1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Hassan MAE, Khalil WA, Ismail AA, Momenah MA, Al-Marakby KM, Abdelnour SA. Effect of interleukin 6 (IL-6) on sperm quality, kinematic parameters, acrosome integrity, apoptosis, ultrastructure, and molecular docking in cryopreserved ram spermatozoa. Reprod Biol 2024; 24:100912. [PMID: 38852377 DOI: 10.1016/j.repbio.2024.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Sperm cryopreservation can lead to subfertility due to potential damage to sperm DNA, membranes, and overall motility caused by the freeze-thaw process. Interleukin-6 (IL-6) is a versatile cytokine with various roles in reproductive processes. However, the impacts of IL-6 supplementation on cryopreserved ram sperm have not been thoroughly investigated. Therefore, this study aims to assess the influence of IL-6 on the sperm quality of cryopreserved ram sperm. Ram semen was collected, pooled, and extended with tris-citrate soybean lecithin extender supplemented with 0, 50, 100, and 200 ng/mL of IL-6. The samples experienced a standard freezing protocol, and sperm quality, kinematic parameters, ultrastructure, and molecular docking of cryopreserved ram spermatozoa were evaluated. The results showed that sperm kinematics, viability, progressive motility, and membrane integrity were significantly enhanced by the addition of 100 or 200 ng of IL-6/mL (p < 0.05). Semen supplemented with 100 or 200 ng/mL of IL-6 also exhibited higher percentages of sperm kinematics, including DAP, DCL, DSL, VSL, VAP, VCL, and ALH, compared to other groups (p < 0.05). IL-6 supplementation enhanced acrosome integrity, and reduced caspase-3 activity in post-thawed ram spermatozoa (p < 0.05) compared to untreated group. Supplementation with IL-6 (200 ng/mL) significantly decreased oxidative biomarkers (NO, MDA, and H2O2) (p < 0.001) and improved total antioxidant capacity (p < 0.05). The percentage of sperm damage (tail, head, and midpiece) was significantly reduced by IL-6 supplementation (p < 0.05). Electron micrographs showed that supplementation with 100 or 200 ng/mL IL-6 protected acrosome stability, plasma membrane integrity, and sustained the ultrastructure integrity of cryopreserved ram spermatozoa. The docking exploration indicates a higher binding affinity with sperm function biomarkers, including caspase 3, BCL2, and PSMA6, with binding energies of - 52.30 kcal/mol, - 56.04 kcal/mol, and - 57.06 kcal/mol, respectively. In conclusion, the addition of IL-6 to the freezing extender can enhance the post-thaw quality of cryopreserved ram spermatozoa.
Collapse
Affiliation(s)
- Mahmoud A E Hassan
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, Giza 12619, Egypt
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Aya A Ismail
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khaled M Al-Marakby
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
3
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Shirbhate E, Singh V, Kore R, Vishwakarma S, Veerasamy R, Tiwari AK, Rajak H. The Role of Cytokines in Activation of Tumour-promoting Pathways and Emergence of Cancer Drug Resistance. Curr Top Med Chem 2024; 24:523-540. [PMID: 38258788 DOI: 10.2174/0115680266284527240118041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Scientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance. Cytokines play a significant role in cancer cell growth and progression, and the present article highlights their substantial contribution to mechanisms of resistance toward therapeutic drugs. Multiple clinical studies have even described the importance of specific cytokines released from cancer cells as well as stromal cells in conferring resistance. Herein, we discuss the different mechanism behind drug resistance and the crosstalk between tumor development and cytokines release and their contribution to showing resistance towards chemotherapeutics. As a part of this review, different approaches to cytokines profile have been identified and employed to successfully target new evolving mechanisms of resistance and their possible treatment options.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, (C.G.), India
| | - Subham Vishwakarma
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- Cancer & System Therapeutics, UAMS College of Pharmacy, UAMS - University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur, 495 009, (C.G.) India
| |
Collapse
|
5
|
Abdel-Latif RT, Wadie W, Abdel-mottaleb Y, Abdallah DM, El-Maraghy NN, El-Abhar HS. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model. Saudi Pharm J 2021; 30:72-90. [PMID: 35145347 PMCID: PMC8802128 DOI: 10.1016/j.jsps.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
|
6
|
Stasiewicz M, Kwaśniewski M, Karpiński TM. Microbial Associations with Pancreatic Cancer: A New Frontier in Biomarkers. Cancers (Basel) 2021; 13:cancers13153784. [PMID: 34359685 PMCID: PMC8345173 DOI: 10.3390/cancers13153784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) continues to be characterized by high morbidity and mortality, owing to the fact, among others, that it is often diagnosed at late stages. Thus far, the search for reliable biomarkers has failed. A number of recent studies have found that there are differences in the microbiota between patients with PC and their healthy counterparts. These differences extend to specific anatomical locations such as the oral cavity, the gastrointestinal tract, and the pancreas itself. The purpose of this review is to outline some of the main differences in the bacterial and fungal populations between patients with PC and their healthy counterparts that have recently come to light. Additionally, the present review aims to highlight the mechanisms underlying the aforementioned microbial associations with PC. Abstract Pancreatic cancer (PC) remains a global health concern with high mortality and is expected to increase as a proportion of overall cancer cases in the coming years. Most patients are diagnosed at a late stage of disease progression, which contributes to the extremely low 5-year survival rates. Presently, screening for PC remains costly and time consuming, precluding the use of widespread testing. Biomarkers have been explored as an option by which to ameliorate this situation. The authors conducted a search of available literature on PubMed to present the current state of understanding as it pertains to the use of microbial biomarkers and their associations with PC. Carriage of certain bacteria in the oral cavity (e.g., Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus sp.), gut (e.g., Helicobacter pylori, Synergistetes, Proteobacteria), and pancreas (e.g., Fusobacterium sp., Enterobacteriaceae, Pseudomonadaceae) has been associated with an increased risk of developing PC. Additionally, the fungal genus Malassezia has likewise been associated with PC development. This review further outlines potential oncogenic mechanisms involved in the microbial-associated development of PC.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Marek Kwaśniewski
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
- Correspondence: ; Tel.: +48-61-854-61-38
| |
Collapse
|
7
|
Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2021; 1:28-37. [PMID: 22720209 DOI: 10.4161/onci.1.1.17938] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Since the advent of hybridoma technology, dating back to 1975, monoclonal antibodies have become an irreplaceable diagnostic and therapeutic tool for a wide array of human diseases. During the last 15 years, several monoclonal antibodies (mAbs) have been approved by FDA for cancer therapy. These mAbs are designed to (1) activate the immune system against tumor cells, (2) inhibit cancer cell-intrinsic signaling pathways, (3) bring toxins in the close proximity of cancer cells, or (4) interfere with the tumor-stroma interaction. More recently, major efforts have been made for the development of immunostimulatory mAbs that either enhance cancer-directed immune responses or limit tumor- (or therapy-) driven immunosuppression. Some of these antibodies, which are thought to facilitate tumor eradication by initiating or sustaining a tumor-specific immune response, have already entered clinical trials. In this Trial Watch, we will review and discuss the clinical progress of the most important mAbs that are have entered clinical trials after January 2008.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848; Villejuif, France ; Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Interleukin-6 Function and Targeting in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:1-8. [PMID: 33559852 DOI: 10.1007/978-3-030-55617-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine, which is involved in pathogenesis of several cancers. Its expression and function in prostate cancer have been extensively studied in cellular models and clinical specimens. High levels of IL-6 were detected in conditioned media from cells which do not respond to androgens. Increased phosphorylation of signal transducer and activator of transcription (STAT)3 factor which is induced in response to IL-6 is one of the typical features of prostate cancer. However, reports in the literature show regulation of neuroendocrine phenotype by IL-6. Effects of IL-6 on stimulation of proliferation, migration, and invasion lead to the establishment of experimental and clinical approaches to target IL-6. In prostate cancer, anti-IL-6 antibodies were demonstrated to inhibit growth in vitro and in vivo. Clinically, application of anti-IL-6 therapies did not improve survival of patients with metastatic prostate cancer. However, clinical trial design in the future may include different treatment schedule and combinations with experimental and clinical therapies. Endogenous inhibitors of IL-6 such as suppressors of cytokine signaling and protein inhibitors of activated STAT have variable effects on prostate cells, depending on presence or absence of the androgen receptor.
