1
|
Zhou H, Yan S. Mechanisms of p53 core tetramer stability mediated by multi-interface interactions: A molecular dynamics study. Arch Biochem Biophys 2025; 763:110210. [PMID: 39603375 DOI: 10.1016/j.abb.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
p53 is a tumor suppressor protein for impeding cancer development and maintaining genetic integrity. The formation of the p53 core tetramer is regulated by multiple cooperative interaction interfaces. To investigate the internal mechanisms of tetramer stability, we performed all-atom molecular dynamics simulations. Our findings indicate that the symmetric interface maintains highly conserved interactions, while the dimer-dimer interface displays notable flexibility. Additionally, we identified a novel salt bridge at the dimer-dimer interface that significantly contributes to the interaction energy. Moreover, the affinity of p53 for DNA is more than twice that of protein-protein interactions, driven primarily by five key residues that form multiple hydrogen bonds. Through independent simulations of the two dimeric models, we provide a theoretical explanation for why only the symmetric dimeric structure has been observed experimentally. The study identifies key regions and residues that contribute to stability at the inter-molecular interaction interfaces within the p53 tetramer, and highlight the important roles of each contact surface in the formation and stability of the tetramer.
Collapse
Affiliation(s)
- Han Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
| | - Shiwei Yan
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
2
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Klett T, Stahlecker J, Jaag S, Masberg B, Knappe C, Lämmerhofer M, Coles M, Stehle T, Boeckler FM. Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution. ACS Pharmacol Transl Sci 2024; 7:3984-3999. [PMID: 39698266 PMCID: PMC11651176 DOI: 10.1021/acsptsci.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SNAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53. The reactive fragments SN001, SN006, and SN007 were detected to specifically stabilize Y220C, indicating the arylation of Cys220 in the mutational cleft, as confirmed by X-ray crystallography. The fragments occupy the central cavity and mimic the ring system of the WT tyrosine lost by the mutation. Surpassing previously reported noncovalent ligands, SN001 stabilized T-p53C-Y220C concentration-dependently up to 4.45 °C and, due to its small size, represents a promising starting point for optimization.
Collapse
Affiliation(s)
- Theresa Klett
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Jason Stahlecker
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Simon Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Murray Coles
- Department
of Protein Evolution, Max-Planck-Institute
for Biology, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty
Institute of Biochemistry, Eberhard Karls
Universität Tübingen, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
- Interfaculty
Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Malhotra L, Kaur P, Ethayathulla AS. Flavonoids as potential reactivators of structural mutation p53Y220C by computational and cell-based studies. J Biomol Struct Dyn 2024; 42:9602-9613. [PMID: 37643005 DOI: 10.1080/07391102.2023.2252071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The p53 Y220C is one of the most frequently observed structural mutants in various human cancers. The substitution of residue Tyr to Cys makes the p53 DNA binding domain susceptible to solvent entry into the hydrophobic core of the domain thereby destabilizing p53, which results in loss of its tumor suppressor activity. The mutation creates a structural crevice at the region between S3/S4 and S7/S8 loops in the DNA binding domain which can be targeted by small molecules. Studies have shown that the synthetic and natural compounds could bind to this crevice and restore the structure and function of the mutant p53Y220C to the wild type. In our previous study, we have shown Curcumin could rescue the function of mutant p53Y220C in pancreatic cancer cell line BxPC-3 harboring genomic mutation. In this study, we explored six flavonoids structurally similar to Curcumin such as Apigenin, Isoliquiritigenin, Liquiritigenin, Luteolin, Methylophiopogonanone A (MPA), and Methylophiopogonanone B (MPB) to test their potency to restore p53Y220C by molecular docking, molecular dynamics simulations and cytotoxicity assay. The secondary structure analysis after the MD simulations suggested that these compounds could stabilize the mutant p53 DNA binding domain to the wild type. In the cell-based cytotoxicity studies using p53Y220C harbouring BxPC-3 cell lines, the compounds MPA and MPB showed 75% cell death at 100 µM concentration. We proposed that the flavonoids MPA and MPB have the therapeutic potential to restore p53Y220C and could be used as a combinatorial therapy to reduce the dosage burden.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
6
|
Saito A, Omura I, Imaizumi K. CREB3L1/OASIS: cell cycle regulator and tumor suppressor. FEBS J 2024; 291:4853-4866. [PMID: 38215153 DOI: 10.1111/febs.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Cell cycle checkpoints detect DNA errors, eventually arresting the cell cycle to promote DNA repair. Failure of such cell cycle arrest causes aberrant cell proliferation, promoting the pathogenesis of multiple diseases, including cancer. Endoplasmic reticulum (ER) stress transducers activate the unfolded protein response, which not only deals with unfolded proteins in ER lumen but also orchestrates diverse physiological phenomena such as cell differentiation and lipid metabolism. Among ER stress transducers, cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1) [also known as old astrocyte specifically induced substance (OASIS)] is an ER-resident transmembrane transcription factor. This molecule is cleaved by regulated intramembrane proteolysis, followed by activation as a transcription factor. OASIS is preferentially expressed in specific cells, including astrocytes and osteoblasts, to regulate their differentiation. In accordance with its name, OASIS was originally identified as being upregulated in long-term-cultured astrocytes undergoing cell cycle arrest because of replicative stress. In the context of cell cycle regulation, previously unknown physiological roles of OASIS have been discovered. OASIS is activated as a transcription factor in response to DNA damage to induce p21-mediated cell cycle arrest. Although p21 is directly induced by the master regulator of the cell cycle, p53, no crosstalk occurs between p21 induction by OASIS or p53. Here, we summarize previously unknown cell cycle regulation by ER-resident transcription factor OASIS, particularly focusing on commonalities and differences in cell cycle arrest between OASIS and p53. This review also mentions tumorigenesis caused by OASIS dysfunctions, and OASIS's potential as a tumor suppressor and therapeutic target.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
7
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2024:10.1038/s41418-024-01391-6. [PMID: 39443700 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
8
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
9
|
Alakonya H, Koustoulidou S, Hopkins SL, Veal M, Ajenjo J, Sneddon D, Dias G, Mosley M, Baguña Torres J, Amoroso F, Anderson A, Banham AH, Cornelissen B. Molecular Imaging of p53 in Mouse Models of Cancer Using a Radiolabeled Antibody TAT Conjugate with SPECT. J Nucl Med 2024; 65:1626-1632. [PMID: 39266290 PMCID: PMC11448609 DOI: 10.2967/jnumed.124.267736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Methods: Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with 111In to allow SPECT imaging. 111In-anti-p53-TAT conjugates were retained longer in cells overexpressing p53-specific than non-p53-specific 111In-mIgG (mouse IgG from murine plasma)-TAT controls, but not in null p53 cells. Results: In vivo SPECT imaging showed enhanced uptake of 111In-anti-p53-TAT, versus 111In-mIgG-TAT, in high-expression p53R175H and medium-expression wild-type p53 but not in null p53 tumor xenografts. The results were confirmed in mice bearing genetically engineered KPC mouse-derived pancreatic ductal adenocarcinoma tumors. Imaging with 111In-anti-p53-TAT was possible in KPC mice bearing spontaneous p53R172H pancreatic ductal adenocarcinoma tumors. Conclusion: We demonstrate the feasibility of noninvasive in vivo molecular imaging of p53 in tumor tissue using a radiolabeled TAT-modified monoclonal antibody.
