhibit NPC cell proliferation and induce apoptosis. BRD7, a transcript regulation factor, interacts with BRD2, and promotes apoptosis induced by BRD2. Its promoter is regulated by c-Myc and SP1. BRD7 inhibits NPC cell cycle progression, preventing passage through G0/G1 by suppressing ras/MEK/ERK, Rb/E2F and Wnt signaling pathways. Abnormal activation of BRD7 is crucial to cell cycle turbulence in NPC. NGX6, a metastasis-associated protein, can negative-regulate the EGF/Ras/MAPK signaling transduction pathway, and interacts with ezrin protein to inhibit NPC cell invasion and metastasis. LTF, also a metastasis-associated protein, can negatively regulate MAPK signal transduction pathways, such as JNK2 and ERK, to inhibit NPC cell proliferation and growth. Taken together, it was found that these tumor suppressor/susceptibility genes can regulate key molecules involved in cell signal pathways such as ras/MEK/ERK, Rb/E2F and EGFR ras/MEK/MAPK, and can regulate the expression of some adhesion molecules such as ezrin, nm23 and α-catenin. According to functional genomics and signaling transduction pathways, we have described a signaling cross-talk network between the tumor suppressor/susceptibility genes involved in NPC. These tumor suppressor/susceptibility genes may be potential treatment targets for NPC in the future.
Collapse
Affiliation(s)
- Minghua Wu
- Cancer Research Institute, Central South University, Hunan, the People's Republic of China
| | | | | | | |
Collapse
|
46
|
Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, Rojanasakul Y. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. NANO LETTERS 2011; 11:2796-803. [PMID: 21657258 PMCID: PMC3135732 DOI: 10.1021/nl2011214] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carcinogenicity of carbon nanotubes is a major concern but has not been well addressed due to the lack of experimental models. Here, we show that chronic exposure to single-walled carbon nanotubes causes malignant transformation of human lung epithelial cells. The transformed cells induce tumorigenesis in mice and exhibit an apoptosis resistant phenotype characteristic of cancer cells. This study provides new evidence for carbon nanotube-induced carcinogenesis and indicates the potential role of p53 in the process.
Collapse
Affiliation(s)
- Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Sudjit Luanpitpong
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Vincent Castranova
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - William Tse
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Varisa Pongrakhananon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
47
|
Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A 2011; 108:12372-7. [PMID: 21746896 DOI: 10.1073/pnas.1109363108] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.
Collapse
|
48
|
Zhan Y, Modi N, Stewart AM, Hieronimus RI, Liu J, Gutmann DH, Chadee DN. Regulation of mixed lineage kinase 3 is required for Neurofibromatosis-2-mediated growth suppression in human cancer. Oncogene 2011; 30:781-9. [PMID: 20890305 PMCID: PMC3017676 DOI: 10.1038/onc.2010.453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/04/2010] [Accepted: 08/25/2010] [Indexed: 12/25/2022]
Abstract
The Neurofibromatosis-2 (NF2) tumor suppressor merlin negatively regulates cell proliferation in numerous cell types. We have previously shown that the NF2 protein (merlin/schwannomin) associates with mixed lineage kinase 3 (MLK3), a mitogen-activated protein kinase (MAPK) kinase kinase that is required for the proliferation of normal and neoplastic cells. In this study, we show that merlin inhibits MLK3 activity, as well as the activation of its downstream effectors, B-Raf, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The ability of merlin to regulate MLK3 activity requires a direct association between MLK3 and residues in the C-terminal region of merlin. Merlin integrates Rho GTPase family signaling with MAPK activity by inhibiting the binding between MLK3 and its upstream activator, Cdc42. Furthermore, we demonstrate that MLK3 is required for merlin-mediated suppression of cell proliferation and invasion. Collectively, these results establish merlin as a potent inhibitor of MLK3, ERK and JNK activation in cancer, and provide a mechanistic link between deregulated MAPK and Rho GTPase signaling in NF2 growth control.
Collapse
Affiliation(s)
- Y Zhan
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Nitta RT, Badal SS, Wong AJ. Measuring the constitutive activation of c-Jun N-terminal kinase isoforms. Methods Enzymol 2011; 484:531-48. [PMID: 21036249 DOI: 10.1016/b978-0-12-381298-8.00026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-Jun N-terminal kinases (JNK) are important regulators of cell growth, proliferation, and apoptosis. JNKs are typically activated by a sequence of events that include phosphorylation of its T-P-Y motif by an upstream kinase, followed by homodimerization and translocation to the nucleus. Constitutive activation of JNK has been found in a variety of cancers including non-small cell lung carcinomas, gliomas, and mantle cell lymphoma. In vitro studies show that constitutive activation of JNK induces a transformed phenotype in fibroblasts and enhances tumorigenicity in a variety of cell lines. Interestingly, a subset of JNK isoforms was recently found to autoactivate rendering the proteins constitutively active. These constitutively active JNK proteins were found to play a pivotal role in activating transcription factors that increase cellular growth and tumor formation in mice. In this chapter, we describe techniques and methods that have been successfully used to study the three components of JNK activation. Use of these techniques may lead to a better understanding of the components of JNK pathways and how JNK is activated in cancer cells.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Neurosurgery, Cancer Biology Program, Stanford University Medical Center, Stanford, California, USA
| | | | | |
Collapse
|
50
|
Ueno K, Hirata H, Majid S, Chen Y, Zaman MS, Tabatabai ZL, Hinoda Y, Dahiya R. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma. Mol Carcinog 2011; 50:449-57. [PMID: 21268126 DOI: 10.1002/mc.20729] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/20/2010] [Accepted: 11/29/2010] [Indexed: 01/04/2023]
Abstract
The Wnt signaling pathway is activated in most cancers while Wnt antagonist genes are inactivated. However, the functional significance and mechanisms of inactivation of Wnt antagonist Dkk-3 gene in renal cell carcinoma (RCC) has not been reported. In this study, we examined potential epigenetic mechanisms regulating Dkk-3 expression in RCC cells and whether Dkk-3 expression affects cell growth and apoptosis. The expression of Dkk-3 is regulated by histone modification rather than CpG island DNA methylation in renal cancer cells. Renal cancer cell proliferation was significantly inhibited and apoptosis was promoted in Dkk-3 transfected renal cancer cells. Dkk-3 did not inhibit the Wnt/beta-catenin signaling pathway but induced apoptosis via the noncanonical JNK pathway in renal cancer cells. Expression of p21, MDM-2, and Puma genes were increased after transfecting RCC cell lines with a Dkk-3 expression plasmid. Overexpression of Dkk-3 induced G(0)/G(1) arrest together with an increase in p21 expression. Growth of stable Dkk-3 transfected cells in nude mice was decreased compared to controls. Our data show for the first time that mRNA expression of Dkk-3 is regulated by histone modification and that Dkk-3 inhibits renal cancer growth through modulation of cell cycle and apoptotic pathways.
Collapse
Affiliation(s)
- Koji Ueno
- Department of Urology, Veterans Affairs Medical Center and University of California, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|