Collapse
|
9
|
Hassan S, Pullikuth A, Nelson KC, Flores A, Karpova Y, Baiz D, Zhu S, Sui G, Huang Y, Choi YA, D'Agostino R, Hemal A, von Holzen U, Debinski W, Kulik G. β2-adrenoreceptor Signaling Increases Therapy Resistance in Prostate Cancer by Upregulating MCL1. Mol Cancer Res 2020; 18:1839-1848. [PMID: 32928910 DOI: 10.1158/1541-7786.mcr-19-1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/23/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
There is accumulating evidence that continuous activation of the sympathetic nervous system due to psychosocial stress increases resistance to therapy and accelerates tumor growth via β2-adrenoreceptor signaling (ADRB2). However, the effector mechanisms appear to be specific to tumor type. Here we show that activation of ADRB2 by epinephrine, increased in response to immobilization stress, delays the loss of MCL1 apoptosis regulator (MCL1) protein expression induced by cytotoxic drugs in prostate cancer cells; and thus, increases resistance of prostate cancer xenografts to cytotoxic therapies. The effect of epinephrine on MCL1 protein depended on protein kinase A (PKA) activity, but was independent from androgen receptor expression. Furthermore, elevated blood epinephrine levels correlated positively with an increased MCL1 protein expression in human prostate biopsies. In summary, we demonstrate that stress triggers an androgen-independent antiapoptotic signaling via the ADRB2/PKA/MCL1 pathway in prostate cancer cells. IMPLICATIONS: Presented results justify clinical studies of ADRB2 blockers as therapeutics and of MCL1 protein expression as potential biomarker predicting efficacy of apoptosis-targeting drugs in prostate cancer.
Collapse
Affiliation(s)
- Sazzad Hassan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Ashok Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kyle C Nelson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anabel Flores
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yelena Karpova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniele Baiz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sinan Zhu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yue Huang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Young A Choi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ralph D'Agostino
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashok Hemal
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Urs von Holzen
- Indiana University School of Medicine-South Bend, South Bend, Indiana
- Goshen Center for Cancer Care, Goshen, Indiana
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - George Kulik
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Life Sciences, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol 2018; 462:25-30. [PMID: 28315704 DOI: 10.1016/j.mce.2017.03.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that is expressed in prostate tumors and in the stromal tumor micro-enviroment. It is known to regulate proliferation, apoptosis, angiogenesis, and differentiation. The signaling pathway of Janus kinase and signal transducer and activator of transcription (STAT)3, which is activated by IL-6, is in the focus of scientific investigations for improved treatment approaches. Different effects of IL-6 and/or STAT3 on tumor cell growth have been observed in human and murine prostate cancer (PCa) models. Experimental therapies have been proposed in order to block the IL-6/STAT3 signaling pathway. In this context, the anti-IL-6 antibody siltuximab (CNTO 328) has been demonstrated to inhibit growth of prostate tumors in vitro and in vivo and delays progression towards castration resistance. However, clinically, the anti-IL-6 antibody was not successful as a monotherapy in phase II studies in patients with metastatic PCa. IL-6 is implicated in regulation of cellular stemness by increasing phosphorylation of STAT3. The cytokine has also a role in development of resistance to the non-steroidal anti-androgen enzalutamide. Endogenous inhibitors of IL-6 are suppressors of cytokine signaling and protein inhibitors of activated STAT. Although they inhibit signal transduction through STAT3, they may also exhibit anti-apoptotic effects. On the basis of complexity of IL-6 action in PCa, an individualized approach is needed to identify patients who will benefit from anti-IL-6 therapy in combination with standard treatments.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
11
|
Péant B, Gilbert S, Le Page C, Poisson A, L'Ecuyer E, Boudhraa Z, Bienz MN, Delvoye N, Saad F, Mes-Masson AM. IκB-Kinase-epsilon (IKKε) over-expression promotes the growth of prostate cancer through the C/EBP-β dependent activation of IL-6 gene expression. Oncotarget 2017; 8:14487-14501. [PMID: 27577074 PMCID: PMC5362420 DOI: 10.18632/oncotarget.11629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/20/2016] [Indexed: 01/13/2023] Open
Abstract
The inflammatory cytokine IL-6 has been shown to induce the nuclear translocation of androgen receptors in prostate cancer cells and to activate the androgen receptors in a ligand-independent manner, suggesting it may contribute to the development of a castrate-resistant phenotype. Elevated IL-6 serum levels have also been associated with metastasis-related morbidity in prostate cancer patients. We have previously established that over-expression of I-kappa-B-kinase-epsilon (IKKε also named IKKi or IκBKε) in hormone-sensitive prostate cancer cell lines induces IL-6 secretion. We have also reported that prostate cancer cell lines lacking androgen receptor expression exhibit high constitutive IKKε expression and IL-6 secretion. In the present study, we validated the impact of IKKε depletion on the in vitro proliferation of castrate-resistant prostate cancer cells, and characterized how IKKε depletion affects tumor growth and IL-6 tumor secretion in vivo through a mouse xenograft-based approach. We observed a significant growth delay in IKKε-silenced PC-3 cells injected in SCID mice fed with a doxycycline-supplemented diet in comparison with mice fed with a normal diet. We also found a decrease in IL-6 secretion levels that strongly correlated with tumor growth inhibition. Finally, using constructs with various IL-6-mutated promoters, we demonstrated that IKKε over-expression induces a NF-κB-independent stimulation of the IL-6 gene promoter through the activation and nuclear accumulation of the transcription factor C/EBP-β. Our study demonstrates the pro-proliferative role of the oncogene IKKε in castrate-resistant prostate cancer cell lines, involving the phosphorylation and nuclear translocation of C/EBP-β that initiates IL-6 gene expression.
Collapse
Affiliation(s)
- Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Sophie Gilbert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Alexis Poisson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Emilie L'Ecuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Marc Nicolas Bienz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Nathalie Delvoye
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Surgery, Hôpital Saint Luc (CHUM), Montreal, Canada.,Department of Surgery, Université de Montréal, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)/Institut du Cancer de Montréal, Montreal, Canada.,Department of Medicine, Université de Montréal, Montreal, Canada
| |
Collapse
|
12
|
Lin CL, Chen CM, Lin CL, Cheng CW, Lee CH, Hsieh YH. Norcantharidin induces mitochondrial-dependent apoptosis through Mcl-1 inhibition in human prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1867-1876. [PMID: 28760656 DOI: 10.1016/j.bbamcr.2017.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Norcantharidin (NCTD) is the demethylated form of cantharidin that exhibits anticancer potential in many cancer cell types. Recent reports suggest that NCTD targeting ROS/AMPK and DNA replication signaling pathway could be an effective strategy for the treatment of PCa cells. However, supportive evidence is limited to the effect of NCTD that induction of apoptosis through suppression of the Mcl-1. Here, we show that NCTD induced PCa cell apoptosis and triggered caspase activation, which was associated with mitochondria dysfunction. Mechanistic investigations suggested that NCTD modulated the Akt signaling via increased nuclear translocation and interaction with the myeloid cell leukemia-1 (Mcl-1) promoter by FOXO4, resulting in an apoptotic effect. Moreover, miR-320d, which targets Mcl-1, was significantly upregulated after NCTD treatment. Overexpression of miR-320d by NCTD induced mitochondria dysfunction and apoptosis, which was notably attenuated with a miR-320d inhibitor. In vivo xenograft analysis revealed that NCTD significantly reduced tumor growth in mice with PC3 tumor xenografts. Taken together, our results provide new insights into the critical role of NCTD in suppressing Mcl-1 via epigenetic upregulation of miR-320d, resulting in PCa cell apoptosis.
Collapse
Affiliation(s)
- Chu-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung. Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Ren JX, Li CP, Zhou XL, Cao XS, Xie Y. In silico approaches to identify novel myeloid cell leukemia-1 (Mcl-1) inhibitors for treatment of cancer. J Biomol Struct Dyn 2017; 36:2424-2435. [PMID: 28714799 DOI: 10.1080/07391102.2017.1356241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using 'Receptor-Ligand Pharmacophore Generation' method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r2 of 0.996; for the test set, the correlation coefficient r2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.
Collapse
Affiliation(s)
- Ji-Xia Ren
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China.,b Institute of Medicinal Plant Development , Chinese Academy of Medical Science & Peking Union Medical college , Beijing , People's Republic of China
| | - Cheng-Ping Li
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Xiu-Ling Zhou
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Xue-Song Cao
- a College of Life Science , Liaocheng University , Liaocheng , People's Republic of China
| | - Yong Xie
- b Institute of Medicinal Plant Development , Chinese Academy of Medical Science & Peking Union Medical college , Beijing , People's Republic of China
| |
Collapse
|
14
|
Stewart DA, Winnike JH, McRitchie SL, Clark RF, Pathmasiri WW, Sumner SJ. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences. J Proteome Res 2016; 15:3225-40. [PMID: 27447733 DOI: 10.1021/acs.jproteome.6b00430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.
Collapse
Affiliation(s)
- Delisha A Stewart
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Jason H Winnike
- David H. Murdock Research Institute , Kannapolis, North Carolina 28081, United States
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Robert F Clark
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Wimal W Pathmasiri
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Susan J Sumner
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
15
|
Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, Guo X, Xu S, Li T, Shao Q, Yan S, Li G. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy 2016; 12:1129-52. [PMID: 27163161 PMCID: PMC4990999 DOI: 10.1080/15548627.2016.1178446] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients.