Collapse
Affiliation(s)
- Hudson Alakonya
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sofia Koustoulidou
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L Hopkins
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Javier Ajenjo
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Deborah Sneddon
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Julia Baguña Torres
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Francesca Amoroso
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Amanda Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom;
- Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Xhafa S, Di Nicola C, Tombesi A, Pettinari R, Pettinari C, Scarpelli F, Crispini A, La Deda M, Candreva A, Garufi A, D'Orazi G, Galindo A, Marchetti F. Pyrazolone-Based Zn(II) Complexes Display Antitumor Effects in Mutant p53-Carrying Cancer Cells. J Med Chem 2024; 67:15676-15690. [PMID: 39221914 DOI: 10.1021/acs.jmedchem.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis and characterization of nine Schiff bases of pyrazolone ligands HLn (n = 1-9) and the corresponding zinc(II) complexes 1-9 of composition [Zn(Ln)2] (n = 1-9) are reported. The molecular structures of complexes 2, 3, 4, 8, and 9 were determined by single-crystal X-ray diffraction analysis, highlighting in all cases a distorted tetrahedral geometry around the Zn(II) ion. Density functional theory studies are performed on both the HLn ligands and the derived complexes. A mechanism of dissociation and hydrolyzation of the coordinated Schiff base ligands is suggested, confirmed experimentally by powder X-ray diffraction study and photophysical studies. Complexes 1-9 were investigated in vitro as anticancer agents, along with mutant p53 (mutp53) protein levels in human cancer cell lines carrying R175H and R273H mutp53 proteins. Only those complexes with the highest Zn(II) ion release via dissociation have shown a significant cytotoxic activity with reduction of mutp53 protein levels.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Massimo La Deda
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Angela Candreva
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio, via dei Vestini 31, 66013 Chieti, Italy
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| |
Collapse
|
11
|
Fallatah MMJ, Demir Ö, Law F, Lauinger L, Baronio R, Hall L, Bournique E, Srivastava A, Metzen LT, Norman Z, Buisson R, Amaro RE, Kaiser P. Pyrimidine Triones as Potential Activators of p53 Mutants. Biomolecules 2024; 14:967. [PMID: 39199355 PMCID: PMC11352488 DOI: 10.3390/biom14080967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
p53 is a crucial tumor suppressor in vertebrates that is frequently mutated in human cancers. Most mutations are missense mutations that render p53 inactive in suppressing tumor initiation and progression. Developing small-molecule drugs to convert mutant p53 into an active, wild-type-like conformation is a significant focus for personalized cancer therapy. Prior research indicates that reactivating p53 suppresses cancer cell proliferation and tumor growth in animal models. Early clinical evidence with a compound selectively targeting p53 mutants with substitutions of tyrosine 220 suggests potential therapeutic benefits of reactivating p53 in patients. This study identifies and examines the UCI-1001 compound series as a potential corrector for several p53 mutations. The findings indicate that UCI-1001 treatment in p53 mutant cancer cell lines inhibits growth and reinstates wild-type p53 activities, including DNA binding, target gene activation, and induction of cell death. Cellular thermal shift assays, conformation-specific immunofluorescence staining, and differential scanning fluorometry suggest that UCI-1001 interacts with and alters the conformation of mutant p53 in cancer cells. These initial results identify pyrimidine trione derivatives of the UCI-1001 series as candidates for p53 corrector drug development.
Collapse
Affiliation(s)
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Fiona Law
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Roberta Baronio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Linda Hall
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Elodie Bournique
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Ambuj Srivastava
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Landon Tyler Metzen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zane Norman
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rémi Buisson
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
13
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
14
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
15
|
Tam B, Lagniton PNP, Da Luz M, Zhao B, Sinha S, Lei CL, Wang SM. Comprehensive classification of TP53 somatic missense variants based on their impact on p53 structural stability. Brief Bioinform 2024; 25:bbae400. [PMID: 39140857 PMCID: PMC11323084 DOI: 10.1093/bib/bbae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.
Collapse
Affiliation(s)
- Benjamin Tam
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | | | - Mariano Da Luz
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Bojin Zhao
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Siddharth Sinha
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - San Ming Wang
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| |
Collapse
|
16
|
Cuturello F, Celoria M, Ansuini A, Cazzaniga A. Enhancing predictions of protein stability changes induced by single mutations using MSA-based Language Models. Bioinformatics 2024; 40:btae447. [PMID: 39012369 PMCID: PMC11269464 DOI: 10.1093/bioinformatics/btae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
MOTIVATION Protein Language Models offer a new perspective for addressing challenges in structural biology, while relying solely on sequence information. Recent studies have investigated their effectiveness in forecasting shifts in thermodynamic stability caused by single amino acid mutations, a task known for its complexity due to the sparse availability of data, constrained by experimental limitations. To tackle this problem, we introduce two key novelties: leveraging a Protein Language Model that incorporates Multiple Sequence Alignments to capture evolutionary information, and using a recently released mega-scale dataset with rigorous data pre-processing to mitigate overfitting. RESULTS We ensure comprehensive comparisons by fine-tuning various pre-trained models, taking advantage of analyses such as ablation studies and baselines evaluation. Our methodology introduces a stringent policy to reduce the widespread issue of data leakage, rigorously removing sequences from the training set when they exhibit significant similarity with the test set. The MSA Transformer emerges as the most accurate among the models under investigation, given its capability to leverage co-evolution signals encoded in aligned homologous sequences. Moreover, the optimized MSA Transformer outperforms existing methods and exhibits enhanced generalization power, leading to a notable improvement in predicting changes in protein stability resulting from point mutations. AVAILABILITY AND IMPLEMENTATION Code and data at https://github.com/RitAreaSciencePark/PLM4Muts. SUPPLEMENTARY INFORMATION Supplementary Information is available at Bioinformatics online.
Collapse
Affiliation(s)
- Francesca Cuturello
- Research and Technology Institute, , AREA Science Park, Trieste 34149, Italy
| | - Marco Celoria
- Research and Technology Institute, , AREA Science Park, Trieste 34149, Italy
- HPC Department, , CINECA National Supercomputing Center, Bologna 40033, Italy
| | - Alessio Ansuini
- Research and Technology Institute, , AREA Science Park, Trieste 34149, Italy
| | - Alberto Cazzaniga
- Research and Technology Institute, , AREA Science Park, Trieste 34149, Italy
| |
Collapse
|
17
|
Klett T, Schwer M, Ernst LN, Engelhardt MU, Jaag SJ, Masberg B, Knappe C, Lämmerhofer M, Gehringer M, Boeckler FM. Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53. Drug Des Devel Ther 2024; 18:2653-2679. [PMID: 38974119 PMCID: PMC11226190 DOI: 10.2147/dddt.s466829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.
Collapse
Affiliation(s)
- Theresa Klett
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Martin Schwer
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Larissa N Ernst
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Marc U Engelhardt
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Simon J Jaag
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Cornelius Knappe
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-) Analysis, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Matthias Gehringer
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Medicinal Chemistry, Institute for Biomedical Engineering, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
18
|
Balourdas DI, Markl AM, Krämer A, Settanni G, Joerger AC. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators. Cell Death Dis 2024; 15:408. [PMID: 38862470 PMCID: PMC11166945 DOI: 10.1038/s41419-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.
Collapse
Affiliation(s)
- Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Anja M Markl
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Giovanni Settanni
- Faculty of Physics and Astronomy, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- Physics Department, University of Mainz, Staudingerweg 7, 55099, Mainz, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
20
|
Wilson PD, Yu X, Buck MJ. Nucleosome-binding by TP53, TP63, and TP73 is determined by the composition, accessibility, and helical orientation of their binding sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592419. [PMID: 38746214 PMCID: PMC11092788 DOI: 10.1101/2024.05.03.592419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The p53 family of transcription factors plays key roles in driving development and combating cancer by regulating gene expression. TP53, TP63, and TP73-the three members of the p53 family-regulate gene expression by binding to their DNA binding sites, many of which are situated within nucleosomes. To thoroughly examine the nucleosome-binding abilities of the p53 family, we used Pioneer-seq, a technique that assesses a transcription factor's binding affinity to its DNA binding sites at all possible positions within the nucleosome core particle. Using Pioneer-seq, we analyzed the binding affinity of TP53, TP63, and TP73 to 10 p53-family binding sites across the nucleosome core particle. We found that the affinity of TP53, TP63, and TP73 for nucleosomes was largely determined by the positioning of p53-family binding sites within nucleosomes; p53-family members bind strongly to the more accessible edges of nucleosomes but weakly to the less accessible centers of nucleosomes. We also found that the DNA-helical orientation of p53-family binding sites within nucleosomal DNA impacted the nucleosome-binding affinity of p53-family members. The composition of their binding sites also impacted each p53-family member's nucleosome-binding affinities only when the binding site was located in an accessible location. Taken together, our results show that the accessibility, composition, and helical orientation of p53-family binding sites collectively determine the nucleosome-binding affinities of TP53, TP63, and TP73. These findings help explain the rules underlying p53-family-nucleosome binding and thus provide requisite insight into how we may better control gene-expression changes involved in development and tumor suppression.