Collapse
Affiliation(s)
- Hao Xue
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Guang Yuan
- c Department of Neurosurgery , Central Hospital of Zibo City , Zibo , Shandong Province , China
| | - Xing Guo
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Qinglin Liu
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Jinsen Zhang
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Xiao Gao
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Xiaofan Guo
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Shugang Xu
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,d Department of Neurosurgery , Dezhou People's Hospital , Dezhou , Shandong Province , China
| | - Tong Li
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Qianqian Shao
- e Institute of Basic Medical Sciences and Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Shaofeng Yan
- b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| | - Gang Li
- a Department of Neurosurgery , Qilu Hospital of Shandong University , Jinan , Shandong Province , China.,b Brain Science Research Institute, Shandong University , Jinan , Shandong Province , China
| |
Collapse
|
16
|
Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta Rev Cancer 2016; 1865:255-65. [DOI: 10.1016/j.bbcan.2016.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023]
|
17
|
Significance of Interleukin-6 in Papillary Thyroid Carcinoma. J Thyroid Res 2016; 2016:6178921. [PMID: 27034885 PMCID: PMC4808558 DOI: 10.1155/2016/6178921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
This study sought to reveal the significance of IL-6 in papillary thyroid carcinoma by determining its circulating levels, tumoral protein, and mRNA expressions. As compared to the healthy individuals, serum IL-6 was significantly higher in patients with benign thyroid diseases and PTC. Further, its level was significantly higher in PTC patients as compared to patients with benign thyroid diseases. ROC curves also confirmed a good discriminatory efficacy of serum IL-6 between healthy individuals and patients with benign thyroid diseases and PTC. The circulating IL-6 was significantly associated with poor overall survival in PTC patients. IL-6 immunoreactivity was significantly high in PTC patients as compared to the benign thyroid disease patients. Significantly higher IL-6 mRNA expression was also observed in the primary tumour tissues of PTC patients than the adjacent normal tissues. The protein expression of IL-6 at both the circulating and tissue level correlated with disease aggressiveness in PTC patients. Moreover, a significant positive correlation was observed between the IL-6 protein and mRNA expression in the primary tumours of PTC patients. Finally in conclusion, IL-6 has an important role in thyroid cancer progression. Thus targeting IL-6 signalling can help in clinical management of thyroid carcinoma patients.
Collapse
|
18
|
Santer FR, Erb HHH, Oh SJ, Handle F, Feiersinger GE, Luef B, Bu H, Schäfer G, Ploner C, Egger M, Rane JK, Maitland NJ, Klocker H, Eder IE, Culig Z. Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget 2016; 6:6105-22. [PMID: 25749045 PMCID: PMC4467425 DOI: 10.18632/oncotarget.3368] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/13/2015] [Indexed: 12/04/2022] Open
Abstract
Androgen deprivation therapy induces apoptosis or cell cycle arrest in prostate cancer (PCa) cells. Here we set out to analyze whether MCL1, a known mediator of chemotherapy resistance regulates the cellular response to androgen withdrawal. Analysis of MCL1 protein and mRNA expression in PCa tissue and primary cell culture specimens of luminal and basal origin, respectively, reveals higher expression in cancerous tissue compared to benign origin. Using PCa cellular models in vitro and in vivo we show that MCL1 expression is upregulated in androgen-deprived PCa cells. Regulation of MCL1 through the AR signaling axis is indirectly mediated via a cell cycle-dependent mechanism. Using constructs downregulating or overexpressing MCL1 we demonstrate that expression of MCL1 prevents induction of apoptosis when PCa cells are grown under steroid-deprived conditions. The BH3-mimetic Obatoclax induces apoptosis and decreases MCL1 expression in androgen-sensitive PCa cells, while castration-resistant PCa cells are less sensitive and react with an upregulation of MCL1 expression. Synergistic effects of Obatoclax with androgen receptor inactivation can be observed. Moreover, clonogenicity of primary basal PCa cells is efficiently inhibited by Obatoclax. Altogether, our results suggest that MCL1 is a key molecule deciding over the fate of PCa cells upon inactivation of androgen receptor signaling.
Collapse
Affiliation(s)
- Frédéric R Santer
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Holger H H Erb
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria.,Yorkshire Cancer Research Unit, University of York, York, United Kingdom
| | - Su Jung Oh
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Florian Handle
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Gertrud E Feiersinger
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Birgit Luef
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Huajie Bu
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Georg Schäfer
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Christian Ploner
- Medical University of Innsbruck, Department of Plastic, Reconstructive & Aesthetic Surgery, Innsbruck, Austria
| | - Martina Egger
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Jayant K Rane
- Yorkshire Cancer Research Unit, University of York, York, United Kingdom
| | - Norman J Maitland
- Yorkshire Cancer Research Unit, University of York, York, United Kingdom
| | - Helmut Klocker
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Iris E Eder
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| | - Zoran Culig
- Medical University of Innsbruck, Department of Urology, Division of Experimental Urology, Innsbruck, Austria
| |
Collapse
|
19
|
Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, Mandal M. Diacerein-mediated inhibition of IL-6/IL-6R signaling induces apoptotic effects on breast cancer. Oncogene 2015; 35:3965-75. [PMID: 26616855 DOI: 10.1038/onc.2015.466] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023]
Abstract
Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
Collapse
Affiliation(s)
- R Bharti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - G Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - P K Ojha
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Rajput
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - S K Jaganathan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi, Malaysia
| | - R Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - M Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
20
|
Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 2015; 5:12043-56. [PMID: 25474038 PMCID: PMC4322998 DOI: 10.18632/oncotarget.2658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Occurrence of an inherent or acquired resistance to the chemotherapeutic drug docetaxel is a major burden for patients suffering from different kinds of malignancies, including castration resistant prostate cancer (PCa). In the present study we address the question whether PIAS1 targeting can be used to establish a basis for improved PCa treatment. The expression status and functional relevance of PIAS1 was evaluated in primary tumors, in metastatic lesions, in tissue of patients after docetaxel chemotherapy, and in docetaxel resistant cells. Patient data were complemented by functional studies on PIAS1 knockdown in vitro as well as in chicken chorioallantoic membrane and mouse xenograft in vivo models. PIAS1 was found to be overexpressed in local and metastatic PCa and its expression was further elevated in tumors after docetaxel treatment as well as in docetaxel resistant cells. Furthermore, PIAS1 knockdown experiments revealed an increased expression of tumor suppressor p21 and declined expression of anti-apoptotic protein Mcl1, which caused diminished cell proliferation and tumor growth in vitro and in vivo. In summary, the presented data indicate that PIAS1 is crucial for parental and docetaxel resistant PCa cell survival and is therefore a promising new target for treatment of primary, metastatic, and chemotherapy resistant PCa.
Collapse
Affiliation(s)
- Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and Angiogenesis, Innsbruck, Austria
| | - Georg Schäfer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Lissat A, Joerschke M, Shinde DA, Braunschweig T, Meier A, Makowska A, Bortnick R, Henneke P, Herget G, Gorr TA, Kontny U. IL6 secreted by Ewing sarcoma tumor microenvironment confers anti-apoptotic and cell-disseminating paracrine responses in Ewing sarcoma cells. BMC Cancer 2015. [PMID: 26215971 PMCID: PMC4517368 DOI: 10.1186/s12885-015-1564-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The prognosis of patients with Ewing sarcoma (ES) has improved over the course of the last decades. However, those patients suffering from metastatic and recurrent ES still have only poor chances of survival and require new therapeutic approaches. Interleukin-6 (IL6) is a pleiotropic cytokine expressed by immune cells and a great variety of cancer cells. It induces inflammatory responses, enhances proliferation and inhibits apoptosis in cancer cells, thereby promoting chemoresistance. Methods We investigated expression of IL6, its receptors and the IL6 signal transduction pathway in ES tumor samples and cell lines applying reverse transcriptase PCR, immunoblot and immunohistochemistry. The impact of IL6 on cell viability and apoptosis in ES cell lines was analyzed by MTT and propidium iodide staining, migration assessed by chorioallantoic membrane (CAM) assay. Results Immunohistochemistry proved IL6 expression in the stroma of ES tumor samples. IL6 receptor subunits IL6R and IL6ST were expressed on the surface of ES cells. Treatment of ES cells with rhIL6 resulted in phosphorylation of STAT3. rhIL6 protected ES cells from serum starvation-induced apoptosis and promoted migration. IL6 blood serum levels were elevated in a subgroup of ES patients with poor prognosis. Conclusions These data suggest that IL6 contributes to ES tumor progression by increasing resistance to apoptosis in conditions of cellular stress, such as serum starvation, and by promotion of metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1564-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrej Lissat
- Division of Pediatric Hematology and Oncology, Charité - University Medical Center, Berlin, Germany.
| | - Mandy Joerschke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Dheeraj A Shinde
- Dheeraj Shinde, Institute of Oncology Research, Via Vincenzo Vela, Bellinzona, 66500, Switzerland.