Collapse
|
21
|
Stockhammer P, Grant M, Wurtz A, Foggetti G, Expósito F, Gu J, Zhao H, Choi J, Chung S, Li F, Walther Z, Dietz J, Duffield E, Gettinger S, Politi K, Goldberg SB. Co-Occurring Alterations in Multiple Tumor Suppressor Genes Are Associated With Worse Outcomes in Patients With EGFR-Mutant Lung Cancer. J Thorac Oncol 2024; 19:240-251. [PMID: 37806385 PMCID: PMC11364167 DOI: 10.1016/j.jtho.2023.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Patients with metastatic EGFR-mutant NSCLC inevitably have disease progression while on tyrosine kinase inhibitor (TKI) therapy. Co-occurring tumor suppressor gene (TSG) alterations have been associated with poor outcomes, however, detailed analyses of their impact on patient outcomes are limited. METHODS Patients with EGFR-mutant NSCLC treated with EGFR TKIs who had tumor genomic profiling were included. Alterations in TP53 and five additional TSGs (RB1, NF1, ARID1A, BRCA1, and PTEN) were used to stratify the cohort into the following three subgroups: patients with tumors harboring a TP53 mutation plus a mutation in at least one additional TSG (TP53mut/TSGmut), those having a TP53 mutation without additional TSG mutations (TP53mut/TSGwt), and those with TP53wt. Patient characteristics and clinical outcomes were assessed in two independent cohorts. RESULTS A total of 101 patients from the Yale Cancer Center and 182 patients from the American Association for Cancer Research Project GENIE database were included. In the Yale cohort, TP53 mutations were identified in 65 cases (64%), of which 23 were TP53mut/TSGmut and 42 were TP53mut/TSGwt. Although the presence of a TP53 mutation was associated with worse outcomes, the additional TSG alteration in TP53mut tumors identified a subset of patients associated with particularly aggressive disease and inferior clinical outcome in both the Yale and the GENIE cohorts. Specifically, in the Yale cohort for patients receiving first-line TKIs, those with TP53mut/TSGmut tumors had shorter progression-free survival (PFS) and overall survival (OS) than TP53mut/TSGwt (PFS: hazard ratio [HR] = 2.03, confidence interval [CI]: 1.12-3.69, p < 0.01, OS: HR = 1.58, CI: 0.82-3.04, p = 0.12) or TP53wt cases (PFS: HR 2.4, CI: 1.28-4.47, p < 0.001, OS: HR = 2.54, CI: 1.21-5.34, p < 0.005). Inferior outcomes in patients with TP53mut/TSGmut tumors were also found in those receiving osimertinib as second-line therapy. Similar findings were seen in patients in the GENIE cohort. CONCLUSIONS Patients with TP53mut/TSGmut tumors represent a patient subgroup characterized by an aggressive disease phenotype and inferior outcomes on EGFR TKIs. This information is important for understanding the biological underpinnings of differential outcomes with TKI treatment and has implications for identifying patients who may benefit from additional therapeutic interventions beyond osimertinib monotherapy.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Michael Grant
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Anna Wurtz
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Giorgia Foggetti
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Vita-Salute San Raffaele University, Milano, Italy; Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milano, Italy
| | - Francisco Expósito
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sangyun Chung
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Fangyong Li
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Julia Dietz
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emily Duffield
- Yale New Haven Hospital, Smilow Cancer Hospital, New Haven, Connecticut
| | - Scott Gettinger
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Katerina Politi
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
22
|
Zhan J, Wang J, Liang Y, Zeng X, Li E, Wang H. P53 together with ferroptosis: a promising strategy leaving cancer cells without escape. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1-14. [PMID: 38105650 PMCID: PMC10875350 DOI: 10.3724/abbs.2023270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 12/19/2023] Open
Abstract
TP53, functioning as the keeper of the genome, assumes a pivotal function in the inhibition of tumorigenesis. Recent studies have revealed that p53 regulates ferroptosis pathways within tumor cells and is closely related to tumorigenesis. Therefore, we summarize the pathways and mechanisms by which p53 regulates ferroptosis and identify a series of upstream and downstream molecules involved in this process. Furthermore, we construct a p53-ferroptosis network centered on p53. Finally, we present the progress of drugs to prevent wild-type p53 (wtp53) degeneration and restore wtp53, highlighting the deficiencies of drug development and the prospects for p53 in cancer treatment. These findings provide novel strategies and directions for future cancer therapy.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
- HuanKui AcademyNanchang UniversityNanchang330006China
| | - Jisheng Wang
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Yuqing Liang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
| | - Xiaoping Zeng
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| | - Enliang Li
- Department of General SurgerySecond Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Hongmei Wang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
- Medical CollegeJinhua PolytechnicJinhua321017China
| |
Collapse
|
23
|
Ghosh A, Ganguly D. Structural impairment of p53 C-terminal due to the effect of phosphorylation and acetylation: a study on the interdependence of PTM. J Biomol Struct Dyn 2023; 42:13854-13863. [PMID: 37937769 DOI: 10.1080/07391102.2023.2279270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The C-terminal of tumor suppressor protein p53 is intrinsically disordered while unbound. This particular segment often shows structural plasticity when bound to other binding partners. The disordered component undergoes a disordered to ordered transition upon recognition. Post-translational modifications (PTMs), namely phosphorylation and acetylation, significantly alter the structural motifs of the segment. Among the various types of PTMs, phosphorylation, and acetylation of p53 at both N- and C- terminals lead to stabilization and activation. It has been noted experimentally that phosphorylation often regulates (enhances or reduces) the acetylation at specific sites. The phosphorylation of Thr377 and Ser378 reduces the acetylation of Lys373 and Lys382. Mutations of Thr377 and Ser378 to neutral Ala enhance and phospho mimic Asp reduce the acetylation of Lys373 and Lys382. Simulations of several single-point and pair-wise mutated systems have been generated to compare how the presence or absence of phosphorylation favors or disfavors the acetylation by thermodynamic and conformational analysis. We are using implicit solvent replica exchange molecular dynamics simulations to get 200 ns well-converged conformational ensembles of each system. Different sets of systems having both single and double PTMs are simulated. The results admit the appreciable change in the secondary structural level upon specific PTM. Also, the residual structure of the unbound p53 with single-point PTM varies significantly with pair-wise modifications. These observations further shed light on the relationship between the interdependencies of the specific PTM sites and the secondary structural levels.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Ghosh
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| |
Collapse
|
24
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
25
|
Pal A, Gonzalez-Malerva L, Eaton S, Xu C, Zhang Y, Grief D, Sakala L, Nwekwo L, Zeng J, Christensen G, Gupta C, Streitwieser E, Singharoy A, Park JG, LaBaer J. Multidimensional quantitative phenotypic and molecular analysis reveals neomorphic behaviors of p53 missense mutants. NPJ Breast Cancer 2023; 9:78. [PMID: 37773066 PMCID: PMC10541912 DOI: 10.1038/s41523-023-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Mutations in the TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specific TP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position-R273C vs. R273H-has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.
Collapse
Affiliation(s)
- Anasuya Pal
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Gonzalez-Malerva
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Seron Eaton
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chenxi Xu
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dustin Grief
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lydia Sakala
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Lilian Nwekwo
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jia Zeng
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Grant Christensen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Chitrak Gupta
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ellen Streitwieser
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Abhishek Singharoy
- The Biodesign Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joshua LaBaer
- The Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- The School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
26
|
Manyilov VD, Ilyinsky NS, Nesterov SV, Saqr BMGA, Dayhoff GW, Zinovev EV, Matrenok SS, Fonin AV, Kuznetsova IM, Turoverov KK, Ivanovich V, Uversky VN. Chaotic aging: intrinsically disordered proteins in aging-related processes. Cell Mol Life Sci 2023; 80:269. [PMID: 37634152 PMCID: PMC11073068 DOI: 10.1007/s00018-023-04897-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1702 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is however less than the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the used here aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels, revealing the importance of "structure-function continuum" in aging. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment has simultaneously high liquid-liquid phase separation (LLPS) probability, "nuclear" localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, and stem cells exhaustion. Intrinsic disorder, LLPS, and aggregation propensity should be considered as features that could be markers of pathogenic proteins. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss of function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.
Collapse
Affiliation(s)
- Vladimir D Manyilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Baraa M G A Saqr
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Guy W Dayhoff
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Simon S Matrenok
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | | | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| |
Collapse
|
27
|
Borkosky SS, Fassolari M, Campos-León K, Rossi AH, Salgueiro M, Pascuale CA, Martínez RP, Gaston K, de Prat Gay G. Biomolecular Condensation of the Human Papillomavirus E2 Master Regulator with p53: Implications in Viral Replication. J Mol Biol 2023; 435:167889. [PMID: 36402224 DOI: 10.1016/j.jmb.2022.167889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
p53 exerts its tumour suppressor activity by modulating hundreds of genes and it can also repress viral replication. Such is the case of human papillomavirus (HPV) through targeting the E2 master regulator, but the biochemical mechanism is not known. We show that the C-terminal DNA binding domain of HPV16 E2 protein (E2C) triggers heterotypic condensation with p53 at a precise 2/1 E2C/p53 stoichiometry at the onset for demixing, yielding large regular spherical droplets that increase in size with E2C concentration. Interestingly, transfection experiments show that E2 co-localizes with p53 in the nucleus with a grainy pattern, and recruits p53 to chromatin-associated foci, a function independent of the DNA binding capacity of p53 as judged by a DNA binding impaired mutant. Depending on the length, DNA can either completely dissolve or reshape heterotypic droplets into irregular condensates containing p53, E2C, and DNA, and reminiscent of that observed linked to chromatin. We propose that p53 is a scaffold for condensation in line with its structural and functional features, in particular as a promiscuous hub that binds multiple cellular proteins. E2 appears as both client and modulator, likely based on its homodimeric DNA binding nature. Our results, in line with the known role of condensation in eukaryotic gene enhancement and silencing, point at biomolecular condensation of E2 with p53 as a means to modulate HPV gene function, strictly dependent on host cell replication and transcription machinery.
Collapse
Affiliation(s)
- Silvia Susana Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| | - Marisol Fassolari
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET, Mar del Plata, Argentina
| | - Karen Campos-León
- Division of Immunity and Infection, School of Medicine, University of Birmingham, United Kingdom
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Mariano Salgueiro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ramón Peralta Martínez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Kevin Gaston
- School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Gonzalo de Prat Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| |
Collapse
|
28
|
Zhou S, Chai D, Wang X, Neeli P, Yu X, Davtyan A, Young K, Li Y. AI-powered discovery of a novel p53-Y220C reactivator. Front Oncol 2023; 13:1229696. [PMID: 37593097 PMCID: PMC10430779 DOI: 10.3389/fonc.2023.1229696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction The p53-Y220C mutation is one of the most common mutations that play a major role in cancer progression. Methods In this study, we applied artificial intelligence (AI)-powered virtual screening to identify small-molecule compounds that specifically restore the wild-type p53 conformation from p53-Y220C. From 10 million compounds, the AI algorithm selected a chemically diverse set of 83 high-scoring hits, which were subjected to several experimental assays using cell lines with different p53 mutations. Results We identified one compound, H3, that preferentially killed cells with the p53-Y220C mutation compared to cells with other p53 mutations. H3 increased the amount of folded mutant protein with wild-type p53 conformation, restored its transcriptional functions, and caused cell cycle arrest and apoptosis. Furthermore, H3 reduced tumorigenesis in a mouse xenograft model with p53-Y220C-positive cells. Conclusion AI enabled the discovery of the H3 compound that selectively reactivates the p53-Y220C mutant and inhibits tumor development in mice.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | | | - Ken Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
29
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
30
|
Song B, Wang J, Ren Y, Su Y, Geng X, Yang F, Wang H, Zhang J. Butein inhibits cancer cell growth by rescuing the wild-type thermal stability of mutant p53. Biomed Pharmacother 2023; 163:114773. [PMID: 37156116 DOI: 10.1016/j.biopha.2023.114773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.