| | | | - Angelina Meier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Anna Makowska
- Division of Pediatric Hematology and Oncology, University Medical Center Aachen, Pauwelsstraße 30, Aachen, 52074, Germany.
| | - Rachel Bortnick
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
| | - Georg Herget
- Department of Traumatology and Orthopaedics, University Medical Center Freiburg, Freiburg, Germany.
| | - Thomas A Gorr
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany. .,Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Udo Kontny
- Division of Pediatric Hematology and Oncology, University Medical Center Aachen, Pauwelsstraße 30, Aachen, 52074, Germany.
| |
Collapse
|
22
|
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, Schäfer G, Angelova M, Trajanoski Z, Börno ST, Schweiger MR, Fuchsberger C, Klocker H. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol Endocrinol 2015; 29:1037-54. [PMID: 26052614 DOI: 10.1210/me.2014-1358] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
Collapse
Affiliation(s)
- Lorenza Pasqualini
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Huajie Bu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Puhr
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Narisu Narisu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Johannes Rainer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Bettina Schlick
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Georg Schäfer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Mihaela Angelova
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Zlatko Trajanoski
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan T Börno
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michal R Schweiger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Christian Fuchsberger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Helmut Klocker
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Abstract
Unlike other steroid hormone receptors, the glucocorticoid receptor (GR) is not considered an oncogene. In breast cancer, the estrogen receptor (ER) drives cell growth, proliferation, and metastasis, and the androgen receptor (AR) plays a similar role in prostate cancer. Accordingly, treatment of these diseases has focused on blocking steroid hormone receptor function. In contrast, glucocorticoids (GCs) work through GR to arrest growth and induce apoptosis in lymphoid tissue. Glucocorticoids are amazingly effective in this role, and have been deployed as the cornerstone of lymphoid cancer treatment for decades. Unfortunately, not all patients respond to GCs and dosage is restricted by immediate and long term side effects. In this chapter we review the treatment protocols that employ glucocorticoids as a curative agent, elaborate on what is known about their mechanism of action in these cancers, and also summarize the palliative uses of glucocorticoids for other cancers.
Collapse
Affiliation(s)
- Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, Holden Comprehensive Cancer Center, 51 Newton Road, Bowen Science Building, Room 4-430, Iowa City, IA, 52242, USA,
| |
Collapse
|
24
|
Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton's lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 2014; 397:167-78. [PMID: 25123669 DOI: 10.1007/s11010-014-2184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of HCO3(-). This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated HCO3(-) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton's lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.
Collapse
|
25
|
Abulwerdi F, Liao C, Mady AS, Gavin J, Shen C, Cierpicki T, Stuckey J, Showalter HDH, Nikolovska-Coleska Z. 3-Substituted-N-(4-hydroxynaphthalen-1-yl)arylsulfonamides as a novel class of selective Mcl-1 inhibitors: structure-based design, synthesis, SAR, and biological evaluation. J Med Chem 2014; 57:4111-33. [PMID: 24749893 PMCID: PMC4033665 DOI: 10.1021/jm500010b] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Indexed: 02/02/2023]
Abstract
Mcl-1, an antiapoptotic member of the Bcl-2 family of proteins, is a validated and attractive target for cancer therapy. Overexpression of Mcl-1 in many cancers results in disease progression and resistance to current chemotherapeutics. Utilizing high-throughput screening, compound 1 was identified as a selective Mcl-1 inhibitor and its binding to the BH3 binding groove of Mcl-1 was confirmed by several different, but complementary, biochemical and biophysical assays. Guided by structure-based drug design and supported by NMR experiments, comprehensive SAR studies were undertaken and a potent and selective inhibitor, compound 21, was designed which binds to Mcl-1 with a Ki of 180 nM. Biological characterization of 21 showed that it disrupts the interaction of endogenous Mcl-1 and biotinylated Noxa-BH3 peptide, causes cell death through a Bak/Bax-dependent mechanism, and selectively sensitizes Eμ-myc lymphomas overexpressing Mcl-1, but not Eμ-myc lymphoma cells overexpressing Bcl-2. Treatment of human leukemic cell lines with compound 21 resulted in cell death through activation of caspase-3 and induction of apoptosis.
Collapse
Affiliation(s)
- Fardokht
A. Abulwerdi
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chenzhong Liao
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ahmed S. Mady
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jordan Gavin
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Chenxi Shen
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeanne
A. Stuckey
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - H. D. Hollis Showalter
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of
Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Interdepartmental
Program in Medicinal Chemistry, College of Pharmacy, Life Sciences Institute, and Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Erb HHH, Langlechner RV, Moser PL, Handle F, Casneuf T, Verstraeten K, Schlick B, Schäfer G, Hall B, Sasser K, Culig Z, Santer FR. IL6 sensitizes prostate cancer to the antiproliferative effect of IFNα2 through IRF9. Endocr Relat Cancer 2013; 20:677-89. [PMID: 23913484 PMCID: PMC3753051 DOI: 10.1530/erc-13-0222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Development and progression of prostate cancer (PCa) are associated with chronic inflammation. The cytokine interleukin 6 (IL6) can influence progression, differentiation, survival, and angiogenesis of PCa. To identify novel pathways that are triggered by IL6, we performed a gene expression profiling of two PCa cell lines, LNCaP and MDA PCa 2b, treated with 5 ng/ml IL6. Interferon (IFN) regulatory factor 9 (IRF9) was identified as one of the most prevalent IL6-regulated genes in both cell lines. IRF9 is a mediator of type I IFN signaling and acts together with STAT1 and 2 to activate transcription of IFN-responsive genes. The IL6 regulation of IRF9 was confirmed at mRNA and protein levels by quantitative real-time PCR and western blot respectively in both cell lines and could be blocked by the anti-IL6 antibody Siltuximab. Three PCa cell lines, PC3, Du-145, and LNCaP-IL6+, with an autocrine IL6 loop displayed high expression of IRF9. A tissue microarray with 36 PCa tissues showed that IRF9 protein expression is moderately elevated in malignant areas and positively correlates with the tissue expression of IL6. Downregulation and overexpression of IRF9 provided evidence for an IFN-independent role of IRF9 in cellular proliferation of different PCa cell lines. Furthermore, expression of IRF9 was essential to mediate the antiproliferative effects of IFNα2. We concluded that IL6 is an inducer of IRF9 expression in PCa and a sensitizer for the antiproliferative effects of IFNα2.
Collapse
Affiliation(s)
- Holger H H Erb
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
| | - Regina V Langlechner
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
| | - Patrizia L Moser
- Department of PathologyInnsbruck Medical University6020, InnsbruckAustria
| | - Florian Handle
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
| | - Tineke Casneuf
- Oncology Biomarkers, Janssen Research and DevelopmentBeerseBelgium
| | | | - Bettina Schlick
- Oncotyrol Center for Personalized Medicine6020, InnsbruckAustria
| | - Georg Schäfer
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
| | - Brett Hall
- Oncology Biomarkers Janssen Research and DevelopmentSpring House, PennsylvaniaUSA
| | - Kate Sasser
- Oncology Biomarkers Janssen Research and DevelopmentSpring House, PennsylvaniaUSA
| | - Zoran Culig
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
- Correspondence should be addressed to Z Culig or F R Santer Emails: or
| | - Frédéric R Santer
- Division of Experimental Urology, Department of UrologyInnsbruck Medical University6020, InnsbruckAustria
| |
Collapse
|
27
|
VANELLA LUCA, DI GIACOMO CLAUDIA, ACQUAVIVA ROSARIA, BARBAGALLO IGNAZIO, CARDILE VENERA, KIM DONGHYUN, ABRAHAM NADERG, SORRENTI VALERIA. Apoptotic markers in a prostate cancer cell line: Effect of ellagic acid. Oncol Rep 2013; 30:2804-10. [DOI: 10.3892/or.2013.2757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
|
28
|
Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, Yao Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 2013; 141:125-39. [PMID: 24076269 DOI: 10.1016/j.pharmthera.2013.09.004] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with significant functions in the regulation of the immune system. As a potent pro-inflammatory cytokine, IL-6 plays a pivotal role in host defense against pathogens and acute stress. However, increased or deregulated expression of IL-6 significantly contributes to the pathogenesis of various human diseases. Numerous preclinical and clinical studies have revealed the pathological roles of the IL-6 pathway in inflammation, autoimmunity, and cancer. Based on the rich body of studies on biological activities of IL-6 and its pathological roles, therapeutic strategies targeting the IL-6 pathway are in development for cancers, inflammatory and autoimmune diseases. Several anti-IL-6/IL-6 receptor monoclonal antibodies developed for targeted therapy have demonstrated promising results in both preclinical studies and clinical trials. Tocilizumab, an anti-IL-6 receptor antibody, is effective in the treatment of various autoimmune and inflammatory conditions notably rheumatoid arthritis. It is the only IL-6 pathway targeting agent approved by the regulatory agencies for clinical use. Siltuximab, an anti-IL-6 antibody, has been shown to have potential benefits treating various human cancers either as a single agent or in combination with other chemotherapy drugs. Several other anti-IL-6-based therapies are also under clinical development for various diseases. IL-6 antagonism has been shown to be a potential therapy for these disorders refractory to conventional drugs. New strategies, such as combination of IL-6 blockade with inhibition of other signaling pathways, may further improve IL-6-targeted immunotherapy of human diseases.