Collapse
Affiliation(s)
- Bin Song
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajian Wang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yongnan Su
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueye Geng
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Yang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jihong Zhang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
31
|
Saito A, Kamikawa Y, Ito T, Matsuhisa K, Kaneko M, Okamoto T, Yoshimaru T, Matsushita Y, Katagiri T, Imaizumi K. p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS. Cell Rep 2023:112479. [PMID: 37178686 DOI: 10.1016/j.celrep.2023.112479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
CREB/ATF transcription factor OASIS/CREB3L1 is upregulated in long-term-cultured astrocytes undergoing cell-cycle arrest due to loss of DNA integrity by repeated replication. However, the roles of OASIS in the cell cycle remain unexplored. We find that OASIS arrests the cell cycle at G2/M phase after DNA damage via direct induction of p21. Cell-cycle arrest by OASIS is dominant in astrocytes and osteoblasts, but not in fibroblasts, which are dependent on p53. In a brain injury model, Oasis-/- reactive astrocytes surrounding the lesion core show sustained growth and inhibition of cell-cycle arrest, resulting in prolonged gliosis. We find that some glioma patients exhibit low expression of OASIS due to high methylation of its promoter. Specific removal of this hypermethylation in glioblastomas transplanted into nude mice by epigenomic engineering suppresses the tumorigenesis. These findings suggest OASIS as a critical cell-cycle inhibitor with potential to act as a tumor suppressor.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Taichi Ito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masayuki Kaneko
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | - Takumi Okamoto
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| |
Collapse
|
32
|
Fallatah MMJ, Law FV, Chow WA, Kaiser P. Small-molecule correctors and stabilizers to target p53. Trends Pharmacol Sci 2023; 44:274-289. [PMID: 36964053 PMCID: PMC10511064 DOI: 10.1016/j.tips.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
The tumor suppressor p53 is the most frequently mutated protein in human cancer and tops the list of high-value precision oncology targets. p53 prevents initiation and progression of cancer by inducing cell-cycle arrest and various forms of cell death. Tumors have thus evolved ways to inactivate p53, mainly by TP53 mutations or by hyperactive p53 degradation. This review focuses on two types of p53 targeting compounds, MDM2 antagonists and mutant p53 correctors. MDM2 inhibitors prevent p53 protein degradation, while correctors restore tumor suppressor activity of p53 mutants by enhancing thermodynamic stability. Herein we explore both novel and repurposed p53 targeting compounds, discuss their mode of action, and examine the challenges in advancing them to the clinic.
Collapse
Affiliation(s)
- Maryam M J Fallatah
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Fiona V Law
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Warren A Chow
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA; Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
33
|
Osterburg C, Ferniani M, Antonini D, Frombach AS, D'Auria L, Osterburg S, Lotz R, Löhr F, Kehrloesser S, Zhou H, Missero C, Dötsch V. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Cell Death Dis 2023; 14:274. [PMID: 37072394 PMCID: PMC10113246 DOI: 10.1038/s41419-023-05796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.
Collapse
Affiliation(s)
- Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marco Ferniani
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Dario Antonini
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ann-Sophie Frombach
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ludovica D'Auria
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Huiqing Zhou
- Departments of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Departments of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
34
|
Song H, Wu J, Tang Y, Dai Y, Xiang X, Li Y, Wu L, Wu J, Liang Y, Xing Y, Yan N, Li Y, Wang Z, Xiao S, Li J, Zheng D, Chen X, Fang H, Ye C, Ma Y, Wu Y, Wu W, Li J, Zhang S, Lu M. Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties. Sci Transl Med 2023; 15:eabn9155. [PMID: 37018419 DOI: 10.1126/scitranslmed.abn9155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Tumor suppressor p53 is inactivated by thousands of heterogeneous mutations in cancer, but their individual druggability remains largely elusive. Here, we evaluated 800 common p53 mutants for their rescue potencies by the representative generic rescue compound arsenic trioxide (ATO) in terms of transactivation activity, cell growth inhibition, and mouse tumor-suppressive activities. The rescue potencies were mainly determined by the solvent accessibility of the mutated residue, a key factor determining whether a mutation is a structural one, and the temperature sensitivity, the ability to reassemble the wild-type DNA binding surface at a low temperature, of the mutant protein. A total of 390 p53 mutants were rescued to varying degrees and thus were termed as type 1, type 2a, and type 2b mutations, depending on the degree to which they were rescued. The 33 type 1 mutations were rescued to amounts comparable to the wild type. In PDX mouse trials, ATO preferentially inhibited growth of tumors harboring type 1 and type 2a mutants. In an ATO clinical trial, we report the first-in-human mutant p53 reactivation in a patient harboring the type 1 V272M mutant. In 47 cell lines derived from 10 cancer types, ATO preferentially and effectively rescued type 1 and type 2a mutants, supporting the broad applicability of ATO in rescuing mutant p53. Our study provides the scientific and clinical communities with a resource of the druggabilities of numerous p53 mutations (www.rescuep53.net) and proposes a conceptual p53-targeting strategy based on individual mutant alleles rather than mutation type.
Collapse
Affiliation(s)
- Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenjing Ye
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yu Wu
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
36
|
Tam B, Qin Z, Zhao B, Wang SM, Lei CL. Integration of deep learning with Ramachandran plot molecular dynamics simulation for genetic variant classification. iScience 2023; 26:106122. [PMID: 36879825 PMCID: PMC9984559 DOI: 10.1016/j.isci.2023.106122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Functional classification of genetic variants is a key for their clinical applications in patient care. However, abundant variant data generated by the next-generation DNA sequencing technologies limit the use of experimental methods for their classification. Here, we developed a protein structure and deep learning (DL)-based system for genetic variant classification, DL-RP-MDS, which comprises two principles: 1) Extracting protein structural and thermodynamics information using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method, 2) combining those data with an unsupervised learning model of auto-encoder and a neural network classifier to identify the statistical significance patterns of the structural changes. We observed that DL-RP-MDS provided higher specificity than over 20 widely used in silico methods in classifying the variants of three DNA damage repair genes: TP53, MLH1, and MSH2. DL-RP-MDS offers a powerful platform for high-throughput genetic variant classification. The software and online application are available at https://genemutation.fhs.um.edu.mo/DL-RP-MDS/.
Collapse
Affiliation(s)
- Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chon Lok Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
37
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
39
|
Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol 2023; 72:102230. [PMID: 36436275 DOI: 10.1016/j.cbpa.2022.102230] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
The p53 protein plays a critical role in the prevention of genome mutations in the body, however, this protein is frequently mutated in cancer and almost all cancers exhibit malfunction along the p53 pathway. In addition to a loss of activity, mutant p53 protein is prone to unfolding and aggregation, eventually forming amyloid aggregates. There continues to be a considerable effort to develop strategies to restore normal p53 expression and activity and this review details recent advances in small-molecule stabilization of mutant p53 protein and the design of p53 aggregation inhibitors.