Collapse
Affiliation(s)
- Xin Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA
| | | | | | - Nan Shen
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai, China
| | | | | | - Yihong Yao
- MedImmune, LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
29
|
Yancey D, Nelson KC, Baiz D, Hassan S, Flores A, Pullikuth A, Karpova Y, Axanova L, Moore V, Sui G, Kulik G. BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. PLoS One 2013; 8:e74561. [PMID: 24040284 PMCID: PMC3764099 DOI: 10.1371/journal.pone.0074561] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/05/2013] [Indexed: 01/12/2023] Open
Abstract
PTEN loss and constitutive activation of the PI3K signaling pathway have been associated with advanced androgen-independent prostate cancer. PTEN-deficient prostate cancer C42Luc cells survive in serum-free media and show relative resistance to apoptosis even in the presence of the PI3K inhibitor ZSTK474. Yet, when ZSTK474 is combined with the translation inhibitor cycloheximide, C42Luc cells undergo apoptosis within 6 hours. We identified dephosphorylation of BAD (Bcl2-associated death promoter) as a main apoptosis-regulatory molecule downstream from PI3K, and loss of MCL-1 (Myeloid cell leukemia -1) as a major target of cycloheximide. The combination of MCL-1 knockdown and expression of phosphorylation-deficient mutant BAD2SA is sufficient to trigger rapid apoptosis in prostate cancer cells. These results establish the mechanism for the synergistic induction of apoptosis by the combination of a PI3K inhibitor and of a protein synthesis inhibitor in PTEN-deficient prostate cancer cells.
Collapse
Affiliation(s)
- Dana Yancey
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kyle C. Nelson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Daniele Baiz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sazzad Hassan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Anabel Flores
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ashok Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yelena Karpova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Linara Axanova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Victoria Moore
- Department of Chemistry, Elon University, Elon, North Carolina, United States of America
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - George Kulik
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Middleton K, Jones J, Lwin Z, Coward JIG. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol 2013; 89:129-39. [PMID: 24029605 DOI: 10.1016/j.critrevonc.2013.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
During the past decade, incorporating anti-angiogenic agents into the therapeutic management of a myriad of malignancies has in certain cases made a significant impact on survival. However, the development of resistance to these drugs is inevitable and swift disease progression on their cessation often ensues. Hence, there is a drive to devise strategies that aim to enhance response to anti-angiogenic therapies by combining them with other targeted agents that facilitate evasion from resistance. The pleiotropic cytokine, interleukin-6 (IL-6), exerts pro-angiogenic effects in the tumour microenvironment of several solid malignancies and there is emerging evidence that reveals significant relationships between IL-6 signalling and treatment failure with antibodies directed against vascular endothelial growth factor (VEGF). This review summarises the role of IL-6 in pivotal angiogenic processes and preclinical/clinical research to support the future introduction of anti-IL-6 therapies to be utilised either in combination with other anti-angiogenic drugs or as a salvage therapy for patients with diseases that become refractory to these approaches.
Collapse
Affiliation(s)
- Kathryn Middleton
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Joanna Jones
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Zarnie Lwin
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia; Inflammation & Cancer Therapeutics Group, Mater Research, Level 4, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS One 2013; 8:e71637. [PMID: 23977098 PMCID: PMC3747243 DOI: 10.1371/journal.pone.0071637] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are able to migrate to tumors, where they promote tumorigenesis and cancer metastasis. However, the molecular phenotype of the recruited MSCs at the tumor microenvironment and the genetic programs underlying their role in cancer progression remains largely unknown. By using a three-dimensional rotary wall vessel coculture system in which human MSCs were grown alone or in close contact with LNCaP, C4-2 or PC3 prostate cancer cell lines, we established invitro matched pairs of normal and cancer-associated MSC derivatives to study the stromal response of MSCs to prostate cancer. We observed that prostate cancer-associated MSCs acquired a higher potential for adipogenic differentiation and exhibited a stronger ability to promote prostate cancer cell migration and invasion compared with normal MSCs both in vitro and in experimental animal models. The enhanced adipogenesis and the pro-metastatic properties were conferred by the high levels of IL-6 secretion by cancer-associated MSCs and were reversible by functionally inhibiting of IL-6. We also found that IL-6 is a direct target gene for the let-7 microRNA, which was downregulated in cancer-associated MSCs. The overexpression of let-7 via the transfection of let-7 precursors decreased IL-6 expression and repressed the adipogenic potential and metastasis-promoting activity of cancer-associated MSCs, which was consistent with the inhibition of IL-6 3′UTR luciferase activity. Conversely, the treatment of normal MSCs with let-7 inhibitors resulted in effects similar to those seen with IL-6. Taken together, our data demonstrated that MSCs co-evolve with prostate cancer cells in the tumor microenvironment, and the downregulation of let-7 by cancer-associated MSCs upregulates IL-6 expression. This upregulation triggers adipogenesis and facilitates prostate cancer progression. These findings not only provide key insights into the molecular basis of tumor-stroma interactions but also pave the way for new treatments for metastatic prostate cancer.
Collapse
|
32
|
Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M, Bhasin D, Chettiar S, Li C, Li PK, Maitland NJ, Collins AT. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 2013; 73:5288-98. [PMID: 23824741 DOI: 10.1158/0008-5472.can-13-0874] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin (IL)-6 overexpression and constitutive STAT3 activation occur in many cancers, including prostate cancer. However, their contribution to prostate stem and progenitor cells has not been explored. In this study, we show that stem-like cells from patients with prostate cancer secrete higher levels of IL-6 than their counterparts in non-neoplastic prostate. Tumor grade did not influence the levels of expression or secretion. Stem-like and progenitor cells expressed the IL-6 receptor gp80 with concomitant expression of pSTAT3. Blockade of activated STAT3, by either anti-IL-6 antibody siltuximab (CNTO 328) or LLL12, a specific pSTAT3 inhibitor, suppressed the clonogenicity of the stem-like cells in patients with high-grade disease. In a murine xenograft model used to determine the in vivo effects of pSTAT3 suppression, LLL12 treatment effectively abolished outgrowth of a patient-derived castrate-resistant tumor. Our results indicate that the most primitive cells in prostate cancer require pSTAT3 for survival, rationalizing STAT3 as a therapeutic target to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Paula Kroon
- Yorkshire Cancer Research Unit, Department of Biology, York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer 2013; 2013:920612. [PMID: 23738079 PMCID: PMC3657461 DOI: 10.1155/2013/920612] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
Collapse
|
34
|
Codony-Servat J, Marín-Aguilera M, Visa L, García-Albéniz X, Pineda E, Fernández PL, Filella X, Gascón P, Mellado B. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate 2013; 73:512-21. [PMID: 23038213 DOI: 10.1002/pros.22591] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/30/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous work showed that the NF-κB survival pathway is activated by docetaxel (D) and contributes to D resistance in prostate cancer. In this study we aimed to investigate the dynamics of the relationship between NF-κB and IL-6 in the shift from D-naive castration-resistant prostate cancer (CRPC) to D-resistance in patients and cell lines. METHODS CRPC tumor samples were tested for NF-κB/p65 and IL-6 by immunohistochemistry. CRPC patients treated with D were also tested for serum IL-6 (ELISA). Two D-resistant cell lines, PC-3R and DU-145R, derived from the CRPC cells PC-3 and DU-145, respectively, were tested for NF-κB activation (EMSA), NF-κB-related genes expression (RT-PCR), NF-κB inhibition (p65 siRNA) and IL-6 and IL-8 soluble levels (ELISA). RESULTS In CRPC patients treated with D (n = 72), pre-treatment IL-6 level correlated with nuclear NF-κB/p65 tumor staining and response to D, and was an independent prognostic factor for overall survival. However, IL-6 level changes under treatment did not correlate with clinical outcome. In PC-3 and DU-145 parental CRPC cells, as well as in D-resistant counterparts, D treatment induced NF-κB activation. In fact, NF-κB inhibition was sufficient to re-sensitize DU-145R cells to D. Despite enhanced NF-κB activity, IL-6 secretion in D-resistant cell lines was reduced and not induced by D treatment. The same occurred with IL-8 cytokine. CONCLUSIONS These preclinical and clinical results support a role of NF-κB and IL-6 in the resistance to D in CRPC, and support the investigation of targeted therapies to enhance the antitumor activity of D in this patient population.
Collapse
Affiliation(s)
- Jordi Codony-Servat
- Medical Oncology Department and Laboratory of Translational Oncology, Hospital Clínic-Fundació Clínic per a la recerca Biomèdica, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ataie-Kachoie P, Pourgholami MH, Morris DL. Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 2012; 24:163-73. [PMID: 23107589 DOI: 10.1016/j.cytogfr.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that produces multifunctional effects. Deregulated IL-6 production and signaling are associated with chronic inflammatory diseases, auto-immunity and cancer. On this basis, inhibition of IL-6 production, its receptors or the signaling pathways are strategies currently being widely pursued to develop novel therapies for a wide range of diseases. This survey aims to provide an updated account of why IL-6 inhibitors are shaping up to become an important class of drugs potentially useful in the treatment of ailments and in particular in inflammation and cancer. In addition we discuss the role of different agents in modulating IL-6 and also recent clinical studies targeting IL-6 in inflammation-mediated diseases and cancer.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia.
| | | | | |
Collapse
|
36
|
Culig Z, Puhr M. Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol 2012; 360:52-8. [PMID: 21664423 PMCID: PMC3409376 DOI: 10.1016/j.mce.2011.05.033] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 12/19/2022]
Abstract
Several cytokines are involved in regulation of cellular events in prostate cancer. Interleukin-6 (IL-6) was frequently investigated in prostate cancer models because of its increased expression in cancer tissue at early stages of the disease. In patients with metastatic prostate cancer, it is well-known that IL-6 levels increase in serum. High levels of IL-6 were measured in the supernatants of cells which do not respond to androgenic stimulation. IL-6 expression in prostate cancer increases due to enhanced expression of transforming growth factor-beta, and members of the activating protein-1 complex, and loss of the retinoblastoma tumour suppressor. IL-6 activation of androgen receptor (AR) may contribute to progression of a subgroup of prostate cancers. Results obtained with two prostate cancer cell lines, LNCaP and MDA PCa 2b, indicate that IL-6 activation of AR may cause either stimulatory or inhibitory responses on proliferation. Interestingly, prolonged treatment with IL-6 led to establishment of an IL-6 autocrine loop, suppressed signal transducer and activator of transcription (STAT)3 activation, and increased mitogen-activated protein kinase phosphorylation. In several cell lines IL-6 acts as a survival molecule through activation of the signalling pathway of phosphotidylinositol 3-kinase. Expression of suppressors of cytokine signalling (SOCS) has been studied in prostate cancer. SOCS-3 prevents phosphorylation of STAT3 and is an important anti-apoptotic factor in AR-negative prostate cancer cells. Experimental therapy against IL-6 in prostate cancer is based on the use of the monoclonal antibody siltuximab which may be used for personalised therapy coming in the future.
Collapse
Affiliation(s)
- Zoran Culig
- Department of Urology, Experimental Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
37
|
Nabhan C, Petrylak DP. The Role of IMiDs Alone or in Combination in Prostate Cancer. Clin Genitourin Cancer 2012; 10:141-6. [DOI: 10.1016/j.clgc.2012.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 12/22/2022]
|
38
|
Kim HJ, Hwang SH, Han ME, Baek S, Sim HE, Yoon S, Baek SY, Kim BS, Kim JH, Kim SY, Oh SO. LAP2 is widely overexpressed in diverse digestive tract cancers and regulates motility of cancer cells. PLoS One 2012; 7:e39482. [PMID: 22745766 PMCID: PMC3380024 DOI: 10.1371/journal.pone.0039482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 05/24/2012] [Indexed: 11/21/2022] Open
Abstract
Background Lamina-associated polypeptides 2 (LAP2) is a nuclear protein that connects the nuclear lamina with chromatin. Although its critical roles in genetic disorders and hematopoietic malignancies have been described, its expression and roles in digestive tract cancers have been poorly characterized. Methods To examine the expression of LAP2 in patient tissues, we performed immunohistochemistry and real-time PCR. To examine motility of cancer cells, we employed Boyden chamber, wound healing and Matrigel invasion assays. To reveal its roles in metastasis in vivo, we used a liver metastasis xenograft model. To investigate the underlying mechanism, a cDNA microarray was conducted. Results Immunohistochemistry in patient tissues showed widespread expression of LAP2 in diverse digestive tract cancers including stomach, pancreas, liver, and bile duct cancers. Real-time PCR confirmed that LAP2β is over-expressed in gastric cancer tissues. Knockdown of LAP2β did not affect proliferation of most digestive tract cancer cells except pancreatic cancer cells. However, knockdown of LAP2β decreased motility of all tested cancer cells. Moreover, overexpression of LAP2β increased motility of gastric and pancreatic cancer cells. In the liver metastasis xenograft model, LAP2β increased metastatic efficacy of gastric cancer cells and mortality in tested mice. cDNA microarrays showed the possibility that myristoylated alanine-rich C kinase substrate (MARCKS) and interleukin6 (IL6) may mediate LAP2β-regulated motility of cancer cells. Conclusions From the above results, we conclude that LAP2 is widely overexpressed in diverse digestive tract cancers and LAP2β regulates motility of cancer cells and suggest that LAP2β may have utility for diagnostics and therapeutics in digestive tract cancers.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sun-Hwi Hwang
- Department of Surgery, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sungmin Baek
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Hey-Eun Sim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Sun-Yong Baek
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Bong-Seon Kim
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Pusan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Pusan, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Oh SJ, Erb HHH, Hobisch A, Santer FR, Culig Z. Sorafenib decreases proliferation and induces apoptosis of prostate cancer cells by inhibition of the androgen receptor and Akt signaling pathways. Endocr Relat Cancer 2012; 19:305-19. [PMID: 22383427 PMCID: PMC3353237 DOI: 10.1530/erc-11-0298] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antihormonal and chemotherapy are standard treatments for nonorgan-confined prostate cancer. The effectivity of these therapies is limited and the development of alternative approaches is necessary. In the present study, we report on the use of the multikinase inhibitor sorafenib in a panel of prostate cancer cell lines and their derivatives which mimic endocrine and chemotherapy resistance. (3)H-thymidine incorporation assays revealed that sorafenib causes a dose-dependent inhibition of proliferation of all cell lines associated with downregulation of cyclin-dependent kinase 2 and cyclin D1 expression. Apoptosis was induced at 2 μM of sorafenib in androgen-sensitive cells, whereas a higher dose of the drug was needed in castration-resistant cell lines. Sorafenib stimulated apoptosis in prostate cancer cell lines through downregulation of myeloid cell leukemia-1 (MCL-1) expression and Akt phosphorylation. Although concentrations of sorafenib required for the antitumor effect in therapy-resistant sublines were higher than those needed in parental cells, the drug showed efficacy in cells which became resistant to bicalutamide and docetaxel respectively. Most interestingly, we show that sorafenib has an inhibitory effect on androgen receptor (AR) and prostate-specific antigen expression. In cells in which AR expression was downregulated by short interfering RNA, the treatment with sorafenib increased apoptosis in an additive manner. In summary, the results of the present study indicate that there is a potential to use sorafenib in prostate cancers as an adjuvant therapy option to current androgen ablation treatments, but also in progressed prostate cancers that become unresponsive to standard therapies.
Collapse
Affiliation(s)
| | | | - Alfred Hobisch
- Department of UrologyGeneral Hospital FeldkirchCarinagasse 35A-6800, FeldkirchAustria
| | | | - Zoran Culig
- (Correspondence should be addressed to Z Culig; ; F R Santer; )
| |
Collapse
|
40
|
Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012; 38:904-10. [PMID: 22651903 DOI: 10.1016/j.ctrv.2012.04.007] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 02/09/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine which plays an important role in a wide range of biologic activities in different types of cell including tumor cells. IL-6 is involved in the host immune defense mechanism as well as the modulation of growth and differentiation in various malignancies. These effects are mediated by several signaling pathways, in particular the signal transducer and transcription activator 3 (Stat3). There exists abundant evidence demonstrating that deregulated overexpression of IL-6 was associated with tumor progression through inhibition of cancer cell apoptosis, stimulation of angiogenesis, and drug resistance. Clinical studies have revealed that increased serum IL-6 concentrations in patients are associated with advanced tumor stages of various cancers (e.g., multiple myeloma, non-small cell lung carcinoma, colorectal cancer, renal cell carcinoma, prostate cancer, breast cancer and ovarian cancer) and short survival in patients. Therefore, blocking IL-6 signaling is a potential therapeutic strategy for cancer (i.e., anti-IL-6 therapy) characterized by pathological IL-6 overproduction. Preliminary clinical evidence has shown that antibody targeted IL-6 therapy was well tolerated in cancer patients. In this review, we detail the progress of the current understanding of IL-6 signaling pathway in cancer as well as an antibody targeted IL-6 therapy for human cancer.