Collapse
|
40
|
Ghosh A, Ganguly D. Structural modulation of p53TAD1-TAZ2 complex upon mutations and post-translational modification. J Biomol Struct Dyn 2023; 41:176-185. [PMID: 34787057 DOI: 10.1080/07391102.2021.2004235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tumour suppressing p53 is a target for genetic alterations in human cancer. Native p53, found in latent state in cells, gets activated following various intracellular or extracellular responses. It plays imperative role in cell-cycle control, via growth-arrest, DNA repair and apoptosis, mainly regulated by post-translational modifications (PTM). However, the influence of PTMs on the activity of p53 is still under extensive experimental and computational study. There are numerous PTM sites in p53, which are reported to regulate its binding affinities with other proteins. Of the many, Thr18 at transactivational domain (TAD) of p53 is reported to amplify p53 activity upon phosphorylation. To understand the molecular basis of p53 recognition by its binding partner upon mutations and PTMs, we have exploited all atom molecular dynamic (MD) simulation of p53TAD1 bound to TAZ2 domain of p300. The MD simulation inferred that phosphorylated and mutated Thr18, as a phospho-mimic, bound with TAZ2, redistributed the charge environment of the interface, thereby modulating the stronger interactions with TAZ2 to enhance the binding efficiency. The electrostatic interactions due to different charge environment together with H-bonding and hydrophobic interaction dictate diverse binding approach between the two. The results of this computational study further explain the importance of the Thr18 as a PTM site in atomistic detail, hence shedding further light to the understanding of how PTMs are imperative for p53 activity to protect the cellular world.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| |
Collapse
|
41
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Unraveling the Structural Changes in the DNA-Binding Region of Tumor Protein p53 ( TP53) upon Hotspot Mutation p53 Arg248 by Comparative Computational Approach. Int J Mol Sci 2022; 23:ijms232415499. [PMID: 36555140 PMCID: PMC9779389 DOI: 10.3390/ijms232415499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.
Collapse
|
43
|
Solares MJ, Kelly DF. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. Int J Mol Sci 2022; 23:ijms232315267. [PMID: 36499604 PMCID: PMC9740296 DOI: 10.3390/ijms232315267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in tumor suppressor genes often lead to cancerous phenotypes. Current treatments leverage signaling pathways that are often compromised by disease-derived deficiencies in tumor suppressors. P53 falls into this category as genetic mutations lead to physical changes in the protein that impact multiple cellular pathways. Here, we show the first complete structural models of mutated p53 to reveal how hotspot mutations physically deviate from the wild-type protein. We employed a recently determined structure for the p53 monomer to map seven frequent clinical mutations using computational modeling approaches. Results showed that missense mutations often changed the conformational structure of p53 in the DNA-binding site along with its electrostatic surface charges. We posit these changes may amplify the toxic effects of these hotspot mutations by destabilizing an important zinc ion coordination region in p53 to impede proper DNA interactions. These results highlight the imperative need for new studies on patient-derived proteins that may assist in redesigning structure-informed targeted therapies.
Collapse
Affiliation(s)
- Maria J. Solares
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Correspondence:
| |
Collapse
|
44
|
Julian L, Sang JC, Wu Y, Meisl G, Brelstaff JH, Miller A, Cheetham MR, Vendruscolo M, Knowles TPJ, Ruggeri FS, Bryant C, Ros S, Brindle KM, Klenerman D. Characterization of full-length p53 aggregates and their kinetics of formation. Biophys J 2022; 121:4280-4298. [PMID: 36230002 PMCID: PMC9703098 DOI: 10.1016/j.bpj.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the TP53 gene are common in cancer with the R248Q missense mutation conferring an increased propensity to aggregate. Previous p53 aggregation studies showed that, at micromolar concentrations, protein unfolding to produce aggregation-prone species is the rate-determining step. Here we show that, at physiological concentrations, aggregation kinetics of insect cell-derived full-length wild-type p53 and p53R248Q are determined by a nucleation-growth model, rather than formation of aggregation-prone monomeric species. Self-seeding, but not cross-seeding, increases aggregation rate, confirming the aggregation process as rate determining. p53R248Q displays enhanced aggregation propensity due to decreased solubility and increased aggregation rate, forming greater numbers of larger amorphous aggregates that disrupt lipid bilayers and invokes an inflammatory response. These results suggest that p53 aggregation can occur under physiological conditions, a rate enhanced by R248Q mutation, and that aggregates formed can cause membrane damage and inflammation that may influence tumorigenesis.
Collapse
Affiliation(s)
- Linda Julian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jason C Sang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jack H Brelstaff
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa Miller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Matthew R Cheetham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Simone Ruggeri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Clare Bryant
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Susana Ros
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
45
|
Stephenson Clarke J, Douglas LR, Duriez PJ, Balourdas DI, Joerger AC, Khadiullina R, Bulatov E, Baud MGJ. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. ACS Pharmacol Transl Sci 2022; 5:1169-1180. [PMID: 36407959 PMCID: PMC9667543 DOI: 10.1021/acsptsci.2c00164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/28/2022]
Abstract
The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.