Collapse
Affiliation(s)
- Yuqi Guo
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | | | | | | | | |
Collapse
|
41
|
Hou L, Xu B, Guo W, Ran FX, Liu JT, Yuan X, Fu HZ, Cui JR. Pseudolaric acid B inhibits inducible cyclooxygenase-2 expression via downregulation of the NF-κB pathway in HT-29 cells. J Cancer Res Clin Oncol 2012; 138:885-96. [PMID: 22314698 DOI: 10.1007/s00432-011-1120-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Pseudolaric acid B (PAB) is a diterpene acid isolated from the root and trunk bark of Pseudolaric kaempferi Gordon. Previous work has found that PAB has anti-inflammatory and anti-tumor effects in xenograft models of human hepatocellular carcinoma. The aim of this study is to evaluate the correlation between anti-cancer and anti-inflammatory effects of PAB and its molecular mechanisms on HT-29 cells. METHODS Production of prostaglandin E2 (PGE2) in HT-29 cells was evaluated by ELISA. mRNA of cyclooxygenase-2 (COX-2) was analyzed by RT-PCR assay. High-content screening (HCS) method was adopted to detect the cytokine mixture (CM)-induced transcription activity of NF-κB and STAT3. Western blotting was used to evaluate the protein expression levels of inflammatory mediators induced by CM. After treatment with PAB in various concentrations, the inhibition rate of cell proliferation was measured with sulforhodamine B assays. For the in vivo studies, tumor-bearing models xenografted with HT-29 cells were developed in nude mice, and following oral administration with PAB, tumor inhibition rate was calculated. RESULTS PAB inhibited the PGE2 production in HT-29 cells significantly (P < 0.05) with similar results detected at the COX-2 mRNA level. Furthermore, PAB suppressed the COX-2 protein expression and significant nuclear translocation of NF-κB and STAT3 induced by CM, which correlated with a concomitant degradation of I-κB and a decrease in constitutive STAT3 phosphorylation (P < 0.05). Moreover, various concentrations of PAB inhibited the proliferation of HT-29 cells in a dose- and time-dependent manner. In vivo, after treatment with PAB for 17 days, the tumor weight of the 50 and 100 mg/kg treated groups was 0.62 ± 0.15 and 0.54 ± 0.06 g, respectively. When compared to the control group (0.82 ± 0.16 g), the inhibition rate of tumor weight was 24.2% at 50 mg/kg (P < 0.05) and 34.7% at 100 mg/kg (P < 0.001). CONCLUSIONS PAB shows potential anti-cancer activity in HT-29 cells, and its molecular mechanisms are related to the anti-inflammatory action.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin HY, Hou SC, Chen SC, Kao MC, Yu CC, Funayama S, Ho CT, Way TD. (-)-Epigallocatechin gallate induces Fas/CD95-mediated apoptosis through inhibiting constitutive and IL-6-induced JAK/STAT3 signaling in head and neck squamous cell carcinoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2480-2489. [PMID: 22313388 DOI: 10.1021/jf204362n] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, we examined the effects of several plant-derived natural compounds on head and neck squamous cell carcinoma (HNSCC) cells. The results revealed that (-)-epigallocatechin gallate (EGCG) demonstrated the most efficient cytotoxic effects on HNSCC cells. We then investigated the underlying molecular mechanism for the potent proapoptotic effect of EGCG on HNSCC. Cell apoptosis was observed in the EGCG-treated SAS and Cal-27 cells in a time- and dose-dependent manner. In concert with the caspase-8 activation by EGCG, an enhanced expression in functional Fas/CD95 was identified. Consistent with the increased Fas/CD95 expression, a drastic decrease in the Tyr705 phosphorylation of STAT3, a known negative regulator of Fas/CD95 transcription, was shown within 15 min in the EGCG-treated cells, leading to downregulation of the target gene products of STAT3, such as bcl-2, vascular endothelial growth factor (VEGF), mcl-1, and cyclin D1. An overexpression in STAT3 led to resistance to EGCG, suggesting that STAT3 was a critical target of EGCG. Besides inhibiting constitutive expression, EGCG also abrogated the interleukin-6 (IL-6)-induced JAK/STAT3 signaling and further inhibited IL-6-induced proliferation on HNSCC cells. In comparison with apigenin, curcumin, and AG490, EGCG was a more effective inhibitor of IL-6-induced proliferation on HNSCC cells. Overall, our results strongly suggest that EGCG induces Fas/CD95-mediated apoptosis through inhibiting constitutive and IL-6-induced JAK/STAT3 signaling. This mechanism may be partially responsible for EGCG's ability to suppress proliferation of HNSCC cells. These findings provide that EGCG may be useful in the chemoprevention and/or treatment of HNSCC.
Collapse
Affiliation(s)
- Hui-Yi Lin
- School of Pharmacy, College of Medicine, College of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Iqbal S, Zhang S, Driss A, Liu ZR, Kim HRC, Wang Y, Ritenour C, Zhau HE, Kucuk O, Chung LWK, Wu D. PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells. PLoS One 2012; 7:e30764. [PMID: 22276222 PMCID: PMC3262835 DOI: 10.1371/journal.pone.0030764] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/20/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant platelet derived growth factor (PDGF) signaling has been associated with prostate cancer (PCa) progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1). PDGF treatment induced rapid nuclear translocation of β-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of β-catenin and hypoxia-inducible factor (HIF)-1α, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE) within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR) signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis.
Collapse
Affiliation(s)
- Shareen Iqbal
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Yanru Wang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chad Ritenour
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Haiyen E. Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Omer Kucuk
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Leland W. K. Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (DW); (LWKC)
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (DW); (LWKC)
| |
Collapse
|
44
|
IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2011; 122:143-59. [PMID: 22029668 DOI: 10.1042/cs20110340] [Citation(s) in RCA: 590] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL (interleukin)-6, which was originally identified as a B-cell differentiation factor, is a multifunctional cytokine that regulates the immune response, haemopoiesis, the acute phase response and inflammation. IL-6 is produced by various types of cell and influences various cell types, and has multiple biological activities through its unique receptor system. IL-6 exerts its biological activities through two molecules: IL-6R (IL-6 receptor) and gp130. When IL-6 binds to mIL-6R (membrane-bound form of IL-6R), homodimerization of gp130 is induced and a high-affinity functional receptor complex of IL-6, IL-6R and gp130 is formed. Interestingly, sIL-6R (soluble form of IL-6R) also binds with IL-6, and the IL-6-sIL-6R complex can then form a complex with gp130. The homodimerization of receptor complex activates JAKs (Janus kinases) that then phosphorylate tyrosine residues in the cytoplasmic domain of gp130. The gp130-mediated JAK activation by IL-6 triggers two main signalling pathways: the gp130 Tyr759-derived SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase-2)/ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway and the gp130 YXXQ-mediated JAK/STAT (signal transducer and activator of transcription) pathway. Increased IL-6 levels are observed in several human inflammatory diseases, such as rheumatoid arthritis, Castleman's disease and systemic juvenile idiopathic arthritis. IL-6 is also critically involved in experimentally induced autoimmune diseases. All clinical findings and animal models suggest that IL-6 plays a number of critical roles in the pathogenesis of autoimmune diseases. In the present review, we first summarize the IL-6/IL-6R system and IL-6 signal transduction, and then go on to discuss the physiological and pathological roles of IL-6.
Collapse
|
45
|
Robert F, Mills JR, Agenor A, Wang D, DiMarco S, Cencic R, Tremblay ML, Gallouzi IE, Hekimi S, Wing SS, Pelletier J. Targeting protein synthesis in a Myc/mTOR-driven model of anorexia-cachexia syndrome delays its onset and prolongs survival. Cancer Res 2011; 72:747-56. [PMID: 22158946 DOI: 10.1158/0008-5472.can-11-2739] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anorexia-cachexia syndrome (ACS) is a major determinant of cancer-related death that causes progressive body weight loss due to depletion of skeletal muscle mass and body fat. Here, we report the development of a novel preclinical murine model of ACS in which lymphomas harbor elevated Myc and activated mTOR signaling. The ACS phenotype in this model correlated with deregulated expression of a number of cytokines, including elevated levels of interleukin-10 which was under the direct translational control of mTOR. Notably, pharmacologic intervention to impair protein synthesis restored cytokine production to near-normal levels, delayed ACS progression, and extended host survival. Together, our findings suggest a new paradigm to treat ACS by strategies which target protein synthesis to block the production of procachexic factors.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shariat SF, Chromecki TF, Hoefer J, Barbieri CE, Scherr DS, Karakiewicz PI, Roehrborn CG, Montorsi F, Culig Z, Cavarretta IT. Soluble gp130 regulates prostate cancer invasion and progression in an interleukin-6 dependent and independent manner. J Urol 2011; 186:2107-14. [PMID: 21944124 DOI: 10.1016/j.juro.2011.06.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Indexed: 12/14/2022]
Abstract
PURPOSE Soluble gp130 is a regulator of interleukin-6/soluble interleukin-6 receptor signaling that influences prostate cancer progression. We determined the association of soluble gp130 with prostate cancer prognosis, invasiveness and epithelial-to-mesenchymal transition. MATERIALS AND METHODS A total of 423 preoperative and 206 postoperative blood samples were available from patients treated with radical prostatectomy for clinically localized prostate cancer. Prostate cancer cell lines were used for in vitro studies. Plasma soluble gp130, interleukin-6 and soluble interleukin-6 receptor levels were measured using enzyme immunoassay. In vitro invasion assays and quantification of E-cadherin expression were done using modified Boyden chambers and Western blot, respectively. RESULTS In patients treated with radical prostatectomy higher preoperative plasma soluble gp130 was significantly associated with higher biopsy and pathological Gleason sum, extraprostatic extension, seminal vesicle invasion, lymph node metastasis and biochemical recurrence. In a subset of 206 patients postoperative soluble gp130 levels were 18% lower than preoperative levels (p = 0.037). Soluble gp130 levels weakly correlated with preoperative plasma interleukin-6 and soluble interleukin-6 receptor levels. In vitro soluble gp130 alone increased the invasiveness of androgen responsive prostate cancer cells and induced a significant decrease in E-cadherin. In patients higher plasma soluble gp130 was associated with features of biologically aggressive prostate cancer. The decrease in postoperative plasma soluble gp130 after surgery suggests that the higher blood levels of soluble gp130 are produced by tumor cells. CONCLUSIONS Data suggest that soluble gp130 has a role in prostate cancer invasion in an interleukin-6 dependent and independent manner.
Collapse
Affiliation(s)
- Shahrokh F Shariat
- Division of Medical Oncology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, Reddy M, Puchalski T, Safer K, Prabhakar U, Pantel K, Qi M, Culig Z. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate 2011; 71:1455-65. [PMID: 21321981 DOI: 10.1002/pros.21362] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/19/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Interleukin-6 (IL-6) is associated with prostate cancer morbidity. In several experimental models, IL-6 has been reported to have anti-apoptotic and pro-angiogenic effects. Siltuximab (CNTO 328) is a monoclonal anti-IL-6 antibody which has been successfully applied in several models representing prostate cancer. This study was designed to assess preliminary safety of siltuximab in patients with early prostate cancer. PATIENTS AND METHODS Twenty patients scheduled to undergo radical prostatectomy received either no drug or siltuximab (6 mg/kg, five patients per group with administration once, two times, and three times prior to surgery). Blood samples were collected for pharmacokinetic and pharmacodynamic analyses. Expression of elements of IL-6 signaling pathways was analyzed in tumor tissue by immunohistochemistry. Gene analysis in tumor specimens was performed with the DASL array. RESULTS No adverse events related to siltuximab were observed. Patients treated with siltuximab presented with higher levels of proliferation and apoptosis markers. Following a single dose, serum concentrations of siltuximab declined in a biexponential manner. This study revealed a decrease in phosphorylation of Stat3 and p44/p42 mitogen-activated protein kinases. In addition, gene expression analyses indicate down-regulation of genes immediately downstream of the IL-6 signaling pathway and key enzymes of the androgen signaling pathway. CONCLUSIONS Preliminary safety of siltuximab is favorable. Future studies in which siltuximab could be combined with androgen-deprivation therapy and experimental therapies in advanced prostate cancer are justified.
Collapse
|
48
|
Bouraoui Y, Ben Jemaa A, Rodriguez G, Ben Rais N, Fraile B, Paniagua R, Sellemi S, Royuela M, Oueslati R. Profile of NF-κBp(65/NFκBp50) among prostate specific antigen sera levels in prostatic pathologies. ACTA ACUST UNITED AC 2011; 60:301-5. [PMID: 21889270 DOI: 10.1016/j.patbio.2011.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 07/26/2011] [Indexed: 12/27/2022]
Abstract
AIM The aim of this work was to characterise the immunoexpression of NF-κB (p50/p65) in human prostatic pathologies and to study its profiles of activation among sera prostate specific antigen antigen (PSA) according the three groups: 0-4ng/mL, 4-20ng/mL and >20ng/mL. PATIENTS AND METHODS Twenty-four men with benign prostate hyperplasia (BPH); 19 men with prostate cancer (PC) and five men with normal prostates (NP). Immunohistochemical and western blot analysis was performed. Serum levels of PSA were assayed by immulite autoanalyser. RESULTS In BPH and PC samples, immunoexpressions were observed for NF-κBp65 and NF-κBp50; while in NP samples, only were detected NF-κBp50. PC samples showed immunoreactions to NF-κBp65 and NF-κBp50 more intense (respectively 24.18±0.67 and 28.23±2.01) than that observed in BPH samples (respectively18.46±2.04 and 18.66±1.59) with special localisation in the nucleus. Different profiles of NF-κBp65 immunoexpressions were observed and BPH patients with sera PSA levels between 0-4ng/mL presented a significant weak percentage compared to BPH patients with sera PSA levels between 4-20ng/mL and >20ng/mL. No immunoreactions to NF-κBp65 were observed in PC patients with sera PSA levels between 4-20ng/mL. CONCLUSION The sensibility of both NF-κB and PSA to inflammation allowed confirming the relationship between these two molecules and its involvement in prostatic diseases progression (inflammatory and neoplasic).
Collapse
Affiliation(s)
- Y Bouraoui
- Faculty of Sciences of Bizerte, Unit of Immunology and Microbiology Environmental and Carcinogenesis (IMEC), University of Carthage, 7021 Zarzouna, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bharadwaj U, Marin-Muller C, Li M, Chen C, Yao Q. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression. Mol Cancer 2011; 10:106. [PMID: 21880146 PMCID: PMC3175472 DOI: 10.1186/1476-4598-10-106] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 08/31/2011] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies showed that mesothelin (MSLN) plays important roles in survival of pancreatic cancer (PC) cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade) + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN), stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN) and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48) were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN) were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN) were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75) BAD, and activated (p-Ser70) Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis. Blocking NF-κB using IKK inhibitor wedelolactone also increased sensitivity to TNF-α-mediated cytotoxicity with concomitant decrease in Mcl-1. Blocking Akt using PI3K inhibitor also had a likewise effect presumably affecting cell cycle. MIA-MSLN cells produced increased IL-6 and were increased furthermore by TNF-α treatment. SiRNA-silencing of IL-6 increased TNF-α sensitivity of MIA-MSLN cells. Conclusions Our study delineates a MSLN-Akt-NF-κB-IL-6-Mcl-1 survival axis that may be operative in PC cells, and might help cancer cells' survival in the highly inflammatory milieu evident in PC. Further, for the success of TNFerade + gemcitabine to be successful, we feel the simultaneous inhibition of components of this axis is also essential.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Michael E, DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Pigazzi M, Manara E, Beghin A, Baron E, Tregnago C, Basso G. ICER evokes Dusp1-p38 pathway enhancing chemotherapy sensitivity in myeloid leukemia. Clin Cancer Res 2011; 17:742-52. [PMID: 21325296 DOI: 10.1158/1078-0432.ccr-10-0886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) is found downregulated in acute myeloid leukemia (AML), failing to control cAMP response element binding protein (CREB) transcriptional activity, recently demonstrated to mediate AML progression. We aimed to characterize ICER's role in drug sensitivity by treating myeloid cell lines and primary AML with chemotherapics. EXPERIMENTAL DESIGN The effects on CREB target genes induced by ICER restoration and drug treatment were studied by quantitative real-time PCR (qRT-PCR) and western blot. Cell cycle and apoptosis analysis were performed. Possible ICER-evoked pathways were investigated in vitro. The mechanism involved in enhanced drug sensitivity was described in primary AML cultures by silencing ICER main target genes. RESULTS AML cell lines reduced cell growth and enhanced apoptotic behavior after chemotherapy treatment if ICER was expressed. A significantly lowered expression of CREB target genes involved in cell cycle control (CyA1, B1, D1), and in the mitogen-activated protein kinase signaling pathway (ERK, AKT, DUSP1/4), was found after Etoposide treatment. The dual-specificity phosphatases DUSP1 and DUSP4, directly repressed by ICER, activated the p38 pathway, which triggered enhanced caspase-dependent apoptosis. The silencing of DUSP1/4 in HL60 confirmed the same enhanced drug sensitivity induced by ICER. Primary AML cultures, silenced for DUSP1 as well as restored of ICER expression, showed DUSP1 downregulation and p38 activation. CONCLUSION ICER mediates chemotherapy anticancer activity through DUSP1-p38 pathway activation and drives the cell program from survival to apoptosis. ICER restoration or DUSP1 inhibition might be possible strategies to sensitize AML cancer cells to conventional chemotherapy and to inhibit tumor growth.
Collapse
Affiliation(s)
- Martina Pigazzi
- Department of Pediatrics, Laboratory of Hematology-Oncology, University of Padova, Padova, Italy.
| | | | | | | | | | | |
Collapse
|