Collapse
Affiliation(s)
- Joseph
R. Stephenson Clarke
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Leon R. Douglas
- Cancer
Research UK, Somers Building, University
Hospital Southampton, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Patrick J. Duriez
- Centre
for Cancer Immunology, University Hospital
Southampton, Coxford
Road, Southampton SO16
6YD, United Kingdom
| | - Dimitrios-Ilias Balourdas
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute
of Pharmaceutical Chemistry, Johann Wolfgang
Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Buchmann
Institute for Molecular Life Sciences and Structural Genomics Consortium, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Raniya Khadiullina
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Emil Bulatov
- Institute
of Fundamental Medicine and Biology, Kazan
Federal University, Kazan 420008, Russia
| | - Matthias G. J. Baud
- School of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
46
|
Wang CY, Wang CH, Mai RT, Chen TW, Li CW, Chao CH. Mutant p53-microRNA-200c-ZEB2-Axis-Induced CPT1C Elevation Contributes to Metabolic Reprogramming and Tumor Progression in Basal-Like Breast Cancers. Front Oncol 2022; 12:940402. [PMID: 35936710 PMCID: PMC9351713 DOI: 10.3389/fonc.2022.940402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
TP53 is mutated in more than 80% of basal-like breast cancers (BLBCs). BLBCs with TP53 mutation are usually high-grade and have worse responses to chemotherapy, leading to poor clinical outcomes. Wild-type p53 (WTp53) is well-accepted to promote fatty acid oxidation (FAO); however, in this study, we demonstrate that mutant p53 (Mutp53) enhances FAO activity through constitutively upregulating CPT1C via dysregulating the miR-200c-ZEB2 axis. Sustained CPT1C expression contributes to the metabolic preference of FAO, epithelial-mesenchymal transition (EMT) phenotypes, migration, invasion, and cancer stemness in BLBC, which is mediated by modulating the redox status. Furthermore, interference of CPT1C expression impairs tumor growth and pulmonary colonization of BLBC cells in vivo, and even postpones the occurrence of spontaneous metastasis, resulting in a prolonged disease-specific survival (DSS). Consistently, clinical validation reveals that high CPT1C is observed in breast cancer patients with metastasis and is correlated with poor overall, disease-free, progression-free, and disease-specific survival in BLBC patients. Together, unlike WTp53 which transiently transactivates CPT1C, Mutp53 provides long-term benefits through sustaining CPT1C expression by disturbing the miR-200c-ZEB2 axis, which potentiates FAO and facilitates tumor progression in BLBC, suggesting that targeting Mutp53-CPT1C-driven metabolic reprogramming is promising to serve as novel therapeutic strategies for BLBC in the future.
Collapse
Affiliation(s)
- Chen-Yun Wang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cing-Hong Wang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ru-Tsun Mai
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Wen Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Hong Chao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- *Correspondence: Chi-Hong Chao,
| |
Collapse
|
47
|
Navalkar A, Paul A, Sakunthala A, Pandey S, Dey AK, Saha S, Sahoo S, Jolly MK, Maiti TK, Maji SK. Oncogenic gain of function due to p53 amyloids by aberrant alteration of cell cycle and proliferation. J Cell Sci 2022; 135:276165. [PMID: 35796018 DOI: 10.1242/jcs.259500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription factor p53 has been shown to aggregate into cytoplasmic/nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 is shown to form amyloids, which play a role in conferring cancerous properties to cells leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain-of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates the genes associated with cell cycle, proliferation, apoptosis, senescence along with major signaling pathways. This is further supported by the proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation such as cyclin-dependent kinase-1, leads to loss of oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis.
Collapse
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Amit Kumar Dey
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Mohit K Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bengaluru 560012, India
| | - Tushar K Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
48
|
Tumor suppressor p53 restrains cancer cell dissemination by modulating mitochondrial dynamics. Oncogenesis 2022; 11:26. [PMID: 35589683 PMCID: PMC9120037 DOI: 10.1038/s41389-022-00401-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Tumor suppressor p53 plays a central role in preventing tumorigenesis. Here, we unravel how p53 modulates mitochondrial dynamics to restrain the metastatic properties of cancer cells. p53 inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling to attenuate the protein level of mitochondrial fission process 1 (MTFP1), which fosters the pro-fission dynamin-related protein 1 (Drp1) phosphorylation. This regulatory mechanism allows p53 to restrict cell migration and invasion governed by Drp1-mediated mitochondrial fission. Downregulating p53 expression or elevating the molecular signature of mitochondrial fission correlates with aggressive tumor phenotypes and poor prognosis in cancer patients. Upon p53 loss, exaggerated mitochondrial fragmentation stimulates the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling resulting in epithelial-to-mesenchymal transition (EMT)-like changes in cell morphology, accompanied by accelerated matrix metalloproteinase 9 (MMP9) expression and invasive cell migration. Notably, blocking the activation of mTORC1/MTFP1/Drp1/ERK1/2 axis completely abolishes the p53 deficiency-driven cellular morphological switch, MMP9 expression, and cancer cell dissemination. Our findings unveil a hitherto unrecognized mitochondria-dependent molecular mechanism underlying the metastatic phenotypes of p53-compromised cancers.
Collapse
|
49
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
50
|
Miller JJ, Kwan K, Gaiddon C, Storr T. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. J Biol Inorg Chem 2022; 27:393-403. [PMID: 35488931 DOI: 10.1007/s00775-022-01939-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Metal ion dysregulation has been implicated in a number of diseases from neurodegeneration to cancer. While defective metal ion transport mechanisms are known to cause specific diseases of genetic origin, the role of metal dysregulation in many diseases has yet to be elucidated due to the complicated function (both good and bad!) of metal ions in the body. A breakdown in metal ion speciation can manifest in several ways from increased reactive oxygen species (ROS) generation to an increase in protein misfolding and aggregation. In this review, we will discuss the role of Zn in the proper function of the p53 protein in cancer. The p53 protein plays a critical role in the prevention of genome mutations via initiation of apoptosis, DNA repair, cell cycle arrest, anti-angiogenesis, and senescence pathways to avoid propagation of damaged cells. p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. Thus, there has been considerable effort dedicated to restoring normal p53 expression and activity to mutant p53. This includes understanding the relative populations of the Zn-bound and Zn-free p53 in wild-type and mutant forms, and the development of metallochaperones to re-populate the Zn binding site to restore mutant p53 activity. Parallels will be made to the development of multifunctional metal binding agents for modulating the aggregation of the amyloid-beta peptide in Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Christian Gaiddon
- Inserm UMR_S1113, IRFAC, team Streinth, Strasbourg University, Strasbourg, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|